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Optimization in 2011

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Optimization is a mature field - many algorithms, accompanying
theory, broad application.

Who is driving the bus? data, application or optimization

In practice: need (large scale) data, problem/model transformations,
access to solution features

Modeling systems (AIMMS, AMPL, ... , GAMS, ...) provide some of
these needs from an optimization perspective

Often need specialized model formats or data handling:
I GDX container, Matlab, R, Excel,...
I Ré and Recht (2011): specialized algorithmic primitives
I Application conduits: e.g. PDE constrained optimization (inverse

models, adjoint calculations)
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What can optimization do well right now?

Discrete and continuous models, exact and heuristic solutions

Classical format models used extensively in applications

min
x∈X

f (x) s.t. g(x) ≤ 0, h(x) = 0

Newer modeling formats provide richer capabilities:
I Mixed integer (linear) programming
I Semidefinite programming
I Risk measures, robust and stochastic optimization, predictive modeling
I Sparse optimization /compressed sensing
I Distributed (multi-agent) models and equilibria

Algorithms: papers, (commercial) libraries, source code

See NEOS wiki (www.neos-guide.org) or try out NEOS solvers
(www.neos-solvers.org) for extensive examples

Ferris (Univ. Wisconsin) EMP ICIAM 2011 3 / 31



But who cares?

Why aren’t you using my *********** algorithm?
(Michael Ferris, Boulder, CO, 1994)

Experts will do anything, users much less accomodating

Show me on a problem like mine

Must run on defaults

Must deal graciously with poorly specified cases

Must be usable from my environment (Matlab, R, GAMS, ...)

Must be able to model my problem easily

Extended Mathematical Programs (EMP) provide annotations to an
existing optimization model that convey new model structures to a solver
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Example: The smart grid

The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

Decision processes (in this environment) are predominantly
hierarchical.

Models to support such decision processes must also be layered or
hierachical.

Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide overall solution
speed, understanding of localized effects, and value for the coupling
of the system.
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Representative decision-making timescales in electric power
systems
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Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow

22

A monster model is difficult to validate, inflexible, prone to errors.
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Example: Transmission Line Expansion Model (1)

min
x∈X

∑
ω

πω
∑
i∈N

dωi pωi (x)

s.t. Ax ≤ b
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N: The set of nodes
X : Line expansion set
x : Amount of invest-

ment in given line
ω: Demand scenarios
πω: Scenario prob
dωi : Demand (load at i

in scenario ω)
pωi (x): Price (LMP) at i

in scenario ω as a
function of x
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Generator Expansion (2): ∀f ∈ F :

min
yf

∑
ω

πω
∑
j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑
j∈Gf

yj)

s.t.
∑
j∈Gf

yj ≤ hf , yf ≥ 0

Gf : Generators of firm f ∈ F
yj : Investment in generator j
qωj : Power generated at bus j

in scenario ω
Cj : Cost function for gener-

ator j
r : Interest rate

Market Clearing Model (3): ∀ω :

min
z,θ,qω

∑
f

∑
j∈Gf

Cj(yj , q
ω
j ) s.t.

qωj − dωj =
∑
i∈I (j)

zij ∀j ∈ N(⊥ pωj )

zij = Ωij(θi − θj) ∀(i , j) ∈ A

− bij(x) ≤ zij ≤ bij(x) ∀(i , j) ∈ A

uj(yj) ≤ qωj ≤ uj(yj)

zij : Real power flowing along
line ij

qωj : Real power generated at
bus j in scenario ω

θi : Voltage phase angle at
bus i

Ωij : Susceptance of line ij
bij(x): Line capacity as a func-

tion of x
uj(y), Generator j limits
uj(y): as a function of y
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How to combine: Nash Equilibria

Non-cooperative game: collection of players a ∈ A whose individual
objectives depend not only on the selection of their own strategy
xa ∈ Ca = domfa(·, x−a) but also on the strategies selected by the
other players x−a = {xa : o ∈ A \ {a}}.
Nash Equilibrium Point:

x̄A = (x̄a, a ∈ A) : ∀a ∈ A : x̄a ∈ argminxa∈Ca
fa(xa, x̄−a).

1 for all x ∈ A, fa(·, x−a) is convex

2 C =
∏

a∈A Ca and for all a ∈ A, Ca is closed convex.
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VI reformulation

Define
G : RN 7→ RN by Ga(xA) = ∂afa(xa, x−a), a ∈ A

where ∂a denotes the subgradient with respect to xa. Generally, the
mapping G is set-valued.

