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Facebook: a friend wheel

visual representation of
relationships between the
friends of any one person

constructed by placing
friends equidistant from
each other on
circumference of circle

line segments are drawn
between each point if
those people are friends
with each other

Order to reduce amount
of ink used
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QAP (Koopmans and Beckman)

Given n facilities {f1, . . . , fn}, n locations {l1, . . . , ln}:
Determine to which location each facility must be assigned
p : {1, . . . , n} 7→ {1, . . . , n} is an assignment whose cost is

c(p) =
n∑

i=1

n∑
j=1

wi ,jdp(i),p(j)

QAP : min c(p) subject to p ∈ Πn

QAP is known to be strongly NP-hard

n is the number of friends of a given individual

wi ,j = 1 if i is a friend of j , and 0 otherwise

dr ,s is the distance from location r on the circle circumference to
location s
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Cancer treatment

Conformal Radiotherapy 
  Fire from multiple 

angles 
  Superposition allows 

high dose in target, low 
elsewhere 

  Beam shaping via 
collimator 

  Gradient across beam 
via wedges 
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Extended Mathematical Programs

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

Give three examples of this: disjunctive programming, bilevel
programming and multi-agent competitive models
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Transmission switching

Opening lines in a transmission network can reduce cost
But that is infeasibleBut that is infeasibleBut that is infeasible…But that is infeasible…

Capacity limit: 100 MW
$20/MWh

200 MW generated

133 MW

200 MW load

67 MW

200 MW load

$40/MWh

9

(a) Infeasible due to line capacity

A feasible dispatchA feasible dispatchA feasible dispatchA feasible dispatch
Total Cost:  $20/MWh x 100 MWh          

+$40/MWh x 100 = $6 000/h

Capacity limit: 100 MW
$20/MWh

100 MW generated
+$40/MWh x 100  $6,000/h

67 MW

200 MW l d
33MW

100 MW 
generated

33MW

200 MW load

$40/MWh

g

67 MW$40/MWh 67 MW

10

(b) Feasible dispatch

Need to use expensive generator due to power flow characteristics and
capacity limit on transmission line
Determine which subset of lines to open at any given hour
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The basic model

ming ,f ,θ cTg generation cost
s.t. g − d = Af , f = BAT θ A is node-arc incidence

θ̄L ≤ θ ≤ θ̄U bus angle constraints
ḡL ≤ g ≤ ḡU generator capacities
f̄L ≤ f ≤ f̄U transmission capacities

with transmission switching (within a smart grid technology) we modify as:

ming ,f ,θ cTg
s.t. g − d = Af

θ̄L ≤ θ ≤ θ̄U
ḡL ≤ g ≤ ḡU

either fi = (BAT θ)i , f̄L,i ≤ fi ≤ f̄U,i if i closed
or fi = 0 if i open

Use EMP to facilitate the disjunctive constraints (several equivalent
formulations, including LPEC)
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Issues

Models are critical to making hard business decisions

Model needs enough detail so solutions are realistic

Computation is hard - many possibilities!

Need large scale solvers

How to obtain data, get data into model, verify data integrity - more
tools and models

Interplay between model, data and decision maker is critical

Visualization helps in motivating the answers
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Nash equilibria: modeling competition

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , q),∀i ∈ I

x−i are the decisions of other players.

Quantities q given exogenously, or via complementarity:

0 ≤ H(x , q) ⊥ q ≥ 0

Can solve large instances of these problems

Model competing agents, etc
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EMP(ii): Embedded models
Model has the format:

Agent o: min
x

f (x , y)

s.t. g(x , y) ≤ 0 (⊥ λ ≥ 0)

Agent v: H(x , y , λ) = 0 (⊥ y free)

Difficult to implement correctly (multiple optimization models)
Can do automatically - simply annotate equations
empinfo: equilibrium
min f x defg
vifunc H y dualvar λ defg
EMP tool automatically creates an MCP

∇x f (x , y) + λT∇g(x , y) = 0

0 ≤ −g(x , y) ⊥ λ ≥ 0

H(x , y , λ) = 0
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Issues

New model paradigms available

Models with continuous, discrete, categorical variables necessary

Size matters

Can solve realistic scale instances

Data collection remains hard - new tools help

Models are critical to making hard decisions
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Simulation-based optimization problems

Computer simulations are used as substitutes to evaluate complex real
systems.

Simulations are widely applied in epidemiology, engineering design,
manufacturing, supply chain management, medical treatment and
many other fields.

The goal: Optimization finds the best values of the decision variables
(design parameters or controls) that minimize some performance
measure of the simulation.

