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A Simple Network Model

Load segments s represent the electrical load at various
instances

d s
n Demand at node n in load segment s (MWe)

X s
i Generation by unit i (MWe)

F s
L Net electricity transmission on link L (MWe)

Y s
n Net supply at node n (MWe)

πsn Wholesale price ($ per MWhe)
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Nodes n, load segments s, generators i , Ψ is node-generator map

max
X ,F ,d ,Y

∑
s

(
W (d s(λs))−

∑
i

ci (X
s
i )

)
s.t. Ψ(X s)− d s(λs) = Y s

0 ≤ X s
i ≤ X i , G i ≥

∑
s

X s
i

Y ∈ X

where

X =

{
Y : ∃F ,F s = HY s ,−F s ≤ F s ≤ F

s
,
∑
n

Y s
n ≥ 0,∀s

}

Key issue: decompose. Introduce multiplier πs on supply demand
constraint (and use λs := πs)

How different approximations of X affect the overall solution

Ferris (Univ. Wisconsin) Optimality and Equilibrium Supported by DOE/ARPA-E 3 / 24



Case H: Loop flow model

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
Y

∑
s

−πsY s

s.t.
∑
i

Y s
i ≥ 0,−F s ≤ HY s ≤ F

s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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MOPEC

min
xi
θi (xi , x−i , π) s.t. gi (xi , x−i , π) ≤ 0,∀i

π solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h pi cons

(Generalized) Nash

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve

Solve overall problem
using “individual
optimizations”?

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 

Ferris (Univ. Wisconsin) Optimality and Equilibrium Supported by DOE/ARPA-E 5 / 24



Other specializations and extensions

min
xi
θi (xi , x−i , z(xi , x−i ), π) s.t. gi (xi , x−i , z , π) ≤ 0, ∀i , f (x , z , π) = 0

π solves VI(h(x , ·),C )

NE: Nash equilibrium (no VI coupling constraints, gi (xi ) only)

GNE: Generalized Nash Equilibrium (feasible sets of each players
problem depends on other players variables)

Implicit variables: z(xi , x−i ) shared

Shared constraints: f is known to all (many) players

Force all shared constraints to have same dual variable (VI solution)

Can use EMP to write all these problems, and convert to MCP form

Use models to evaluate effects of regulations and their
implementation in a competitive environment
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Let A be the node-arc incidence matrix, H be the shift matrix, L be the
loop constraint matrix. Standard results show:

X = {Y : ∃F ,F = HY ,F ∈ F}

X =
{
Y : ∃(F , θ),Y = AF ,BAT θ = F , θ ∈ Θ,F ∈ F

}
X = {Y : ∃F ,Y = AF ,LF = 0,F ∈ F}
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Using different data (A is node-arc incidence, L is loop constraint matrix):

max
X ,F ,d ,Y

∑
s

(
W (d s(λs))−

∑
i

ci (X
s
i )

)
s.t. Ψ(X s)− d s(λs) = Y s

0 ≤ X s
i ≤ X i , G i ≥

∑
s

X s
i

Y ∈ X

where

X =
{
Y : ∃F ,Y s = AF s ,LF s = 0,−F s ≤ F s ≤ F

s
,∀s
}

X =

{
Y : ∃F ,F s = HY s ,−F s ≤ F s ≤ F

s
,
∑
n

Y s
n ≥ 0,∀s

}
∑

n Y
s
n =

∑
n(AF s)n = 0 by properties of A, so drop

∑
n Y

s
n ≥ 0
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Case A,L

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
F ,Y

∑
s

−πsY s

s.t. Y s = AF s ,LF s = 0,−F s ≤ F s ≤ F
s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Network model
Drop loop constraints:

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
F ,Y

∑
s

−πsY s

s.t. Y s = AF s ,−F s ≤ F s ≤ F
s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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Comparing Network and Loopflow: Demand
Here we look at simulations which impose a proportional reduction in
transmission across the network. The network and loopflow models
demonstrate similar responses:
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Comparing Network and Loopflow: Generation
Likewise, generation is similar in the two models:
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Comparing Network and Loopflow: Transmission
Network transmission levels reveal that the two models are quite different:
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Top down/bottom up

λs = πs so use complementarity to expose (EMP: dualvar)

All network constraints encapsulated in (bottom up) NLP (or its
approximation by dropping LF s = 0):

max
F ,Y

∑
s

−πsY s

s.t. Y s = AF s ,LF s = 0,−F s ≤ F s ≤ F
s

Could instead use the NLP over Y with H
Can add additional detail into top level economic model describing
consumers and producers

Change interaction via new price mechanisms

Clear how to instrument different behavior or different policies in
interactions (e.g. Cournot, etc) within EMP
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Loop flow model: update red, blue and purple components

max
d

∑
s

(W (d s(λs))− πsd s(λs))

+ max
X

∑
s

(
πsΨ(X s)−

∑
i

ci (X
s
i )

)
s.t. 0 ≤ X s

i ≤ X i , G i ≥
∑
s

X s
i

+ max
Y

∑
s

−πsY s

s.t.
∑
i

Y s
i ≥ 0,−F s ≤ HY s ≤ F

s

πs ⊥ Ψ(X s)− d s(λs)− Y s = 0
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A Heterogeneous Demand Model

Electricity demand is defined by demand segment (j), node (n), and load
segment (s). The demand functions are defined by reference price-quantity
pairs (p̄jns , q̄jns), an elasticity of substitution across load segments (σj) and
an elasticity of aggregate demand by segment and node (εj):

d s
n =

∑
j

qjns =
∑
j

q̄jns

(
Pjnp̄jns
pjns

)σj
(Pjn)−εj

where

Pjn =

(∑
s

θjns

(
pjns
p̄jns

)1−σj
)1/(1−σj )
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Demand Response and Substitution

For concreteness, we might define the set of demand segments j as
consisting of washing, heating, streetlights, industry and
commercial.

