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Quote from Wikipedia: modeling

A mathematical model is a description of a system using
mathematical concepts and language.

Mathematical models are used in:
I the natural sciences (such as physics, biology, earth science,

meteorology)
I engineering disciplines (e.g. computer science, artificial intelligence)
I in the social sciences (such as economics, psychology, sociology and

political science)

Physicists, engineers, statisticians, operations research analysts and
economists use mathematical models extensively

Lack of agreement between theoretical mathematical models and
experimental measurements often leads to important advances as
better theories are developed
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Building mathematical models

How to model: pencil and paper, excel, Matlab, R, python, ...

I Linear vs nonlinear

I Deterministic vs probabilistic

I Static vs dynamic (differential or difference equations)

I Discrete vs continuous
Other issues: Large scale, stochasticity, data (rich and sparse)

Must be able to model my problem easily/naturally

Abstract/simplify:
I Variables: input/output, state, decision, exogenous, random...
I Exogenous = data/parameters
I Objective/constraints
I Black box/white box
I Subjective information, complexity, training, evaluation

Just solving a single problem isn’t the real value of modeling:
optimization finds “holes” in the model
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Why model?

to understand (descriptive process, validate principles and/or explore
underlying mechanisms)

to predict (and/or discover new system features)

to combine (engaging groups in a decision, make decisions,
operate/control a system of interacting parts)

to design (strategic planning, investigate new designs, can they be
economical given price of raw materials, production process, etc)
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Understand: Sudoku Model

The aim of this puzzle is to enter a numerical digit from 1 through 9 in
each cell of a 9x9 grid made up of 3x3 subgrids (called “regions”), starting
with various digits given in some cells (the “givens”). Each row, column,
and region must contain only one instance of each numeral.

r , c , v , k (rows, cols, vals, regions) range from 1 to 9

binary variables xr ,c,v

row entries unique:
∑
c

xr ,c,v = 1, ∀r , v

col entries unique:
∑
r

xr ,c,v = 1, ∀c , v

one val per cell:
∑
v

xr ,c,v = 1, ∀r , c

one val per region:
∑

(r ,c)∈Rk

xr ,c,v = 1, ∀k , v

Here Rk runs over all the k “regions”
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Understand: Northern Wisconsin - Conservation

Golden-winged Warbler. Species maps are 14,309 columns by 11437 rows. 

 
Study area divided by Land Type Associations. 
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Northern Wisconsin: There’s More

Some species require complementary habitats
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Understand: abstraction

GIS data (77 million pixels with indicator that land type in 30 by 30
meter square can support species)

Incompatibility matrix (cannot have certain species co-habiting)

Threshold values (how much land required)

Compact regions, limit total land conserved!

xs,i ,j =

{
1 if (i , j) conserved for species s
0 else

Example of an assignment model (e.g. Sudoku, etc)

xs,i ,j + xt,i ,j ≤ 1, if (s, t) ∈ I
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Many others...challenges and opportunities

(Stochastic) differential equations

Multiscale modeling and simulation

Nonlinear optimization, including parameter estimation and inverse
problems

...

Challenges:

Abstraction/simplification/key drivers

Size: (spatial/temporal/decision hierarchical) traditional approaches
have proven inadequate, even with the largest supercomputers, due to
range of scales and prohibitively large number of variables

Nature of data: sparse, rich, uncertain

Opportunities: facilitates prediction, improved operation, strategic
behavior and design
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I: Show me on a problem like mine

Repeated solutions of multiple (different) problems enables
“understanding” of the solution space (or sensitivity)

NEOS wiki (www.neos-guide.org) or try out NEOS solvers
(www.neos-solvers.org) for extensive examples

Building a class of case
studies:

JAVA api to NEOS

Web description of
problem

Solution on NEOS

Ability to modify and
resolve

Comparison of results
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Predict: tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min
x
‖Ax − y‖2

Additional structure: Compressed sensing: sparse signal to account for y

min
x
‖Ax − y‖2

2 s.t. ‖x‖0 ≤ c

Regularized regression:

min
x
‖Ax − y‖2

2 + α ‖x‖1

Machine learning: SVM for classification

min
w ,ξ,γ

∑
i

ξi +
α

2
‖w‖2 s.t. D(Aw − γ1) ≥ 1− ξ

General model:
min
x∈X

E (x) + αS(x)

X are constraints, E measures “error” and S penalizes bad structure
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Image denoising (Wright)

Rudin-Osher-Fatemi (ROF) model (`2−TV). Given a domain Ω ⊂ R2 and
an observed image f : Ω→ R, seek a restored image u : Ω→ R that
preserves edges while removing noise. The regularized image u can
typically be stored more economically. Seek to “minimize” both

