The convergence of stationary iterations with indefinite splitting

Michael C. Ferris

Joint work with: Tom Rutherford and Andy Wathen

University of Wisconsin, Madison

6th International Conference on Complementarity Problems
Berlin, Germany
August 7, 2014
The problems

- VI(F, C): $x^* \in C$, $\langle F(x^*), x - x^* \rangle \geq 0, \forall x \in C$
- MOPEC: x^*, y:

 x^*_i solves $\min_{x_i \in K_i(x^*_i, y)} \theta(x_i, x^*_i, y), \forall i$

 y solves VI($F(x^*, \cdot), C$)

\[
\begin{bmatrix}
A_1 & A_{1,2} & \cdots & A_{1,p} & E_1 \\
A_{2,1} & A_2 & \cdots & \vdots & \vdots \\
\vdots & \vdots & \cdots & A_{p-1,p} & E_{p-1} \\
A_{p,1} & \cdots & A_{p,p-1} & A_p & E_p \\
F_1 & \cdots & F_{p-1} & F_p & D
\end{bmatrix}
\]
Strongly Convex Nash Equilibria

\[
\begin{align*}
\min_{x_1 \geq 0} & \quad \frac{1}{2} x_1^2 - \theta x_1 x_2 - 4x_1 \\
\min_{x_2 \geq 0} & \quad \frac{1}{2} x_2^2 - x_1 x_2 - 3x_2
\end{align*}
\]

No solution for \(\theta \geq 1 \):

\[
x_1(x_2) = (\theta x_2 + 4)_+, \quad x_2(x_1) = (x_1 + 3)_+
\]

Solution \(-\frac{4}{3} \leq \theta < 1\): \(x_1 = \frac{4 + 3\theta}{1 - \theta}, x_2 = x_1 + 3 \)

Solution \(\theta \leq -\frac{4}{3}\): \(x_1 = 0, x_1 = 3 \)

Jacobi works provided \(\theta < 1 \), but theory fails
The Issues

This is not the optimality conditions of a single optimization problem:

\[
0 \leq \begin{bmatrix}
1 & 1 & -\theta \\
1 & 0 & 1 \\
-1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
-\rho_1 \\
x_2
\end{bmatrix}
- \begin{bmatrix}
4 \\
1 \\
3
\end{bmatrix}
\perp \begin{bmatrix}
x_1 \\
-\rho_1 \\
x_2
\end{bmatrix} \geq 0
\]

- The matrix A in general is never diagonally dominant except in trivial cases.
- Iterations based on successive inversion of local blocks (or successive optimization of local strategies) can converge.
- We establish sufficient conditions which guarantee convergence of block Jacobi and block Gauss-Seidel iterations for such matrices.
Iteration with Indefinite Splitting

\[Ax = b \]

Splitting \(A = P - N \) naturally leads to a stationary iteration of the form

\[x_0 \text{ arbitrary}, \quad Px_{k+1} = Nx_k + b, \quad k = 0, 1, \ldots \]

- This iteration may or may not converge; simply applicable sufficient conditions for convergence are particularly valuable.
- Most well-known such conditions are diagonal dominance:
 - if the preconditioner is \(P = \text{diag}(A) \) (leading to Jacobi iteration) or
 - \(P \) is the lower triangular part of \(A \) (leading to Gauss-Seidel iteration),

then convergence is guaranteed if the strict diagonal dominance condition

\[
|a_{i,i}| > \sum_{j=1,\ldots,n, j \neq i} |a_{i,j}|, \quad i = 1, \ldots, n \tag{1}
\]

is satisfied by \(A = \{a_{i,j}, i, j = 1, \ldots, n\} \).
Weaker diagonal dominance conditions

For irreducible matrices, it is well documented that the weaker condition

$$|a_{i,i}| \geq \sum_{j=1,\ldots,n, j \neq i} |a_{i,j}|, \quad i = 1, \ldots, n$$

is also sufficient provided strict inequality holds for at least one row index, i

