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Dynamics and uncertainties (risk neutral)

Scenario tree is data

T stages (use 6 here)

Nodes n ∈ N , n+ successors

Stagewise probabilities µ(m) to move
to next stage m ∈ n+

Uncertainties (wind flow, cloud cover,
rainfall, demand) ωa(n)

Actions ua for each agent (dispatch,
curtail, generate, shed), with costs Ca

State and shared variables (storage,
prices)

Recursive (nested) definition of
expected cost-to-go: θ(n) =∑
m∈n+

µ(m)
(∑

a∈A Ca(ua(m)) + θ(m)
)

t ∈ 0, 1, 2, 3, 4, 5, 6
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The setup: agents a =(solar, wind, diesel, consumer)

Ferris/Philpott (Univ. Wisconsin) Dynamic Risked Equilibria Supported by DOE/ARPA-E 3 / 25



Model

SO: min
(θ,u,x)∈F(ω)

∑
a∈A

Ca(ua(0)) + θ(0)

s.t. θ(n) ≥
∑
m∈n+

µ(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)
∑
a∈A

ga(ua(n)) ≥ 0

ga converts actions into energy.

Solution (risk neutral, system
optimal):

consumer cost 1,308,201;
probability of shortage 19.5%

No transfer of energy across
stages.

Prices π on energy
constraint:
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Add storage (smoother) to uncertain supply
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The Philpott batch problem

Solar panels:

Petrol generator:

Battery:

Pump storage:
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Add storage

Storage allows
energy to be moved
across stages
(batteries, pump,
compressed air, etc)

Solution forcing use
of battery consumer
cost 1,228,357;
probability of
shortage 11.5%

Solution allowing
both options
consumer cost
207,476; probability
of shortage 1.1%

min
(θ,u,x)∈F

∑
a∈A

Ca(ua(0)) + θ(0)

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θ(n) ≥
∑
m∈n+

µ(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)
∑
a∈A

ga(ua(n)) ≥ 0

Prices π
on energy
constraint:
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Investment planning: storage/generator capacity
Increasing battery capacity

Shortage probability
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Increasing diesel generator capacity

Shortage probability
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MOPEC

min
xi
θi (xi , x−i , π) s.t. gi (xi , x−i , π) ≤ 0,∀i

π solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h pi cons

(Generalized) Nash

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve

Solve overall problem
using “individual
optimizations”?

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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Decomposition (of agents) by prices π
Split up θ into agent contributions θa and add weighted constraints into
objective:

min
(θ,u,x)∈F

∑
a∈A

Ca(ua(0)) + θa(0)− πT (ga(ua(n)))

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θa(n) ≥
∑
m∈n+

µ(m) (Ca(ua(m)) + θa(m))

Problem then decouples into multiple optimizations

RA(a, π): min
(θ,u,x)∈F

Za(0) + θa(0)

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θa(n) ≥
∑
m∈n+

µ(m)(Za(m) + θa(m))

Za(n) = Ca(ua(n))− π(n)ga(ua(n))
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SO equivalent to MOPEC (price takers)

Perfectly competitive (Walrasian) equilibrium is a MOPEC

{(ua(n), θa(n)), n ∈ N} ∈ arg min RA(a, π)

and
0 ≤

∑
a∈A

ga(ua(n)) ⊥ π(n) ≥ 0

One optimization per agent, coupled together with solution of
complementarity (equilibrium) constraint.

Overall, this is a Nash Equilibrium problem, solvable as a large scale
complementarity problem (replacing all the optimization problems by
their KKT conditions) using the PATH solver.

But in practice there is a gap between SO and MOPEC.

