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Optimization beyond our discipline

@ So you can solve an LP, MIP, NLP, SOCP, SDP, MCP, SP

» N times faster
> M times larger
» or with K times better optimality guarantee

than at MOPTA 2010

@ Why aren't you using my ¥¥¥¥¥¥*xx%% 5lo0rithm?
(Michael Ferris, Boulder, CO, 1994)
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Optimization beyond our discipline

@ So you can solve an LP, MIP, NLP, SOCP, SDP, MCP, SP

» N times faster
> M times larger
» or with K times better optimality guarantee

than at MOPTA 2010

Why aren’t you using my ¥¥¥¥*x¥*x%% 5|oorithm?
(Michael Ferris, Boulder, CO, 1994)

Should | care?

Does it make a difference (how large is K, M or N)?
Just solving a single problem isn't the real value of optimization

» (Ceria): optimization finds “holes” in the model
@ Optimization is part of a larger process

> (Stein): use dual to allow online solution of primal
> (Zhu/Chen): solve SDP relaxations
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|: Show me on a problem like mine

@ Repeated solutions of multiple (different) problems enables
“understanding” of the solution space (or sensitivity)

o NEOS wiki (www.neos-guide.org) or try out NEOS solvers
(www.neos-solvers.org) for extensive examples

Building a class of case
studies:

e JAVA api to NEOS

@ Web description of
problem

@ Solution on NEOS

@ Ability to modify and
resolve

| cptimization. It is & transformation of the Traveling Salesman Problam, which is
| e most.stuciod mixed ntogor lnear network problomn.

Introduction

Rogo the Puzzle

at the Univrsity

xpected o b use o clss educsion |8
T

@ Comparison of results

@ Needs more examples from you!
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Il: Make it work in/enhance my environment

@ In practice: need (large scale) data, problem/model transformations,
access to solution features

e Modeling systems (AIMMS, AMPL, ... , GAMS, ...) provide some of
these needs from an optimization perspective

@ Open source, libraries, interfaces to Excel/Matlab/R

Quartz 2 1]

Traveling salesman in R:
optimal tour for traveling salesman problem

o ...
wgdx (fnData, data)

gams( “tspDSE.gms")

2000
I

1000
1

stat < list(name="modelstat’)

v < rgdx(fnSol, stat) ° 1w

-1000

R commands for graphics output

-2000

-2000 -1000 0 1000 2000
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I1I: Allow new features in natural/reliable manner

@ Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

@ R is a risk measure (e.g. expectation, CVaR)

SP: min c¢'x+R[dy]

st. Ax=b, x>0,
VweQ: T(w)x+ W(w)y(w) > h(w),

y(w) > 0. r

Ferris (Univ. Wisconsin) EMP MOPTA 2011 5/27



Models with explicit random variables

@ Model transformation:

» Write a core model as if the random variables are constants
» Identify the random variables and decision variables and their staging
» Specify the distributions of the random variables

@ Solver configuration:

» Specify the manner of sampling from the distributions
» Determine which algorithm (and parameter settings) to use

@ Output handling:

» Optionally, list the variables for which we want a scenario-by-scenario
report
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Example: Farm Model (core model)

@ Allocate land (L) for planting crops x to max (p/wise lin) profit
@ Yield rate per crop c is FxY(c)

@ Can purchase extra crops b and sell s, but must have enough crops d
to feed cattle

max rofit = p(x, b, s
max P p(x, b, s)

s.t. ZX(C) <L
FC*Y(C) * x(c) 4 b(c) —s(c) > d(c)

e Random variables are F, realized at stage 2: structured T (w)
@ Variables x stage 1, b and s stage 2.
@ landuse constraints in stage 1, requirements in stage 2.

Can now generate the deterministic equivalent problem or pass on directly
to specialized solver
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Stochastic Programming as an EMP

Three separate pieces of information (extended mathematical program)
needed

@ emp.info: model transformation

randvar F 2 discrete 0.25 0.8 // below
0.50 1.0 // avg
0.25 1.2 // above

stage 2 b s req
@ solver.opt: solver configuration (benders, sampling strategy, etc)
4 "ISTRAT" * solve universe problem (DECIS/Benders)

@ dictionary: output handling (where to put all the “scenario solutions”)
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How does this help?

e Clarity/simplicity of model
@ Separates solution process from model description

@ Models can be solved by deterministic equivalent, exisiting codes such
as LINDO and DECIS, or decomposition approaches such as Benders,
ATR, etc

