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Convex subdifferentials

@ Assume f is convex, then
f(z) > f(x) + VF(x)T(z — x)
(linearization is below the
function)

@ Incorporate constraints by
allowing f to take on +o0 if
constraint is violated
f:R"— (—o0, +00]

e Jf(x) =
{g f(2) > fF(x)+gT(z— X),Vz},
the subdifferential of f at x
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Convex subdifferentials
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@ Assume f is convex, then
f(z) > f(x) + VF(x)T(z — x)
(linearization is below the
function)

@ Incorporate constraints by
allowing f to take on +o0 if
constraint is violated
f:R"— (—o0, +00]

e Jf(x) =
{g f(2) > fF(x)+gT(z— X),Vz},
the subdifferential of f at x

e If f is differentiable and convex, then 0f(x) = {Vf(x)}
o eg. f(z)=12"7Qz+ pTz, then 9f(x) = {Qx + p}
e x* solves min f(x) if and only if 0 € Of(x*)
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Indicator functions and normal cones
0 ifzeC
Ye(z) = { v
oo else

e is a convex function when C is a
convex set
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Indicator functions and normal cones
0 ifzeC
Ye(z) = {
oo else

e is a convex function when C is a
convex set

If x € C, then
/@ >< £ € el
<:>¢c

Ye

2) > e(x) + 87 (2~ x), vz

— 0>g"(z—x), VzeC

Normal cone to C at x,

Ne(x):= 0vpe(x) = {(Z)
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{g:gT(z—x)<0,vzeC} ifxeC

if x¢C
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Some calculus

o fi :R"+— (—o0,00], i =1,...,m, proper, convex functions

F=f+--+"fny

assume m rint(dom(f;)) # 0 then (as sets)
i=1

OF (x) = 0fi(x) + - - - 4+ Ofm(x), Vx

) C:ﬂC;, then ¢C:¢Ci+...+¢cm'so NC:NCi+"'+NCm
i=1

x* solves mig f(x) < x* solves min(f + ¢¢)(x)
xXe X

< 0€9(f +9Yc)(x*) < 0 VF(x*)+ Ne(x¥)
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Special cases and examples

@ Normal cone is a cone
e x € int(C), then Ng(x) = {0}
e C =" then Ng(x) ={0}, VxeC

Ferris (Univ. Wisconsin) Optimality and Complementarity NATCOR, June 2016 5/ 26



Special cases and examples

@ Normal cone is a cone
e x € int(C), then N¢(x) = {0}
e C=R", then Ng(x) = {0}, Vx € C

° C:{z:aingb,-,izl,...,m}

polyhedral
al m
{Z/\iai30§bi—a,-TXJ_)\,-20}
i=1
Nc(x)/ az @ | makes product of items around it
0, i.e.

(b —alx)\i=0,i=1,...,m
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Combining: KKT conditions

@ Example: convex optimization first-order optimality condition:

x* solves mirc1 f(x) <= 0¢e VF(x")+ Ne(x*)
X€

<= 0=VI(x")+y, y € Ne(x")

= 0=VIix)+y, y=AT)\
0<b—Ax"LA>0

— 0=VF(x*)+ AT\,
0<b—Ax* LA>0

o More generally, if C = {z: g(z) < 0}, g convex, (with CQ)

x* solves mig f(x) < 0¢€ VF(x*)+ Ne(x¥)
x€e

<= 0= VF(x*)+ Vg(x*)A,
0<—g(x*)LA>0
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Variational Inequality (replace Vf(z) with F(z))

F:R" - R"
Ideally: C C R" — constraint set; Often: C C R" — simple bounds

VI(F,C): 0¢€ F(z)+ N¢(z)

VI generalizes many problem classes

Nonlinear Equations: F(z) =0 set C = R”"

Convex optimization: F(z) = Vf(z)

For NCP: 0 < F(z) L z>0, set C =R

For MCP (rectangular VI), set C = [/, u]".

