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uses (1] Standby

Game Controls:

Pause Next Stage

Apply Changes

m Farmer List
Farmer Steve (bot)

Market:Driven Prices Enabled: ] I Farmer Rosemary (bot)
Bl Fueisteader (bot)

Game Settings:

[E Fuel Fielder (bot)

Management Options Enabled: /]
B Human Farmer

Help Popups Disabled:

Adjust Crop Prices:
Adjust Robot Strategy

Enter values to make the robot adopt an
appropriate strategy.
[— 2 =222%

Energy: 7 =77.8%

Reweight Sustainabllity Score: Environment: |0 =0%
Apply

Economy: 1 =333%

Energy: 1 =333%

Environment: |1 =333%

Recalculate Robot Strategies:

OSANDA 2015

Ferris (Univ. Wisconsin)



Idea and implementation

Multiple agents interacting independently, along with shared resource
Farmers (planting and management, leeching, CO2)

Economy (supply, demand, money), Environment (bug index), Energy

Use in schools, undergraduate classes and group of Ag/Econ experts
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Idea and implementation

@ Multiple agents interacting independently, along with shared resource
e Farmers (planting and management, leeching, CO2)
@ Economy (supply, demand, money), Environment (bug index), Energy

@ Use in schools, undergraduate classes and group of Ag/Econ experts

@ Repeated game
@ Single player not interesting - introduce bots
@ Implement bots using GAMS
» Information in: same as a human player
» Key step: approximate other players actions/response function
» Different objectives
» Information out: planting and management decisions

@ Point your google chrome browser at: fieldsoffuel.org

Ferris (Univ. Wisconsin) OSANDA 2015 Supported by DOE/USDA 8 /38



Aside: designing bots

@ Bots receive same information as human players (see graphs and help)
@ Only know own strategy

e Different objectives (economy, energy, environment, combination)
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Aside: designing bots

Bots receive same information as human players (see graphs and help)
Only know own strategy

Different objectives (economy, energy, environment, combination)
Perennials: need history/look-ahead

Runoff and bug index: need neighbors strategies

Understand the economy/prices

Prediction model for next 5 periods

Solve multistage look-ahead MIP model (in real time)

Distributed solution, each bot can use multiple cores
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Fields Of Fuel

Global Scoreboard

Farmers Round Progress
Name Sustainability 'Economgg Energy Environment Year: 7
Farmer James (bot) 2 3 5 Stage: Plant
Farmer Ben (bot) 2
Farmer Will (bot) 5
Farmer Steve (bot) 1
Your Farm 4

Price of Corn (per ton): 158
Price of Switchgrass (per ton): 77
Price of Alfalfa (per ton): 245

View Farm Data Room: |gen_8812799_132 Refresh Help
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Alternative: the “big data” model

Collect states, and strategy decisions from real plays over time

Use “nearest neighbor” to identify a small set of “exemplars”

» Randomly select an action from a selected exemplar to perform
» Perform an averaged action from exemplar set (worse performance)

Test using cross validation and also deploy in real game

Good CV performance, not used in real game at this time

Can we use better schemes to exploit this accumulating data?
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Alternative: the “big data” model

Collect states, and strategy decisions from real plays over time

Use “nearest neighbor” to identify a small set of “exemplars”

» Randomly select an action from a selected exemplar to perform
» Perform an averaged action from exemplar set (worse performance)

Test using cross validation and also deploy in real game

Good CV performance, not used in real game at this time

Can we use better schemes to exploit this accumulating data?

