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Optimization in 2011

e Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

@ Optimization is a mature field - many algorithms, accompanying
theory, broad application.

@ Who is driving the bus? data, application or optimization
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Optimization in 2011

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Optimization is a mature field - many algorithms, accompanying
theory, broad application.

Who is driving the bus? data, application or optimization

In practice: need (large scale) data, problem/model transformations,
access to solution features

Modeling systems (AIMMS, AMPL, ... , GAMS, ...) provide some of
these needs from an optimization perspective
Often need specialized model formats or data handling:
» GDX container, Matlab, R, Excel,...
» Ré and Recht (2011): specialized algorithmic primitives
» Application conduits: e.g. PDE constrained optimization (inverse
models, adjoint calculations)
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What can optimization do well right now?

Discrete and continuous models, exact and heuristic solutions

Classical format models used extensively in applications

)r(nei)r} f(x) st g(x)<0,h(x)=0

@ Newer modeling formats provide richer capabilities:

» Mixed integer (linear) programming
» Semidefinite programming
» Risk measures, robust and stochastic optimization, predictive modeling
» Sparse optimization /compressed sensing
» Distributed (multi-agent) models and equilibria
e Algorithms: papers, (commercial) libraries, source code
@ See NEOS wiki (www.neos-guide.org) or try out NEOS solvers

(www.neos-solvers.org) for extensive examples
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But who cares?

@ Why aren't you using my *¥¥¥¥*x*%x% Jloorithm?
(Michael Ferris, Boulder, CO, 1994)
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But who cares?

@ Why aren't you using my *¥¥¥¥*x*%x% Jloorithm?

(Michael Ferris, Boulder, CO, 1994)

@ Experts will do anything, users much less accomodating
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But who cares?

Why aren’t you using my ¥¥¥¥¥¥F*¥%% 5loorithm?
(Michael Ferris, Boulder, CO, 1994)

Experts will do anything, users much less accomodating

Show me on a problem like mine

Must deal graciously with poorly specified cases
Must be usable from my environment (Matlab, R, GAMS, ...)

°
°

@ Must run on defaults

°

°

@ Must be able to model my problem easily

Extended Mathematical Programs (EMP) provide annotations to an
existing optimization model that convey new model structures to a solver
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Example: The smart grid

@ The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

@ Decision processes (in this environment) are predominantly
hierarchical.

@ Models to support such decision processes must also be layered or
hierachical.

@ Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

@ Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide overall solution
speed, understanding of localized effects, and value for the coupling
of the system.
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Representative decision-making timescales in electric power

Closed-loop
Control and glc()):t(regl E:g
Relay Setpoint _— Relay Action
Selection Day ahead
ﬂ Lgng-terén market w/ unit
orwar commitment
» Power Plant . Markets Hour ahead
Siting & Construction Maintenance Load market
i Forecastin «
Transmission Schedulng o Five

Siting & Construction minute
ﬂ ﬂ market

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute  seconds

A monster model is difficult to validate, inflexible, prone to errors.
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Example: Transmission Line Expansion Model (1)

min g Ty
xeX
w

s.t. Ax < b
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Generator Expansion (2): Vf € F: Gr:  Generators of firm f € F

yj: Investment in generator j
m|n Zﬂ'w Z Gi(yj,q7) — r(hs — Z i) q;:  Power generated at bus j
JEGr JE€Gr in scenario w
st Z i < he,ye >0 G Cost _functlon for gener-
! ator J
JEGr
r: Interest rate
Market Clearing Model (3): Vw : zj: Real power flowing along
line ij
ngl(r; Z Z Gi( yJ,qJ st. g Real'p?ower ger?erated at
f jEGr bus j in scenario w
_ Z z Vje N(L P,w) 0;: Volte_age phase angle at
— bus i
o Q;:  Susceptance of line ij
. i usceptance of line ij
zj = ;(0; — 6;) v(ij) €A bjj(x): Line capacity as a func-
— bjj(x) < zj < by(x) V(i,j) €A tion of x

(y), Generator j limits

ui(yj) < qf < i(y)) _
(y): as a function of y

Ferris (Univ. Wisconsin) EMP ICIAM 2011 8 /31



How to combine: Nash Equilibria

@ Non-cooperative game: collection of players a € A whose individual
objectives depend not only on the selection of their own strategy
x5 € C; = domfy(+, x_,) but also on the strategies selected by the
other players x_, = {x,: 0 € A\ {a}}.

@ Nash Equilibrium Point:

X4 = (Xs,a€ A):Vae A: X, € argmin, . fo(xa, X_2).

Q forall x € A, f5(-,x_5) is convex
Q C= HaeA C, and for all a e A, C; is closed convex.
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VI reformulation

Define
G:RV RN by Ga(x4) = 0afa(xa; x_a),a € A

where 0, denotes the subgradient with respect to x,. Generally, the
mapping G is set-valued.

Theorem

Suppose the objectives satisfy (1) and (2), then every solution of the
variational inequality

x4 € C such that — G(x4) € Nc(xa)

is a Nash equilibrium point for the game.