For LP, set F(z) = Vf(z) =pand C ={z: Az = a, Hz < h}.
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VI: 0 € F(z) + Ne(z2)
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Many applications where F is not the derivative of some f

[m]
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Other applications of complementarity

@ Economics: Walrasian equilibrium (supply equals demand), taxes and
tariffs, computable general equilibria, option pricing (electricity
market), airline overbooking

e Transportation: Wardropian equilibrium (shortest paths), selfish
routing, dynamic traffic assignment

Applied mathematics: Free boundary problems
Engineering: Optimal control (ELQP)
Mechanics: Structure design, contact problems (with friction)

Geology: Earthquake propogation
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Nash problems

mitn O(x,t) st. F(x,t)=0,te T

X’

@ x represents “state”, prices, production levels, etc

@ t represents “taxes/tariffs’, strategy or design variables

e Often: F(x,t) =0 <= x = x(t) (implicit function)
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Nash problems

min 61(xi, t) s.t. F(x1,t) =0, t = (t1,t2) € T1

X1,t1

@ x represents “state”, prices, production levels, etc
@ t represents “taxes/tariffs’, strategy or design variables

@ Agent 1 problem is parameterized by agent 2's variable
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Nash problems

min61(x1, t) s.t. F(x1,t) =0, t = (t1,t) € T1

X1,t1

mitn 92(X2, t) s.t. F(Xz, t) =0, t= (tl, t2) e Ty
X2,12

@ x represents ‘“state”, prices, production levels, etc

@ t represents “taxes/tariffs", strategy or design variables

@ Solution is pair (x1, t1), (x2, t2) so that each agent cannot improve
when other agents strategy remains fixed
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Bimatrix Games: Golden Balls

VI can be used to formulate many standard problem instances
corresponding to special choices of M and C.

Nash game: two players have / and J pure strategies.

p and g (strategy probabilities) belong to unit simplex A; and A
respectively.

Payoff matrices A € R?*/ and B € R'*/, where Aj i is the profit
received by the first player if strategy i is selected by the first player
and j by the second, etc.

The expected profit for the first and the second players are g7 Ap and
p' Bq respectively.

A Nash equilibrium is reached by the pair of strategies (p*, g*) if and
only if

* ¢ arg min (Ag*,p) and g* € arg min (B’ p*,
p gpeAl< q,p) q gquJ< P, q)
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Optimal Sanctions (Boehringer/F./Rutherford)

Sanctions can be modeled using similar formulations used for tariff
calculations

@ Model as a Nash equilibrium with players being countries (or a
coalition of countries)

@ Demonstrate the actual effects of different policy changes and the
power of different economic instruments

e GTAP global production/trade database: 113 countries, 57 goods, 5
factors

@ Coalition members strategically choose trade taxes to

@ maximize their welfare (no regrets) or
@ minimize Russian welfare (with willingness to pay weights - WTP)

@ Russia chooses trade taxes to maximize Russian welfare in response

Explore unilateral vs Nash setting, and limits on Russian response
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Nash problems

0 € Vi, n)01(x1, t) + Ney (1) (x1, t1)

0e V(X27t2)91(X2, t) + NCQ(tl)(X27 t2)

X represents “state”, prices, production levels, etc

t represents “taxes/tariffs”, strategy or design variables

Solution is pair (x1, t1), (x2, t2) so that each agent cannot improve
when other agents strategy remains fixed

Note: implicit function x = x(t) results in x; = x at solution

In convex case, can replace optimization problem by its KKT
conditions, leading to MCP that is not KKT of a single optimization
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Sanction Frontier (ces, ref, WTP=5.74)
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@ Resulting Nash equilibrium with different coalition costs - all have big

impact on Russia
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Sanction Frontier (ces, notaux, WTP=5.74)
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@ Restricting instruments can change effects

@ Russia export taxes fixed at benchmark level
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Sanction Frontier (ces, eqyield, WTP=5.74)
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@ Restricting instruments can change effects

@ Equal yield constraint on Russian trade taxes
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Complementarity Problems via Graphs

o T =Ne, =Ry x{0})U({0} xR_)

@ 7 is “monotone”

—y€T(z) < (z,—-y)eT <= 0<y1z>0

By approximating (smoothing) graph can generate interior point
algorithms for example yz = ¢,y,z >0

0€ F(z) +Ngn(2) <= (2,-F(2)) €T" <= 0<F(z) Lz>0
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Operators and Graphs (C = [-1,1], T = N¢)

z; = —1, —F,'(Z) <O0orze (—1, 1), —F,'(Z) =0orz= ]., —F;(Z) >0

Pr(y) is the projection of y onto [—1,1]
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Normal Map

