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Simulation-based optimization problems

e Computer simulations are used as substitutes to evaluate
complex real systems.

e Simulations are widely applied in epidemiology, engineering
design, manufacturing, supply chain management, medical
treatment and many other fields.

e The goal: Optimization finds the best values of the decision
variables (design parameters or controls) that minimize some
performance measure of the simulation.
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Design a coaxial antenna for hepatic tumor ablation

Dipole tip length  Slot size Floating sleeve Outer conductor
i
L »
Sleeve position Inner conductor Teflon catheter

Teflon coating
Inner conductor

Teflon isolation layer
Outer conductor

Floating sleeve



Introduction
[e]e] e}

Simulation of the electromagnetic radiation profile
Finite element models (MultiPhysics v3.2) are used to generate the
electromagnetic (EM) radiation fields in liver given a particular
design

Lesion Size=a
© Axial Ratio (AR) =a/b
b 13
4 ~— IE
Metric Measure of Goal
Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5

S11 Tail reflection of antenna Minimize
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A general problem formulation

e We formulate the simulation-based optimization problem as

min F(x) = E,[f(x,w(x))],
x€S
w(x) is a random factor arising in the simulation process.
The sample response function f(x,w)
e typically does not have a closed form, thus cannot provide
gradient or Hessian information
e is normally computationally expensive
e is affected by uncertain factors in simulation

The underlying objective function F(x) has to be estimated.
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Simulation callibration

e Detailed individual-woman level discrete event simulation of
Wisconsin Breast Cancer Incidence (using 4 processes):
e Breast cancer natural history
o Breast cancer detection
e Breast cancer treatment
e Non-breast cancer mortality among US women

e Replicate breast cancer surveillance data: 1975-2000

In Situ Inc./100K pop.

SEER
40 \
30

WCRS

1975 1985 1995

Year

9 to 30 parameters related to distributions within simulations
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Other Applications

e SVM parameter tuning

e Inverse Optimization, e.g. structural properties in existing
buildings
e Stochastic Integer Programming
o First stage (small scale) continuous decision

e How many newspapers to send to different locations
e How much “disaster relief” supplies to send to different
locations

e Second stage (large scale mixed integer) decision, after
random demand known

e What sales facilities to open and what to move where
e Where to send the emergency teams and supplies
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Two-stage stochastic program with recourse

ming >; Cix; + E,, [f(x, D(w))]
s.t. x; >0,

Second stage recourse problem is a mixed-integer problem

fx,D) = —min 5 Pili+>; Hizj+ 32, Sijtij + 205 Ojuj
ljSj,2Z) i, Uj
st. si+1=D;, VY,
s; < D; iuj, VJ,

Zj:_sj+z tij vJ,

Xj = Z tl,j? \V/I,
5j7l Zij I,J>0 Vi,_j,

up € {0,1}, Vj.
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Basic framework and tools

e Small scale x controls/design variables

e Simulation is refinable (replications, more samples in DES,
finer discretization)

N
Z (. @)

e [ssues:
e Comparisons
e Termination
e Model/solution volatility
e Common random numbers
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A simple discrete optimization case

e For example, test elasticity of a set of balls. Here
S =1{1,2,3,4,5} represents a set of 5 balls.

O 0O
OO0 Y

e Objective: Choose the ball with the largest expected bounce
height F(x;). f(xi,w;) corresponds to a single measurement in
an experiment.
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How to select the best system

e Choose the maximum sample mean
1
arg max ji; := — f(x;, w;
gieS'uI N,-Z (17 _])7
J=1
where N; is the number of experiments.
e Select the best system with high accuracy, while controlling
the total amount of simulation runs.

e Two approaches
e Ranking and selection

e Bayesian approach



Bayesian Approach
00e000

Bayesian approach

e Denote the mean of the simulation output for each system as
wi = F(xi) = Eu[f(xi, w)].

e In a Bayesian perspective, the means are considered as
Gaussian random variables whose posterior distributions can
be estimated as

wil X ~ N(fi, 87 /Ny),

where [i; is sample mean and (“7,-2 is sample variance. The
above formulation is one type of posterior distribution.
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Posterior distributions facilitate comparison

Now it is easy to compute the probability of correct selection
(PCS).
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Compute the PCS

e Pairwise comparison
PCS = Pr(p1 > p2) ~ Pr(p1 > po| X) = Pr(ui|X—p2|X > 0).
e Multiple comparisons (Bonferroni inequality):

~ 1—E£17i¢bPr(ub—ui<0)
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Summary of the Bayesian approach

e Once the PCS is determined, choose a suitable sample
number of each system N; such that the best system is
selected with desired accuracy

PCS>1-a.

e Bayesian approach

o Utilizes both mean and variance information
e Simple and direct to implement
e Without using indifference-zone parameter §

e Directly applicable to pattern search methods
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Two phase approach

Linked two-phase approach

e Phase I: global issues / exploration: rough
e Phase II: local issues / exploitation: refined

Phase | Classifier: surrogate for indicator function of the level
set

L(c)={x|F(x)<c}~{x NZf(x,wj) <c

¢ is a quantile point of the responses

Training set: space filling samples (points) from the whole
domain (e.g. mesh grid; Latin Hypercube Sampling)
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Classifiers predict new refined samples as promising

(a) Training samples in L(c) (b) Classify a set of more

are classified as positive and refined space-filling samples.
others are negative. The Four points are predicted as
solid circle represents esti- positive and rest are negative.
mated L(c). The classifier is refined.

