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The premise

The next generation electric grid will be more dynamic, flexible,
constrained, and more complicated.

Decision processes (in this environment) are predominantly
hierarchical.

Models to support such decision processes must also be layered or
hierachical.

Optimization and computation facilitate adaptivity, control, treatment
of uncertainties and understanding of interaction effects.

Coupling of smaller models with well defined interfaces allows
validation, understanding, and enhanced solution techniques.
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Representative decision-making timescales in electric power
systems
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Figure 1: Representative decision-making timescales in electric power systems

environment presents. As an example of coupling of decisions across time scales, consider decisions
related to the siting of major interstate transmission lines. One of the goals in the expansion of
national-scale transmission infrastructure is that of enhancing grid reliability, to lessen our nation’s
exposure to the major blackouts typified by the eastern U.S. outage of 2003, and Western Area
outages of 1996. Characterizing the sequence of events that determines whether or not a particular
individual equipment failure cascades to a major blackout is an extremely challenging analysis.
Current practice is to use large numbers of simulations of power grid dynamics on millisecond to
minutes time scales, and is influenced by such decisions as settings of protective relays that remove
lines and generators from service when operating thresholds are exceeded. As described below, we
intend to build on our previous work to cast this as a phase transition problem, where optimization
tools can be applied to characterize resilience in a meaningful way.

In addition to this coupling across time scales, one has the challenge of structural differences
amongst classes of decision makers and their goals. At the longest time frame, it is often the
Independent System Operator, in collaboration with Regional Transmission Organizations and
regulatory agencies, that are charged with the transmission design and siting decisions. These
decisions are in the hands of regulated monopolies and their regulator. From the next longest
time frame through the middle time frame, the decisions are dominated by capital investment and
market decisions made by for-profit, competitive generation owners. At the shortest time frames,
key decisions fall back into the hands of the Independent System Operator, the entity typically
charged with balancing markets at the shortest time scale (e.g., day-ahead to 5-minute ahead), and
with making any out-of-market corrections to maintain reliable operation in real time. In short,
there is clearly a need for optimization tools that effectively inform and integrate decisions across
widely separated time scales and who have differing individual objectives.

The purpose of the electric power industry is to generate and transport electric energy to
consumers. At time frames beyond those of electromechanical transients (i.e. beyond perhaps, 10’s
of seconds), the core of almost all power system representations is a set of equilibrium equations
known as the power flow model. This set of nonlinear equations relates bus (nodal) voltages
to the flow of active and reactive power through the network and to power injections into the
network. With specified load (consumer) active and reactive powers, generator (supplier) active
power injections and voltage magnitude, the power flow equations may be solved to determine
network power flows, load bus voltages, and generator reactive powers. A solution may be screened
to identify voltages and power flows that exceed specified limits in the steady state. A power flow
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A monster model is difficult to validate, inflexible, prone to errors.
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Transmission Line Expansion Model (1)

min
x∈X

∑
ω

πω
∑
i∈N

dωi p
ω
i (x)

s.t. Ax ≤ b (RTO budget (and other) constraints)

N: The set of all nodes
X : The set of all line expansions being considered
x : Amount of investment in line x ∈ X
ω: Demand scenarios
πω: Probability of scenario ω occuring
dωi : Demand of load node i in in scenario ω
pωi (x): Price (LMP) at load node i in scenario ω as a function of x
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Solution approach

Use deriviative free method for the upper level problem (1)

Requires pωi (x)

Construct these as multipliers on demand equation (per scenario) in
an Economic Dispatch (market clearing) model

But transmission line capacity expansion typically leads to generator
expansion, which interacts with market clearing

How to combine these models?
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Generator Expansion (2)

∀f ∈ F : min
yf

∑
ω

πω
∑
j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑
j∈Gf

yj)

s.t.
∑
j∈Gf

yj ≤ hf (budget cons)

yf ≥ 0

F : The set of firms
Gf : The set of all generators belonging to firm f
ω: Demand scenarios
yj : Amount of investment in generator j
qωj : Real power generated at bus j in scenario ω

Cj : Cost function of generator j as a function of yj and qj
r : Interest Rate
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Market Clearing Model (3)

