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Multiple households: why this title?

Housing prices and location

How to model his edge?
I Transportation/economics?
I Neighbourhood/work/connections?
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Total flow and cost (could model as network optimization)
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)4
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The MCP formulation of our network consists of only six complementarity equation groups (Ferris

et al., 1998).

In the following i, j, k are indices which will be used to describe the nodes in the network. The

indices are also used to describe arcs. Each node has associated with it household groups h (for

example high and low skilled). The two different transportation modes are public(with index pb) and

private(with index pr).

The first group of equations defines the aggregate flow Fm
i,j for mode m on the arc between node

i and node j as the sum of the traffic of all households going from i to j. Xm
h,i,j,k is the flow of

people from household h using arc

Fm
i,j =

X

h,k

Xm
h,i,j,k ? Fm

i,j (1)

where Fm
i,j � 0 and Xm

h,i,j,k � 0.

The next group of equations define the travel time or costs on an arc. The effect of road capacity

on travel times is specified by means of volume-delay functions expressing the travel time (or cost)

on a link as a function of the traffic volume. The most popular volume-delay function is the one from

the Bureau of Public Roads (1964) and defines the travel time on an arc ⌧pr
i,j by:

⌧pr
i,j = ↵pr

i,j + Bi,j

 
F pr

i,j

i,j

!4

? ⌧pr
i,j , (2)

where ↵ is the free-flow time on the arc, the congestion scale factor (Bi,j) and the reference capacity

(i,j). The time costs will increase as the arc gets more congested.4

Figure 1 – Volume-delay function private transport (left) and capacity constraint pubic transport (right)
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In the case of public transport we assume that the there is a capacity constraint and no congestion.

The time for traveling on an arc is given by the third group of equations and is defined as the free
4We do not assume that traffic on other links will influence the travel time on a specific arc.

5
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Wardrop

flow time on the arc plus, in case of reaching the capacity constraint, a shadow price µi,j :

⌧pb
i,j = ↵pb

i,j + µi,j ? ⌧pb
i,j (3)

The capacity constraint on the public transport arc is given by the next group of equations:

F i,j � F pb
i,j ? µi,j . (4)

If the capacity is reached, the shadow price of the constraint µ will go to infinity and people will

choose another link or mode for traveling.

The fifth group of equations define the flow conservation at node j for the number of people

traveling from this node to destination k:

X

i

Xm
h,i,j,k �

X

i

Xm
h,j,i,k = Nm

h,j,k ? Tm
h,j,k (5)

where Nm
h,j,k is the total flow of people traveling with transport mode m from node j to node k. This

number is taken from the origin-destination matrix and equal to 25 in figure 3. This number should

be equal to the sum over all passengers traveling with destination k from incoming arcs (in the figure

10 passengers coming from i1 and i2; the black arrows) minus the passengers with destination k on

the outgoing arcs (these are the dotted arrows pointing to destination node k). Notice that in the

example the number of people living at node j and traveling to node k is 5. It is irrelevant how many

nodes the traveler passes through when he departs for k from j. The associated complementarity

variable is the minimum time from node j to node k.

Figure 2 – Flow balance for node j
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The last equation group reflects the second Wardropian principle. In its original form it states

that “the journey times on all the routes actually used are equal, and less than those which would

be experienced by a single vehicle on any unused route” (Wardrop, 1952, p. 345). On the left hand

side we have the minimal travel time T for household h traveling with mode m from node i to k.

This travel time should be less than or equal to the travel time ⌧ on an arc starting from node i to

any of the adjacent nodes j, plus the minimal time T from traveling from the adjacent node to the

destination node k. In figure 3 we are looking at the minimal time for traveling from node i to node

6

∑

i

Xm
h,i ,j ,k −

∑

i

Xm
h,j ,i ,k ≥ Nm

h,j ,k ⊥ Tm
h,j ,k ≥ 0

k. The time for traveling to the adjacent nodes j1 to j3 are 6, 3 and 5 minutes. From every adjacent

node j the minimal times for traveling to node k are 7, 8 and 7 minutes. This information is coming

from the Wardropian equations for these nodes and calculated simultaneously. For our traveler the

fastest route is equal to 11 minutes. He travels from node i to node j2 and then to k.

Tm
h,i,k  ⌧m

i,j + Tm
h,j,k and Th,k,k = 0 ? Xm

h,i,j . (6)

Figure 3 – The second Wardropian principle for node j
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Note that a complete enumeration of all possible routes from node i to node k is not necessary.

The information on the fastest routes from the adjacent nodes j to the destination k is given in the

corresponding minimum time equations for traveling from j to k. The time minimization equations

are associated with the flow on the adjacent arcs Xm
h,i,j as complementary variables. This variable is

only positive for those adjacent arcs where the traveling time from i to k is minimal. If this is not

the case, the flow on that arc will be zero.

2.3 The Economic Sub model

The economic model is formulated as an Arrow-Debreu model with households and firms who max-

imize their utility and profits respectively. Many of the assumptions on the structure of the model

and the share parameters can be easily replaced by more realistic assumptions.