Theorem

Suppose the objectives satisfy (1) and (2), then every solution of the
variational inequality

xA ∈ C such that − G (xA) ∈ NC (xA)

is a Nash equilibrium point for the game.
Moreover, if C is compact and G is continuous, then the variational
inequality has at least one solution that is then also a Nash equilibrium
point.
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Solution approach (Tang)

Use derivative free method for the upper level problem (1)

Requires pωi (x)

Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

But transmission line capacity expansion typically leads to generator
expansion, which interacts directly with market clearing

Interface blue and black models using Nash Equilibria (as EMP):

empinfo: equilibrium
forall f: min expcost(f) y(f) budget(f)
forall ω: min scencost(ω) q(ω) ...
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Flow of information

min
x∈X

∑
ω

πω
∑
i∈N

dωi pωi (x)

s.t. min
yf ∈Y

∑
ω

πω
∑
j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑
j∈Gf

yj) ∀f ∈ F

min
z,θ,qω

∑
f

∑
j∈Gf

Cj(yj , q
ω
j ) ∀ω

s.t. qωj − dωj =
∑
i∈I (j)

zij ∀j ∈ N(⊥ pωj (x))

zij = Ωij(θi − θj) ∀(i , j) ∈ A

− bij(x) ≤ zij ≤ bij(x) ∀(i , j) ∈ A

uj(yj) ≤ qωj ≤ uj(yj) ∀j ∈ N
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Feasibility

KKT of min
yf ∈Y

∑
ω

πω
∑
j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑
j∈Gf

yj) ∀f ∈ F (2)

KKT of min
(z,θ,qω)∈Z(x ,y)

∑
f

∑
j∈Gf

Cj(yj , q
ω
j ) ∀ω (3)

Models (2) and (3) form an MCP/VI (via EMP)

Solve (3) as NLP using global solver (actual Cj(yj , q
ω
j ) are not

convex), per scenario (SNLP) this provides starting point for MCP

Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

Identifies MCP solution whose components solve the scenario NLP’s
(3) to global optimality
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (1):
Scenario q1 q2 q3 q6 q8

ω1 3.05 4.25 3.93 4.34 3.39
ω2 4.41 4.07 4.55

EMP (1):
Scenario q1 q2 q3 q6 q8

ω1 2.86 4.60 4.00 4.12 3.38
ω2 4.70 4.09 4.24

Firm y1 y2 y3 y6 y8
f1 167.83 565.31 266.86
f2 292.11 207.89
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (2):
Scenario q1 q2 q3 q6 q8

ω1 0.00 5.35 4.66 5.04 3.91
ω2 4.70 4.09 4.24

EMP (2):
Scenario q1 q2 q3 q6 q8

ω1 0.00 5.34 4.62 5.01 3.99
ω2 4.71 4.07 4.25

Firm y1 y2 y3 y6 y8
f1 0.00 622.02 377.98
f2 283.22 216.79
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Observations

But this is simply one function
evaluation for the outer
“transmission capacity
expansion” problem

Number of critical arcs typically
very small

But in this case, pωj are very
volatile

Outer problem is small scale,
objectives are open to debate,
possibly ill conditioned

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84
195

200

205

210

215

220
Comparing the different types of objective functions

 

 
LMP
LMP and Generator Cost
LMP with interest rate

Economic dispatch should use AC power flow model

Structure of market open to debate

Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations
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The benefits of sub-model building

Coupling collections of (sub)-models with well defined (information
sharing) interfaces facilitates:

I appropriate detail and consistency of sub-model formulation (each of
which may be very large scale, of different types (mixed integer,
semidefinite, nonlinear, variational, etc) with different properties
(linear, convex, discrete, smooth, etc))

I ability for individual subproblem solution verification and engagement
of decision makers

I ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

I ability to solve submodels to global optimality (by exploiting size,
structure and model format specificity)

(A monster model that mixes several modeling formats loses its ability
to exploit the underlying structure and provide guarantees on solution
quality)
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II: Stochastic programming and risk measures

SP: min c>x + R[d>y ]

s.t. Ax = b, x ≥ 0,

∀ω ∈ Ω : T (ω)x + W (ω)y(ω) ≥ h(ω),

y(ω) ≥ 0.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 

Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

R is a risk measure (e.g. expectation, CVaR)

Deterministic equivalent is a large scale optimization problem

Multi-stage problems are natural generalization
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Models with explicit random variables

Model transformation:
I Write a core model as if the random variables are constants
I Identify the random variables and decision variables and their staging
I Specify the distributions of the random variables

Solver configuration:
I Specify the manner of sampling from the distributions
I Determine which algorithm (and parameter settings) to use

Output handling:
I Optionally, list the variables for which we want a scenario-by-scenario

report
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Example: Farm Model (core model)

Allocate land (L) for planting crops x to max (p/wise lin) profit

Yield rate per crop c is F∗Y (c)

Can purchase extra crops b and sell s, but must have enough crops d
to feed cattle

max
x ,b,s≥0

profit = p(x , b, s)

s.t.
∑
c

x(c) ≤ L,

F∗Y (c) ∗ x(c) + b(c)− s(c) ≥ d(c)

Random variables are F , realized at stage 2: structured T (ω)

Variables x stage 1, b and s stage 2.

landuse constraints in stage 1, requirements in stage 2.

