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Why model?

to understand (descriptive process, validate principles and/or explore
underlying mechanisms)

to predict (and/or discover new system features)

to combine (engaging groups in a decision, make decisions,
operate/control a system of interacting parts)

to design (strategic planning, investigate new designs, can they be
economical given price of raw materials, production process, etc)

Must be able to model my problem easily/naturally
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Building mathematical models

How to model: pencil and paper, excel, Matlab, R, python, . . .

I Linear vs nonlinear

I Deterministic vs probabilistic

I Static vs dynamic (differential or difference equations)

I Discrete vs continuous
Other issues: large scale, tractability, data (rich and sparse)

Abstract/simplify:
I Variables: input/output, state, decision, exogenous, random, . . .
I Objective/constraints
I Black box/white box
I Subjective information, complexity, training, evaluation

Just solving a single problem isn’t the real value of modeling: e.g.
optimization finds “holes” in the model, or couples many models
together

Ferris (Univ. Wisconsin) MOPEC GERAD, Montreal 3 / 27



The PIES Model (Hogan)

minx cT x
s.t. Ax = d(p)

Bx = b
x ≥ 0

Issue is that p is the multiplier on the “balance” constraint of LP

Extended Mathematical Programming (EMP) facilitates annotations
of models to describe additional structure

empinfo: dualvar p balance

Can solve the problem by writing down the KKT conditions of this
LP, forming an LCP and exposing p to the model

EMP does this automatically from the annotations
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Power Systems: Economic Dispatch

min
(q,z,θ)∈F

∑

k

C (qk) s.t. qk −
∑

(l ,c)

z(k,l ,c) = dk
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Independent System
Operator (ISO)
determines who
generates what

pk : Locational marginal
price (LMP) at k

Volatile in “stressed”
system

Can we shed load from
consumers to smooth
prices?

FERC (regulator) writes
the rules - how to
implement?
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Understand: demand response and FERC Order No. 745

min
q,z,θ,R,p

∑

k

pkRk

s.t.C1 ≥
∑

k

pkdk/
∑

k

dk

C2 ≥
∑

k

(qk + Rk)pk/
∑

k

(dk − Rk)

0 ≤ Rk ≤ uk ,

and (q, z , θ) solves min
(q,z,θ)∈F

∑

k

C (qk)

s.t. qk −
∑

(l ,c)

z(k,l ,c) = dk − Rk (1)

where pk is the multiplier on constraint (1)
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Solution Process (Liu)

Bilevel program (hierarchical model)

Upper level objective involves multipliers on lower level constraints

Extended Mathematical Programming (EMP) annotates model to
facilitate communicating structure to solver

I dualvar p balance
I bilevel R min cost q z θ balance . . .

Automatic reformulation as an MPEC (single optimization problem
with equilibrium constraints)

Model solved using NLPEC and Conopt

bilevel =⇒ MPEC =⇒ NLP

Potential for solution of “consumer level” demand response

Challenge: devise robust algorithms to exploit this structure for fast
solution
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Stability and feasibility
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Operational view: LMP, Demand, Response
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Alternative models: ED, avg, max, weighted avg

12

Fig. 7. Simulation on the 300-bus case

Fig. 8. Simulation on the 2383-bus case

• DR3: Replace the objective (12) by
∑

k∈B
ωkλkRk (40)

where ωk is a weight parameter on node k, to incorporate
a relative “reluctancy” factor regarding the dispatch of
demand response at different nodes.

An illustrative experiment is performed on the 14-bus case
with the results presented in Figure 9. The total demand level
is set to 650 MW and the line limit is 150 MW on every
line. While ED1 gives an AvgLMP of $73.14/MW, we set C1

to $60/MW, as depicted by the horizontal dotted lines in the
subplots. As before, we enforce no artificial bounds on Rk by
setting uRk = dk for each k ∈ B. For DR3, we set ω2 = 2
and ωk = 1,∀k ∈ B/{2} to express that we are relatively
reluctant to dispatch demand response at node 2 compared to
other nodes. For each node indicated on the horizonal axis, the
light bar represents the LMP level and the dark bar represents
the dispatched DR level at this node. Note that the LMP and
DR levels share the same scale along the vertical axis but
have different units, i.e. LMP is measured in $/MW and DR
is measured in MW.