Moreover, if C is compact and G is continuous, then the variational
inequality has at least one solution that is then also a Nash equilibrium
point.
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Solution approach (Tang)

Use derivative free method for the upper level problem (1)

Requires p¥(x)
Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

@ But transmission line capacity expansion typically leads to generator
expansion, which interacts directly with market clearing

@ Interface blue and black models using Nash Equilibria (as EMP):
empinfo: equilibrium

forall f: min expcost(f) y(f) budget(f)
forall w: min scencost(w) q(w) ..
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Flow of information

miy 2} AR

ieN

s.t. mir;wa Z Ci(yj,q;") — r(hs — Z Yi) vVfeF

e jeGr jeGr
rgln Z Z Gi( yJ,qJ Vw

z,0,9% f JjeGs
st i —di =)z Vj € N(L p(x))
i€l(j)

zjj = Q2;(0; — 0j) Y(i,j) € A
— bjj(x) < zj < bj(x) V(i,j)e A
ui(yj) = g = 1i(y)) VjieN
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Feasibility

KKT ofyr;neil; T Z Ci(yj,q;") — r(hs — Z yj) YfeF (2
w JEGr JEGr

KKT of min Cilyi, q¥ o (3
(2797qw)62(x,y)zf:J§G:f J( J _/) ( )

e Models (2) and (3) form an MCP/VI (via EMP)

@ Solve (3) as NLP using global solver (actual C;(y;, wa) are not
convex), per scenario (SNLP) this provides starting point for MCP

e Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

@ ldentifies MCP solution whose components solve the scenario NLP's

(3) to global optimality
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Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (1):

Scenario | q1 | G | g3 | G | Gs

w1 3.05| 425|393 | 4.34 ]| 3.39

w2 441 | 4.07 | 4.55

EMP (1):

Scenario | q1 | G | g3 | G | Gs

w1 2.86 | 4.60 | 4.00 | 4.12 | 3.38

Wy 470 | 4.09 | 4.24

Firm |y y2 ¥3 Y6 8
fi 167.83 | 565.31 266.86
f 292.11 | 207.89
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Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5
SNLP (2):

Scenario | q1 | G | g3 | G | Gs

w1 0.00 | 5.35 | 4.66 | 5.04 | 3.91
Wy 470 | 4.09 | 4.24
EMP (2):

Scenario | q1 | G | g3 | G | Gs

w1 0.00 | 5.34 | 462 | 5.01 | 3.99
wo 471 | 4.07 | 4.25

Firm |y y2 ¥3 Y6 8
fi 0.00 | 622.02 377.98
f 283.22 | 216.79
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Observations

But this is simply one function
evaluation for the outer
“transmission capacity
expansion” problem

Number of critical arcs typically
very small

But in this case, p;’ are very
volatile

Outer problem is small scale,
objectives are open to debate,
possibly ill conditioned

Comparing the different types of objective functions

195

— LMP

= = = LMP and Generator Cost
' LMP with interest rate

v
0.74

o
0.76

Economic dispatch should use AC power flow model

Structure of market open to debate

0.78 0.8

Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations
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The benefits of sub-model building

@ Coupling collections of (sub)-models with well defined (information
sharing) interfaces facilitates:

» appropriate detail and consistency of sub-model formulation (each of
which may be very large scale, of different types (mixed integer,
semidefinite, nonlinear, variational, etc) with different properties
(linear, convex, discrete, smooth, etc))

» ability for individual subproblem solution verification and engagement
of decision makers

> ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

» ability to solve submodels to global optimality (by exploiting size,
structure and model format specificity)

(A monster model that mixes several modeling formats loses its ability
to exploit the underlying structure and provide guarantees on solution

quality)
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|I: Stochastic programming and risk measures

SP: min c¢'x+R[dy] 4
oW
st. Ax=b, x>0,
VweQ: T(w)x+ W(w)y(w) > h(w),
y(w) = 0. !

@ Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

@ R is a risk measure (e.g. expectation, CVaR)
@ Deterministic equivalent is a large scale optimization problem

@ Multi-stage problems are natural generalization
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Models with explicit random variables

@ Model transformation:

» Write a core model as if the random variables are constants
» Identify the random variables and decision variables and their staging
» Specify the distributions of the random variables

@ Solver configuration:

» Specify the manner of sampling from the distributions
» Determine which algorithm (and parameter settings) to use

@ Output handling:

» Optionally, list the variables for which we want a scenario-by-scenario
report
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Example: Farm Model (core model)

@ Allocate land (L) for planting crops x to max (p/wise lin) profit
@ Yield rate per crop c is FxY(c)

@ Can purchase extra crops b and sell s, but must have enough crops d
to feed cattle

max rofit = p(x, b, s
max P p(x, b, s)

s.t. ZX(C) <L
FC*Y(C) * x(c) 4 b(c) —s(c) > d(c)

e Random variables are F, realized at stage 2: structured T (w)
@ Variables x stage 1, b and s stage 2.
@ landuse constraints in stage 1, requirements in stage 2.

