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Dose Distribution
• Experts determine an “ideal dose 

distribution” for a particular target
• Covers tumor
• Limits radiation to healthy/at-risk 

regions
• Delivery plan = optimization problem



Delivery Plan

plus some integrality constraints



Commonalities
• Target (tumor)
• Regions at risk
• Maximize kill, minimize damage
• Homogeneity, conformality

constraints
• Amount of data, or model complexity
• Mechanism to deliver dose



Day-to-day planning

• Dose delivered in a series of treatments 
over many days
• Limits burning
• Allows healthy tissue to recover 

• Current approach: apply a constant policy 
• Divide target dose distribution by number of 

treatments
• Attempt to deliver same amount each time 

(only requires one optimization)



Error sources

Displacement of tumor from target 
region and uncertainty about its 
exact position and extent caused by:

1. Delivery errors or differences 
between planned and actual 
delivered dosages;



Error sources
2. Errors in setting up (registering) the patient on 

the treatment device;
3. Patient movement (usually due to breathing) while 

the dose is being delivered.
4. Mistakes in interpretation of imaged data, or 

presence of microscopic extensions of the tumor 
not viewable by current imaging technology;

5. Movement and/or shrinkage of patient internal 
organs from day to day, between treatment 
sessions;



Example: Breast case
The breast cannot be positioned 

exactly the same from day to day.

Also, breathing motion can move the 
breast out of the treatment field if 
this motion is not accounted for 
properly in the planning and delivery.
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Current Solution
• Add safety margin to GTV: CTV
• CTV modified to form PTV

• Synchronize beam with breathing, 
breathing control, motion adaptation

• Statistical approaches
• Adaptive radiotherapy



Model Problem
• Consider one-dimensional example
• Consider simple shifts and N=20:

• Shift to the left or right
• Shift by 0, 1, or 2 voxels

• 5 probabilities need to be assigned

i



Could Use Expectation
• Assume deliver same dose every 

period, known error distribution
• After N periods, dose delivered 

approximately equal to expected dose
• Plan so expected dose = “ideal dose”
• Modified constant policy delivers:



Modified Constant Policies

Low volatility High volatility



Error with stages N



Dose Delivery
• Errors:

• Organ movement 
• Registration of patient on machine
• Movement of patient during treatment
• Planning/mechanical error

• New option: True dose delivered can be 
measured during individual treatments
• Update (reoptimize) treatment plan day-to-day
• Compensate for errors



Tomotherapy Machine
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Control Problem

• Given:
• Total number of treatments (N)
• Number of the current treatment (k)
• Target dose (T)
• Accumulated dose already delivered (xk)

• Determine:
• Dose (uk) to apply to minimize final error

Develop an adaptive treatment:



Modeling assumptions
• Divide the target into voxels
• Assume errors (wk) are shifts

• Spatially correlated, independent over 
time

• Assign probabilities to each shift
• Stochastic optimal control problem



Mathematical Formulation

min ||xN −T||   = G(xN)
subject to xk+1(i) = xk(i) + uk(i       )

uk ≥ 0

Linear Program:Stochastic

+wk

E( )

with x0 given.  
Shorthand xk+1 = f(xk,uk(xk),wk)



Difficulty in Finding Optimal 
Policy

• 4 time stages: 18k eqs, 14k vars, 25 secs
• 5 time stages: 91k eqs, 70k vars, 3 mins
• 6 time stages: 457k eqs, 352k vars, 1 hr

• Parallel computing
• Scenario reduction techniques (lower 

bound)

Size!



Dynamic Programming
• State evolving over time
• Decisions applied at each time stage
• Each decision affects future 

decisions
• Cost-to-go:

Jk(xk) = E[G(xN)]
where xk+1 = f(xk,uk,wk)

• Also becomes intractable



Design Approach: NDP
• Approximate the exact cost-to-go 

function using simulation
• Update decisions using rollout policy:

• From current state, consider all possible 
decisions u

• Approximate cost-to-go function J for 
each decision using simulation and base 
policy

• Choose decision that gives the best 
result



Policy Choices

• Constant
• Reactive (base policy)

• NDP



NDP in Control Problem
• Choose a good heuristic (base) policy
• Choose finite number of policies
• Evaluate using simulation in future
• Choose best choice right now

• Do it!
• Repeat process for next                            

time stage
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Expected Errors (low vol)
Mean     Variance 

Constant                      2.40          0.81 
Mod. Constant  (0.2)    1.75           0.43
Reactive                      0.74           0.10 
Mod. Reactive (3.0)     0.56           0.16
NDP rollout                 0.53           0.17 



Summary of Results
• Constant policy performs poorly

• Does not consider errors
• Reactive policy is significantly better
• NDP outperforms reactive policy

• NDP can get close to optimal policy
• NDP result is as easy to implement in 

real application
• Case dependent policy is expensive to 

compute



Simple rule of thumb

1-14 15 16 17 18 19 20
2.0 1.8 1.6 1.4 1.025 0.9 0.5
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3D Patient Example

Tumor, Liver,Kidneys, Spinal Cord



Perfect Planning







Effect of Fractionation
• Take a single line 

through 3D pelvis 
example

• Project tumor, 
sensitive 
structures and 
dose distributions 
onto line
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Realizable Delivery
• Exact delivery, 

constant policy, 
without shifts –
0.82

• Dose distributions 
from 6 angles

• Realizable delivery, 
constant policy 
without shifts –
2.05
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Accuracy of Planning
• Parameterize between “exact” and 

“realizable” (3DCRT) using 

0 0.1 0.3 0.5 0.7 0.9 1.0

W/o 
shifts

0.82 0.83 0.84 0.85 0.92 1.61 2.05

With
shifts

1.26 1.29 1.32 1.42 1.55 1.69 1.74



Conclusions
• Reactive/NDP improve upon current policy
• NDP compared to reactive:

• NDP better in perfect planning
• NDP better in real planning (provided good)

• NDP useful for both improving treatments 
and planning treatments
• On-line: run between treatments (overnight) to 

determine next policy
• Off-line: “rules of thumb” suggest 

improvements for any planning tool



Issues for Future
• How do we quantify errors?
• Uncertain data – on-board imaging provides 

information – registration?

• How to generate map of organ movement?
• How to plan the (much more difficult) 

problems resulting from errors?

• Optimization – validation, robustness, 
design
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