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Simulation-based optimization problems

@ Computer simulations are used as substitutes to evaluate complex real
systems.

@ Simulations are widely applied in epidemiology, engineering design,
manufacturing, supply chain management, medical treatment and
many other fields.

@ The goal: Optimization finds the best values of the decision variables
(design parameters or controls) that minimize some performance
measure of the simulation.

@ Other applications: calibration, SVM parameter tuning, inverse
optimization, two-stage stochastic integer programming
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Design a coaxial antenna for hepatic tumor ablation

Dipole tip length  Slot size Floating sleeve Outer conductor
#
Sleeve position Inner conductor Teflon catheter

Teflon coating
Inner conductor

Teflon isolation layer

Outer conductor

Floating sleeve
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Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics v3.2) are used to generate
the electromagnetic (EM) radiation fields in liver given a particular design

Lesion Size=a
© Axial Ratio (AR) =a/b

4 R

Metric Measure of Goal

Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
S11 Tail reflection of antenna Minimize
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A general problem formulation

@ We formulate the simulation-based optimization problem as

min f(x) = E[F(x, {(w))],
xeS
&(w) is a random component arising in the simulation process.

@ The sample response function F(x,&(w))

» typically does not have a closed form, thus cannot provide gradient or

Hessian information
> is normally computationally expensive
» is affected by uncertain factors in simulation

@ The underlying objective function f(x) has to be estimated.
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A simple discrete optimization case

@ For example, test elasticity of a set of balls. Here S = {1,2,3,4,5}
represents a set of 5 balls.
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@ Objective: Choose ball with the largest expected bounce height f(x;).
F(xi, &) corresponds to a single measurement in an experiment.
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How to select the best system

@ Choose the maximum sample mean

N.

_ 1 «—
argmaxfi; := - Z; F(xi,&),

J:

where N; is the number of experiments.

@ Select the best system with high accuracy (PCS), while controlling
the total amount of simulation runs.

@ Two approaches

> Indifference zone ranking and selection (Kim and Nelson, 2005)
» Bayesian approach (Chick and Inoue, 2001a, 2001b)

@ How to determine the replication number N;?
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Bayesian approach

@ Denote the mean of the simulation output for each system as
pi = f(xi) = E[F(xi, §(w))]

@ In a Bayesian perspective, the means are considered as Gaussian
random variables whose posterior distributions can be estimated as

il X ~ N(fi;, 67/N;),

where [ij is sample mean and (’)',-2 is sample variance. The above
formulation is one type of posterior distribution.
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Posterior distributions facilitate comparison
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Basic framework and tools

Small scale x controls/design variables

Simulation is refinable (replications, more samples in DES, finer
discretization)

N
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@ Bayesian approach
> utilizes both mean and variance information
» simple and direct to implement
> flexible in choosing forms of posterior distributions

Directly applicable to pattern search methods
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WISOPT two-phase optimization framework

© Phase | is a global exploration step. The algorithm explores the
entire domain and proceeds to determine potentially good subregions
for future investigation.

@ Phase Il is a local exploitation step. Local optimization algorithms
are applied to determine the final solution.
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The flow chart of WISOPT

Phase I

Classification-based global
optimization

or

Noisy DIRECT

Phase transition

Phase I1 ‘

VNSP-UOBYQA

N Noisy UOBYQA
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WISOPT Phase I: the Noisy DIRECT (Jones et. al)

@ At each iteration, trisect a collection of promising boxes (large box or
small F)

@ Evaluate F at center of newly generated boxes
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Partitioning hyperrectangles: DIRECT (Dlviding
RECTangles)

@ Partitioning hyperrectangles

o ldentifying potentially optimal hyperrectangles
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Noisy extension

@ Bayesian methods determine posterior distribution of “box center” F

values
3
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@ Monte Carlo methods to generate “sampled” values for F; then use
DIRECT to generate “trial” potential boxes

o Compare error rates against boxes generated from sample means

@ When error rate large (sets of boxes chosen differ greatly), increase
replications on those boxes that produce errors
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Numerical results: Goldstein Price function
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The non-parametric “linking” idea
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Determine subregion radius by non-parametric regression

The idea is to determine the best ‘window size’ for non-parametric local
quadratic regression

Q A € argminy sse(h)

@ sse(h) is the sum of squared error of knock-one out prediction. Given
a window-size h and a point y, the knock-one out predicted value is
Q7 (y), where @/ (x) is a quadratic regression function constructed
using the data points within the ball {x|||x — y|| < h}/{y}.