Data can be used to train a program to play like humans so that
humans can reason about outcomes of multiple bot-played games

Question: Can this be used to inform public policy decisions?
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(M)OPEC

min (x, p) s.t. g(x,p) <0

0<pLh(x,p)=0

equilibrium
min theta x g
vi h p
@ Solved concurrently
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(M)OPEC

minf(x, p) s.t. g(x,p) <0 x LV, 0(x,p) + N V,.g(x,p)
) 0< ALl —g(x,p)>0
0<pLh(x,p)=>0 0<pLh(xp)>0
equilibrium
min theta x g
vi h p

@ Solved concurrently

@ Requires global solutions of agents problems (or theory to guarantee
KKT are equivalent)

@ Theory of existence, uniqueness and stability based in variational
analysis
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MOPEC

@ Reformulate
min 0i(xi, x—i, p) s.t. gi(xi,x—i,p) < 0,Vi optimization problem as
first order conditions

p solves VI(h(x,-), C) (complementarity)
@ Use nonsmooth Newton

methods to solve

equilibrium .
complementarity problem

min theta(1l) x(1) g(1)
@ Solve overall problem

using “individual

min theta(m) x(m) g(m)
optimizations”?

vi h p cons
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General Equilibrium models

(C) : max Uk(xk) s.t. pTXk < ik(y,p)

PAI
(P) : max p” gj(y;)
J

y;€

(M):r[r)'nga(p-r Zxk—Zwk—Zgj(yj) s.t. Zp,zl
= K K F; /

(1) :ik(y, p) = pTwi + Z P’ g(y;)
J

This is an example of a MOPEC
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Special case: Nash Equilibrium

@ Non-cooperative game: collection of players a € A whose individual
objectives depend not only on the selection of their own strategy
X3 € C; = domf,(-, x_5;) but also on the strategies selected by the
other players x_, = {x,: 0 € A\ {a}}.

@ Nash Equilibrium Point:

X4 = (Xs,a€ A):Vae A: X, € argmin, ¢ 0a(Xa, X_2a).

Q for all a € A, 6,(-,x_,) is convex
Q C= HaeA C, and for all a e A, C; is closed convex.
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VI reformulation

Define
G:RV— RN by Ga(xa) = 0s0a(xa, x-2),2a € A

where 0, denotes the subgradient with respect to x,. Generally, the
mapping G is set-valued.

Theorem

Suppose the objectives satisfy (1) and (2), then every solution of the
variational inequality

x4 € C such that — G(x4) € Nc(xa)

is a Nash equilibrium point for the game.

Moreover, if C is compact and G is continuous, then the variational
inequality has at least one solution that is then also a Nash equilibrium
point.
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Strongly Convex (Generalized) Nash Equilibria

o1
min —x12 —Ox1x0 —4x1 s.t. x1 +x0>1
x>0 2

o1
min —x22 — Xx1X2 — 3x0
x>0 2

No solution for 6 > 1:

x1(x2) = (0x2 +4)1, xe(x) = (a +3)+

@ Solution —§§9<1: X1:41+T%9v X = x1+ 3

Solution 8 < —%: x1=0,x%=3

Jacobi works provided 6 < 1, but diagonal dominance theory fails
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Recast as a VI

1 —1] -0 X1 —4
M=1|1 z=|A|l,g=1]-1
|

0eMz+q+Nc(z) < 0<Mz+qglz>0

@ Problem is not monotone (M not psd), so monotone operator
splitting not possible

@ New results (F/Rutherford/Wathen) show Jacobi/Gauss Seidel works
based on Feingold/Varga (1962)

@ M is an L-matrix, so Lemke method (PATH) solves the problem
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Key point: models generated correctly solve quickly
Here S is mesh spacing parameter

S Var rows | non-zero dense(%) | Steps | RT (m:s)
20 2400 2568 31536 0.48 5 0:03
50 15000 15408 | 195816 0.08 5 0:19
100 | 60000 60808 | 781616 0.02 5 1:16
200 | 240000 241608 | 3123216 0.01 5 5:12

Convergence for S = 200 (with new basis extensions in PATH)

Ferris (Univ. Wisconsin)
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Extension to hierarchical models for policy analysis?

@ The latest GTAP database represents global production and trade for
113 country/regions, 57 commodities and 5 primary factors.

@ Data characterizes intermediate demand and bilateral trade in 2007,
including tax rates on imports/exports and other indirect taxes.

@ The core GTAP model is a static, multi-regional model which tracks
the production and distribution of goods in the global economy.

