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Simulation-based optimization problems

@ Computer simulations are used as substitutes to evaluate complex real
systems.

@ Simulations are widely applied in epidemiology, engineering design,
manufacturing, supply chain management, medical treatment and
many other fields.

@ The goal: Optimization finds the best values of the decision variables
(design parameters or controls) that minimize some performance
measure of the simulation.

@ Other applications: calibration, SVM parameter tuning, inverse
optimization, two-stage stochastic integer programming
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Design a coaxial antenna for hepatic tumor ablation

Dipole tip length  Slot size Floating sleeve Outer conductor
#
Sleeve position Inner conductor Teflon catheter

Teflon coating
Inner conductor

Teflon isolation layer

Outer conductor

Floating sleeve
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Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics v3.2) are used to generate
the electromagnetic (EM) radiation fields in liver given a particular design

Lesion Size=a
© Axial Ratio (AR) =a/b
b 14 13
4 — ¢
Metric Measure of Goal
Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
Si1 Tail reflection of antenna Minimize
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A general problem formulation

@ We formulate the simulation-based optimization problem as

min f(x) = E[F(x, {(w))],

x€eS

&(w) is a random component arising in the simulation process.

@ The sample response function F(x,&(w))

» typically does not have a closed form, thus cannot provide gradient or

Hessian information
> is normally computationally expensive
» is affected by uncertain factors in simulation

@ The underlying objective function f(x) has to be estimated.
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A simple discrete optimization case

o For example, test elasticity of a set of balls. Here S = {1,2,3,4,5}
represents a set of 5 balls.
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@ Objective: Choose ball with the largest expected bounce height f(x;).
F(xi, &) corresponds to a single measurement in an experiment.
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How to select the best system

@ Choose the maximum sample mean

N.

_ 1 «—
argmax i := o Z; F(xi,&),

J:

where N; is the number of experiments.

@ Select the best system with high accuracy (PCS), while controlling
the total amount of simulation runs.

@ Two approaches

> Indifference zone ranking and selection (Kim and Nelson, 2005)
» Bayesian approach (Chick and Inoue, 2001a, 2001b)

@ How to determine the replication number N;?
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Bayesian approach

@ Denote the mean of the simulation output for each system as
pi = f(xi) = E[F(xi, §(w))]

@ In a Bayesian perspective, the means are considered as Gaussian
random variables whose posterior distributions can be estimated as

il X ~ N(fi;, 67/N;),

where [i; is sample mean and (’)',-2 is sample variance. The above
formulation is one type of posterior distribution.
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Posterior distributions facilitate comparison
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Basic framework and tools

Small scale x controls/design variables

Simulation is refinable (replications, more samples in DES, finer
discretization)

N
E wa

@ Bayesian approach
> utilizes both mean and variance information
» simple and direct to implement
> flexible in choosing forms of posterior distributions

Directly applicable to pattern search methods
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WISOPT two-phase optimization framework

© Phase | is a global exploration step. The algorithm explores the
entire domain and proceeds to determine potentially good subregions
for future investigation.

@ Phase Il is a local exploitation step. Local optimization algorithms
are applied to determine the final solution.
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The flow chart of WISOPT

Phase I

Classification-based global
optimization

or

Noisy DIRECT

Phase transition

Phase IT ‘

VNSP-UOBYQA

N Noisy UOBYQA
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WISOPT Phase I: a classification based global search

o Classifier: surrogate for indicator function of the level set

N
L) = {x| () < e = { x| F) = 1 S Fxg) <
j=1

¢ is a quantile point of the responses
@ The level set corresponds to promising regions

e Training set: space-filling samples (points) from the whole domain
(e.g. mesh grid; the Latin Hypercube Sampling)
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Classifiers predict new refined samples as promising

(a) Training samples in L(c) (b) Classify a set of more

are classified as positive and refined space-filling samples.
others are negative. The Four points are predicted as
solid circle represents esti- positive and rest are negative.
mated L(c). The classifier is refined.

Validate the subset of the identified promising points by performing
additional simulations
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Imbalanced data

e To identify the top promising regions, the best 10% of the training
samples are labeled as ‘+’, and the rest are ‘-’
@ The imbalance of the training set causes low classification accuracy,
especially for positive members
@ Balance the training data set
» Under-sample of the negative class using one-sided selection
* Use 1-NN and retain only those negative samples needed to predict
training set
* Clean the dataset with Tomek links
» Over-sample of the positive class by duplicating positive samples
@ Adjust the misclassification penalty
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Cleaning the dataset with Tomek links

(c) Determine the pairs of (d) Remove the negative sam-
Tomek links ples participating as Tomek
links
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Assemble classifiers using a voting scheme

ﬁlnput

Use or not?