Validate the subset of the identified promising points by
performing additional simulations
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Imbalanced data

e Under-sampling of the negative class using one-sided
selection:

o Keep all the positive samples unchanged. To obtain a
consistent subset C of the original training set T: Train 1-NN
classifier with the positive samples plus one randomly chosen
negative sample. Test the 1-NN rule on the rest of samples in
the set T. The new subset C will consist of the misclassified
samples plus the samples used for training. In doing this, we
derive a consistent subset C of T such that all the samples in
T can be correctly predicted using the 1-NN rule on C.

e Detect the Tomek links in C and remove the associated
negative samples.

e Over-sample of the positive class by duplicating all the
positive samples once.
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Cleaning the dataset with Tomek links

(c) Determine the pairs of

Tomek links

(d) Remove the negative sam-
ples participating as Tomek
links
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Assemble classifiers using a voting scheme

@Input

Use or not?
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The voting scheme

1. Split the input training set T into two subsets, denoted as
training subset T7 (randomly selected 75% of samples) and
testing subset T, (the rest).

2. Perform a prior performance test: train each classifier on the
training subset and evaluate it with the samples in the testing
subset. If the classification accuracy is not assured, i.e., failing
the criterion that g-mean g > 0.5, discard the classifier.

3. Classifiers that pass the performance test are trained on the
original training set T. In the evaluation process, assign new
samples to the class which is majorally voted.
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Classifier Phase | approach

Phase I

Initial samples Imbalanced training set

I

Balanced training set

.
Training the combined
O 0 classifier

0 5
. [
Evaluate potentially good samples
via simulation

Test the evaluation set

Phase I1

Phase Il local optimization methods
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Application to WBCE

500,000 points x generated uniformly at random

Using CONDOR (120 machines) can evaluate approximately
1000 per day f(x,w) involves simulation of 3 million women

363 are in L(10): “simulated points out of data envelope”

Using Phase |: 10,000 points evaluated, 220 points suggested,
195 are in L(10)

New dataset with 10 replications at points with scores < 30
Far fewer points in L(10)

Phase | results in new points (all are good), but 2 of which
seem better than the “experts” best solution
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The non-parametric “linking” idea

Original / sse(h) Data / Result
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Determine TR radius A by non-parametric regression

The idea is to determine the best ‘window size' for non-parametric

local regression, and then use the ‘window size’ as the initial trust
region radius A.

1. A € arg miny, sse(h)

2. sse(h) is the sum of squares error of knock-one out prediction.
Given a window-size h and a point xp, the knock-one out

predicted value is Q(xp), where Q(x) is constructed using the
data points within the ball {x|||x — xo|| < h}.

Qx)=c+g"(x—x)+ %(X — x0) TH(x — xo)
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Steps to generate the initial point set 7

. Use non-parametric regression method to determine the initial
trust region radius A, and define the subregion radius

d:=2A

2. Sort the available points by their objective values

3. Put the best point into the initial point set 7

4. For each x taken in ascending order from the candidate point

set, compute the shortest distance from the point to the
initial point set
dist = min ||y; — x
min [y; |

5. If dist > d, add the point to the initial point set Z :=Z U {x}
6. Stop if card(Z) > 10 or all the points have been enumerated.
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Issues for Phase | methods

Methods must provide a global view of function
Should allow for varying region sizes

Re-use of existing function evaluations
Alternative approach: DIRECT (Jones, 1994)

Pattern search, Nelder Mead do not routinely provide
multi-start information
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Phase |l: refine solution

Basic approach: reduce function uncertainty by averaging
multiple samples per point.

Potential difficulty:
efficiency of algorithm vs number of simulation runs

We apply Bayesian approach to determine appropriate number
of samples per point, while simultaneously enhancing the
algorithm efficiency

Guarantee the global convergence of the algorithm
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A noisy extension of the UOBYQA algorithm

The base derivative free optimization algorithm: The UOBYQA
(Unconstrained Optimization BY Quadratic Approximation)
algorithm is based on a trust region method. It constructs a series
of local quadratic approximation models of the underlying function.

Q(x) -

f(x)
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Quadratic model construction and trust region subproblem

solution
For iteration k =1,2,...,

e Construct a quadratic model via interpolation
1
Q(x,w) = f(xk,w)+gg(w)(x—xk)—i—E(x—xk)TGQ(w)(x—xk)

The model is unstable since interpolating noisy data

e Solve the trust region subproblem

sk(w) = argming  Q(xk + s,w)
s.t. ||S||2 < Ay

The solution is thus unstable
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Why is the quadratic model unstable?

