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The PIES Model (Hogan)

miny

s.t.

Issue is that p is the multiplier on the “balance” constraint of LP

-
¢ x cost
Ax =d
(p) balance
Bx=0b )
technical constr
x>0

Extended Mathematical Programming (EMP) facilitates annotations
of models to describe additional structure

Can solve the problem by writing down the KKT conditions of this

LP, forming an LCP and exposing p to the model

EMP does this automatically from the annotations
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Reformulation details

0=Ax—d(p) L o
0=Bx—b 1A
0<—-AT—B"™X+¢c 1L x>0
@ empinfo: dualvar p balance
@ replaces u =p
e LCP/MCP is then solvable using PATH
p A —d(p)
z= |\, F(2)= Blz+ | —b
X —-AT BT c
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Power Systems: Economic Dispatch

@ Independent System
min Z Clak) s-t. g — Z Z(k,1,c) = dk Operator (ISO)

(g,z,0)eF )
(1) determines who
generates what
o @ pi: Locational marginal

0 price (LMP) at k
@ Volatile in “stressed”
system
@ Can we shed load from
e consumers to smooth
prices?

o e FERC (regulator) writes
the rules - how to

e implement?
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Understand: demand response and FERC Order No. 745

min Z Pr Ry
k

q,z,0,R,p

s.t.Cy > Zpkdk/de
k k
G > pula+ Re)/ Y _(dk — Ri)
k k

OSngukv

and (q, z,0) solves  min C
(9,2,6) N Ek: (qx)

st gk — Z Z(k,1,c) = dk — Rk (1)
(1,¢)
where  py is the multiplier on constraint (1)
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Sol

ution Process (F./Liu)

Bilevel program (hierarchical model)

@ Upper level objective involves multipliers on lower level constraints
e Extended Mathematical Programming (EMP) annotates model to

facilitate communicating structure to solver

» dualvar p balance
» bilevel R min cost q z 6§ balance . ..

Automatic reformulation as an MPEC (single optimization problem
with equilibrium constraints)

Model solved using NLPEC and Conopt
bilevel = MPEC = NLP
Potential for solution of “consumer level” demand response

Challenge: devise robust algorithms to exploit this structure for fast
solution
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Stability and feasibility (vary G)
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Alternative models: ED, avg, max, weighted avg
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Operational view: LMP, Demand, Response
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MOPEC

minei(xivxfiay) s.t. gi(Xi,X—ia)/) < O,VI

and
y solves VI(h(x,-), C)

equilibrium
min theta(1l) x(1) g(1)

min theta(m) x(m) g(m)
vi h y cons

is solved in a Nash manner
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Spatial Price Equilibrium

Ferris (Univ. Wisconsin)

ne{l1,2,3,4,5,6}
Le{1,2,3}

Supply quantity: S;

Production cost: W(S5;) = ..
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Spatial Price Equilibrium
ne{1,2,3,4,56}
Le{1,23}

Supply quantity: S;
Production cost: W(S5;) = ..
Demand: D,

Unit demand price: 8(D;) = ..
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Spatial Price Equilibrium
ne{1,2,3,4,56}
Le{1,23}

Supply quantity: S;
Production cost: W(S;) =
Demand: D;

Unit demand price: 6(D.) =

Transport: Tj;
@\/’ ‘\/@ Unit transport cost: ¢;(Tj) = ..
One large system of equations and inequalities to describe this (GAMS).

LI Z?T/D/ Z‘V/(S/)—ZPU ij

leL

st 5,+ZT,-,:D,+ZTU, viel
. -
pij = Cu(T ). = 0,(Dy)
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Cournot-Nash equilibrium (multiple agents)

Assumes that each agent (producer):
@ Treats other agent decisions as fixed

@ Is a price-taker in transport and demand

EMP info file

equilibrium

max obj('one’) vars(‘one’) eqns(‘one’)
max obj('two") vars('two’) egns('two’)
max obj('three’) vars('three’) eqns('three’)
vi tcDef tc

vi pricedef price

EMP = MOPEC = MCP
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Bilevel Program (Stackelberg)

Assumes one leader firm, the rest follow
Leader firm optimizes subject to expected follower behavior

Follower firms act in a Nash manner

All firms are price-takers in transport and demand

EMP info file

bilevel obj('one’) vars('one’) egns('one’)
max obj('two’) vars('two’) eqns('two’)
max obj('three") vars('three’) eqns('three’)
vi tcDef tc

vi pricedef price

EMP = bilevel = MPEC = (via NLPEC) NLP(y)
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plg functions)

Currently available within GAMS
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Extension: The smart grid

@ The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

@ Decision processes (in this environment) are predominantly
hierarchical.

@ Models to support such decision processes must also be layered or
hierarchical.

@ Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

@ Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide FLEXIBILITY,
overall solution speed, understanding of localized effects, and value
for the coupling of the system.
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Representative decision-making timescales in electric power
systems

Closed-loop
Control and gf:ﬁg E:g
Relay Setpoint _— Relay Action
Selection Day ahead
ﬂ Lgng-terén market w/ unit
orwar i
commitment
» Power Plant . Markets Hour ahead
Siting & Construction Maintenance Load market
i Forecastin «
Transmission Schedulng o Five

Siting & Construction minute
ﬂ ﬂ market

15 years 10 years 5 years 1 year 1 month 1 week 1 day 5 minute  seconds

A monster model is difficult to validate, inflexible, prone to errors.
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Combine: Transmission Line Expansion Model (F./Tang)

xeX

/e
PN

Ferris (Univ. Wisconsin)

ieN

min Wde;Up:-d(X)

&

Nonlinear system to
describe power flows
over (large) network

Multiple time scales
Dynamics (bidding,
failures, ramping, etc)
Uncertainty (demand,
weather, expansion, etc)
p¥(x): Price (LMP) at i
in scenario w as a
function of x

Use other models to
construct approximation
of p’(x)
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Generator Expansion (2): Vf € F: Gr:  Generators of firm f € F

yj: Investment in generator j
m|n Zﬂ'w Z Gi(yj,q7) — r(hs — Z i) q;:  Power generated at bus j
JEGr JE€Gr in scenario w
st Z i < he,ye >0 G Cost _functlon for gener-
! ator J
JEGr
r: Interest rate
Market Clearing Model (3): Vw : zj: Real power flowing along
line ij
ngl(r; Z Z Gi( yJ,qJ st. g Real'p?ower ger?erated at
f jEGr bus j in scenario w
Z zj = d Vje N(L P,w) 0;: Volte_age phase angle at
10 bus i
. Qy: Susceptance of line ij
zj = ;(0; — 6;) v(ij) €A bjj(x): Line capacity as a func-
= bjj(x) < zj < by(x) V(i,j) €A tion of x

(y), Generator j limits

ui(yj) < qf < i(y)) _
(y): as a function of y
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Solution approach

Use derivative free method for the upper level problem (1)

Requires p¥(x)
Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

@ But transmission line capacity expansion typically leads to generator
expansion, which interacts directly with market clearing

@ Interface blue and black models using Nash Equilibria (as EMP):
empinfo: equilibrium

forall f: min expcost(f) y(f) budget(f)
forall w: min scencost(w) q(w) ..
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Feasibility

KKT of w ) Gy h feF (2
oyr;neanW Z (v, af) — r(he — ny Vf € (2)
JEGr JEGr

KKT of min Z Z Gi(yj, a7) Yw (3)

707WGZ 9. .
(2,0,g)eZ(xy) jcar

@ Models (2) and (3) form a complementarity problem (CP via EMP)

@ Solve (3) as NLP using global solver (actual C;(y;, wa) are not
convex), per scenario (SNLP) this provides starting point for CP

e Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

o Identifies CP solution whose components solve the scenario NLP's (3)
to global optimality
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Scenario w1 | wo
Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (1):

Scenario | g1 | ¢ | g3 | G | Gs
w1 3.05 | 425|393 |4.34 | 3.39
w2 441 | 4.07 | 4.55
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Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (1):

Scenario | q1 | G | g3 | G | Gs

w1 3.05| 425|393 | 4.34 ]| 3.39

w2 441 | 4.07 | 4.55

EMP (1):

Scenario | q1 | G | g3 | G | Gs

w1 2.86 | 4.60 | 4.00 | 4.12 | 3.38

Wy 470 | 4.09 | 4.24

Firm |y y2 ¥3 Y6 8
fi 167.83 | 565.31 266.86
f 292.11 | 207.89
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Scenario w1 | wo
Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (2):

Scenario | g1 | ¢ | g3 | G | Gs
w1 0.00 | 5.35 | 4.66 | 5.04 | 3.91
wy 470 | 4.09 | 4.24

Ferris (Univ. Wisconsin)

Rice University

22 /32



Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5
SNLP (2):

Scenario | q1 | G | g3 | G | Gs

w1 0.00 | 5.35 | 4.66 | 5.04 | 3.91
wo 470 | 4.09 | 4.24
EMP (2):

Scenario | q1 | G | g3 | G | Gs

w1 0.00 | 5.34 | 462 | 5.01 | 3.99

wo 471 | 4.07 | 4.25

Fim | »n y2 ¥3 Y6 Y8
fi 0.00 | 622.02 377.98
> 283.22 | 216.79
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Observations

But this is simply one function
evaluation for the outer
“transmission capacity
expansion” problem

Number of critical arcs typically
very small

But in this case, p;’ are very
volatile

Outer problem is small scale,
objectives are open to debate,
possibly ill conditioned

Comparing the different types of objective functions

195

— LMP

= = = LMP and Generator Cost
' LMP with interest rate

v
0.74

o
0.76

Economic dispatch should use AC power flow model

Structure of market open to debate

0.78 0.8

Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations

Ferris (Univ. Wisconsin)

EMP

Rice University

L
0.82

0.84

23 /32



Agents have stochastic recourse?