The condition (1) or (2) also guarantees that $A \in \mathbb{R}^{n \times n}$ is invertible, so a unique solution exists.
The Setting

We focus on matrices of the form

\[
\mathbf{A} = \begin{bmatrix}
A_1 & A_{1,2} & \cdots & A_{1,p} & E_1 \\
A_{2,1} & A_2 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & A_{p-1,p} & E_{p-1} \\
A_{p,1} & \cdots & A_{p,p-1} & A_p & E_p \\
F_1 & \cdots & F_{p-1} & F_p & D
\end{bmatrix} \quad (3)
\]

where

\[
\mathbf{A}_i = \begin{bmatrix}
Q_i & B_i^T \\
B_i & 0
\end{bmatrix}, \quad i = 1, \ldots, p \quad (4)
\]

with \(Q_i = Q_i^T \in \mathbb{R}^{n_i \times n_i}\) positive definite and \(B_i \in \mathbb{R}^{m_i \times n_i}\) of full rank \(m_i < n_i\) for each \(i\) \((m_i > 0)\). These conditions guarantee that each \(\mathbf{A}_i\) is invertible. The submatrix \(D \in \mathbb{R}^{s \times s}\), \(s \geq 0\) must be symmetric and invertible (unless \(s = 0\)).
Existing Block Theory

For the blocked matrix (3) a result of Feingold and Varga (1962) applies: If \mathcal{A} is block irreducible and

$$
(\|A_i^{-1}\|_2)^{-1} \geq \|E_i\|_2 + \sum_{j=1,\ldots,p, j \neq i} \|A_{i,j}\|_2, \quad i = 1, \ldots, p \tag{5}
$$

and

$$
(\|D^{-1}\|_2)^{-1} \geq \sum_{j=1,\ldots,p, j \neq i} \|F_i\|_2 \tag{6}
$$

with strict inequality in (6) or for at least one index, i, in (5), then \mathcal{A} is invertible (existence and uniqueness).
Before considering these conditions in more detail, consider a block Jacobi or block Gauss-Seidel iteration based on the splitting with

$$P = \begin{bmatrix}
A_1 & A_2 & \cdots & A_p \\
& A_1 & A_2 & \cdots & A_p \\
& & \ddots & \ddots & \ddots \\
& & & A_1 & A_2 & \cdots & A_p \\
& & & & F_1 & \cdots & F_{p-1} & F_p & D
\end{bmatrix}$$

or

$$P = \begin{bmatrix}
A_1 & A_2 \\
& A_2 \\
& \ddots & \ddots & \ddots \\
& & A_1 & A_2 & \cdots & A_p \\
& & & F_1 & \cdots & F_{p-1} & F_p & D
\end{bmatrix}$$

Asymptotic convergence of the corresponding stationary (or simple) iteration will be guaranteed for any starting vector if all of the eigenvalues, λ, of $I - P^{-1}A$ lie strictly inside the unit disc.
The link

Such eigenvalues satisfy \((I - P^{-1}A)x = \lambda x, x \neq 0\) or equivalently \((A + (\lambda - 1)P)x = 0, x \neq 0\). In the case of block Jacobi, asymptotic convergence will be guaranteed if there does not exist any \(\lambda\) with \(|\lambda| \geq 1\) such that the matrix

\[
A(\lambda) = A + (\lambda - 1)P = \begin{bmatrix}
\lambda A_1 & A_{1,2} & \cdots & A_{1,p} & E_1 \\
A_{2,1} & \lambda A_2 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & A_{p-1,p} & E_{p-1} \\
A_{p,1} & \cdots & A_{p,p-1} & \lambda A_p & E_p \\
F_1 & \cdots & F_{p-1} & F_p & \lambda D
\end{bmatrix}
\]

is singular. But

\[
(\| (\lambda A_i)^{-1} \|_2)^{-1} = |\lambda| (\| A_i^{-1} \|_2)^{-1} \geq (\| A_i^{-1} \|_2)^{-1}
\]