Households are characterized by the place they live (i), the place they work (j), their skill (h)

and the transport mode (m) they choose for traveling to work. They maximize their utility level with

respect to their income. The utility is given by a nested Constant-Elasticity-of-Substitution function

(see equations (7) and figure 4). At the lowest level the household decides on how much it wants

to consume (Ch,i) and on the size of the house it wants to rent (Hh,i). The substitution elasticity

between these two goods is �h
h and the value share of house rent is given by ✓h. At the next level

it decides between demand for leisure time Lh,m,i,j and the aggregate of consumption and housing

with substitution elasticity 1 and the share leisure of total consumption (✓ls).

7

Tm
h,i ,k ≤ τmi ,j + Tm

h,j ,k ⊥ Xm
h,i ,j ≥ 0
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Walras: Computable General Equilibria or MOPECs

(C ) : max
xk∈Xk

Uk(xk) s.t. pT xk ≤ ik(y , p)

(I ) :ik(y , p) = pTωk +
∑

j

αkjp
Tgj(yj)

(P) : max
yj∈Yj

pTgj(yj)

(M) : max
p≥0

pT


∑

k

xk −
∑

k

ωk −
∑

j

gj(yj)


 s.t.

∑

l

pl = 1

This is an example of a MOPEC (multiple optimization problems with
equilibrium constraints)
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Consumers and producers

Households (consumers): live i , work j , skill h, transport mode m

max
x

Utility(x) s.t. λxx ≤ I , x ∈ X

Markets clear in each component of x (leisure, housing, consumption)Figure 4 – Production and utility function
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The income of a household working in j with skill h is given by the wage income at j plus the capital

income out of the capital (K) and housing stock (H). We assume that every household holds the

same share of capital with local share share ✓d:

INCh,j = PLh,j +

P
i(Kh,i + Hh,i)P

m ntot
h,m

h
✓d
hPK + (1 � ✓d

h)
i

? INCh,j (8)

PCh,i =
⇣
hvshPH

1��h
h

h,i + (1 � hvsh)PC1��h
h

⌘ 1

1��h
h ? PCh,i (9)

On the production side we have at every node identical firms who use either high- or low-skilled

labor and capital as inputs to produce a single output Y (see the left part of figure 4). We assume

for simplicity a Cobb-Douglas production function.5

Zero profit for production at node j can be formulated as follows:
✓

PLs,j

PLs

◆1�✓k
s
✓

RKs,j

RKs,k

◆✓k
s

> PYs ? Ys,j (10)

where PLs,j is the wage for labor of skill s and RKj the rental price at node j. thetak is the value

share of capital. PYs and Ys,j are the price and the output level of the production sector:

Labor demand at node j is given by:

X

m,i

Nl,m,i,j = (1 � ✓k
l )

PYhYl,j

PLl,j
? PLs,j , (11)

where Nl,m,i,j is the labor supply from a household with skill s living at node i and working in j who

uses m as transport mode.

Capital demand at node j is given by the following equation:

Ks,j = ✓k
s

PYsYs,j

RKs,j
? RKs,j (12)

5The number of different firms at a node can be easily enlarged and the production technology replaced by another

functional form and a more complex nesting structure.

8

Production: identical firms at each node using high or low skilled
labour and capital inputs to produce y

max
K≥0,L≥0

pyy − (pLLy + pKKy ) s.t. G (K , L) ≥ y
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Choice models and links to transportation

O-D Nm
h,i ,k is appears in transport and CGE model

Logit model used to determine θh,m(Nm
h,·,·,T

m
h,·,·)

Link to transportation via amount of “leisure” `mh,j ,k(Tm
h,j ,k , λh,j)

Collect all models (transport and CGE) together into one large
MOPEC




x x x
x x x
x x x

x x x x x
x x x x x
x x x x x
x x x x x



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Computation: EMP and PATH

Model has the format:

Agent o: min
x

f (x , y)

s.t. g(x , y) ≤ 0 (⊥ λ ≥ 0)

Agent v: H(x , y , λ) = 0 (⊥ y free)

EMP tool (equation annotations) automatically creates an MCP

∇x f (x , y) + λT∇g(x , y) = 0

0 ≤ −g(x , y) ⊥ λ ≥ 0

H(x , y , λ) = 0

Solve via PATH: [Dirkse, F., Kim, Munson, Ralph]
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Extensions: agents solving stochastic models

Introduction Multistage stochastic programming Some results Equilibrium Conclusions

Multistage stochastic optimization problem gives options

Options to delay investment when in the amber nodes until more
information accrues. In green nodes invest and in red node do not. We

cal this multistage model GEMstone.

Replace optimization problems by multistage stochastic programs, and
clear markets in each stage
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The model is only as good as the data

Results for Zurich and Madison [Rutherford, van Nieuwkoop, F.]

Results for Sydney [Robson, Dixit]

Results for Eddiefest:
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