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The premise

@ The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

@ Decision processes (in this environment) are predominantly
hierarchical.

@ Models to support such decision processes must also be layered or
hierachical.

@ Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

@ Coupling of smaller models with well defined interfaces allows
validation, understanding, and enhanced solution techniques.
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Representative decision-making timescales in electric power
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A monster model is difficult to validate, inflexible, prone to errors.
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Transmission Line Expansion Model (1)

min Zmzdfpf(X)
w ieN
s.t. Ax<b (RTO budget (and other) constraints)
N: The set of all nodes
X: The set of all line expansions being considered
X: Amount of investment in line x € X
w: Demand scenarios
Tt Probability of scenario w occuring
d: Demand of load node i in in scenario w
p¥(x): Price (LMP) at load node i in scenario w as a function of x
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Solution approach

Use deriviative free method for the upper level problem (1)

°

@ Requires p’(x)

e Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

@ But transmission line capacity expansion typically leads to generator

expansion, which interacts with market clearing

@ How to combine these models?
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Generator Expansion (2)

VfeF: @inzﬁwzcj(yjaqf)_r(hf_zyj)

w  jeGy JEGy

s.t. Z yj < hr (budget cons)
JEGr
yr 20

F:  The set of firms

Gr: The set of all generators belonging to firm f

w:  Demand scenarios

yj:  Amount of investment in generator j

Real power generated at bus j in scenario w

C;: Cost function of generator j as a function of y; and g;
r: Interest Rate
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Market Clearing Model (3)

Vw : min Z Z Gy, q}")

z,0,q%

f jeGy
s.t. qf —d’ = Z zjj Vj e N(Lp?) (flow balance)
iel(j)
Zjj = Q,’j(@; — Gj) V(I,_j) cA (Iine data)
— bjj(x) < zj < bjj(x) V(i,j) €A (line capacity)
ui(yj) < qf <uj(y) (gen capacity)
zjj: Real power flowing along the i-j arc
q}": Real power generated at bus j in scenario w
0;: Voltage phase angle at bus i
Qj: Susceptance of line i-j
bij(x): Line capacity as a function of x

u;(y), Gj(y): Generator j limits as a function of y
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How to combine: Nash Games

@ Non-cooperative game: collection of players a € A whose individual
objectives depend not only on the selection of their own strategy
x5 € C; = domfy(+, x_,) but also on the strategies selected by the
other players x_, = {x,: 0 € A\ {a}}.

@ Nash Equilibrium Point:

X4 = (Xs,a€ A):Vae A: X, € argmin, . fo(xa, X_2).

Q forall x € A, f5(-,x_5) is convex
Q C= HaeA C, and for all a e A, C; is closed convex.
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VI reformulation

Define
G:RV— RV by Ga(x4) = 0afa(xa, x_a),a € A

where 0, denotes the subgradient with respect to x,. Generally, the
mapping G is set-valued.

Theorem

Suppose the objectives satisfy (1) and (2), then every solution of the
variational inequality

x4 € C such that — G(x4) € Nc(xa)

is a Nash equilibrium point for the game.

Moreover, if C is compact and G is continuous, then the variational
inequality has at least one solution that is then also a Nash equilibrium
point.
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Example

Scenario w1 | wo
Probability 05105
Demand Multiplier | 8 | 5.5

empinfo: equilibrium
forall f: min expcost(f) y(f) budget(f)
forall w: min scencost(w) q(w) ..

Scenario | q1 lop3 a3 g6 as

w1 286 | 460 | 4.00 | 4.12 | 3.38

Wy 470 | 4.09 | 4.24

Firm y1 ¥2 ¥3 Y6 ¥8

i 167.83 | 565.31 266.86
f 202.11 | 207.89
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Flow of information

miy 2} AR

ieN

s.t. mir;Zﬂw Z Ci(yj, q;’) — r(hs — Z ) vfeF

yre JEGr JEGr
rgln ZZC(}/J,qJ Yw

#,0.q" f JjeGs
sit. qf —df = Z zj Vj e N(L p?(x))
i€l(j)

zjj = Q;i(0; — 0)) V(i,j)e A
— bjj(x) < zj < bjj(x) V(i,j)e A

ui(yy) < ¢ <Ti(y)
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Feasibility

KKT ofyrpeil;l/ T Z Ci(yj, q;) — r(hs — Z yj) VfeF (2
w JEGr JEGr

KKT of min Cilyi, q¥ o (3
(2797qw)62(x,y)zf:J§G:f J( J _]) ( )

e Models (2) and (3) form an MCP/VI (via EMP)

@ Solve (3) as NLP using global solver (actual C;(y;, qJ‘”) are not
convex), per scenario (SNLP) this provides starting point for MCP

e Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

@ ldentifies MCP solution whose components solve the scenario NLP's
(3) to global optimality
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Scenario w1 | wo