Can now generate the deterministic equivalent problem or pass on directly
to specialized solver
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Stochastic Programming in GAMS

Three separate pieces of information needed

@ emp.info: model transformation

randvar F 2 discrete 0.25 0.8 // below
0.50 1.0 // avg
0.25 1.2 // above

stage 2 b s req
@ solver.opt: solver configuration (benders, sampling strategy, etc)

4 "ISTRAT" * solve universe problem (DECIS/Benders)

@ dictionary: output handling (where to put all the “scenario solutions”)
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How does this help?

e Clarity/simplicity of model
@ Separates solution process from model description

@ Models can be solved by deterministic equivalent, exisiting codes such
as LINDO and DECIS, or decomposition approaches such as Benders,
ATR, etc

@ Allows description of compositional (nonlinear) random effects in
generating w

e, w=wi Xwy, T(w)="F(X(w1),Y(w2))

o Easy to write down multi-stage problems

o Automatically generates “"COR”, “TIM" and “STQ" files for
Stochastic MPS (SMPS) input
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Example: Portfolio Model (core model)

Determine portfolio weights w; for each of a collection of assets
Asset returns v are random, but jointly distributed

Portfolio return r(w, v)

Minimize a “risk” measure
max 0.2xE(r)+ 0.8 CVaR(r)

st =) v
Yiwi=1w>0

Jointly distributed random variables v, realized at stage 2

Variables: portfolio weights w in stage 1, returns r in stage 2

@ Coherent risk measures E and CVaR
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Risk Measures
CVaR,: mean of upper tail beyond

a-quantile (e.g. o = 0.95)
o Classical: utility/disutility u(-):

min f(x) = E[u(F(x,§))]

xeX

Frequency

@ Modern approach to modeling | T
risk aversion uses concept of risk 1 ey |
measures |||I|||‘ az
L eeencatll S

Loss

@ mean-risk, semi-deviations, mean deviations from quantiles, VaR,
CVaR

Romisch, Schultz, Rockafellar, Urasyev (in Math Prog literature)
Much more in mathematical economics and finance literature

Optimization approaches still valid, different objectives
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EMP version

@ emp.info: model transformation

expected_value EV_r r

cvarlo CVaR_r r alpha
stage 2 r defr
jrandvar v("att") v("gmc") v("usx") 2 discrete

table of probabilities and outcomes

@ Variables are assigned to E(r) and CVaR,_(r); can be used in model
(appropriately) for objective, constraints, or be bounded

@ Problem transformation: Theorem states this expression can be
written as convex optimization using:

N

1

CVaR,(r) = ~ =" Probj « (a—1;

aR,(r) max q @ o 2 rob; x (a — rj)+
J:
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Example: Clear Lake Model (core model)

Water levels /(t) in dam for each month t

Determine what to release normally r(t), what then floods 7(t) and
what to import z(t)

@ minimize cost of flooding and import

Change in reservoir level in period t is 6(t)

max cost = ¢(f, z)
sit. I(t) = 1(t — 1)+ 6(t) + z(t) — r(t) — f(t)

@ Random variables are §, realized at stage t, t > 2.
o Variables I, r,f,z in stage t, t > 2.
@ balance constraint at t in stage t.

Example of a multi-stage stochastic program.
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

AN
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

e
o—»o<©

Cut at stage 2

AAN]

Ferris (Univ. Wisconsin) EMP ICIAM 2011 27 /31



Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

AN
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Solution options

Form the deterministic equivalent

Solve using LINDO api (stochastic solver)

Convert to two stage problem and solve using DECIS or any number
of competing methods
Problem with 340 & 1.2 % 10! realizations in stage 2

» DECIS using Benders and Importance Sampling: < 1 second
(and provides confidence bounds)
» CPLEX on a presampled deterministic equivalent:

sample samp. time(s) CPLEX time(s) for solution cols (mil)
500 0.0 5 (4.5 barrier, 0.5 xover) 0.25
1000 0.2 18 (16 barrier, 2 xover) 0.5
10000 28 195 (44 barrier, 151 xover) 5
20000 110 1063 (98 barrier, 965 xover) 10
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Additional techniques requiring extensive computation

@ Continuous distributions

@ Chance constraints: Prob(T;x + W;y; > hj) > 1 — « - can
reformulate as MIP and adapt cuts (Luedtke)

@ Use of discrete variables (in submodels) to capture logical or discrete
choices (logmip - Grossmann et al)

@ Optimization of simulation or noisy functions
@ Robust or stochastic programming

@ Decomposition approaches to exploit underlying structure identified
by EMP

@ Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods (ENLP)

@ Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Conclusions

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

o EMP model type is clear and extensible, additional structure available
to solver

@ Extended Mathematical Programming available within the GAMS
modeling system

@ Able to pass additional (structure) information to solvers

@ Embedded optimization models automatically reformulated for
appropriate solution engine

@ Exploit structure in solvers

@ Extend application usage further
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slides available at http://www.cs.wisc.edu/~ferris/talks
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