whenever \(|\lambda| \geq 1\) with a identical argument holding for \(D\). Hence satisfaction of the conditions (5),(6) not only guarantees invertibility of \(A\), but also guarantees convergence of the block Jacobi iteration.
Let μ_i denote the smallest eigenvalue of the positive definite matrix Q_i and γ_i denote the smallest eigenvalue of the positive definite (Schur complement) matrix $B_iQ_i^{-1}B_i^T$, then there are no eigenvalues of

$$A_i = \begin{bmatrix} Q_i & B_i^T \\ B_i & 0 \end{bmatrix}$$

in the interval

$$\left(\frac{1}{2}\left(\mu_i - \sqrt{\mu_i^2 + 4\gamma_i\mu_i}\right), \mu_i\right)$$

which contains the origin.
Finally...

If the matrix \mathcal{A} given by (3),(4) is block irreducible, then it is invertible and the block Jacobi and block Gauss-Seidel iterations for a linear system $\mathcal{A}x = b$ converge to x for any starting vector if

$$\min\left\{ \frac{1}{2} \left(\sqrt{\mu_i^2 + 4\gamma_i\mu_i - \mu_i} \right), \mu_i \right\} \geq \|E_i\|_2 + \sum_{j=1,\ldots,p, j \neq i} \|A_{i,j}\|_2, \quad i = 1, \ldots, p$$ \hspace{1cm} (7)

and

$$d \geq \sum_{j=1,\ldots,p, j \neq i} \|F_i\|_2$$ \hspace{1cm} (8)

with strict inequality in (8)\(^1\) or for at least one index, i, in (7).

\(^1\) d is the absolute value of eighenvalue of D closest to origin
A Simplification

If for each $i = 1, \ldots, p$, $\gamma_i \geq 2\mu_i$ then \mathcal{A} is invertible and the block Jacobi and block Gauss-Seidel iterations for a linear system $\mathcal{A}x = b$ converge to x for any starting vector if

$$\mu_i \geq \|E_i\|_2 + \sum_{j=1,\ldots,p, j \neq i} \|A_{i,j}\|_2, \quad i = 1, \ldots, p$$

(9)

and

$$d \geq \sum_{j=1,\ldots,p, j \neq i} \|F_i\|_2$$

(10)

with strict inequality in (10) or for at least one index, i, in (9).
Simple example

\[
\begin{align*}
\min_{x_1} & \quad 0.5x_1^2 - \theta x_1 x_2 - 4x_1 \quad \text{s.t.} \quad 2x_1 + 0.5x_2 = 1 \\
\min_{x_2} & \quad 0.5x_2^2 - x_1 x_2 - 3x_2
\end{align*}
\]

\[
\begin{bmatrix}
1 & 2 & -\theta \\
2 & 0.5 & -p_1 \\
-1 & 1 & x_2
\end{bmatrix}
= \begin{bmatrix}
4 \\
1 \\
3
\end{bmatrix}
\]

- Solution: \(x_1 = -0.2, \ x_2 = 2.8, \ p_1 = -1.4\theta - 2.1 \)
- Jacobi works, but convergence guaranteed if \(|\theta| < \sqrt{3}/2 \).
Extensions

- Can also prove same result for SOR schemes
- Can apply regularization (proximal iterations) on the constraints: for $\epsilon_i, \alpha_i > 0$

$$A_i = \begin{bmatrix} Q_i + \alpha_i I & B_i^T \\ B_i & -\epsilon_i I \end{bmatrix},$$

can be used for some subset (or indeed all) of the indices $i = 1, \ldots, p$.
- This increases the value of μ_i and γ_i in the above and strengthens the theory
- No rates given here
Strongly convex optimization

\[\min_{x_1} \frac{1}{2} x_1^2 - x_1 x_2 - 4x_1 \quad \text{s.t.} \quad x_1 + x_2 = 1 \]

\[\min_{x_2} \frac{1}{2} x_2^2 - x_1 x_2 - 3x_2 \]

\[
\begin{bmatrix}
1 + \alpha_1 & 1 & -1 \\
\alpha_1 & -\epsilon_1 & 1 \\
-1 & 1 & -p_1 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
p_1 \\
\end{bmatrix}
=
\begin{bmatrix}
4 \\
1 \\
3 \\
\end{bmatrix}
\]