@ In GTAP the world is divided into regions (typically representing
individual countries), and each region’s final demand structure is
composed of public and private expenditure across goods.
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The Model

The GTAP model (MOPEC) may be posed as a system of nonsmooth
equations:

Fi(w,z;t)=0
in which:
@ w, is a vector of regional welfare levels
o z € RN represents a vector of endogenous economic variables, e.g.

prices and quantities, z = Q)

o t represents matrices of trade tax instruments — import tariffs (tM)

and export taxes (tX) for each commodity i and region r
p Irs y g

Irs
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Optimal Sanctions

Coalition member states strategically choose trade taxes which minimize
Russian welfare:

min_ Wiys
tr:reC

s.t.

Fi(w,z;t)=0

tr=1t Vré¢CcC

M =M
ti,rus,r < ti,r,rus vrec

s < o, Vrec

iryrus =
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Optimal Retaliation

Russia choose trade taxes which maximize Russian welfare in response to
the coalition actions:

max Wyys

tr us

s.t.

Fi(w,z;t)=0

. t, recC
"1t réc

where , represents trade taxes for coalition countries (r € C) from the
optimal sanction calculation.
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Coalition Member States for lllustrative Calculation

USA United States

ANZ Australia and New Zealand
CAN Canada

FRA France

DEU Germany

ITA lItaly

JPN Japan

GBR United Kingdom

REU Rest of the European Union
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Welfare Changes (% Hicksian EV)

sanction retaliation tradewar
RUS -4.4 -3.5 -9.8
C AVERAGE 0.03 0.05 0.03
CAN 0.021 0.033 0.032
USA 0.007 -0.017 0.032
FRA 0.042 0.020 0.032
DEU 0.119 -0.047 0.032
ITA 0.069 0.050 0.032
GBR 0.045 -0.002 0.032
REU 0.058 0.365 0.032
ANZ 0.011 0.003 0.032
JPN 0.012 -0.020 0.032
CHN 0.115 0.057 0.290
SAU 0.240 1.865 -0.892
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Scenarios and Key Insights

SANCTION If coalition states were to increases tariffs and export taxes
on Russia to the same level which is currently applied by
Russia on bilateral trade flows with the coalition, Russian
welfare could be substantially impacted with no economic
cost for any coalition members.

RETALIATION Russia could respond to such sanctions by changing it’s
own trade taxes, but optimal “retaliation” largely results in a
reduction rather than an increase in trade taxes on trade
flows to and from coalition states. These tariff changes can
only partially offset the adverse impact of the sanctions.

TRADEWAR If sanctions and retaliation were to result in an unconstrained
trade war, Russia faces a drastic economic cost while the
coalition countries could even be slight better off.
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Hydro-Thermal System (Philpott/F./Wets)

HYDRO THERMAL
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Simple electricity “system optimization” problem

SO: max ~0 Z Wi (di) — Z G(vj) + Z Vi(xi)

i Vi i kek jeT icH
st Y Ui(u)+ > vi= D dy,
i€H JET ke

xi=x2—ui+ht, i€H

u; water release of hydro reservoir i € H

v; thermal generation of plant j € T

x; water level in reservoir i € H

prod fn U; (strictly concave) converts water release to energy

Cj(v;) denote the cost of generation by thermal plant

Vi(x;) future value of terminating with storage x (assumed separable)

Wi (dy) utility of consumption dy
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SO equivalent to CE

Consumers k € K solve CP(k): max W (di) — p" di

di>0

Thermal plants j € T solve TP(j): max pTvi — G(v)
=

Hydro plants i € #H solve HP(i): max_ p’ U; (u;) + Vi(x))

UjyXj 2>

st. x;=x0 — uj + ht

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dy € argmax CP(k), k ek,
v; € arg max TP(j), JeT,
ui, x; € arg max HP(7), i €H,
0<pLY Ui(u)+d v > de.
i€H JET kel
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Agents have stochastic recourse?

e Two stage stochastic programming, x' is here-and-now decision,
recourse decisions x> depend on realization of a random variable

@ pis a risk measure (e.g. expectation, CVaR)

4
SP: max ¢’ x! + plg"x?]

st. Axt=b, x>0,

T(w)x* + W(w)x?(w) > d(w),

x2(w) > 0,Vw € Q. ’