Fig. 9. Comparison of DR model variants

As seen in the figure, DR1 was able to reduce the AvgLMP
by dispatching about 31 MW of demand response at node 2.
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Complementarity Problems in Economics (MCP)

p represents prices, x represents activity levels

System model: given prices, (agent) i determines activities xi

Gi (xi , x−i , p) = 0

x−i are the decisions of other agents.

Walras Law: market clearing

0 ≤ S(x , p)− D(x , p) ⊥ p ≥ 0

Key difference: optimization assumes you control the complete system

Complementarity determines what activities run, and who produces
what
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Nash Equilibria

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , p),∀i ∈ I

x−i are the decisions of other players.

Prices p given exogenously, or via complementarity:

0 ≤ H(x , p) ⊥ p ≥ 0

empinfo: equilibrium
min loss(i) x(i) cons(i)
vi H p

Applications: Discrete-Time Finite-State Stochastic Games.
Specifically, the Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry.
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How to combine: Nash Equilibria

Non-cooperative game: collection of players a ∈ A whose individual
objectives depend not only on the selection of their own strategy
xa ∈ Ca = domfa(·, x−a) but also on the strategies selected by the
other players x−a = {xa : o ∈ A \ {a}}.
Nash Equilibrium Point:

x̄A = (x̄a, a ∈ A) : ∀a ∈ A : x̄a ∈ argminxa∈Ca
fa(xa, x̄−a).

1 for all x ∈ A, fa(·, x−a) is convex

2 C =
∏

a∈A Ca and for all a ∈ A, Ca is closed convex.
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VI reformulation

Define
G : RN 7→ RN by Ga(xA) = ∂afa(xa, x−a), a ∈ A

where ∂a denotes the subgradient with respect to xa. Generally, the
mapping G is set-valued.

Theorem

Suppose the objectives satisfy (1) and (2), then every solution of the
variational inequality

xA ∈ C such that − G (xA) ∈ NC (xA)

is a Nash equilibrium point for the game.
Moreover, if C is compact and G is continuous, then the variational
inequality has at least one solution that is then also a Nash equilibrium
point.

Ferris (Univ. Wisconsin) MOPEC GERAD, Montreal 14 / 27



Key point: models generated correctly solve quickly
Here S is mesh spacing parameter

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200 (with new basis extensions in PATH)

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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General Equilibrium models

(C ) : max
xk∈Xk

Uk(xk) s.t. pT xk ≤ ik(y , p)

(I ) :ik(y , p) = pTωk +
∑

j

αkjp
Tgj(yj)

(P) : max
yj∈Yj

pTgj(yj)

(M) : max
p≥0

pT


∑

k

xk −
∑

k

ωk −
∑

j

gj(yj)


 s.t.

∑

l

pl = 1

Can reformulate as embedded problem (Ermoliev et al, Rutherford):

max
x∈X ,y∈Y

∑

k

tk
βk

logUk(xk)

s.t.
∑

k

xk ≤
∑

k

ωk +
∑

j

gj(yj)

tk = ik(y , p) where p is multiplier on NLP constraint

Leads to sequential joint maximization algorithm (Rutherford)
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Extension: The smart grid

The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

Decision processes (in this environment) are predominantly
hierarchical.

Models to support such decision processes must also be layered or
hierachical.

Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide FLEXIBILITY,
overall solution speed, understanding of localized effects, and value
for the coupling of the system.
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Representative decision-making timescales in electric power
systems

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute seconds

Transmission
Siting & Construction

Power Plant
Siting & Construction Maintenance

Scheduling

Long-term
Forward
Markets

Load
Forecasting

Closed-loop
Control and 
Relay Action

Closed-loop
Control and 

Relay Setpoint
Selection Day ahead

market w/ unit 
commitment

Hour ahead
market

Five
 minute
market

Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow

22

A monster model is difficult to validate, inflexible, prone to errors.
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Combine: Transmission Line Expansion Model

min
x∈X

∑

ω

πω
∑

i∈N
dωi p

ω
i (x)