The nested constant elasticity of substitution (CES) model defined across
nodes, demand segments, and load segments accommodates demand
responsiveness both due to changes in aggregate electricity use as well as
substitution across load segments.

For example, peak load pricing can induce households to run washing
machines at night while still doing the same number of loads per week
(σwashing � 0,εwashing ≈ 0). Conversely there may be no scope for
shifting street lights use across load segments, and the only way to curtail
demand is to reduce lighting (σstreetlights = 0, εstreetlights > 0).
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Pricing
Our implementation of the heterogeneous demand model incorporates
three alternative pricing rules. The first is average cost pricing, defined by

Pacp =

∑
jn∈Racp

∑
s pjnsqjns∑

jn∈Racp

∑
s qjns

The second is time of use pricing, defined by:

Ptou
s =

∑
jn∈Rtou

pjnsqjns∑
jn∈Rtou

qjns

The third is location marginal pricing corresponding to the wholesale
prices denoted Pns above. Prices for individual demand segments are then
assigned:

pjns =


Pacp (jn) ∈ Racp

Ptou
s (jn) ∈ Rtou

Pns (jn) ∈ Rlmp
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Smart Metering Lowers the Cost of Congestion
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The Derived Demand Model: Short Run
Following the previous model, we now expand the electricity model to
account for downstream sectors. Electricity demand in segment j at node
n is modelled as an intermediate input to the production function of j
(qjns), aggregate across load segments within the production function:

Zjn = fj(qjns , `jn, K̄jn,Mjn)

In this expression `jn represents employment, K̄jn is (fixed) capital stock
and Mjn represents intermediate inputs other than electricity.
fj exhibits constant returns to scale in the inputs. In the short run, capital
is fixed and the competitive sector j firm is modeled by the profit
maximization problem, taking pZ as given:

max
`jn,qjns

pZ fj(qjns , `jn, K̄jn,Mjn)−
∑
s

pjnsqjns − wjn`jn − pMMjn,

hence, electricity market reforms affect electricity prices, demand segment
output and employment.
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The Derived Demand Model: Long Run

In the long run, capital is a decision variable and the competitive sector j
firm is modeled by the cost minimization problem:

min
q,`,K ,M

∑
s

pjnsqjns + wjn`jn + rKKjn + pMMjn

subject to the constraint:

fj(qjns , `jn, K̄jn,Mjn) = Z̄jn

where Z̄jn is treated as a constant in solving the producer’s problem, but is
determined endogenously through a downward sloping demand curve.
(Firms in each demand segment are atomistic and competitive.)
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Electricity Prices May or May Not Affect Employment
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

dualvar (use multipliers from one agent as variables for another)

QS functions (both in objectives and constraints)

implicit functions and shared constraints

Currently available within GAMS

Some solution algorithms implemented in modeling system -
limitations on size, decomposition and advanced algorithms

Can evaluate effects of regulations and their implementation in a
competitive environment
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Computational issue: PATH

Cournot model: |A| = 5

Size n = |A| ∗ Na

Size (n) Time (secs)

1,000 35.4
2,500 294.8
5,000 1024.6
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Computation: implicit functions

Use implicit fn: z(x) =
∑

j xj

Generalization to F (z , x) = 0 (via
adjoints)

empinfo: implicit z F

Size (n) Time (secs)

1,000 2.0
2,500 8.7
5,000 38.8

10,000 > 1080
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Computation: implicit functions and local variables

Use implicit fn: z(x) =
∑

j xj
(and local aggregation)

Generalization to F (z , x) = 0 (via
adjoints)

empinfo: implicit z F

Size (n) Time (secs)

1,000 0.5
2,500 0.8
5,000 1.6

10,000 3.9
25,000 17.7
50,000 52.3

0 20 40 60 80 100
nz = 333

0

20

40

60

80

100

Jacobian nonzero pattern
n = 100, Na = 20

Ferris (Univ. Wisconsin) Optimality and Equilibrium Supported by DOE/ARPA-E 3 / 6



Reserves, interruptible load, demand response

Generators set aside capacity for “contingencies” (reserves)

Separate energy πd and reserve πr prices

Consumers may also be able to reduce consumption for short periods

Alternative to sharp price increases during peak periods

Constraints linking energy “bids” and reserve “bids”

vj + uj ≤ Uj , uj ≤ Bjvj

Multiple scenarios - linking constraints on bids require “bid curve to
be monotone”
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Price taking: model is MOPEC

Consumption dk , demand response rk , energy vj , reserves uj , prices π

Consumer max
(dk ,rk )∈C

utility(dk)− πdTdk + profit(rk , πr )

Generator max
(vj ,uj )∈G

profit(vj , πd) + profit(uj , πr )

s.t. vj + uj ≤ Uj , uj ≤ Bjvj
Transmission max

f ∈F
congestion rates(f , πd)

Market clearing

0 ≤ πd ⊥
∑
j

vj −
∑
k

dk −Af ≥ 0

0 ≤ πr ⊥
∑
j

uj +
∑
k

rk −R ≥ 0
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Large consumer is price making: MPEC

Leader/follower

Consumer max utility(dk)− πdTdk + profit(rk , πr )

with the constraints:

(dk , rk) ∈ C
Generator max

(vj ,uj )∈G′
profit(vj , πd) + profit(uj , πr )

Transmission max
f ∈F

congestion rates(f , πd)

0 ≤ πd ⊥
∑
j

vj −
∑
k

dk −Af ≥ 0

0 ≤ πr ⊥
∑
j

uj +
∑
k

rk −R ≥ 0
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