@ Suppose T is a maximal monotone operator
0e F(z)+T7(z) (GE)

o Define Pr = (I + 7)™ (continuous, single-valued, non-expansive)

0e F(z)+T(2) ze F(z2)+Z(2) + T(2)
z—F(z)=xand x€ (Z+T)(2)
z—F(z)=xand Pr(x) =z
Pr(x) - F(Pr(x)) = x

0 = F(Pr(x)) + x — Pr(x)

1reey

This is the so-called Normal Map Equation
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Normal manifold = {F; + Ng,}

(Relative) interiors of faces F;
form partition of C
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C ={z|Bz > b}, Nc(z) = {B'v|v <0, v,y = 0}

Mz + B'v
Mro(x) + x — mo(x) z € F;
v S O,'UI(Z) =0
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C ={z|Bz > b}, Nc(z) = {B'v|v <0, v,y = 0}

Mz + B'v
By By || e

v S O,'UI(Z) =0
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C={z|Bz> b}, F(z) =Mz +q

| By Mp.— M. |




The PATH algorithm

@ Start in cell that has interior
(face is an extreme point)

@ Move towards a zero of
affine map in cell

@ Update direction when hit
boundary (pivot)

@ Solves or determines
infeasible if M is
copositive-plus on rec(C)

@ Solves 2-person bimatrix
games, 3-person games too,
but these are nonlinear
But algorithm has exponential complexity (von Stengel et al)
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Theorem

Suppose C is a polyhedral convex set and M is an L—matrix with respect
to recC which is invertible on the lineality space of C. Then exactly one of
the following occurs:

o PATHAVI solves (AVI)

@ the following system has no solution

Mz + q € (recC)P?,  zeC. (1)

Corollary

If M is copositive—plus with respect to recC, then exactly one of the
following occurs:

e PATHAVI solves (AVI)

@ (1) has no solution

Note also that if C is compact, then any matrix M is an L—matrix with
respect to recC. So always solved.
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Experimental results: AVI vs MCP

PATH is a solver for MCP (mixed complementarity problem).

@ Run PathAVI over AVI formulation.
@ Run PATH over AVl in MCP form (poorer theory as recC larger).
@ Data generation
» M is an n X n symmetric positive definite/indefinite matrix.
> A has m randomly generated bounded inequality constraints.

PathAVI PATH % negative

(m, n) status | # iterations | status | # iterations | eigenvalues
(180,60) S 55 S 72 0
(180,60) S 45 S 306 20
(180,60) S 2 F 9616 60
(180,60) S 1 F 10981 80
(360,120) S 124 S 267 0
(360,120) S 55 S 1095 20
(360,120) S 2 F 10020 60
(360,120) S 1 F 7988 80
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

@ equilibrium

@ vi (agents can solve min/max/vi)

@ bilevel (reformulate as MPEC, or as SOCP)

@ dualvar (use multipliers from one agent as variables for another)

e QS functions (both in objectives and constraints)

@ Currently available within GAMS (full license available to course
participants until August 8, 2016 - contact me!)

@ Some solution algorithms implemented in modeling system -
limitations on size, decomposition and advanced algorithms

@ QS extensions to Moreau-Yoshida regularization, compositions,
composite optimization
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Splitting Methods

@ Suppose T is a maximal monotone operator
0e F(z)+7(z) (GE)

@ Can devise Newton methods (e.g. SQP) that treat F via calculus and
T via convex analysis

o Alternatively, can split F(z) = A(z) + B(z) (and possibly 7 also) so
we solve solve (GE) by solving a sequence of problems involving just

Ti(z) = A(z) and Ta2(z) = B(z) + T(2)

where each of these is “simpler”
e Forward-Backward splitting (or ADMM):

Zk—i_1 = (/ + Ck Tz)il (I — Ck Tl) (Zk) ,

Ferris (Univ. Wisconsin) Optimality and Complementarity NATCOR, June 2016 26 / 26



	Introduction
	Variational Inequalities
	Optimal Sanctions
	Complementarity over Graphs
	Conclusions

