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The PIES Model (Hogan)

minx cT x
cost

s.t. Ax = d(p)
balance

Bx = b
technical constr

x ≥ 0

Issue is that p is the multiplier on the “balance” constraint of LP

Extended Mathematical Programming (EMP) facilitates annotations
of models to describe additional structure

Can solve the problem by writing down the KKT conditions of this
LP, forming an LCP and exposing p to the model

EMP does this automatically from the annotations
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Reformulation details

0 = Ax − d(p) ⊥ µ
0 = Bx − b ⊥ λ
0 ≤ −ATµ− BTλ+ c ⊥ x ≥ 0

empinfo: dualvar p balance

replaces µ ≡ p

LCP/MCP is then solvable using PATH

z =



p
λ
x


 , F (z) =




A
B

−AT −BT


 z +



−d(p)
−b
c



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Power Systems: Economic Dispatch

min
(q,z,θ)∈F

∑

k

C (qk) s.t. qk −
∑

(l ,c)

z(k,l ,c) = dk
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Independent System
Operator (ISO)
determines who
generates what

pk : Locational marginal
price (LMP) at k

Volatile in “stressed”
system

Can we shed load from
consumers to smooth
prices?

FERC (regulator) writes
the rules - how to
implement?
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Understand: demand response and FERC Order No. 745

min
q,z,θ,R,p

∑

k

pkRk

s.t.C1 ≥
∑

k

pkdk/
∑

k

dk

C2 ≥
∑

k

pk(qk + Rk)/
∑

k

(dk − Rk)

0 ≤ Rk ≤ uk ,

and (q, z , θ) solves min
(q,z,θ)∈F

∑

k

C (qk)

s.t. qk −
∑

(l ,c)

z(k,l ,c) = dk − Rk (1)

where pk is the multiplier on constraint (1)
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Solution Process (F./Liu)

Bilevel program (hierarchical model)

Upper level objective involves multipliers on lower level constraints

Extended Mathematical Programming (EMP) annotates model to
facilitate communicating structure to solver

I dualvar p balance
I bilevel R min cost q z θ balance . . .

Automatic reformulation as an MPEC (single optimization problem
with equilibrium constraints)

Model solved using NLPEC and Conopt

bilevel =⇒ MPEC =⇒ NLP

Potential for solution of “consumer level” demand response

Challenge: devise robust algorithms to exploit this structure for fast
solution
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Stability and feasibility (vary C1)
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Alternative models: ED, avg, max, weighted avg

12

Fig. 7. Simulation on the 300-bus case

Fig. 8. Simulation on the 2383-bus case

• DR3: Replace the objective (12) by
∑

k∈B
ωkλkRk (40)

where ωk is a weight parameter on node k, to incorporate
a relative “reluctancy” factor regarding the dispatch of
demand response at different nodes.

An illustrative experiment is performed on the 14-bus case
with the results presented in Figure 9. The total demand level
is set to 650 MW and the line limit is 150 MW on every
line. While ED1 gives an AvgLMP of $73.14/MW, we set C1

to $60/MW, as depicted by the horizontal dotted lines in the
subplots. As before, we enforce no artificial bounds on Rk by
setting uRk = dk for each k ∈ B. For DR3, we set ω2 = 2
and ωk = 1,∀k ∈ B/{2} to express that we are relatively
reluctant to dispatch demand response at node 2 compared to
other nodes. For each node indicated on the horizonal axis, the
light bar represents the LMP level and the dark bar represents
the dispatched DR level at this node. Note that the LMP and
DR levels share the same scale along the vertical axis but
have different units, i.e. LMP is measured in $/MW and DR
is measured in MW.

Fig. 9. Comparison of DR model variants

As seen in the figure, DR1 was able to reduce the AvgLMP
by dispatching about 31 MW of demand response at node 2.
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Operational view: LMP, Demand, Response
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MOPEC

min
xi
θi (xi , x−i , y) s.t. gi (xi , x−i , y) ≤ 0,∀i

and
y solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h y cons

is solved in a Nash manner
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Spatial Price Equilibrium
1
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n ∈ {1, 2, 3, 4, 5, 6}
L ∈ {1, 2, 3}

Supply quantity: SL
Production cost: Ψ(SL) = ..

Demand: DL

Unit demand price: θ(DL) = ..
Transport: Tij

Unit transport cost: cij(Tij) = ..

