The Case for Competition: Efficient Computation of Equilibrium

Michael C. Ferris Youngdae Kim

University of Wisconsin, Madison

SIAM Optimization 2017, Vancouver, May 23, 2017

Ferris & Kim (Univ. Wisconsin)

Equilibrium Structure

ELE NOR

PATH for Nonlinear Complementarity Problems

- Given $F: \Re^n \to \Re^n$
- Find $x \in \Re^n$ such that

 $0 \le F(x) \qquad x \ge 0$ $x^T F(x) = 0$

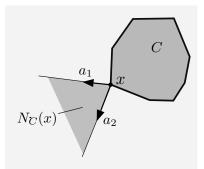
Compactly written

 $0 \leq F(x) \perp x \geq 0$

- Preprocessing to simplify without changing underlying problem
- Crashing method to quickly identify basis
- Nonmonotone pathsearch with watchdog
- Perturbation scheme for rank deficiency
- Restart strategy
- Projected gradient searches

A = A = A = A = A = A = A

The Normal Cone



- $C = \{x : a_i^T x \le b_i, i = 1, \dots, m\}$ polyhedral
- $N_{\mathcal{C}}(x) = \left\{ \sum_{i=1}^{m} \lambda_i a_i : 0 \le b_i a_i^T x \perp \lambda_i \ge 0 \right\}$
- \perp identifies active set, i.e.

$$(b_i - a_i^T x) > 0 \implies \lambda_i = 0$$

- The normal cone captures complementarity relationships
- $-F(x) \in N_{\Re_{+}^{n}}(x)$ if and only if

 $0 \leq F(x) \perp x \geq 0$

000 EIE 4E + 4E

The good news!

• PATH solves rectangular VI

$$-F(x) \in N_{\mathcal{I}_1 \times \ldots \times \mathcal{I}_m}(x)$$

(feasible set is a Cartesian product of possibly unbounded intervals)PATHVI solves VI

$$-F(x)\in N_{\mathcal{C}}(x)$$

by identifying

$$\mathcal{C} = \{x \in P : g(x) \in K\}$$

and reformulating as

$$\begin{array}{l} x^* \text{ solves VI}(F,\mathcal{C}) \iff 0 \in F(x^*) + \mathcal{N}_{\mathcal{C}}(x^*) \\ \iff 0 \in \begin{bmatrix} F(x^*) + \nabla g(x^*)\lambda \\ -g(x^*) \end{bmatrix} + \mathcal{N}_{P \times K^{\circ}}(x^*,\lambda) \end{array}$$

• Use Newton method, each step solves an affine variational inequality

Experimental results: AVI vs MCP

- Run PATHVI over AVI formulation.
- Run PATH over rectangular form (poorer theory as rec(C) larger).
- Structure knowledge leads to improved reliability

Name (#cons,#vars)		Number of iterations (time/secs)		
Name	(#CONS,#Vars)	PATHVI	Ратн	
CVXQP1_M	(500, 1000)	3119 (0.459)	fail	
CVXQP2_M	(250, 1000)	33835 (2.927)	fail	
CVXQP3_M	(750, 1000)	360 (0.105)	3603 (1.992)	
CONT-050	(2401, 2597)	11 (2.753)	382 (272.429)	
CONT-100	(9801,10197)	3 (174.267)	fail	

EL OQO

MOPEC

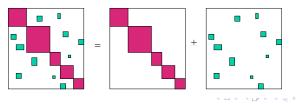
$$\min_{\mathbf{x}_i} f_i(\mathbf{x}_i, \mathbf{x}_{-i}, \pi) \text{ s.t. } g_i(\mathbf{x}_i, \mathbf{x}_{-i}, \pi) \leq 0, \forall i$$

 π solves VI($h(x, \cdot), C$)

```
equilibrium
min f(1) x(1) g(1)
...
min f(m) x(m) g(m)
vi h pi cons
```

• (Generalized) Nash

- (x, π) solves all problems simultaneously
- Reformulate optimization problem as first order conditions (complementarity)
- Use nonsmooth Newton methods to solve



Ferris & Kim (Univ. Wisconsin)

ELE DOG

PATHVI on Nash Equilibria

	Elapsed time (secs)				
Name	PATHVI	Ратн	PATHVI/		
			UMFPACK		
vimod1	0.372	4.129	0.437		
vimod2	1.098 24.134		0.645		
vimod3	3.208	60.553	1.639		
vimod4	127.194	66.427	18.319		
vimod5	327.970	325.558	40.285		
vimod6	2341.193	1841.642	109.960		