1

2 4

7

8

14

11

9

6

12 13

10

3

5

Nonlinear system to
describe power flows
over (large) network

Multiple time scales

Dynamics (bidding,
failures, ramping, etc)

Uncertainty (demand,
weather, expansion, etc)

pωi (x): Price (LMP) at i
in scenario ω as a
function of x

Use other models to
construct approximation
of pωi (x)
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Generator Expansion (2): ∀f ∈ F :

min
yf

∑

ω

πω
∑

j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑

j∈Gf

yj)

s.t.
∑

j∈Gf

yj ≤ hf , yf ≥ 0

Gf : Generators of firm f ∈ F
yj : Investment in generator j
qωj : Power generated at bus j

in scenario ω
Cj : Cost function for gener-

ator j
r : Interest rate

Market Clearing Model (3): ∀ω :

min
z,θ,qω

∑

f

∑

j∈Gf

Cj(yj , q
ω
j ) s.t.

qωj −
∑

i∈I (j)

zij = dωj ∀j ∈ N(⊥ pωj )

zij = Ωij(θi − θj) ∀(i , j) ∈ A

− bij(x) ≤ zij ≤ bij(x) ∀(i , j) ∈ A

uj(yj) ≤ qωj ≤ uj(yj)

zij : Real power flowing along
line ij

qωj : Real power generated at
bus j in scenario ω

θi : Voltage phase angle at
bus i

Ωij : Susceptance of line ij
bij(x): Line capacity as a func-

tion of x
uj(y), Generator j limits
uj(y): as a function of y
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Solution approach

Use derivative free method for the upper level problem (1)

Requires pωi (x)

Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

But transmission line capacity expansion typically leads to generator
expansion, which interacts directly with market clearing

Interface blue and black models using Nash Equilibria (as EMP):

empinfo: equilibrium
forall f: min expcost(f) y(f) budget(f)
forall ω: min scencost(ω) q(ω) . . .
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Feasibility

KKT of min
yf ∈Y

∑

ω

πω
∑

j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑

j∈Gf

yj) ∀f ∈ F (2)

KKT of min
(z,θ,qω)∈Z(x ,y)

∑

f

∑

j∈Gf

Cj(yj , q
ω
j ) ∀ω (3)

Models (2) and (3) form a complementarity problem (CP via EMP)

Solve (3) as NLP using global solver (actual Cj(yj , q
ω
j ) are not

convex), per scenario (SNLP) this provides starting point for CP

Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

Identifies CP solution whose components solve the scenario NLP’s (3)
to global optimality
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (1):
Scenario q1 q2 q3 q6 q8
ω1 3.05 4.25 3.93 4.34 3.39
ω2 4.41 4.07 4.55

EMP (1):
Scenario q1 q2 q3 q6 q8
ω1 2.86 4.60 4.00 4.12 3.38
ω2 4.70 4.09 4.24

Firm y1 y2 y3 y6 y8
f1 167.83 565.31 266.86
f2 292.11 207.89
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.35 4.66 5.04 3.91
ω2 4.70 4.09 4.24

EMP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.34 4.62 5.01 3.99
ω2 4.71 4.07 4.25

Firm y1 y2 y3 y6 y8
f1 0.00 622.02 377.98
f2 283.22 216.79
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Observations

But this is simply one function
evaluation for the outer
“transmission capacity
expansion” problem

Number of critical arcs typically
very small

But in this case, pωj are very
volatile

Outer problem is small scale,
objectives are open to debate,
possibly ill conditioned

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84
195
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220
Comparing the different types of objective functions

 

 
LMP
LMP and Generator Cost
LMP with interest rate

Economic dispatch should use AC power flow model

Structure of market open to debate

Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS

Ferris (Univ. Wisconsin) MOPEC GERAD, Montreal 26 / 27



Conclusions

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Extended Mathematical Programming available within the GAMS
modeling system

Able to pass additional (structure) information to solvers

Embedded optimization models automatically reformulated for
appropriate solution engine

Exploit structure in solvers

Extend application usage further
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