Other applications: calibration, design optimization, inverse
optimization
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Design a coaxial antenna for hepatic tumor ablation
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Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics v3.2) are used to generate
the electromagnetic (EM) radiation fields in liver given a particular design

Metric Measure of Goal

Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
S11 Tail reflection of antenna Minimize
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Issues

Complex interactions of different types of models

Large scale solution, in “real time”

Models to aid in data collection/verification

Uncertainties in data and model

Moving effective models into practice - getting the checks done!
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Scheduling surgeries: Denton and Miller

NC STATE UNIVERSITY

Surgery

 Patient Intake: administrative 
activities, pre-surgery exam, 
gowning, site prep, anesthetic

 Surgery: incision, one or multiple 
procedures, pathology, closing

 Recovery: post-anesthesia care 
unit (PACU), ICU, hospital bed
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Scheduling surgeries
NC STATE UNIVERSITY
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Berg, B., Denton, B.T., Nelson, H., Balasubramanian, B., Rahman, A., Bailey, A., Lindor, K., “A 
Computer Simulation Model to Evaluate Operational Performance of a Colonoscopy Suite,” 
Medical Decision Making (in press), 2009 

Gul, S., Denton, B.T., Huschka, T., Fowler, J.R., “Bi-criteria Evaluation of an Out Patient
Surgery Clinic via Simulation,” submitted to POM, December 2008

Large scale interacting system: optimization can improve operation
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Scheduling systems: a stochastic optimization problem

Operating rooms (ORs): largest cost center and greatest source of
revenue

Uncertainty in surgery durations means scheduling of ORs can be very
challenging

Results in late starts, costs for overtime staffing

Stochastic optimization model hedges against the uncertainty in
surgery durations

Simple sequencing rule based on surgery duration variance could be
used to generate substantial reductions in total surgeon and OR team
waiting, OR idling, and overtime cost
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Stochastic Optimization Model

NC STATE UNIVERSITY

Stochastic Optimization Model 
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Issues

Models are critical to making hard (strategic and) operational
decisions

Model needs enough detail so solutions are realistic

Computation is hard - many possibilities!

Need large scale solvers

How to obtain data, get data into model, verify data integrity - more
tools and models

Interplay between model, data and decision maker is critical

Visualization helps in motivating the answers

Uncertainties in data and model
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EMP(iii): Heirarchical models

Bilevel programs:

min
x∗,y∗

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
y∗ solves min

y
v(x∗, y) s.t. h(x∗, y) ≤ 0

model bilev /deff,defg,defv,defh/;
empinfo: bilevel min v y defv defh

EMP tool automatically creates the MPCC

min
x∗,y∗,λ

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
0 ≤ ∇v(x∗, y∗) + λT∇h(x∗, y∗) ⊥ y∗ ≥ 0
0 ≤ −h(x∗, y∗) ⊥ λ ≥ 0
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Large scale example: bioreactor

Products  [P]
Substrates [S]Biomass [X]

Feed f

from: Rocky Mountain Laboratories, NIAID, NIH 

Challenge: Formulate an optimization
problem that allows the estimation of the
dynamic changes in intracellular fluxes
based on measured external bioreactor
concentrations

Approach: Use existing constraint-based
stoichiometric models of the cellular
metabolism to formulate a bilevel
dynamic optimization problem

run time: days

most industrial applications with
biological processes, such as

I fermentation
I biochemical production
I pharmaceutical protein production
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Dynamic model of a bioreactor

Assumptions: well stirred, one phase!
Biomass:

d [X ]

dt
= (µ− f

V
)[X ]

µ: growth rate
Product [P] or substrate [S] concentrations [C]:

d [C ]

dt
= q[C ][X ] + (f [C ]feed − f

V
[C ])

q[C ]: specific uptake or production rate of [C].
Volume V:

d [V ]

dt
= f
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Stoichiometric constraints

pyruvate

metabolite
metabolic �ux

The stochiometry of the cellular
metabolism is described by a
stoichiometric matrix S .
S constrains steady-state flux
distributions.

S · v = 0

The above relation can be used in a
linear programming problem, which
maximizes for a cellular objective
function
(flux balance analysis).
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Dynamic optimization
Approach:
The different timescales of the metabolism (fast) and the reactor growth
(slow), allows to assume steady-state for the metabolism.

minimize / maximize  Objective (eg. parameter �tting)

s. t.

s. t.

bioreactor dynamics 

maximize  growth rate

stoichiometric constraints

�ux constraints

constraints on exchange �uxes

Different mathematical programming techniques are used to transform the
problem to a nonlinear program. The differential equations are
transformed into nonlinear constraints using collocation methods.
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Soccer Manager Analogy

Optimize: selection of formation, who plays and tactics concurrently

Equilibrium: competing agents, try to determine long term strategy

Uncertainty: how to deal with uncertainty in function evaluations,
underlying model parameters

Heirarchical: how to get people to play (and sell adverts)

Data mining: how to update your team via the transfer market (use
of large amounts of ratings data, etc)
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Conclusions

Sparse Optimization/Data mining applications next week (Recht)

Optimization models effective for large scale planning/operations

Design optimization possible in conjunction with “expert” simulations

Must treat uncertainties both in data and model

New model paradigms (e.g. complementarity, conic programming,
stochastic programming) effective for treating uncertainties and
competition

Engaged teams (including embedded optimizers) are most effective
for timely, relevant solutions
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