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A Simple Network Model

Load segments s represent the electrical load at various
instances

d; Demand at node n in load segment s (MWe)
X? Generation by unit i (MWe)

F} Net electricity transmission on link L (MWe)
Y? Net supply at node n (MWe)

75 Wholesale price ($ per MWhe)
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Nodes n, load segments s, generators /, W is node-generator map
W(d*(\°)) — H(X?
(e, Z( (d°(A%) = > cil ,)>
st. V(X°)—-d*(N\°)=Y"
0<XP<X;, Gi=> X
S

1

YeX

where

o {Y:EF,FS—HYS,—FKFSSFS,ZYAS?O’VS}
n

o Key issue: decompose. Introduce multiplier 7° on supply demand
constraint (and use \° := 7°)
@ How different approximations of X affect the overall solution
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Case H: Loop flow model

max Y (W(d*(X)) = 7°d*(1"))

S|

+max > (ﬁww) -3 c,-(x,.5)>

st. 0<X*<X;, G;> ZX,-S
g

—15YSs
—{—m\gx ; i

st. Y YF20,-F <HY <F

7 LW(X%) —d*(\) — Y° =0

v
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MOPEC

o (Generalized) Nash

min 0;(x;, x_j, ) s.t. gi(xi,x_;,m) <0,Vi o Reformulate

Xi

optimization problem as
7 solves VI(h(x,-), C) first order conditions

(complementarity)

equilibrium @ Use nonsmooth Newton

min theta(1) x(1) g(1) methods to solve

... @ Solve overall problem

min theta(m) x(m) g(m) using “individual

vi h pi cons optimizations”?
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Other specializations and extensions

min 0;(x;, x_;, z(xj, x_;), ) s.t. gi(xj,x_i,z,m) < 0,Vi,f(x,z,m) =0
X

7 solves VI(h(x,-), C)

e NE: Nash equilibrium (no VI coupling constraints, gj(x;) only)

GNE: Generalized Nash Equilibrium (feasible sets of each players
problem depends on other players variables)

Implicit variables: z(x;, x_;) shared

Shared constraints: f is known to all (many) players

Force all shared constraints to have same dual variable (VI solution)
Can use EMP to write all these problems, and convert to MCP form

Use models to evaluate effects of regulations and their
implementation in a competitive environment
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Let A be the node-arc incidence matrix, H be the shift matrix, £ be the
loop constraint matrix. Standard results show:

X={Y:3F,F=HY,FeF}
X:{Y:3(F,9),Y=AF,BAT9=F,ee@,Fef}
X={Y:3F,Y=AF,LF=0,F c F}
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Using different data (\A is node-arc incidence, L is loop constraint matrix):

1

max Z <W(ds()\s)) - Z Ci(Xis))

X,F.d,Y
st W(XS)—d*(\)=Y*
0<XP<X;, Gi=> X
S

YeX

where

X = {Y 3F,YS = AFS, LFS=0,—F < F* gfs,\ﬁ}

X = {Y:HF,FszHYS,FngngS,ZY,fzo,VS}

e >  Y:=>  (AF®), =0 by properties of A, sodrop >, Y; >0
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Case A, L

W (dS(\®)) — m5dS(\°

ijZS:((())7r (*%))

+max > (WS\II(XS) =) alxs )
s i
st. 0<XP <X, Gi>) X7
IS}
—aSYys

+ rp’ax g ™

st. Y= AFS LF =0,—F <F <F

75 L W(XS) — d5(\) — Y5 =0
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Network model
Drop loop constraints:

max Y (W(d*(X°)) — 7°d*()°))

+ max > WSW(XS)—ZC,-(X,-S)>

7 LW(X®) — d*(\) — Y* =0

v
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Comparing Network and Loopflow: Demand

Here we look at simulations which impose a proportional reduction in
transmission across the network. The network and loopflow models
demonstrate similar responses:

6
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Comparing Network and Loopflow: Generation
Likewise, generation is similar in the two models:

0 10 20 30 40 50 60 70 8 90 (blank) 0 10 20 30 40 50 60 70 80 90 (blank)

loopflow network
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Comparing Network and Loopflow: Transmission
Network transmission levels reveal that the two models are quite different:
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Top down /bottom up

@ \° = 7° so use complementarity to expose (EMP: dualvar)

@ All network constraints encapsulated in (bottom up) NLP (or its
approximation by dropping LF* = 0):
_aSYys
st. Y =AFS LF =0,-F <F <F

@ Could instead use the NLP over Y with H

o Can add additional detail into top level economic model describing
consumers and producers

@ Change interaction via new price mechanisms

@ Clear how to instrument different behavior or different policies in
interactions (e.g. Cournot, etc) within EMP
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Loop flow model: update red, blue and purple components

max Y (W(d*(X)) = 7°d* (1))

S|

+max > (ﬁww) -3 c,-(x,.5)>

s i

st. 0<X*<X;, G;> ZX,-S
g

—15YSs
—{—m\gx ; i

st. Y YF20,-F <HY <F

7 LW(X%) —d*(\) — Y° =0

v
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A Heterogeneous Demand Model

Electricity demand is defined by demand segment (), node (n), and load
segment (s). The demand functions are defined by reference price-quantity
pairs (Pjns, Gjns), an elasticity of substitution across load segments (o) and
an elasticity of aggregate demand by segment and node (¢;):

s Pins \ 7 [ 5. \—¢
di = Gjns = Z Gjns <“> (Pjn) ™
J

where
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Demand Response and Substitution

For concreteness, we might define the set of demand segments j as
consisting of WASHING, HEATING, STREETLIGHTS, INDUSTRY and
COMMERCIAL.