∀ω : min
z,θ,qω

∑
f

∑
j∈Gf

Cj(yj , q
ω
j )

s.t. qωj − dωj =
∑
i∈I (j)

zij ∀j ∈ N(⊥ pωj ) (flow balance)

zij = Ωij(θi − θj) ∀(i , j) ∈ A (line data)

− bij(x) ≤ zij ≤ bij(x) ∀(i , j) ∈ A (line capacity)

uj(yj) ≤ qωj ≤ uj(yj) (gen capacity)

zij : Real power flowing along the i-j arc
qωj : Real power generated at bus j in scenario ω

θi : Voltage phase angle at bus i
Ωij : Susceptance of line i-j
bij(x): Line capacity as a function of x
uj(y), uj(y): Generator j limits as a function of y
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How to combine: Nash Games

Non-cooperative game: collection of players a ∈ A whose individual
objectives depend not only on the selection of their own strategy
xa ∈ Ca = domfa(·, x−a) but also on the strategies selected by the
other players x−a = {xa : o ∈ A \ {a}}.
Nash Equilibrium Point:

x̄A = (x̄a, a ∈ A) : ∀a ∈ A : x̄a ∈ argminxa∈Ca
fa(xa, x̄−a).

1 for all x ∈ A, fa(·, x−a) is convex

2 C =
∏

a∈A Ca and for all a ∈ A, Ca is closed convex.
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VI reformulation

Define
G : RN 7→ RN by Ga(xA) = ∂afa(xa, x−a), a ∈ A

where ∂a denotes the subgradient with respect to xa. Generally, the
mapping G is set-valued.

Theorem

Suppose the objectives satisfy (1) and (2), then every solution of the
variational inequality

xA ∈ C such that − G (xA) ∈ NC (xA)

is a Nash equilibrium point for the game.
Moreover, if C is compact and G is continuous, then the variational
inequality has at least one solution that is then also a Nash equilibrium
point.
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Example

Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

empinfo: equilibrium
forall f: min expcost(f) y(f) budget(f)
forall ω: min scencost(ω) q(ω) ...

Scenario q1 q2 q3 q6 q8
ω1 2.86 4.60 4.00 4.12 3.38
ω2 4.70 4.09 4.24

Firm y1 y2 y3 y6 y8
f1 167.83 565.31 266.86
f2 292.11 207.89
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Flow of information

min
x∈X

∑
ω

πω
∑
i∈N

dωi p
ω
i (x)

s.t. min
yf ∈Y

∑
ω

πω
∑
j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑
j∈Gf

yj) ∀f ∈ F

min
z,θ,qω

∑
f

∑
j∈Gf

Cj(yj , q
ω
j ) ∀ω

s.t. qωj − dωj =
∑
i∈I (j)

zij ∀j ∈ N(⊥ pωj (x))

zij = Ωij(θi − θj) ∀(i , j) ∈ A

− bij(x) ≤ zij ≤ bij(x) ∀(i , j) ∈ A

uj(yj) ≤ qωj ≤ uj(yj)

Ferris (Univ. Wisconsin) MOPEC Models SIAM Optimization 2011 12 / 23



Feasibility

KKT of min
yf ∈Y

∑
ω

πω
∑
j∈Gf

Cj(yj , q
ω
j )− r(hf −

∑
j∈Gf

yj) ∀f ∈ F (2)

KKT of min
(z,θ,qω)∈Z(x ,y)

∑
f

∑
j∈Gf

Cj(yj , q
ω
j ) ∀ω (3)

Models (2) and (3) form an MCP/VI (via EMP)

Solve (3) as NLP using global solver (actual Cj(yj , q
ω
j ) are not

convex), per scenario (SNLP) this provides starting point for MCP

Solve (KKT(2) + KKT(3)) using EMP and PATH, then repeat

Identifies MCP solution whose components solve the scenario NLP’s
(3) to global optimality

Ferris (Univ. Wisconsin) MOPEC Models SIAM Optimization 2011 13 / 23



Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (1):
Scenario q1 q2 q3 q6 q8
ω1 3.05 4.25 3.93 4.34 3.39
ω2 4.41 4.07 4.55

EMP (1):
Scenario q1 q2 q3 q6 q8
ω1 2.86 4.60 4.00 4.12 3.38
ω2 4.70 4.09 4.24

Firm y1 y2 y3 y6 y8
f1 167.83 565.31 266.86
f2 292.11 207.89
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Scenario ω1 ω2