@ Allows description of compositional (nonlinear) random effects in
generating w

e, w=wi Xwy, T(w)="F(X(w1),Y(w2))

o Easy to write down multi-stage problems

o Automatically generates “"COR”, “TIM" and “STQ" files for
Stochastic MPS (SMPS) input
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Other EMP information

@ emp.info: model transformation

expected_value EV_r r

cvarlo CVaR_r r alpha
stage 2 r defr
jrandvar v("att") v("gmc") v("usx") 2 discrete

table of probabilities and outcomes

@ Variables are assigned to E(r) and CVaR,_(r); can be used in model
(appropriately) for objective, constraints, or be bounded

@ Problem transformation: theory states this expression can be written
as convex optimization using:

N

1

CVaR,(r) = — =Y Probjx(a— 1,

CVaR,(r) = max{ a a; robj + (a— 1)+
J:
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Example: Clear Lake Model (core model)

Water levels /(t) in dam for each month t

Determine what to release normally r(t), what then floods 7(t) and
what to import z(t)

@ minimize cost of flooding and import

Change in reservoir level in period t is 6(t)

max cost = ¢(f, z)
sit. I(t) = 1(t — 1)+ 6(t) + z(t) — r(t) — f(t)

@ Random variables are §, realized at stage t, t > 2.
o Variables I, r,f,z in stage t, t > 2.
@ balance constraint at t in stage t.

Example of a multi-stage stochastic program.
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

AN
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

e
o—»o<©

Cut at stage 2

AAN]
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Multi to 2 stage reformulation
Stage 1 Stage 2 Stage 3

AN
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Solution options

Form the deterministic equivalent

Solve using LINDO api (stochastic solver)

Convert to two stage problem and solve using DECIS or any number
of competing methods
Problem with 340 & 1.2 % 10! realizations in stage 2

» DECIS using Benders and Importance Sampling: < 1 second
(and provides confidence bounds)
» CPLEX on a presampled deterministic equivalent:

sample samp. time(s) CPLEX time(s) for solution cols (mil)
500 0.0 5 (4.5 barrier, 0.5 xover) 0.25
1000 0.2 18 (16 barrier, 2 xover) 0.5
10000 28 195 (44 barrier, 151 xover) 5
20000 110 1063 (98 barrier, 965 xover) 10
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IV: Build coupled/structured models that engage the
decision maker

@ The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

@ Decision processes (in this environment) are predominantly
hierarchical.

@ Models to support such decision processes must also be layered or
hierachical.

@ Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

@ Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide overall solution
speed, understanding of localized effects, and value for the coupling
of the system.
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Representative decision-making timescales in electric power
systems

Closed-loop
Control and gf:ﬁg E:g
Relay Setpoint _— Relay Action
Selection Day ahead
ﬂ Lgng-terén market w/ unit
orwar i
commitment
» Power Plant . Markets Hour ahead
Siting & Construction Maintenance Load market
i Forecastin «
Transmission Schedulng o Five

Siting & Construction minute
ﬂ ﬂ market

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute  seconds

A monster model is difficult to validate, inflexible, prone to errors.
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Example: Transmission Line Expansion Model (1)

min g Ty
xeX
w

s.t. Ax < b
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> dipf(x)

ieN

EMP

N:

The set of nodes
Line expansion set
Amount of invest-
ment in given line
Demand scenarios
Scenario prob
Demand (load at /
in scenario w)
Price (LMP) at i
in scenario w as a
function of x
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S
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Generator Expansion (2): Vf € F: Gr:  Generators of firm f € F

yj: Investment in generator j
m|n Zﬂ'w Z Gi(yj,q7) — r(hs — Z i) q;:  Power generated at bus j
JEGr JE€Gr in scenario w
st Z i < he,ye >0 G Cost _functlon for gener-
! ator J
JEGr
r: Interest rate
Market Clearing Model (3): Vw : zj: Real power flowing along
line ij
ngl(r; Z Z Gi( yJ,qJ st. g Real'p?ower ger?erated at
f jEGr bus j in scenario w
_ Z z Vje N(L P,w) 0;: Volte_age phase angle at
— bus i
o Q;:  Susceptance of line ij
. i usceptance of line ij
zj = ;(0; — 6;) v(ij) €A bjj(x): Line capacity as a func-
— bjj(x) < zj < by(x) V(i,j) €A tion of x

(y), Generator j limits

ui(yj) < qf < i(y)) _
(y): as a function of y
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How to combine: Nash Equilibria

@ Non-cooperative game: collection of players a € A whose individual
objectives depend not only on the selection of their own strategy
x5 € C; = domfy(+, x_,) but also on the strategies selected by the
other players x_, = {x,: 0 € A\ {a}}.