-

三日 のへの

Shared Constraints: river basin example

What if agents have shared knowledge? Three agents near a river, maximizing profit by producing some commodities. Each agent can throw pollutant in the river, but limited by two shared constraints θ

$$x_i^* \in rgmax_{x_i} p(\sum_j x_j)^T x_i - c_i(x_i) \text{ s.t. } x_i \ge 0, x_{-i} = x_{-i}^*, \theta(x) \le 0$$

What are the multipliers on the blue shared constraint? Can replicate constraint one for each agent (Generalized Nash)

$$\min_{\mathbf{x}_i \in X_i} f_i(\mathbf{x}_i, \mathbf{x}_{-i})$$

s.t. $\theta(\mathbf{x}_i, \mathbf{x}_{-i}) \leq 0$

A ∃ ► A ∃ ► ∃ | = \0 Q Q

Shared Constraints: river basin example

What if agents have shared knowledge? Three agents near a river, maximizing profit by producing some commodities. Each agent can throw pollutant in the river, but limited by two shared constraints θ

$$x_i^* \in rg\max_{x_i} p(\sum_j x_j)^T x_i - c_i(x_i) \text{ s.t. } x_i \ge 0, x_{-i} = x_{-i}^*, \theta(x) \le 0$$

What are the multipliers on the blue shared constraint?Can replicate constraint one for each
agent (Generalized Nash)Can force all multipliers to be equal -
a MOPEC (variational equilibrium)

$$\min_{\mathbf{x}_i \in \mathbf{X}_i} f_i(\mathbf{x}_i, \mathbf{x}_{-i})$$

s.t. $\theta(\mathbf{x}_i, \mathbf{x}_{-i}) \leq 0$

$$\min_{\mathbf{x}_i \in X_i} f_i(\mathbf{x}_i, \mathbf{x}_{-i}) + \lambda^T \theta(\mathbf{x}_i, \mathbf{x}_{-i})$$

$$0 \leq -\theta(x) \perp \lambda \geq 0$$

Different solutions; economists prefer the first one!

Ferris & Kim (Univ. Wisconsin)

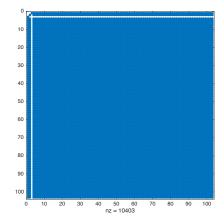
Bad news! Cournot Model (inverse demand function)

$$\max_{x_i} p(\sum_j x_j)^T x_i - c_i(x_i)$$

s.t.
$$B_i x_i = b_i, x_i \ge 0$$

- Cournot model: $|\mathcal{A}| = 5$
- Size $n = |\mathcal{A}| * N_a$

Size (n)	Time (secs)
1,000	35.4
2,500	294.8
5,000	1024.6



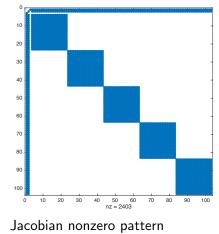
Jacobian nonzero pattern $n = 100, N_a = 20$

EL OQO

Computation: implicit functions

- Use implicit fn: $y(x) = \sum_{i} x_{i}$
- Generalization to h(y, x) = 0 (via adjoints)
- empinfo: implicit y h

Size (n)	Time (secs)
1,000	2.0
2,500	8.7
5,000	38.8
10,000	> 1080



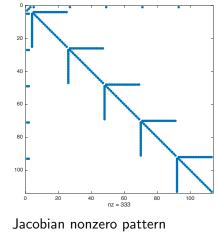
 $n = 100, N_a = 20$

ELE NOR

Computation: implicit functions and local variables

- Use implicit fn: y(x) = ∑_j x_j (and local aggregation)
- Generalization to h(y, x) = 0 (via adjoints)
- empinfo: implicit y h

Size (n)	Time (secs)
1,000	0.5
2,500	0.8
5,000	1.6
10,000	3.9
25,000	17.7
50,000	52.3



 $n = 100, N_a = 20$

ELE NOR

Economic Application

- Model is a partial equilibrium, geographic exchange model.
- Goods are distinguished by region of origin.
- There is one unit of region *r* goods.
- These goods may be consumed in region r or they may be exported.
- Each region solves:

 $\min_{y,x_r} f_r(y,x) \text{ s.t. } h(y,x) = 0, \ x_j = \bar{x}_j, j \neq r$

where $f_r(y, x)$ is a quadratic form and h(y, x) defines y uniquely as a function of x.