Probability 0.5 0.5
Demand Multiplier 8 5.5

SNLP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.35 4.66 5.04 3.91
ω2 4.70 4.09 4.24

EMP (2):
Scenario q1 q2 q3 q6 q8
ω1 0.00 5.34 4.62 5.01 3.99
ω2 4.71 4.07 4.25

Firm y1 y2 y3 y6 y8
f1 0.00 622.02 377.98
f2 283.22 216.79

Ferris (Univ. Wisconsin) MOPEC Models SIAM Optimization 2011 15 / 23



Scenario ω1 ω2 ω3 ω4 ω5

Probability 0.2 0.2 0.25 0.1 0.25
Demand Multiplier 4 6.5 9.5 8 8.9

EMP (1):
Scenario q1 q2 q3 q6 q8
ω1 3.40 3.31 2.77
ω2 4.35 3.83 3.88 3.35
ω3 3.53 5.30 4.66 5.04 3.99
ω4 2.89 4.55 4.00 4.12 3.41
ω5 3.27 5.00 4.41 4.68 3.73

Firm y1 y2 y3 y6 y8
f1 194.39 469.99 335.61
f2 292.89 207.11
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Scenario ω1 ω2 ω3 ω4 ω5

Probability 0.2 0.2 0.25 0.1 0.25
Demand Multiplier 4 6.5 9.5 8 8.9

EMP (2):
Scenario q1 q2 q3 q6 q8
ω1 5.04 4.45 0.00
ω2 4.37 3.86 3.83 3.35
ω3 3.46 5.33 4.71 5.00 4.01
ω4 0.00 5.31 4.67 4.97 3.99
ω5 3.22 5.04 4.45 4.64 3.75

Firm y1 y2 y3 y6 y8
f1 145.45 507.45 347.05
f2 320.54 179.46
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Observations

But this is simply one function evaluation for the outer “transmission
capacity expansion” problem

Number of critical arcs typically very small

But in this case, pωj are very volatile

Outer problem is small scale, objectives are open to debate, possibly
ill conditioned

Economic dispatch should use AC power flow model

Structure of market open to debate

Types of “generator expansion” also subject to debate

Suite of tools is very effective in such situations
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Coupling collections of (sub)-models with well defined (information
sharing) interfaces facilitates:

I appropriate detail and consistency of sub-model formulation (each of
which may be very large scale, of different types (mixed integer,
semidefinite, nonlinear, variational, etc) with different properties
(linear, convex, discrete, smooth, etc))

I ability for individual subproblem solution verification and engagement
of decision makers

I ability to treat uncertainty by stochastic and robust optimization at
submodel level and with evolving resolution

I ability to solve submodels to global optimality (by exploiting size,
structure and model format specificity)

(A monster model that mixes several modeling formats loses its ability
to exploit the underlying structure and provide guarantees on solution
quality)

Ferris (Univ. Wisconsin) MOPEC Models SIAM Optimization 2011 19 / 23



Extended Mathematical Programs

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

Developing interfaces and exploiting hierarchical structure using
computationally tractable algorithms will provide overall solution
speed, understanding of localized effects, and value for the coupling
of the system.
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Stochastic competing agent models (with Wets)

Competing agents (consumers, or generators in energy market)

Each agent maximizes objective independently (utility)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to move to system optimal solutions
from equilibrium (or market) solutions
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The model details: c.f. Brown, Demarzo, Eaves
Each agent maximizes:

ua = −
∑
s

πs

(
κ−

∏
i

q
αa,i

a,s,i

)
Time 0: ∑

i

p0,iqa,0,i +
∑
j

vjya,j ≤
∑
i

p0,iea,0,i

Time 1: ∑
i

ps,iqa,s,i ≤
∑
i

ps,i
∑
j

Ds,i ,jya,j +
∑
i

ps,iea,s,i

Additional constraints (complementarity) outside of control of agents:

0 ≤ −
∑
a

ya,j ⊥ vj ≥ 0

0 ≤ −
∑
a

da,s,i ⊥ ps,i ≥ 0
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Conclusions

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Extended Mathematical Programming available within the GAMS
modeling system

Able to pass additional (structure) information to solvers

Embedded optimization models automatically reformulated for
appropriate solution engine

Exploit structure in solvers

Extend application usage further
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