Can now generate the deterministic equivalent problem or pass on directly
to specialized solver
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Stochastic Programming in GAMS

Three separate pieces of information needed

1 emp.info: model transformation

randvar F 2 discrete 0.25 0.8 // below

0.50 1.0 // avg

0.25 1.2 // above

stage 2 b s req

2 solver.opt: solver configuration (benders, sampling strategy, etc)

4 "ISTRAT" * solve universe problem (DECIS/Benders)

3 dictionary: output handling (where to put all the “scenario solutions”)
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How does this help?

Clarity/simplicity of model

Separates solution process from model description

Models can be solved by deterministic equivalent, exisiting codes such
as LINDO and DECIS, or decomposition approaches such as Benders,
ATR, etc

Allows description of compositional (nonlinear) random effects in
generating ω

i.e. ω = ω1 × ω2, T (ω) = f (X (ω1),Y (ω2))

Easy to write down multi-stage problems

Automatically generates “COR”, “TIM” and “STO” files for
Stochastic MPS (SMPS) input
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Example: Portfolio Model (core model)

Determine portfolio weights wj for each of a collection of assets

Asset returns v are random, but jointly distributed

Portfolio return r(w , v)

Minimize a “risk” measure

max 0.2 ∗ E(r) + 0.8 ∗ CVaR(r)
s.t. r =

∑
j vj∗wj∑

j wj = 1, w ≥ 0

Jointly distributed random variables v , realized at stage 2

Variables: portfolio weights w in stage 1, returns r in stage 2

Coherent risk measures E and CVaR
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Risk Measures

Classical: utility/disutility u(·):

min
x∈X

f (x) = E[u(F (x , ξ))]

Modern approach to modeling
risk aversion uses concept of risk
measures

CVaRα: mean of upper tail beyond
α-quantile (e.g. α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

mean-risk, semi-deviations, mean deviations from quantiles, VaR,
CVaR

Römisch, Schultz, Rockafellar, Urasyev (in Math Prog literature)

Much more in mathematical economics and finance literature

Optimization approaches still valid, different objectives
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EMP version

emp.info: model transformation

expected_value EV_r r

cvarlo CVaR_r r alpha

stage 2 r defr

jrandvar v("att") v("gmc") v("usx") 2 discrete

table of probabilities and outcomes

Variables are assigned to E(r) and CVaRα(r); can be used in model
(appropriately) for objective, constraints, or be bounded

Problem transformation: Theorem states this expression can be
written as convex optimization using:

CVaRα(r) = max
a∈R

a− 1

α

N∑
j=1

Probj ∗ (a− rj)+
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Example: Clear Lake Model (core model)

Water levels l(t) in dam for each month t

Determine what to release normally r(t), what then floods f (t) and
what to import z(t)

minimize cost of flooding and import

Change in reservoir level in period t is δ(t)

max cost = c(f , z)
s.t. l(t) = l(t − 1) + δ(t) + z(t)− r(t)− f (t)

Random variables are δ, realized at stage t, t ≥ 2.

Variables l , r , f , z in stage t, t ≥ 2.

balance constraint at t in stage t.

Example of a multi-stage stochastic program.
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

Cut at stage 2

Cut at stage 3
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Solution options

Form the deterministic equivalent

Solve using LINDO api (stochastic solver)

Convert to two stage problem and solve using DECIS or any number
of competing methods

Problem with 340 ≈ 1.2 ∗ 1019 realizations in stage 2
I DECIS using Benders and Importance Sampling: < 1 second

(and provides confidence bounds)
I CPLEX on a presampled deterministic equivalent:

sample samp. time(s) CPLEX time(s) for solution cols (mil)

500 0.0 5 (4.5 barrier, 0.5 xover) 0.25
1000 0.2 18 (16 barrier, 2 xover) 0.5

10000 28 195 (44 barrier, 151 xover) 5
20000 110 1063 (98 barrier, 965 xover) 10
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Additional techniques requiring extensive computation

Continuous distributions

Chance constraints: Prob(Tix + Wiyi ≥ hi ) ≥ 1− α - can
reformulate as MIP and adapt cuts (Luedtke)

Use of discrete variables (in submodels) to capture logical or discrete
choices (logmip - Grossmann et al)

Optimization of simulation or noisy functions

Robust or stochastic programming

Decomposition approaches to exploit underlying structure identified
by EMP

Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods (ENLP)

Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Conclusions

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Extended Mathematical Programming available within the GAMS
modeling system

Able to pass additional (structure) information to solvers

Embedded optimization models automatically reformulated for
appropriate solution engine

Exploit structure in solvers

Extend application usage further
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