- h(y,x) defines an equilibrium; here it is simply a set of equations, not a complementarity problem
- Applications: Brexit, modified NAFTA, Russian Sanctions

MCP size of equilibrium problems containing shared variables by formulation strategy

Strategy	Size of the MCP	
replication	(n+2mN)	
switching	(n+mN+m)	
substitution (explicit)	(n+m)	
substitution (implicit)	(n+nm+m)	

Replication:

$$F_i(z) = \begin{bmatrix} \nabla_{x_i} f_i(x, y_i) - (\nabla_{x_i} h(y_i, x)) \mu_i \\ \nabla_{y_i} f_i(x, y_i) - (\nabla_{y_i} h(y_i, x)) \mu_i \\ h(y_i, x) \end{bmatrix}, \quad z_i = \begin{bmatrix} x_i \\ y_i \\ \mu_i \end{bmatrix}.$$

MCP size of equilibrium problems containing shared variables by formulation strategy

Strategy	Size of the MCP		
replication	(n+2mN)		
switching	(n + mN + m)		
substitution (explicit)	(n+m)		
substitution (implicit)	(n + nm + m)		

Switching:

$$F_i(z) = \begin{bmatrix} \nabla_{x_i} f_i(x, y) - (\nabla_{x_i} h(y, x)) \mu_i \\ \nabla_y f_i(x, y) - (\nabla_y h(y, x)) \mu_i \\ h(y, x) \end{bmatrix}, \quad z_i = \begin{bmatrix} x_i \\ \mu_i \\ y \end{bmatrix}$$

Substitution eliminates μ_i , $\forall i$

EL OQO

Model statistics and performance comparison of the EPEC

MCP statistics according to the shared variable formulation					
Replication Switching Substitution					
12,144 rows/cols 6,578 rows/cols 129,030 rows/cols					
544,019 non-zeros 444,243 non-zeros 3,561,521 non-zeros					
0.37% dense 1.03% dense 0.02% dense					

Ратн		Shared variable formulation (major, time)			
crash	spacer	prox	Replication Switching Substitution		Substitution
\checkmark		\checkmark	7 iters	20 iters	20 iters
			8 secs	22 secs	406 secs
		\checkmark	24 iters	22 iters	21 iters
			376 secs	376 secs 19 secs 395 set	
	\checkmark		8 iters	8 iters	8 iters
			28 secs	18 secs	219 secs

I= nan

Decomposition Results

Gauss-Seidel residuals					
Iteration	Residual	Tariff revenue			
1	1.526385e+04	region	SysOpt	MOPEC	
2	1.367865e+02	1	0.117	0.012	
3	2.216626e+00	2	0.517	0.407	
4	2.192500e-02	3	0.496	0.214	
5	3.195836e-04	4	0.517	0.407	
6	8.596711e-06	5	0.117	0.012	
7	6.048344e-07				

- Note that competitive solution produces much less revenue than system optimal solution
- Model has non-convex objective, but each subproblem is solved globally (lindoglobal)
- Timing: 17.2 secs

ELE SOC

Conclusion: who knows (and controls) what?

 $\min_{\mathbf{x}_i} f_i(\mathbf{x}_i, \mathbf{x}_{-i}, \mathbf{y}(\mathbf{x}_i, \mathbf{x}_{-i}), \pi) \text{ s.t. } g_i(\mathbf{x}_i, \mathbf{x}_{-i}, \mathbf{y}, \pi) \leq 0, \forall i, \theta(\mathbf{x}, \mathbf{y}, \pi) = 0$

 π solves VI($h(x, \cdot), C$)

- NE/GNE: Generalized Nash Equilibrium (feasible sets of each players problem depends on other players variables)
- Shared constraints: θ is known to all (many) players
- Force all shared constraints to have same dual variable (VI solution)
- Implicit variables: $y(x_i, x_{-i})$ shared
- Can use EMP to write all these problems, and convert to MCP form
- New decomposition algorithms available to modeler (Gauss Seidel, Randomized Sweeps, Gauss Southwell, Grouping of subproblems)
- Enables modelers to convey simple structures to algorithms and allows algorithms to exploit this
- Can evaluate effects of regulations and their implementation in a competitive environment

Ferris & Kim (Univ. Wisconsin)

- Given (x, y, μ) during iterations
- Compute a unique feasible pair $(\tilde{y}, \tilde{\mu})$
- Evaluate the residual at $(x, \tilde{y}, \tilde{\mu})$
- Choose the point if it has less residual than the one of (x, y, μ)

ELE SQA