=15 -

=20 .l

u]

o)
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i

it
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How to stabilize the quadratic model?

Let {y%,y2, ..., y"} be the interpolation set.

e Quadratic interpolation model is a linear combination of
Lagrange functions:

Q(x,w) = nyw

e Each piece /j(x) is a quadratic polynomial, satisfying
(y") =d;,i=1,2,---, L.

e The coefficients of /; are uniquely determined, independent of
the random objective function.
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Bayesian estimation of coefficients cg, go, Go

In Bayesian approach, the mean of function output
pu(y?) :=E,f(y’,w) is considered as a random variable:
Normal posterior distributions:

p(y)IX ~ N(ii(y’), 82(y7) /).
Thus the coefficients of the quadratic model are estimated as:

golX = Yri(u(y)X)g,
GolX = Yii(n(y)IX)G;.

* gi, G; are coefficients of Lagrange functions /;.

e gj, G; are deterministic and determined by points Wi
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Constraining the variance of coefficients

e Generate samples of function values from these (estimated)
distributions.

e Trial solutions are generated within a trust region. The
standard deviation of the solutions is constrained.

i std([s"(7), " (i), -, s M(7)]) < f
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Noisy UOBYQA for Rosenbrock, n = 2 and ¢ = 0.01

Iteration (k) FN  F(xx) Ay
1 1 404 2
20 78 3.56 9.8 x 1071
40 140  0.75 1.2x 1071
60 580  0.10 4.5 x 1072
80 786 0.0017 5.2 x 1073
v’ Stops with the new termination criterion
100 1254 0.0019 2.8x107*
120 2003 0.0016 1.1 x 1074

v Stops with the termination criterion Ay, < 10~%
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Two-phase approach to optimize antenna design metrics

e Uniform LHS to generate 2,000 design samples to evaluate
with the FE simulation model (range [-0.3705, 3597])

o Histogram of objective values over interval [-0.3705, 0]

e ¢ = —0.2765 the 10% quantile. L(c) has 199 positive samples
(1801 negative)

e Balancing procedure: 398 positive vs. 388 negative samples
e 5 (of 6 tested) classifiers in ensemble

e Refined data: 15,000 designs, 522 predicted by classifiers as
positive, 74% correctly

e The best Phase | design has value -0.3850.
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Coaxial antenna design

-04 -035 -03 -025 -02 -015 -01 -005 0
lue

-04 -035 -03 -025 015 -01 -005 0 =
lue Obijective Vall

Obje(;[ﬂ/zev;\
(e) First stage evaluations (f) Our new antenna design
(training data)

¢ (Modified) UOBYQA started from best point:
(13.6 2.7 19.0 0.3 0.1) mm, value -0.3850.

e UOBYQA returned an optimal solution:
(15.9 2.4 19.0 0.3 0.1) mm, value -0.4117.
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Sample path extension: changing liver properties

e Common random numbers allow variance reduction,
correlated noise.

e Extension of ideas to Variable-Number Sample-Path
Optimization method.

e Application: Dielectric tissue properties varied within +10%
of average properties to simulate the individual variation.

e Bayesian VNSP algorithm yields an optimal design that is a
27.3% improvement over the original design and is more
robust in terms of lesion shape and efficiency.
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Other approaches to constrain the variance of coefficients

e Test the sufficient reduction criterion:

Pr <Qk(xk) Qi(xk + ™) = Emdcllge’ || min [” (X;H,Ak]> > 11—«

e Quantify variance of individual coefficient in Q:

std(go(1"))
Elgo(1)]

std(Go(7",J')) 1.
E[Go(,j)] SOLS =L

Sﬂvi,:]-a"'an
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Two-stage stochastic integer program

5 suppliers, 100 retailers, random demand N(u,0?), u € [10,30].
Phase |: classification-based search, Phase II: UOBYQA

2000 points for classification, sampled from box
H?:1[200, 500] (range 5325-6467).

Phase | as described, 10% of the points positive, all 6
classifiers applied, etc.

510 (from 5000) additional points were predicted as positive
and evaluated via simulation (range 5313-5815).

Non-parametric approach determined “window size” A = 90

Local optimization method (VNSP) started at 4 points from
initial point set.

Phase Il objective values are close, (range 5262-5268). Each
optimization problem used 5000-10000 MILP’s (from GAMS).
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Conclusions and future work

Coupling statistical and optimization techniques can
effectively process noisy function optimizations

Significant gains in system performance and robustness are
possible

General framework proposed allows multiple methods to be
“hooked” up

How to reuse function evaluations from Phase | in Phase I17
Application to more engineering problems

Default parameters are being evaluated - maybe use the
algorithm itself!
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