@ Two stage stochastic programming, x is here-and-now decision,
recourse decisions y depend on realization of a random variable

@ R is a risk measure (e.g. expectation, CVaR)

SP: min
s.t.

Yw e Q:

EMP/SP extensions to facilitate these models

c'x+Rlg"y]
Ax=b, x>0,
T(w)x + W(w)y(w) < d(w),

y(w) = 0.
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PJM buy/sell model (2009)

o Storage transfers energy over time (horizon = T).

e PJM: given price path p;, determine charge g;” and discharge g; :

ISO-NE HUB Price (DA and RT) on Monday, June 18, 2012

T
— [ Day-Ahcad Hourly

maxXx E pt(qt — q;’— ) 0T Real Time S-Mimuts

he,qi sk

t,q: »q; t=0

st. Ohy = eq — q;
0< h <S
0<g <Q
0<gq; <0Q
ho, ht fixed o

0 24 48 72 96 120 144 168 192 216 240 264 288

Time (in 5-minute intervals)

@ Uses: price shaving, load shifting, transmission line deferral

Price ($MWh)

@ what about different storage technologies?
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Stochastic price paths (day ahead market)

T

min () +Eu | Y put(al — aoe) + <Hals + 900
1~ bl t:0

s.t. Oh,e = eql, — qo;
0< hyr <Sx
0 < qh gor < Ox
th; th fixed

o First stage decision x: amount of storage to deploy.

@ Second stage decision: charging strategy in face of uncertainty
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Distribution of (multiple) storage types

Determine storage facilities x;, to build, given distribution of price paths:

no entry barriers into market, etc. MOPEC: for all k solve a two stage
stochastic program

Vk:  min  c(xx) +Ey

-
Xkyhkqu g

-
Z Pwt(q:kt - q;kt) + Cli(q:;—kt + qc:kt)]
t=0

s.t. Ohyue = eq:kt — Qupt
0 < huke < Sxi
0 < Gy Guke < Q%
huko, hokt fixed

and
put = f <97 Dyt + Z(q;jkt - qwkt)>
k

Parametric function (6) determined by regression. Storage operators react

to shift in demand.
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Model and solve

@ Can model financial instruments such as “financial transmission
rights”, “spot markets”, “reactive power markets”

@ Reduce effects of uncertainty, not simply quantify

@ Use structure in preconditioners

» Use nonsmooth Newton methods to formulate complementarity
problem

> Solve each “Newton” system using GMRES

» Precondition using “individual optimization” with fixed externalities

il N
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Additional techniques requiring extensive computation

@ Continuous distributions, sampling functions, density estimation

e Chance constraints: Prob( Tix + W;y; > h;) > 1 — « - can reformulate
as MIP and adapt cuts (Luedtke) empinfo: chance E1 E2 0.95

@ Use of discrete variables (in submodels) to capture logical or discrete
choices (logmip - Grossmann et al)

@ Robust or stochastic programming

@ Decomposition approaches to exploit underlying structure identified
by EMP

@ Nonsmooth penalties and reformulation approaches to recast
problems for existing or new solution methods (ENLP)

@ Conic or semidefinite programs - alternative reformulations that
capture features in a manner amenable to global computation
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Conclusions

@ Optimization helps understand what drives a system

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

@ EMP model type is clear and extensible, additional structure available
to solver

@ Extended Mathematical Programming available within the GAMS
modeling system

e Uncertainty is present everywhere (the world is not “normal”)

@ We need not only to quantify it, but we need to
hedge/control /ameliorate it

@ Modeling, optimization, and computation embedded within the
application domain is critical
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Stochastic competing agent models (F./Wets)

Competing agents (consumers, or generators in energy market)
Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

o Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program
Each agent minimizes:
us = (K — f( qa 0, «) + Zﬂ's - f-(qa,s,*))2

Budget time 0: 3, po,iGa0,i + > ; ViVaj < >_; Po,i€a0,i
Budget time 1: >~ ps idasi < > PsiD_j Dsijyaj+ 2 i Psi€as.i

Additional constraints (complementarity) outside of control of agents:

(contract) 0 < —ZyaJ Lvi>0
a

(walras) 0 < — Z dasi L psi>0
a
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