Optimality conditions and complementarity, Nash equilibria and games, engineering and economic application

Michael C. Ferris

University of Wisconsin, Madison

Funded by DOE-MACS Grant with Argonne National Laboratory

NATCOR, University of Edinburgh, June 16, 2016

Convex subdifferentials

- Assume f is convex, then $f(z) \ge f(x) + \nabla f(x)^T (z - x)$ (linearization is below the function)
- Incorporate constraints by allowing f to take on +∞ if constraint is violated f : ℝⁿ ↦ (-∞, +∞]
- $\partial f(x) = \{g: f(z) \ge f(x) + g^T(z-x), \forall z\},\$ the subdifferential of f at x

Convex subdifferentials

- Assume f is convex, then $f(z) \ge f(x) + \nabla f(x)^T (z - x)$ (linearization is below the function)
- Incorporate constraints by allowing f to take on +∞ if constraint is violated f : ℝⁿ → (-∞, +∞]
- $\partial f(x) = \{g: f(z) \ge f(x) + g^T(z-x), \forall z\},\$ the subdifferential of f at x

- If f is differentiable and convex, then $\partial f(x) = \{\nabla f(x)\}$
- e.g. $f(z) = \frac{1}{2}z^TQz + p^Tz$, then $\partial f(x) = \{Qx + p\}$
- x^* solves min f(x) if and only if $0 \in \partial f(x^*)$

Indicator functions and normal cones

$$\psi_{\mathcal{C}}(z) = egin{cases} 0 & ext{if } z \in \mathcal{C} \ \infty & ext{else} \end{cases}$$

 $\psi_{\mathcal{C}}$ is a convex function when \mathcal{C} is a convex set

Indicator functions and normal cones

$$\psi_{\mathcal{C}}(z) = egin{cases} 0 & ext{if } z \in \mathcal{C} \ \infty & ext{else} \end{cases}$$

 $\psi_{\mathcal{C}}$ is a convex function when \mathcal{C} is convex set

s a
If
$$x \in C$$
, then
 $g \in \partial \psi_C(x)$
 $\iff \psi_C(z) \ge \psi_C(x) + g^T(z-x), \forall z$
 $\iff 0 \ge g^T(z-x), \forall z \in C$

Normal cone to C at x.

$$N_{\mathcal{C}}(x) := \partial \psi_{\mathcal{C}}(x) = \begin{cases} \{g : g^{\mathsf{T}}(z - x) \leq 0, \forall z \in \mathcal{C} \} & \text{if } x \in \mathcal{C} \\ \emptyset & \text{if } x \notin \mathcal{C} \end{cases}$$

lf

Some calculus

• $f_i : \mathbb{R}^n \mapsto (-\infty, \infty], i = 1, \dots, m$, proper, convex functions $F = f_1 + \cdots + f_m$ m assume $\bigcap \operatorname{rint}(\operatorname{dom}(f_i)) \neq \emptyset$ then (as sets) i=1 $\partial F(x) = \partial f_1(x) + \cdots + \partial f_m(x), \ \forall x$ • $C = \bigcap C_i$, then $\psi_C = \psi_{C_i} + \cdots + \psi_{C_m}$, so $N_C = N_{C_i} + \cdots + N_{C_m}$ x^* solves $\min_{x \in \mathcal{C}} f(x) \iff x^*$ solves $\min_{x} (f + \psi_{\mathcal{C}})(x)$ $\iff 0 \in \partial (f + \psi_{\mathcal{C}})(x^*) \iff 0 \in \nabla f(x^*) + N_{\mathcal{C}}(x^*)$

Special cases and examples

- Normal cone is a cone
- $x \in int(\mathcal{C})$, then $N_{\mathcal{C}}(x) = \{0\}$

•
$$\mathcal{C} = \mathbb{R}^n$$
, then $N_{\mathcal{C}}(x) = \{0\}$, $\forall x \in \mathcal{C}$

< 行い

Special cases and examples

Normal cone is a cone

•
$$x \in int(\mathcal{C})$$
, then $N_{\mathcal{C}}(x) = \{0\}$

•
$$\mathcal{C} = \mathbb{R}^n$$
, then $N_{\mathcal{C}}(x) = \{0\}$, $\forall x \in \mathcal{C}$