- Solution: \(x_1 = -1, x_2 = 2, p_1 = -7 \)
- Jacobi fails: after 4 steps back at \((1, 1)^T\)
- Modified Jacobi \(\alpha_1, \epsilon_1 = 0.1 \) solves in 50 steps
Each Jacobi iterate replaces system of equations with solution of a small(er) scale Quadratic Programs:

\[
\min_{x_i \geq 0} \frac{1}{2} x_i^T Q_i x_i + c_i (x_{-i})^T x_i \quad \text{s.t.} \quad B_i x_i = b(x_{-i})
\]

Solution is typically found in (many) fewer iterations than unconstrained case

Can use any QP solver for subproblems (and/or VI solver)
Extension to Inequality Case (Normal Map)

- Replace systems of equations by (normal map formulation of) complementarity problems $\forall i$:

$$Q_i((x_i)_+) - B_i^T p + c_i + x_i - (x_i)_+ = 0$$
$$B_i((x_i)_+) = b_i$$

- Note this is a natural extension of the case considered above

- Choose active set at each iteration based on prediction from previous iteration

- Need to employ a regularization on the subproblem constraints

- Apply theory to all selections of the resulting linear systems
Extension to Inequality Case (Interior Point)

- Apply interior point code to solve each QP subproblem
 \[
 \min_{x_i \geq 0} \frac{1}{2} x_i^T Q_i x_i + c_i(x_{-i})^T x_i \quad \text{s.t.} \quad B_i x_i = b(x_{-i})
 \]

- Resulting systems to solve have form
 \[
 \begin{bmatrix}
 Q_i + \bar{X}_i^{-1} \bar{W}_i & B_i^T \\
 B_i & 0
 \end{bmatrix}
 i = 1, \ldots, p
 \]

 where \(\bar{X} \) and \(\bar{W} \) are diagonals of iterates and slacks at previous iteration

- Update barrier parameter after each Jacobi step
Economic Application

- Model is a partial equilibrium, geographic exchange model.
- Goods are distinguished by region of origin.
- There is one unit of region \(r \) goods.
- These goods may be consumed in region \(r \) or they may be exported.
- Each region solves:

\[
\min_{X, T_r} f_r(X, T) \text{ s.t. } F(X, T) = 0, \ T_j = \bar{T}_j, j \neq r
\]

where \(f_r(X, T) \) is a quadratic form and \(F(X, T) \) is linear and defines \(X \) uniquely as a function of \(T \).
- \(F(X, T) \) defines an equilibrium; here it is simply a set of equations, not a complementarity problem.
Results

<table>
<thead>
<tr>
<th>Gauss-Seidel residuals</th>
<th>Iteration</th>
<th>deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3.14930</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.90970</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.14224</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.02285</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.00373</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.00061</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.00010</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.00002</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tariff revenue</th>
<th>region</th>
<th>SysOpt</th>
<th>MOPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.117</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.517</td>
<td>0.407</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.496</td>
<td>0.214</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.517</td>
<td>0.407</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.117</td>
<td>0.012</td>
</tr>
</tbody>
</table>

- Note that competitive solution produces much less revenue than system optimal solution
- Model has non-convex objective, but each subproblem is solved globally (lindoglobal)
Conclusions

- MOPEC problems capture complex interactions between optimizing agents
- Policy implications addressable using MOPEC
- MOPEC available to use within the GAMS modeling system
- New sufficient conditions for existence, uniqueness and convergence shown in special cases
- Many new settings available for deployment; need for more theoretic and algorithmic enhancements