One large system of equations and inequalities to describe this (GAMS).

max
(D,S ,T )∈F

∑

l∈L
πlDl −

∑

l∈L
Ψl(Sl)−

∑

i ,j

pijTij

s.t. Sl +
∑

i ,l

Til = Dl +
∑

l ,j

Tlj , ∀l ∈ L

pij = cij(Tij), πl = θl(Dl)
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Cournot-Nash equilibrium (multiple agents)

Assumes that each agent (producer):

Treats other agent decisions as fixed

Is a price-taker in transport and demand

EMP info file
equilibrium
max obj(’one’) vars(’one’) eqns(’one’)
max obj(’two’) vars(’two’) eqns(’two’)
max obj(’three’) vars(’three’) eqns(’three’)
vi tcDef tc
vi pricedef price

EMP = MOPEC =⇒ MCP
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Bilevel Program (Stackelberg)

Assumes one leader firm, the rest follow

Leader firm optimizes subject to expected follower behavior

Follower firms act in a Nash manner

All firms are price-takers in transport and demand

EMP info file

bilevel obj(’one’) vars(’one’) eqns(’one’)
max obj(’two’) vars(’two’) eqns(’two’)
max obj(’three’) vars(’three’) eqns(’three’)
vi tcDef tc
vi pricedef price

EMP = bilevel =⇒ MPEC =⇒ (via NLPEC) NLP(µ)
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS
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Extension: The smart grid

The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

Decision processes (in this environment) are predominantly
hierarchical.

Models to support such decision processes must also be layered or
hierarchical.

Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide FLEXIBILITY,
overall solution speed, understanding of localized effects, and value
for the coupling of the system.
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Representative decision-making timescales in electric power
systems

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute seconds

Transmission
Siting & Construction

Power Plant
Siting & Construction Maintenance

Scheduling

Long-term
Forward
Markets

Load
Forecasting

Closed-loop
Control and 
Relay Action

Closed-loop
Control and 

Relay Setpoint
Selection Day ahead

market w/ unit 
commitment

Hour ahead
market

Five
 minute
market

Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow

22

A monster model is difficult to validate, inflexible, prone to errors.
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Combine: Transmission Line Expansion Model (F./Tang)

min
x∈X

∑

ω

πω
∑

i∈N
dωi p

ω
i (x)

1
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7
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Nonlinear system to
describe power flows
over (large) network

Multiple time scales

Dynamics (bidding,
failures, ramping, etc)

Uncertainty (demand,
weather, expansion, etc)

pωi (x): Price (LMP) at i
in scenario ω as a
function of x

Use other models to
construct approximation
of pωi (x)
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Generator Expansion (2): ∀f ∈ F :

min
yf

∑

ω

πω
∑

j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑

j∈Gf

yj)

s.t.
∑

j∈Gf

yj ≤ hf , yf ≥ 0

Gf : Generators of firm f ∈ F
yj : Investment in generator j
qωj : Power generated at bus j

in scenario ω
Cj : Cost function for gener-

ator j
r : Interest rate

Market Clearing Model (3): ∀ω :

min
z,θ,qω

∑

f

∑

j∈Gf

Cj(yj , q
ω
j ) s.t.

qωj −
∑

i∈I (j)

zij = dωj ∀j ∈ N(⊥ pωj )

zij = Ωij(θi − θj) ∀(i , j) ∈ A

− bij(x) ≤ zij ≤ bij(x) ∀(i , j) ∈ A

uj(yj) ≤ qωj ≤ uj(yj)

zij : Real power flowing along
line ij

qωj : Real power generated at
bus j in scenario ω

θi : Voltage phase angle at
bus i

Ωij : Susceptance of line ij
bij(x): Line capacity as a func-

tion of x
uj(y), Generator j limits
uj(y): as a function of y
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Solution approach

Use derivative free method for the upper level problem (1)

Requires pωi (x)

Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

But transmission line capacity expansion typically leads to generator
expansion, which interacts directly with market clearing

Interface blue and black models using Nash Equilibria (as EMP):

empinfo: equilibrium
forall f: min expcost(f) y(f) budget(f)
forall ω: min scencost(ω) q(ω) . . .
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Feasibility

KKT of min
yf ∈Y

∑

ω

πω
∑

j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑

j∈Gf

yj) ∀f ∈ F (2)

KKT of min
(z,θ,qω)∈Z(x ,y)

∑

f

∑

j∈Gf

Cj(yj , q
ω
j ) ∀ω (3)

Models (2) and (3) form a complementarity problem (CP via EMP)

Solve (3) as NLP using global solver (actual Cj(yj , q
ω
j ) are not

convex), per scenario (SNLP) this provides starting point for CP

Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

Identifies CP solution whose components solve the scenario NLP’s (3)
to global optimality
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (1):
Scenario q1 q2 q3 q6 q8
ω1 3.05 4.25 3.93 4.34 3.39
ω2 4.41 4.07 4.55

EMP (1):
Scenario q1 q2 q3 q6 q8
ω1 2.86 4.60 4.00 4.12 3.38
ω2 4.70 4.09 4.24

Firm y1 y2 y3 y6 y8
f1 167.83 565.31 266.86
f2 292.11 207.89
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.35 4.66 5.04 3.91
ω2 4.70 4.09 4.24

EMP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.34 4.62 5.01 3.99
ω2 4.71 4.07 4.25

Firm y1 y2 y3 y6 y8
f1 0.00 622.02 377.98
f2 283.22 216.79
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Observations

But this is simply one function
evaluation for the outer
“transmission capacity
expansion” problem

Number of critical arcs typically
very small

But in this case, pωj are very
volatile

Outer problem is small scale,
objectives are open to debate,
possibly ill conditioned

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84
195

200

205

210

215

220
Comparing the different types of objective functions

 

 
LMP
LMP and Generator Cost
LMP with interest rate

Economic dispatch should use AC power flow model

Structure of market open to debate

Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations
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Agents have stochastic recourse?

Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

R is a risk measure (e.g. expectation, CVaR)

SP: min c>x + R[q>y ]

s.t. Ax = b, x ≥ 0,

∀ω ∈ Ω : T (ω)x + W (ω)y(ω) ≤ d(ω),

y(ω) ≥ 0.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ­
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu­
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 

EMP/SP extensions to facilitate these models
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PJM buy/sell model (2009)

Storage transfers energy over time (horizon = T ).

PJM: given price path pt , determine charge q+t and discharge q−t :

max
ht ,q

+
t ,q

−
t

T∑

t=0

pt(q
−
t − q+t )

s.t. ∂ht = eq+t − q−t

0 ≤ ht ≤ S
0 ≤ q+t ≤ Q
0 ≤ q−t ≤ Q
h0, hT fixed

Uses: price shaving, load shifting, transmission line deferral

what about different storage technologies?
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Stochastic price paths (day ahead market)

min
x ,s,q+,q−

c0(x) + Eω

[
T∑

t=0

pωt(q
+
ωt − q−ωt) + c1(q+ωt + q−ωt)

]

s.t. ∂hωt = eq+ωt − q−ωt

0 ≤ hωt ≤ Sx
0 ≤ q+ωt , q

−
ωt ≤ Qx

hω0, hωT fixed

First stage decision x : amount of storage to deploy.

Second stage decision: charging strategy in face of uncertainty
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Distribution of (multiple) storage types
Determine storage facilities xk to build, given distribution of price paths:
no entry barriers into market, etc. MOPEC: for all k solve a two stage
stochastic program

∀k : min
xk ,hk ,q

+
k ,q

−
k

c0k (xk) + Eω

[
T∑

t=0

pωt(q
+
ωkt − q−ωkt) + c1k (q+ωkt + q−ωkt)

]

s.t. ∂hωkt = eq+ωkt − q−ωkt
0 ≤ hωkt ≤ Sxk
0 ≤ q+ωkt , q

−
ωkt ≤ Qxk

hωk0, hωkT fixed

and

pωt = f

(
θ,Dωt +

∑

k

(q+ωkt − q−ωkt)

)

Parametric function (θ) determined by regression. Storage operators react
to shift in demand.
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Model and solve

Can model financial instruments such as “financial transmission
rights”, “spot markets”, “reactive power markets”

Reduce effects of uncertainty, not simply quantify

Use structure in preconditioners
I Use nonsmooth Newton methods to formulate complementarity

problem
I Solve each “Newton” system using GMRES
I Precondition using “individual optimization” with fixed externalities

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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Additional techniques requiring extensive computation

Continuous distributions, sampling functions, density estimation

Chance constraints: Prob(Tix +Wiyi ≥ hi ) ≥ 1−α - can reformulate
as MIP and adapt cuts (Luedtke) empinfo: chance E1 E2 0.95

Use of discrete variables (in submodels) to capture logical or discrete
choices (logmip - Grossmann et al)

Robust or stochastic programming

Decomposition approaches to exploit underlying structure identified
by EMP

Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods (ENLP)

Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Conclusions

Optimization helps understand what drives a system

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Extended Mathematical Programming available within the GAMS
modeling system

Uncertainty is present everywhere (the world is not “normal”)

We need not only to quantify it, but we need to
hedge/control/ameliorate it

Modeling, optimization, and computation embedded within the
application domain is critical
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Stochastic competing agent models (F./Wets)

Competing agents (consumers, or generators in energy market)

Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program

Each agent minimizes:

ua = (κ− f (qa,0,∗))2 +
∑

s

πs (κ− f (qa,s,∗))2

Budget time 0:
∑

i p0,iqa,0,i +
∑

j vjya,j ≤
∑

i p0,iea,0,i

Budget time 1:
∑

i ps,iqa,s,i ≤
∑

i ps,i
∑

j Ds,i ,jya,j +
∑

i ps,iea,s,i

Additional constraints (complementarity) outside of control of agents:

(contract) 0 ≤ −
∑

a

ya,j ⊥ vj ≥ 0

(walras) 0 ≤ −
∑

a

da,s,i ⊥ ps,i ≥ 0
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