EMP/SP extensions to facilitate these models

Ferris (Univ. Wisconsin) OSANDA 2015
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Risk Measures

@ Modern approach to T
modeling risk
aversion uses concept

>
of risk measures 2 T
(]
(] CVaRa mean Of :‘; | VR Maximum
. s a; loss
upper tail beyond w Probability

a-quantile (e.g. T “‘ mm v
CVa
a=09) | |l ﬂ|| ﬂ|||m 1% -

Loss

@ mean-risk, mean deviations from quantiles, VaR, CVaR

@ Much more in mathematical economics and finance literature

@ Optimization approaches still valid, different objectives, varying
convex/non-convex difficulty
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Two stage stochastic MOPEC

CP(k): W, (d}) — ptd}
(k) " max_ i (di) — ptdy
7. 1.1 1
TP(): ; max_ o PV T G(vj)
HP(/): max ptU;(u})
u},x}ZO

1 1 1
s.t. X; = ,-O—U;-l-h,',

0<pt LY Ui(uf)+D vi=) d
i€H JET ke
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Two stage stochastic MOPEC

. 1 141 2 2 2
CP(k): d;722(5‘320 Wi (dic) = p'di + p[Wi (di(w)) — p*(w)di(w)]
TP max P! = G+ el (@) (@) = G ()]
jovi\w)=
HP():  max P U(u7) + plp* (@) Ui(uf (w)) + Vi(xF (@))]
#2(w) x2() 20
st xt=x2—ul + A,

X (w) =X = uf(w) + hF(w)

0<p LY Ui(uf)+> v} => d

i€H JET ke
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Two stage stochastic MOPEC

CP(K): , max Wi (d) — ] + plWh (6F(4) ~ PP()aR()

TPG):  max  plvi = G(v) + plp*(w)vf(w) = G (v (w))]

v} VP (w)>0
HP(i):  max pHU(u) + plp? (W) Ui(uf (W) + Vi(xF (w))]
2 () xP(@)20
st xt=xP—ul +h}

X (w) =X = uf(w) + hF(w)

0<p LY Ui(uf)+> v} => d

i€H JET ke
0<P(W) LY Ui (@) + Y viw) =) di(w),Vw
ieH JET ke
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Equilibrium or optimization?

@ Each agent has its own risk measure
@ Is there a system risk measure?

@ Is there a system optimization problem?

manC )+ pi (C(xP(w))) 7277

e Can we modify (complete) system to have a social optimum by
trading risk?

@ How do we design these instruments? How many are needed? What
is cost of deficiency?

e Can we solve efficiently / distributively?
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Example as MOPEC: agents solve a Stochastic Program

Buy y; contracts in period 1, to deliver D(w)y; in period 2, scenario w
Each agent i:

min C(X-1)+P: (COFW)))
st plxt + vy < plel (budget time 1)
p*(w)xf (w) < PP(w)(D(w)yi + €f(w))  (budget time 2)
0<v.l— Zy,' >0 (contract)
0<pt L 2 (e,-1 - x,l) >0 (walras 1)

0 < p?(w) L Z (D(w)y; + € (w) — x7(w)) >0 (walras 2)
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Theory and Observations

agent problems are multistage stochastic optimization models

@ perfectly competitive partial equilibrium still corresponds to a social
optimum when all agents are risk neutral and share common
knowledge of the probability distribution governing future inflows

@ situation complicated when agents are risk averse

> utilize stochastic process over scenario tree

» under mild conditions a social optimum corresponds to a competitive
market equilibrium if agents have time-consistent dynamic coherent
risk measures and there are enough traded market instruments (over
tree) to hedge inflow uncertainty

@ Otherwise, must solve the stochastic equilibrium problem

@ Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plg functions)

Currently available within GAMS
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Conclusions

@ MOPEC problems capture complex interactions between optimizing
agents

@ Policy implications addressable using MOPEC
@ MOPEC available to use within the GAMS modeling system

@ Stochastic MOPEC enables modeling dynamic decision processes
under uncertainty

@ Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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