•
$$C = \{z : a_i^T z \le b_i, i = 1, ..., m\}$$

polyhedral

•
$$N_{\mathcal{C}}(x) = \left\{ \sum_{i=1}^{m} \lambda_i a_i : 0 \le b_i - a_i^T x \perp \lambda_i \ge 0 \right\}$$

• \perp makes product of items around it 0, i.e.

$$(b_i - a_i^T x)\lambda_i = 0, \ i = 1, \ldots, m$$

Combining: KKT conditions

• Example: convex optimization first-order optimality condition:

$$x^* \text{ solves } \min_{x \in \mathcal{C}} f(x) \iff 0 \in \nabla f(x^*) + N_{\mathcal{C}}(x^*)$$
$$\iff 0 = \nabla f(x^*) + y, \ y \in N_{\mathcal{C}}(x^*)$$
$$\iff 0 = \nabla f(x^*) + y, \ y = A^T \lambda,$$
$$0 \le b - Ax^* \perp \lambda \ge 0$$
$$\iff 0 = \nabla f(x^*) + A^T \lambda,$$
$$0 \le b - Ax^* \perp \lambda \ge 0$$

• More generally, if $\mathcal{C} = \{z : g(z) \leq 0\}$, g convex, (with CQ)

$$\begin{aligned} x^* \text{ solves } \min_{x \in \mathcal{C}} f(x) & \Longleftrightarrow 0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{C}}(x^*) \\ & \Longleftrightarrow 0 = \nabla f(x^*) + \nabla g(x^*)\lambda, \\ & 0 \leq -g(x^*) \perp \lambda \geq 0 \end{aligned}$$

Variational Inequality (replace $\nabla f(z)$ with F(z))

• $F: \mathbb{R}^n \to \mathbb{R}^n$

• Ideally: $C \subseteq \mathbb{R}^n$ – constraint set; Often: $C \subseteq \mathbb{R}^n$ – simple bounds

$$VI(F,C): 0 \in F(z) + N_{\mathcal{C}}(z)$$

- VI generalizes many problem classes
- Nonlinear Equations: F(z) = 0 set $\mathcal{C} \equiv \mathbb{R}^n$
- Convex optimization: $F(z) = \nabla f(z)$
- For NCP: $0 \leq F(z) \perp z \geq 0$, set $\mathcal{C} \equiv \mathbb{R}^n_+$
- For MCP (rectangular VI), set $C \equiv [I, u]^n$.
- For LP, set $F(z) \equiv \nabla f(z) = p$ and $C = \{z : Az = a, Hz \leq h\}$.

- 3

(4月) (4日) (4日)

VI: $0 \in F(z) + \mathcal{N}_{\mathcal{C}}(z)$

Many applications where F is not the derivative of some f

Ferris (Univ. Wisconsin)

Other applications of complementarity

- Economics: Walrasian equilibrium (supply equals demand), taxes and tariffs, computable general equilibria, option pricing (electricity market), airline overbooking
- Transportation: Wardropian equilibrium (shortest paths), selfish routing, dynamic traffic assignment
- Applied mathematics: Free boundary problems
- Engineering: Optimal control (ELQP)
- Mechanics: Structure design, contact problems (with friction)
- Geology: Earthquake propogation

A B F A B F

$$\min_{x,t} \theta(x,t) \text{ s.t. } F(x,t) = 0, \ t \in T$$

- x represents "state", prices, production levels, etc
- t represents "taxes/tariffs", strategy or design variables
- Often: $F(x,t) = 0 \iff x = x(t)$ (implicit function)

3

 $\min_{x_1,t_1}\theta_1(x_1,t) \text{ s.t. } F(x_1,t) = 0, \ t = (t_1,t_2) \in T_1$

- x represents "state", prices, production levels, etc
- t represents "taxes/tariffs", strategy or design variables
- Agent 1 problem is parameterized by agent 2's variable

$$\begin{split} \min_{x_1,t_1}\theta_1(x_1,t) \text{ s.t. } F(x_1,t) &= 0, \ t = (t_1,t_2) \in T_1 \\ \min_{x_2,t_2}\theta_2(x_2,t) \text{ s.t. } F(x_2,t) &= 0, \ t = (t_1,t_2) \in T_2 \end{split}$$