Probability 05105

Demand Multiplier | 8 | 5.5

SNLP (1):

Scenario | g1 | 92 | 93 | G | s

w1 3.05 | 425|393 |4.34 339

w2 441 | 4.07 | 4.55

EMP (1):

Scenario | g1 | 92 | 93 | G | s

w1 2.86 | 4.60 | 4.00 | 4.12 | 3.38

w2 470 | 4.09 | 4.24

Firm | »n y2 ¥3 Y6 8
fi 167.83 | 565.31 266.86
f 292.11 | 207.89
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Scenario

w1 | w2
Probability 05105
Demand Multiplier | 8 | 5.5
SNLP (2):
Scenario | g1 | 92 | 93 | G | s
w1 0.00 | 5.35 | 4.66 | 5.04 | 3.91
w2 470 | 4.09 | 4.24
EMP (2):
Scenario | g1 | 92 | 93 | G | s
w1 0.00 | 5.34 | 462 | 5.01 | 3.99
w2 471 | 4.07 | 4.25
Firm | » y2 ¥3 Y6 8
fi 0.00 | 622.02 377.98
f> 283.22 | 216.79
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Scenario

w1 w2 w3 W4 Ws

Probability 02]02]025|0.1]0.25
Demand Multiplier | 4 | 6.5 | 9.5 8 | 8.9
EMP (1):

Scenario | g1 | ¢ | g3 | G5 | Gs

w1 340|331 | 277

w) 435 | 3.83|3.88|3.35

w3 3.53 1530 |4.66 | 5.04 | 3.99

w4 2.80 | 455 | 400 | 4.12 | 3.41

ws 3.27 | 5.00 | 441 | 4.68 | 3.73

Firm | » y2 Y3 Y6 Y8
fi 194.39 | 469.99 335.61
> 292.89 | 207.11
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Scenario w1 | wa | w3 | ws | ws
Probability 02]102]025]|0.1]0.25
Demand Multiplier | 4 | 6.5 | 9.5 8 | 8.9
EMP (2):

Scenario | g1 | 92 | g3 | 96 | Gs

w1 5.04 | 4.45 | 0.00

Wy 437|386 | 3.83|3.35

w3 3.46 | 5.33 | 4.71 | 5.00 | 4.01

W4 0.00 | 5.31 | 4.67 | 497 | 3.99

Wy 3.22 | 5.04 | 445 | 464 | 3.75
Firm | » y2 Y3 Y6 Y8
fi 145.45 | 507.45 347.05
> 320.54 | 179.46
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Observations

@ But this is simply one function evaluation for the outer “transmission
capacity expansion” problem

@ Number of critical arcs typically very small
@ But in this case, p;’ are very volatile

@ Quter problem is small scale, objectives are open to debate, possibly
ill conditioned

Economic dispatch should use AC power flow model
Structure of market open to debate
Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations
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e Coupling collections of (sub)-models with well defined (information
sharing) interfaces facilitates:

» appropriate detail and consistency of sub-model formulation (each of
which may be very large scale, of different types (mixed integer,
semidefinite, nonlinear, variational, etc) with different properties
(linear, convex, discrete, smooth, etc))

» ability for individual subproblem solution verification and engagement
of decision makers

> ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

» ability to solve submodels to global optimality (by exploiting size,
structure and model format specificity)

(A monster model that mixes several modeling formats loses its ability
to exploit the underlying structure and provide guarantees on solution

quality)
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Extended Mathematical Programs

@ Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

@ Problem format is old/traditional

mXin f(x)s.t. g(x) <0,h(x)=0

o Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

@ Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide overall solution
speed, understanding of localized effects, and value for the coupling
of the system.
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Stochastic competing agent models (with Wets)

Competing agents (consumers, or generators in energy market)
Each agent maximizes objective independently (utility)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

@ Can investigate new instruments to move to system optimal solutions
from equilibrium (or market) solutions

Ferris (Univ. Wisconsin) MOPEC Models SIAM Optimization 2011 21 /23



The model details: c.f. Brown, Demarzo, Eaves
Each agent maximizes:

u, = —Z’]Ts (/i — qu?,if)
s i
Z P0,iqa,0,i + Z ViYaj < Z P0,i€a,0,i
i J i

Time O:

Time 1:

i i

Z Ps,iGa,s,i < Z Ps,i Z Ds,i.j)/aJ + Z Ps,i€as,i
J i
Additional constraints (complementarity) outside of control of agents:
0<—=> yaj Ly >0
a

0< ) dosiLpsi=0
a
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Conclusions

@ Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

o EMP model type is clear and extensible, additional structure available
to solver

@ Extended Mathematical Programming available within the GAMS
modeling system

@ Able to pass additional (structure) information to solvers

@ Embedded optimization models automatically reformulated for
appropriate solution engine

@ Exploit structure in solvers

@ Extend application usage further
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