\ SVM C4.5

NV
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Classifier Phase | approach

Phase I

Initial samples

Imbalanced training set Balanced training set

I

Evaluate potentially goo
via simulation

O

d samples

Training the combined
classifier

>

O
O

Test the evaluation set

Phase I1

Phase Il local optimization methods
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Banana example
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WISOPT Phase I: the Noisy DIRECT (Jones et. al)

@ At each iteration, trisect a collection of promising boxes (large box or
small F)

@ Evaluate F at center of newly generated boxes
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Partitioning hyperrectangles: DIRECT (Dlviding
RECTangles)

@ Partitioning hyperrectangles

o ldentifying potentially optimal hyperrectangles
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Noisy extension

@ Bayesian methods determine posterior distribution of “box center” F
S

values
%
ey

/L]

@ Monte Carlo methods to generate “sampled” values for F; then use
DIRECT to generate “trial” potential boxes

o Compare error rates against boxes generated from sample means

@ When error rate large (sets of boxes chosen differ greatly), increase
replications on those boxes that produce errors
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Numerical results: Goldstein Price function
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Phase | methods

Properties of Phase | methods:
@ Methods must provide a global view of function
@ Yield samples densely distributed in promising subregions
@ A nonparametric local regression procedure used to identify the
promising regions
Comparisons of the classification-based search and the Noisy DIRECT
method
@ Robustness to noise
Dimension of the problem

(]
@ Density of samples
o

Implementation
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The non-parametric “linking” idea
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Determine subregion radius by non-parametric regression

The idea is to determine the best ‘window size’ for non-parametric local
quadratic regression

Q A € argminy sse(h)

@ sse(h) is the sum of squared error of knock-one out prediction. Given
a window-size h and a point y, the knock-one out predicted value is
QY (y), where @/ (x) is a quadratic regression function constructed
using the data points within the ball {x|||x — y|| < h}/{y}.

Q1) = e+ 87 (x —y) + 5 (x— )T H(x )
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Phase |l: refine solution

@ Local optimization methods to handle noise

@ Derivative-free methods

@ Basic approach: reduce function uncertainty by averaging multiple
samples per point.

o Potential difficulty:
efficiency of algorithm vs number of simulation runs

@ We apply Bayesian approach to determine appropriate number of
samples per point, while simultaneously enhancing the algorithm
efficiency
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Phase |I: Extensions of the UOBYQA algorithm

The base derivative free optimization algorithm: The UOBYQA
(Unconstrained Optimization BY Quadratic Approximation) (Powell 2002)
algorithm is based on a trust region method. It constructs a series of local
quadratic approximation models of the underlying function.
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Quadratic model construction and trust region subproblem
solution

For iteration k =1,2,...,
° P

@ Construct a quadratic model via interpolation

Qx.) = Fx, &) + 8 (€)x — ) + 3 (x — )T GalE)(x — )

The model is unstable since interpolating noisy data

@ Solve the trust region subproblem

s¢(&) = argmins  Q(xk +5,¢)
s.t. HSH2 < Ay

The solution is thus unstable
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Why is the quadratic model unstable?
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How to stabilize the quadratic model?

Let {y',y2,...,y!} be the interpolation set.
@ Quadratic interpolation model is a linear combination of Lagrange

functions: ,
(x,8) = Z

e Each piece /;(x) is a quadratic polynomial, satisfying

Ly = 6j5,i=1,2,---, L.

@ The coefficients of /; are uniquely determined, independent of the
random objective function.
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Bayesian estimation of coefficients

In Bayesian approach, the mean of function output

u(y?) := f(y/) = E[F(y/,&(w))] is considered as a random variable:

Normal posterior distributions:

uy )X ~ N(R(), 62()/ ;)

Thus the coefficients of the quadratic model Q°° are estimated as:

51X = L)X
G80|X = Zj:l(u(yj)’X)Gj'
® g3, G are coefficients of Q™
e gj, G; are coefficients of Lagrange functions /;

@ gj, G; are deterministic and determined by points v
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Bayesian posterior distributions
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Constraining the variance of solutions (Monte Carlo
validation)

@ Generate ‘'sample quadratic functions’ that could arise given current
function evaluations.