@ Nash Equilibrium Point:

X4 = (Xs,a€ A):Vae A: X, € argmin, . fo(xa, X_2).

Q forall x € A, f5(-,x_5) is convex
Q C= HaeA C, and for all a e A, C; is closed convex.
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VI reformulation

Define
G:RV RN by Ga(x4) = 0afa(xa; x_a),a € A

where 0, denotes the subgradient with respect to x,. Generally, the
mapping G is set-valued.

Theorem

Suppose the objectives satisfy (1) and (2), then every solution of the
variational inequality

x4 € C such that — G(x4) € Nc(xa)

is a Nash equilibrium point for the game.

Moreover, if C is compact and G is continuous, then the variational
inequality has at least one solution that is then also a Nash equilibrium
point.
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Solution approach (Tang)

Use derivative free method for the upper level problem (1)

Requires p¥(x)
Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

@ But transmission line capacity expansion typically leads to generator
expansion, which interacts directly with market clearing

@ Interface blue and black models using Nash Equilibria (as EMP):
empinfo: equilibrium

forall f: min expcost(f) y(f) budget(f)
forall w: min scencost(w) q(w) ..
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Flow of information

miy 2} AR

ieN

s.t. mir;wa Z Ci(yj,q;") — r(hs — Z Yi) vVfeF

e jeGr jeGr
rgln Z Z Gi( yJ,qJ Vw

z,0,9% f JjeGs
st i —di =)z Vj € N(L p(x))
i€l(j)

zjj = Q2;(0; — 0j) Y(i,j) € A
— bjj(x) < zj < bj(x) V(i,j)e A
ui(yj) = g = 1i(y)) VjieN
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Feasibility

KKT ofyr;neil; T Z Ci(yj,q;") — r(hs — Z yj) YfeF (2
w JEGr JEGr

KKT of min Cilyi, q¥ o (3
(2797qw)62(x,y)zf:J§G:f J( J _/) ( )

e Models (2) and (3) form an MCP/VI (via EMP)

@ Solve (3) as NLP using global solver (actual C;(y;, wa) are not
convex), per scenario (SNLP) this provides starting point for MCP

e Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

@ ldentifies MCP solution whose components solve the scenario NLP's

(3) to global optimality
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Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (1):

Scenario | q1 | G | g3 | G | Gs

w1 3.05| 425|393 | 4.34 ]| 3.39

w2 441 | 4.07 | 4.55

EMP (1):

Scenario | q1 | G | g3 | G | Gs

w1 2.86 | 4.60 | 4.00 | 4.12 | 3.38

Wy 470 | 4.09 | 4.24

Firm |y y2 ¥3 Y6 8
fi 167.83 | 565.31 266.86
f 292.11 | 207.89
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Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5
SNLP (2):

Scenario | q1 | G | g3 | G | Gs

w1 0.00 | 5.35 | 4.66 | 5.04 | 3.91
Wy 470 | 4.09 | 4.24
EMP (2):

Scenario | q1 | G | g3 | G | Gs

w1 0.00 | 5.34 | 462 | 5.01 | 3.99
wo 471 | 4.07 | 4.25

Firm |y y2 ¥3 Y6 8
fi 0.00 | 622.02 377.98
f 283.22 | 216.79
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Observations

But this is simply one function
evaluation for the outer
“transmission capacity
expansion” problem

Number of critical arcs typically
very small

But p;’ can be very volatile
Outer problem is small scale,

objectives are open to debate,
possibly ill conditioned

220

Comparing the different types of objective functions

215

195

LMP

= = = LMP and Generator Cost

' LMP with interest rate

0.7

0.72

0.74

0.76

Economic dispatch should use AC power flow model

Structure of market open to debate

0.78 0.8 0.82

Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plg functions)

Currently available within GAMS
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Conclusions

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

@ EMP model type is clear and extensible, additional structure available
to solver

o Extended Mathematical Programming available within the GAMS
modeling system

@ Able to pass additional (structure) information to solvers

@ Embedded optimization models automatically reformulated for
appropriate solution engine

@ Exploit structure in solvers

@ Extend application usage further

Slides available at http://www.cs.wisc.edu/~ferris/talks
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