Q1) = ¢+ 87 (x —y) + 5 (x— )T H(x )
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Phase |l: refine solution

@ Local optimization methods to handle noise
@ Derivative-free methods

@ Basic approach: reduce function uncertainty by averaging multiple
samples per point.

o Potential difficulty:
efficiency of algorithm vs number of simulation runs

@ We apply Bayesian approach to determine appropriate number of
samples per point, while simultaneously enhancing the algorithm
efficiency
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Phase |I: Extensions of the UOBYQA algorithm

The base derivative free optimization algorithm: The UOBYQA
(Unconstrained Optimization BY Quadratic Approximation) (Powell 2002)
algorithm is based on a trust region method. It constructs a series of local
quadratic approximation models of the underlying function.
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Quadratic model construction and trust region subproblem
solution

For iteration k =1,2, ...,
° P

@ Construct a quadratic model via interpolation

Qx.) = Fx &) + 8 (€)x — ) + 3 (x — )T GalE)(x — )

The model is unstable since interpolating noisy data

@ Solve the trust region subproblem

si(&) = argmins  Q(xk +5,§)
s.t. HSH2 < Ay

The solution is thus unstable
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Why is the quadratic model unstable?
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How to stabilize the quadratic model?

Let {y',y2,...,yl} be the interpolation set.

@ Quadratic interpolation model is a linear combination of Lagrange
functions:

L
Q(x,§) = Z f(yjaf)lj(x)'
j=1
e Each piece /;(x) is a quadratic polynomial, satisfying
G(y') =65, =1,2,-- L

@ The coefficients of /; are uniquely determined, independent of the
random objective function.
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Bayesian estimation of coefficients

In Bayesian approach, the mean of function output

u(y?) := f(y/) = E[F(y/,&(w))] is considered as a random variable:
Normal posterior distributions:

ny )X ~ N(R(), 62(7)/ ;)

Thus the coefficients of the quadratic model Q°° are estimated as:

51X = Yn()X)g;
G80|X = Zj:l(u(yj)’X)Gj'
® g3, G are coefficients of Q™
e gj, G; are coefficients of Lagrange functions /;

@ gj, G; are deterministic and determined by points v
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Bayesian posterior distributions
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Constraining the variance of solutions (Monte Carlo
validation)

@ Generate ‘'sample quadratic functions’ that could arise given current
function evaluations.

@ Trial solutions are generated within a trust region. The standard
deviation of the solutions are constrained.

mg,f(std([s*(l)(;)’5*(2)(,')’ s M) < BA.
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Sufficient reduction criterion - CRN case

\ ——re
Pr <Q(Xk) — Q(xk + k) = Kmdc||gg [l min [W’Ak >1—

@ gg is the gradient of the quadratic model Q>
@ «y is a significance level.
® Kmdc and K@y are constants.

® Q(xk) — Q(xk + s) is the observed model reduction. The criterion
implies that g’ is bounded by the model reduction.
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Bayesian estimation

Given the posterior distribution ggo\X, the probability value can be
estimated:

pr (@) — Qs+ 7) 2 mmaclgg Xl min [ EEEL o] ) > 10

KQh

Lemma (Borel-Cantelli Lemma)

If >, Pr(Ex) < oo, then the probability that infinitely many E, happen is
0 (implies that finitely many Ex happen with probability 1)

We require ), ax < oo and let Ej be the event of failure to satisfy the
sufficient reduction criterion. This lemma implies that there is a large
enough index K, such that the sufficient reduction criterion is satisfied
w.p.l for k > K.
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Noisy UOBYQA for Rosenbrock, n =2 and 0% = 0.01

lteration (k) FN  F(xx) Ay
1 1 404 2
20 78 3.56 9.8 x 1071
40 140 0.75 1.2 x 1071
60 580  0.10 4.5 % 1072
80 786  0.0017 5.2 x 1073
v Stops with the new termination criterion
100 1254 0.0019 2.8 x10°*
120 2003 0.0016 1.1 x 1074

v Stops with the termination criterion Ay, < 10~*
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Sample path extension: changing liver properties

@ Common random numbers allow variance reduction, correlated noise.

@ Extension of ideas to Variable-Number Sample-Path Optimization
method.

@ Application: Dielectric tissue properties varied within +10% of
average properties to simulate the individual variation.

@ Bayesian VNSP algorithm yields an optimal design that is a 27.3%
improvement over the original design and is more robust in terms of
lesion shape and efficiency.
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Ambulance simulation

An ambulance is called when an emergency call occurs. Determine the
locations of the ambulance bases such that the expected response time to
emergency calls is minimized.
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Conclusions and future work

@ Coupling statistical and optimization techniques can effectively
process noisy function optimizations
@ Significant gains in system performance and robustness are possible

o WISOPT framework allows multiple methods to be “hooked” up

Future work:
@ Problems with general constraints
@ More optimization algorithms in both phases

@ A phase transition module with variable radii
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