The nested constant elasticity of substitution (CES) model defined across
nodes, demand segments, and load segments accommodates demand
responsiveness both due to changes in aggregate electricity use as well as
substitution across load segments.

For example, peak load pricing can induce households to run washing
machines at night while still doing the same number of loads per week
(owasune => 0,ewasuive = 0). Conversely there may be no scope for
shifting street lights use across load segments, and the only way to curtail
demand is to reduce lighting (0srreerricurs = 0, €srreprricurs > 0).
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Pricing
Our implementation of the heterogeneous demand model incorporates
three alternative pricing rules. The first is average cost pricing, defined by

ZjneRAcp Zs Pjnsqjns

ZjnG'RAcp Zs Gjns

The second is time of use pricing, defined by:

PACP:

pTou _ Zjne'RmU Pjnsqjns
S .
ZjneRTOU Gjns

The third is location marginal pricing corresponding to the wholesale

prices denoted P,s above. Prices for individual demand segments are then
assigned:

Pice  (jn) € Race
pjns - PEOU (jn) G RTOU
Phs (Jn) € Rimp
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Smart Metering Lowers the Cost of Congestion
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The Derived Demand Model: Short Run

Following the previous model, we now expand the electricity model to
account for downstream sectors. Electricity demand in segment j at node
n is modelled as an intermediate input to the production function of j
(qjns), aggregate across load segments within the production function:

Zjn = G(an&éjna ana IVIJ )

In this expression ¢, represents employment, Rjn is (fixed) capital stock
and M, represents intermediate inputs other than electricity.

f; exhibits constant returns to scale in the inputs. In the short run, capital
is fixed and the competitive sector j firm is modeled by the profit
maximization problem, taking p? as given:

max pzfj(an57 gjny Kin, I\/Ijn) - Z Pjnsqjns — angjn — pmMjn,
s

éjmans

hence, electricity market reforms affect electricity prices, demand segment
output and employment.
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The Derived Demand Model: Long Run

In the long run, capital is a decision variable and the competitive sector j
firm is modeled by the cost minimization problem:

q Znii(n/\//z PjnsQjns + anejn + rKan + pMMjn
tasl b s

subject to the constraint:

f}(an57€jn7 ij Mj ) = Zjn

where ZJ-,, is treated as a constant in solving the producer’s problem, but is
determined endogenously through a downward sloping demand curve.
(Firms in each demand segment are atomistic and competitive.)
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Electricity Prices May or May Not Affect Employment
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

@ equilibrium

@ vi (agents can solve min/max/vi)
@ bilevel (reformulate as MPEC, or as SOCP)
@ dualvar (use multipliers from one agent as variables for another)
@ QS functions (both in objectives and constraints)
°

implicit functions and shared constraints

o Currently available within GAMS

@ Some solution algorithms implemented in modeling system -
limitations on size, decomposition and advanced algorithms

@ Can evaluate effects of regulations and their implementation in a
competitive environment
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Computational issue: PATH

e Cournot model: |A| =5
e Size n = |A| x N,

@

«

Size (n) | Time (secs)
1,000 35.4 8
2,500 294.8 .
5,000 1024.6 100

<

0 10 20 30 40 50 60 70 80 920 100
nz = 10403

Jacobian nonzero pattern
n =100, N, =20
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Computation: implicit functions

e Use implicit fn: z(x) = Zj
e Generalization to F(z,x) =0 (via

adjoints)

)(J- 20

@ empinfo: implicit z F

Size (n) | Time (secs) "

1,000 2.0 ”

2,500 8.7 ”

5,000 38.8 N
10,000 > 1080 o

Jacobian nonzero pattern
n =100, N, =20
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Computation: implicit functions and local variables

o Use implicit fn: z(x) = >_; X " e’

(and local aggregation) 20| :
e Generalization to F(z,x) = 0 (via "

adjoints) o
@ empinfo: implicit z F 607 l ;
Size (n) | Time (secs) i

1,000 0.5

2,500 0.8 | ]

5,000 1.6 | | | ‘ ‘

10,000 3.9 ° R S

25,000 177 Jacobian nonzero pattern
50,000 52.3 n =100, N, =20

Ferris (Univ. Wisconsin) Optimality and Equilibrium Supported by DOE/ARPA-E 3/6



Reserves, interruptible load, demand response

Generators set aside capacity for “contingencies” (reserves)

Separate energy w4 and reserve 7, prices

°
°
@ Consumers may also be able to reduce consumption for short periods
@ Alternative to sharp price increases during peak periods

°

Constraints linking energy "bids” and reserve “bids”

Vi +uj < U, up < By

@ Multiple scenarios - linking constraints on bids require “bid curve to
be monotone”
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Price taking: model is MOPEC

Consumption dy, demand response ri, energy v;, reserves u;, prices m

Consumer max _utility(dx) — 7g ! di + profit(ry, /)
(dk,rk)eC

Generator max _profit(vj, mq) + profit(uj, m)
(Vjvuj)eg

s.t. vi +u <Uj,up < Bjy;

Transmission max congestion rates(f, my)
€

Market clearing

0<mg LY vi—> di— AF >0

J k
OSW,J_ZUJ—FZ@—RZO
| P

v
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Large consumer is price making: MPEC

Leader /follower

Consumer max utility(dx) — 7y " dj + profit(ry,7,)

with the constraints:

(dk, rk) eC

Generator max _ profit(vj, 74) + profit(uj, 7,)
(Vjvuj)eg/

Transmission max congestion rates(f, 74)
€

0<mg LY vi—> de— AF>0

J k
0<m LY uj+» n—R=>0
j k

Ferris (Univ. Wisconsin) Optimality and Equilibrium Supported by DOE/ARPA-E

6/6



	Conclusions
	Appendix
	Demand response