How to explain?
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Perfect competition

max
xi

πT xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

0 ≤π ⊥
∑
i

xi − d(π) ≥ 0

Assume price taking, no agent can strategically affect π

Each agent is a price taker

Two agents, d(π) = 24− π, c1 = 3, c2 = 2

KKT(1) + KKT(2) + Market Clearing gives Complementarity
Problem

x1 = 0, x2 = 22, π = 2
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Cournot: two agents (duopoly)

max
xi

p(
∑
j

xj)
T xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

Cournot: assume each can affect π by choice of xi

Inverse demand p(q): π = p(q) ⇐⇒ q = d(π)

Two agents, same data

KKT(1) + KKT(2) gives Complementarity Problem

x1 = 20/3, x2 = 23/3, π = 29/3

Exercise of market power (some price takers, some Cournot, even
Stackleberg)
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Another explanation: risk

Modern approach to
modeling risk
aversion uses concept
of risk measures

CVaRα: mean of
upper tail beyond
α-quantile (e.g.
α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 
F

re
q

u
e

n
c

y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

Dual representation (of coherent r.m.) in terms of risk sets

ρ(Z ) = sup
µ∈D

Eµ[Z ] = sup
µ∈D

µTZ

If D = {p} then ρ(Z ) = E[Z ]
If Dα,p = {λ : 0 ≤ λi ≤ pi/(1− α),

∑
i λi = 1}, then

ρ(Z ) = CVaRα(Z )
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Risk averse equilibrium

Replace each agents problem by:

RA(a, π,Da): min
(θ,u,x)∈F

Za(0) + θa(0)

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θa(n) ≥
∑
m∈n+

pka (m)(Za(m) + θa(m)), k ∈ K (n)

Za(n) = Ca(ua(n))− π(n)ga(ua(n))

pka (m) are extreme points of the agents risk set at m

No longer system optimization

Must solve using complementarity solver

Need new techniques to treat stochastic optimization problems within
equilibrium
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Computational results
Increasing risk aversion

Shortage probability
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Increasing battery capacity
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Equilibrium or optimization?

Theorem

If (u, θ) solves SO(Ds), then there is a probability distribution
(µ̄(n), n ∈ N ) and prices (π(n), n ∈ N ) so that defining Da = {µ̄} for all
a ∈ A, (u, π) solves RE(DA). That is, the social plan is decomposable
into a risk-neutral multi-stage stochastic optimization problem for each
agent, with coupling via complementarity constraints.

(Observe that each agent must maximize their own expected profit using
probabilities µ̄ that are derived from identifying the worst outcomes as
measured by SO. These will correspond to the worst outcomes for each
agent only under very special circumstances)

Attempt to construct agreement on what would be the worst-case
outcome by trading risk
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Contracts in MOPEC (Philpott/F./Wets)

Can we modify (complete) system to have a social optimum by
trading risk?

How do we design these instruments? How many are needed? What
is cost of deficiency?

Given any node n, an Arrow-Debreu security for node m ∈ n+ is a
contract that charges a price µ(m) in node n ∈ N , to receive a
payment of 1 in node m ∈ n+.

Conceptually allows to transfer money from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Such contracts complete the market (RET)

RAT(a, π, µ,Da): min
(θ,Z ,x ,u,W )∈F(ω)

Za(0) + θa(0)

s.t. θa(n) ≥
∑
m∈n+

pka (m)(Za(m) + θa(m)−Wa(m)), k ∈ K (n)

Za(n) = Ca(ua(n))− π(n)ga(ua(n)) +
∑
m∈n+

µ(m)Wa(m)

coupled to clearing of energy and clearing of contracts

0 ≤ −
∑
a∈A

Wa(n) ⊥ µ(n) ≥ 0

Theorem

Consider agents a ∈ A, with risk sets Da(n), n ∈ N \ L. Let (u, θ) solve
SO(Ds) with risk sets Ds(n) =

⋂
a∈ADa(n). There exist prices

(π̄(n), n ∈ N ) and (µ̄(n), n ∈ N \ {0}) and actions ūa(n), n ∈ N ,
W̄a(n), n ∈ N \ {0} that form a multistage risk-trading equilibrium
RET(DA).
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Conversely...