- x represents "state", prices, production levels, etc
- *t* represents "taxes/tariffs", strategy or design variables
- Solution is pair (x₁, t₁), (x₂, t₂) so that each agent cannot improve when other agents strategy remains fixed

Bimatrix Games: Golden Balls

- VI can be used to formulate many standard problem instances corresponding to special choices of M and C.
- Nash game: two players have I and J pure strategies.
- *p* and *q* (strategy probabilities) belong to unit simplex \triangle_I and \triangle_J respectively.
- Payoff matrices A ∈ R^{J×I} and B ∈ R^{I×J}, where A_{j,i} is the profit received by the first player if strategy i is selected by the first player and j by the second, etc.
- The expected profit for the first and the second players are $q^T A p$ and $p^T B q$ respectively.
- A Nash equilibrium is reached by the pair of strategies (p^*, q^*) if and only if

$$p^* \in \arg \min_{p \in riangle_I} \langle Aq^*, p
angle$$
 and $q^* \in \arg \min_{q \in riangle_J} \langle B^T p^*, q
angle$

イロト 不得 トイヨト イヨト 二日

Optimal Sanctions (Boehringer/F./Rutherford)

- Sanctions can be modeled using similar formulations used for tariff calculations
- Model as a Nash equilibrium with players being countries (or a coalition of countries)
- Demonstrate the actual effects of different policy changes and the power of different economic instruments
- GTAP global production/trade database: 113 countries, 57 goods, 5 factors
- Coalition members strategically choose trade taxes to
 - maximize their welfare (no regrets) or
 - *inimize* Russian welfare (with willingness to pay weights WTP)
- Russia chooses trade taxes to maximize Russian welfare in response
- Explore unilateral vs Nash setting, and limits on Russian response

- 4 同 6 4 日 6 4 日 6

 $0 \in
abla_{(x_1,t_1)} heta_1(x_1,t) + N_{\mathcal{C}_1(t_2)}(x_1,t_1)$

 $0 \in
abla_{(x_2,t_2)} heta_1(x_2,t) + N_{\mathcal{C}_2(t_1)}(x_2,t_2)$

- x represents "state", prices, production levels, etc
- t represents "taxes/tariffs", strategy or design variables
- Solution is pair (x₁, t₁), (x₂, t₂) so that each agent cannot improve when other agents strategy remains fixed
- Note: implicit function x = x(t) results in $x_1 = x_2$ at solution
- In convex case, can replace optimization problem by its KKT conditions, leading to MCP that is not KKT of a single optimization

• Resulting Nash equilibrium with different coalition costs - all have big impact on Russia

Ferris (Univ. Wisconsin)

3

(日) (同) (日) (日) (日)

- Restricting instruments can change effects
- Russia export taxes fixed at benchmark level

Ferris (Univ. Wisconsin)

3

(日) (同) (日) (日) (日)

- Restricting instruments can change effects
- Equal yield constraint on Russian trade taxes

Ferris (Univ. Wisconsin)

3

- 4 目 ト - 4 日 ト - 4 日 ト

Complementarity Problems via Graphs

$$-y \in \mathcal{T}(z) \iff (z,-y) \in \mathcal{T} \iff 0 \leq y \perp z \geq 0$$

By approximating (smoothing) graph can generate interior point algorithms for example $yz = \epsilon, y, z > 0$

 $0 \in F(z) + \mathcal{N}_{\mathbb{R}^n_+}(z) \iff (z, -F(z)) \in \mathcal{T}^n \iff 0 \leq F(z) \perp z \geq 0$

Operators and Graphs $(\mathcal{C} = [-1, 1], \mathcal{T} = \mathcal{N}_{\mathcal{C}})$

 $z_i = -1, -F_i(z) \le 0 \text{ or } z_i \in (-1, 1), -F_i(z) = 0 \text{ or } z_i = 1, -F_i(z) \ge 0$

 $P_{\mathcal{T}}(y)$ is the projection of y onto [-1,1]

3

イロト 不得下 イヨト イヨト

Normal Map

• Suppose ${\mathcal T}$ is a maximal monotone operator

$$0 \in F(z) + \mathcal{T}(z)$$
 (GE)