@ Trial solutions are generated within a trust region. The standard
deviation of the solutions are constrained.

mg,f(std([s*(l)(;)’5*(2)(,')’ s M) < BA.
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Sufficient reduction criterion - CRN case

\ ——r
Pr <Q(Xk) — Q(xk + k) = Kmdc||gg || min [W’Ak >1— o

e gg is the gradient of the quadratic model Q™
@ «y is a significance level.
® Kmdc and K@y are constants.

® Q(xk) — Q(xk + s) is the observed model reduction. The criterion
implies that g’ is bounded by the model reduction.
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Bayesian estimation

Given the posterior distribution ggo\X, the probability value can be
estimated:

pr (@) — Qs+ 1) 2 mmaclgg Xl min [ EOEL o] > 10

KQh

Lemma (Borel-Cantelli Lemma)

If >, Pr(Ex) < oo, then the probability that infinitely many E, happen is
0 (implies that finitely many Ex happen with probability 1)

We require ), ax < oo and let Ej be the event of failure to satisfy the
sufficient reduction criterion. This lemma implies that there is a large
enough index K, such that the sufficient reduction criterion is satisfied
w.p.1l for k > K.
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Noisy UOBYQA for Rosenbrock, n =2 and 0% = 0.01

lteration (k) FN  F(xx) Ay
1 1 404 2
20 78 3.56 9.8 x 1071
40 140 0.75 1.2 x 1071
60 580  0.10 4.5 % 1072
80 786  0.0017 5.2 x 1073
v Stops with the new termination criterion
100 1254 0.0019 28 x10°*
120 2003 0.0016 1.1 x 1074

v Stops with the termination criterion Ay, < 10~*
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Two-phase approach to optimize antenna design
parameters

@ Uniform LHS to generate 2,000 design samples to evaluate with the
FE simulation model (range [-0.3705, 3597])

e Histogram of objective values over interval [-0.3705, 0]

e ¢ = —0.2765 the 10% quantile. L(c) has 199 positive samples (1801
negative)

@ Balancing procedure: 398 positive vs. 388 negative samples

@ 5 (of 6 tested) classifiers in ensemble

@ Refined data: 15,000 designs, 522 predicted by classifiers as positive,
74% correctly

@ The best Phase | design has value -0.3850.
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Coaxial antenna design
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(e) First stage initial designs (f) Designs predicted by clas-
sifiers

o (Modified) UOBYQA started from best point:
(13.6 2.7 19.0 0.3 0.1) mm, value -0.3850.

o UOBYQA returned an optimal solution:
(15.9 2.4 19.0 0.3 0.1) mm, value -0.4117.
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Sample path extension: changing liver properties

@ Common random numbers allow variance reduction, correlated noise.

@ Extension of ideas to Variable-Number Sample-Path Optimization
method.

@ Application: Dielectric tissue properties varied within +£10% of
average properties to simulate the individual variation.

@ Bayesian VNSP algorithm yields an optimal design that is a 27.3%
improvement over the original design and is more robust in terms of
lesion shape and efficiency.
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Simulation calibration

@ Detailed individual-woman level discrete event simulation of
Wisconsin Breast Cancer Incidence (using 4 processes):

» Breast cancer natural history

» Breast cancer detection

> Breast cancer treatment

> Non-breast cancer mortality among US women

@ Replicate breast cancer surveillance data: 1975-2000

In Situ Inc./100K pop.

SEER
40 \
30

WCRS

1975 1985 1995

Year
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Application to WBCE

@ 500,000 points x generated uniformly at random

@ Using CONDOR (120 machines) can evaluate approximately 1000 per
day F(x,&) involves simulation of 3 million women

@ 363 are in L(10): “simulated points out of data envelope”

@ Using Phase I: 10,000 points evaluated, 220 points suggested, 195 are
in L(10)

@ Phase | results in new points (all are good), but 2 of which seem
better than the “experts” best solution

@ Phase II: Using the idea of sample-path optimization. New dataset
contains 10 replications at points

@ Kriging models are constructed based on the dataset and optimization
methods are applied to minimize the Kriging model.
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Ambulance simulation

An ambulance is called when an emergency call occurs. Determine the
locations of the ambulance bases such that the expected response time to
emergency calls is minimized.
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Conclusions and future work

@ Coupling statistical and optimization techniques can effectively
process noisy function optimizations
@ Significant gains in system performance and robustness are possible

o WISOPT framework allows multiple methods to be “hooked” up

Future work:
@ Problems with general constraints
@ More optimization algorithms in both phases

@ A phase transition module with variable radii
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