‖u − f ‖2 and

the total-variation (TV) norm
∫

Ω |∇u| dx
Use constrained formulations, or a weighting of the two objectives:

min
u

P(u) := ‖u − f ‖2
2 + α

∫
Ω
|∇u| dx

The minimizing u tends to have regions in which u is constant (∇u = 0).
More “cartoon-like” when α is large.
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Original, noisy, denoised (tol = 10−2, 10−4)

Figure: CAMERAMAN: original (left) and noisy (right)

Stephen Wright (UW-Madison) TV-Regularized Image Denoising Vienna, July 2009 19 / 34

Figure: Denoised CAMERAMAN: Tol=10−2 (left) and Tol=10−4 (right).

Stephen Wright (UW-Madison) TV-Regularized Image Denoising Vienna, July 2009 20 / 34
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Many others...challenges and opportunities

Matrix completion (e.g. Netflix prize, covariance estimation)

Machine learning: supervised, unsupervised, semi-supervised,
reinforcement, and representation learning

Probabilistic graphical modeling

Stochastic processes, statistics, uncertainty quantification

...

Challenges:

Terminology issues: active learning = optimal experimental design,
reinforcement learning = approximate dynamic programming

Incorporating domain knowledge into models

Size and speed for realistic application settings (data sparse and rich
environments)

Online settings, stochastics

Opportunities: to exploit theory and structure to generate much more
effective algorithms, generalizability, learning behavior
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Combine: Representative decision-making timescales in
electric power systems

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute seconds

Transmission
Siting & Construction

Power Plant
Siting & Construction Maintenance

Scheduling

Long-term
Forward
Markets

Load
Forecasting

Closed-loop
Control and 
Relay Action

Closed-loop
Control and 

Relay Setpoint
Selection Day ahead

market w/ unit 
commitment

Hour ahead
market

Five
 minute
market

Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow

22
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Combine: Transmission Line Expansion Model

min
x∈X

∑
ω

πω
∑
i∈N

dωi p
ω
i (x)

1

2 4

7

8

14

11

9

6

12 13

10

3

5

Nonlinear system to
describe power flows
over (large) network

Multiple time scales

Dynamics (bidding,
failures, ramping, etc)

Uncertainty (demand,
weather, expansion, etc)

pωi (x): Price (LMP) at i
in scenario ω as a
function of x

Use other models to
construct approximation
of pωi (x)
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Stochastic competing agent models (with Wets)

Competing agents (consumers, or generators in energy market)

Each agent maximizes objective independently (utility)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to move to system optimal solutions
from equilibrium (or market) solutions
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Many others ... challenges and opportunities

Model predictive control, PDE constrained optimization,...
Challenges:

Size: monster model unable to exploit underlying structure and
provide solution quality guarantees

Stochasticity: How to deal with noisy, sparse, incomplete or
inconsistent data and models

How to coupling collections of (sub)-models: design of interfaces

Opportunities:

appropriate detail and consistency of sub-model formulation

ability for individual subproblem solution verification and engagement
of decision makers

ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

ability to solve submodels to global optimality
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Design a coaxial antenna for hepatic tumor ablation
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Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics v3.2) are used to generate
the electromagnetic (EM) radiation fields in liver given a particular design

Metric Measure of Goal

Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
S11 Tail reflection of antenna Minimize
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Biological Hierarchical Models

I: Opt knock (a bilevel program)
max bioengineering objective (through gene knockouts)
s.t. max cellular objective (over fluxes)

s.t. fixed substrate uptake
network stoichiometry
blocked reactions (from outer problem)

number of knockouts ≤ limit

II: Bio-reactor dynamics:

minimize / maximize  Objective (eg. parameter �tting)

s. t.

s. t.

bioreactor dynamics 

maximize  growth rate

stoichiometric constraints

�ux constraints

constraints on exchange �uxes

Different mathematical
programming techniques are
used to transform the
problem to a nonlinear
program. The differential
equations are transformed
into nonlinear constraints
using collocation methods.
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Challenges and opportunities

Challenges:

Engaging the designer, collecting appropriate data

Incorporating domain design tools into general (optimization)
framework

Modeling human behavior

Determining appropriate model: Linear vs nonlinear, deterministic vs
probabilistic, static vs dynamic, discrete vs continuous (smooth or
nonsmooth)

Opportunities:

Enormous: medical device design, drug design, radiation therapy
machine and planning, bio-engineering

economic instrument and policy design, smart grid, electric batteries,
environmental remediation, offshore drilling and wind farms

recommender systems, fabrication, election district gerrymandering
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