Theorem

Consider a set of agents a ∈ A, each endowed with a polyhedral
node-dependent risk set Da(n), n ∈ N \ L. Suppose (π̄(n), n ∈ N ) and
(µ̄(n), n ∈ N \ {0}) form a multistage risk-trading equilibrium RET(DA)
in which agent a solves RAT(a, π̄, µ̄,Da) with a policy defined by ūa(·)
together with a policy of trading Arrow-Debreu securities defined by
{W̄a(n), n ∈ N \ {0}}. Then

(i) (ū, θ̄) is a solution to SO(Ds) with Ds = {µ̄},
(ii) µ̄ ∈ Da for all a ∈ A,

(iii) (ū, θ̄) is a solution to SO(Ds) with risk sets Ds(n) =
⋂

a∈ADa(n),

where θ̄ is defined recursively (above) with µσ = µ̄ and ua(n) = ūa(n).

In battery problem can recover by trading the system optimal solution
(and its properties) since the retailer/generator agent is risk neutral
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Technical details

Can prove SO(Ds) yields a RET(DA) provided that

Ds(n) ⊆ int(R|n+|+ ), since in this case a solution (including multipliers)
is defined at every node. Establish above result using uniform
convergence of solutions arising from a contaminated risk measure:

ρν(Z ) =
1

ν
E[1/|n+|]n+ [Z ] + (1− 1

ν
) max
µ∈Ds(n)

Eµ[Z ].

Can determine RET solution by solving a system optimization
problem and subsequent risk trading optimization problems.
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Decomposition (by node and agent)
Each agent a at each node n solves:

min
(θ,u,x)∈F

Za(0) + θa(0)

s.t. θa(n) ≥
∑
m∈n+

pka (m)(Za(m) + θa(m)), k ∈ K (n)

Za(n) = Ca(ua(n))− π(n)ga(ua(n))

+ α(n)(xa(n)− xa(n−) + ua(n)− ωa(n))

coupled to

0 ≤
∑
a∈A

ga(ua(n)) ⊥ π(n) ≥ 0

and
0 = xa(n)− xa(n−) + ua(n)− ωa(n) ⊥ α(n)

Note that decomposition techniques can be naturally extended to this
setting and implemented within SELKIE.
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Other specializations and extensions

min
xi
θi (xi , x−i , z(xi , x−i ), π) s.t. gi (xi , x−i , z , π) ≤ 0, ∀i , f (x , z , π) = 0

π solves VI(h(x , ·),C )

NE: Nash equilibrium (no VI coupling constraints, gi (xi ) only)

GNE: Generalized Nash Equilibrium (feasible sets of each players
problem depends on other players variables)

Implicit variables: z(xi , x−i ) shared

Shared constraints: f is known to all (many) players

Force all shared constraints to have same dual variable (VI solution)

Can use EMP to write all these problems, and convert to MCP form

Use models to evaluate effects of regulations and their
implementation in a competitive environment
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Contracts to mitigate risk

Reserves: set aside operating capacity in future for possible dispatch
under certain outcomes

Contracts of differences and options on these (difference between
promise and delivery)

Contracts for guaranteed delivery of energy in future under certain
outcomes (F/Wets)

Arrow Debreu (pure) financial contracts under certain outcomes -
trading risk (Philpott/F/Wets)

Localized storage as smoothers - transfer energy to future time at a
given location (F/Philpott)

Consider limits on availability, etc

Need market/equilibrium concept

Need multiple period dynamic models and risk aversion
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Conclusions

Showed equilibrium problems built from interacting optimization
problems

Equilibrium problems can be formulated naturally and modeler can
specify who controls what

It’s available (in GAMS)

Allows use and control of dual variables / prices

MOPEC facilitates easy “behavior” description at model level

Enables modelers to convey simple structures to algorithms and
allows algorithms to exploit this

New decomposition algorithms available to modeler (Gauss Seidel,
Randomized Sweeps, Gauss Southwell, Grouping of subproblems)

Can evaluate effects of regulations and their implementation in a
dynamic competitive environment

Stochastic equilibria - clearing the market in each scenario

Ability to trade risk using contracts
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