• Define $P_{\mathcal{T}} = (I + \mathcal{T})^{-1}$ (continuous, single-valued, non-expansive)

$$0 \in F(z) + \mathcal{T}(z) \iff z \in F(z) + \mathcal{I}(z) + \mathcal{T}(z)$$

$$\iff z - F(z) = x \text{ and } x \in (\mathcal{I} + \mathcal{T})(z)$$

$$\iff z - F(z) = x \text{ and } P_{\mathcal{T}}(x) = z$$

$$\iff P_{\mathcal{T}}(x) - F(P_{\mathcal{T}}(x)) = x$$

$$\iff 0 = F(P_{\mathcal{T}}(x)) + x - P_{\mathcal{T}}(x)$$

This is the so-called Normal Map Equation

(日) (周) (三) (三)

Ferris (Univ. Wisconsin)

< 67 ▶

$C = \{z | Bz \ge b\}, N_C(z) = \{B'v | v \le 0, v_{\mathcal{I}(z)} = 0\}$

3

A B F A B F

$C = \{z | Bz \ge b\}, N_C(z) = \{B'v | v \le 0, v_{\mathcal{I}(z)} = 0\}$

- 3

- 4 同 6 4 日 6 4 日 6

 $C = \{z | Bz \ge b\}, F(z) = Mz + q$

- 3

(日) (周) (三) (三)

The PATH algorithm

- Start in cell that has interior (face is an extreme point)
- Move towards a zero of affine map in cell
- Update direction when hit boundary (pivot)
- Solves or determines infeasible if *M* is copositive-plus on rec(*C*)
- Solves 2-person bimatrix games, 3-person games too, but these are nonlinear

But algorithm has exponential complexity (von Stengel et al)

Theorem

Suppose C is a polyhedral convex set and M is an L-matrix with respect to recC which is invertible on the lineality space of C. Then exactly one of the following occurs:

- PATHAVI solves (AVI)
- the following system has no solution

$$Mz + q \in (\operatorname{rec} \mathcal{C})^D, \qquad z \in \mathcal{C}.$$

Corollary

If M is copositive–plus with respect to $\operatorname{rec} C$, then exactly one of the following occurs:

- PATHAVI solves (AVI)
- (1) has no solution

Note also that if C is compact, then any matrix M is an L-matrix with respect to recC. So always solved.

Ferris (Univ. Wisconsin)

Experimental results: AVI vs MCP

PATH is a solver for MCP (mixed complementarity problem).

- Run PathAVI over AVI formulation.
- Run PATH over AVI in MCP form (poorer theory as $\operatorname{rec} C$ larger).

Data generation

- *M* is an $n \times n$ symmetric positive definite/indefinite matrix.
- A has *m* randomly generated bounded inequality constraints.

(<i>m</i> , <i>n</i>)	PathAVI		PATH		% negative
	status	# iterations	status	# iterations	eigenvalues
(180,60)	S	55	S	72	0
(180,60)	S	45	S	306	20
(180,60)	S	2	F	9616	60
(180,60)	S	1	F	10981	80
(360,120)	S	124	S	267	0
(360,120)	S	55	S	1095	20
(360,120)	S	2	F	10020	60
(360,120)	S	1	F	7988	80

What is EMP?

Annotates existing equations/variables/models for modeler to provide/define additional structure

- equilibrium
- vi (agents can solve min/max/vi)
- bilevel (reformulate as MPEC, or as SOCP)
- dualvar (use multipliers from one agent as variables for another)
- QS functions (both in objectives and constraints)
- Currently available within GAMS (full license available to course participants until August 8, 2016 contact me!)
- Some solution algorithms implemented in modeling system limitations on size, decomposition and advanced algorithms
- QS extensions to Moreau-Yoshida regularization, compositions, composite optimization

- 3

Splitting Methods

• Suppose \mathcal{T} is a maximal monotone operator

$$0 \in F(z) + \mathcal{T}(z)$$
 (GE)

- Can devise Newton methods (e.g. SQP) that treat F via calculus and ${\cal T}$ via convex analysis
- Alternatively, can split F(z) = A(z) + B(z) (and possibly T also) so we solve solve (GE) by solving a sequence of problems involving just

$$\mathcal{T}_1(z) = A(z)$$
 and $\mathcal{T}_2(z) = B(z) + \mathcal{T}(z)$

where each of these is "simpler"

• Forward-Backward splitting (or ADMM):

$$z^{k+1} = (I + c_k T_2)^{-1} (I - c_k T_1) (z^k),$$