#### Modelling 100 percent renewable electricity

#### Michael C. Ferris

Computer Sciences Department and Wisconsin Institute for Discovery, University of Wisconsin, Madison

> (Joint work with Andy Philpott, University of Auckland, New Zealand)

SIAM Conference on Computational Science and Engineering, February 25, 2019

Ferris/Philpott

## Engineering, Economics and Environment



- Determine generators' output to reliably meet the load •
- Power flows cannot exceed lines' transfer capacity
- Tradeoff: Impose environmental constraints/regulations

Ferris/Philpott

ELE NOR

#### New Zealand: How to implement Jacinda's deal

- 3. Request the Climate Commission to plan the transition to 100% renewable electricity by 2035 (which includes geothermal) in a normal hydrological year.
  - a. Solar panels on schools will be investigated as part of this goal.
- 4. Stimulate up to \$1 billion of new investment in low carbon industries by 2020, kick-started by a Government-backed Green Investment Fund of \$100 million.

Confidence and Supply Agreement between the New Zealand Labour Party and the Green Party of Aotearoa New Zealand

#### Confidence and Supply Agreement between Labour Party and Green Party, October 2017. (https://www.greens.org.nz/sites/default/files)

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

# Data uncertainty: multiple futures $(\omega)$





14 scenarios ( $\omega$ ) for electricity demand and generation mix in 2050. There are 14 different optimal plans: which to select, if any?

-

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What does fully renewable in electricity mean?

- Permanently shutdown all thermal plants?
- Control GHG emissions from electricity generation?



# Closing plants often increases average emissions (Fulton)

- Hydro can act as a giant battery
- Simulation runs: Reduce plant capacity, store more water "in case of dry winter":



• With low nonrenewable plant capacity, can't wait till last minute and reservoir levels in summer need to be close to full just in case. Tradeoff: Burning fuel to achieve this increases emissions.

## Uncertainty is experienced at different time scales

- Demand growth, technology change, capital costs are long-term uncertainties (years)
- Seasonal inflows to hydroelectric reservoirs are medium-term uncertainties (weeks)
- Levels of wind and solar generation are short-term uncertainties (half hours)
- Very short term effects from random variation in renewables and plant failures (seconds)



- Tradeoff: Uncertainty, cost and operability, regulations, security/robustness
- Needs modelling at finer time scales

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Simplified two-stage stochastic optimization model

- Capacity decisions are z at cost K(z)
- Operating decisions are: generation y at cost C(y), loadshedding q at cost Vq.
- Random demand is  $d(\omega)$ .
- Minimize capital cost plus expected operating cost:

$$\begin{array}{rcl} \text{P:} & \min_{z,y,q \in X} & \mathcal{K}(z) & + & \mathbb{E}_{\omega}[\mathcal{C}(y(\omega)) + Vq(\omega)] \\ & \text{s.t.} & y(\omega) & \leq & z, \\ & y(\omega) + q(\omega) & \geq & d(\omega), \\ & & z_{\mathcal{N}} & \leq & (1 - \theta) z_{\mathcal{N}}(2017) \end{array}$$

A B A B A B B B A A A

## Costs as we impose tighter emission restrictions



- Markets based on marginal (operating) prices
- Tradeoff: Building more capacity costs more, but makes operations cheaper how to recover the fixed cost investment
- Operational costs dominated (at 100% renewable) by load shedding

#### More realistic model

Plant k has current capacity  $U_k$ , expansion  $x_k$  at capital cost  $K_k$  per MW, maintenance cost  $L_k$  per MW, and operating cost  $C_k$ . Minimize fixed and expected variable costs. Here t = 0, 1, 2, 3, is a season and w(t) is reservoir storage at end of season t.

P: 
$$\min \psi = \sum_{k} (K_{k}x_{k} + L_{k}z_{k}) + \sum_{t} \mathbb{E}_{\omega}[Z(t,\omega)]$$
  
s.t.  $Z(t,\omega) = \sum_{b} T(b) (\sum_{k} C_{k}y_{k}(t,\omega,b) + Vq(t,\omega,b)),$   
 $x_{k} \leq u_{k},$   
 $z_{k} \leq x_{k} + U_{k},$   
 $y_{k}(t,\omega,b) \leq \mu_{k}(t,\omega,b)z_{k},$   
 $\sum_{b} T(b)y_{k}(t,\omega,b) \leq v_{k}(t,\omega) \sum_{b} T(b)z_{k} + w(t-1) - w(t),$   
 $q(t,\omega,b) \leq d(t,\omega,b),$   
 $d(t,\omega,b) \leq \sum_{k} y_{k}(t,\omega,b) + q(t,\omega,b),$   
 $w(t) \leq W,$   
 $y, q, w \geq 0.$ 

10 / 29

#### Operating costs are random

Plant k has current capacity  $U_k$ , expansion  $x_k$  at capital cost  $K_k$  per MW, maintenance cost  $L_k$  per MW, and operating cost  $C_k$ . Transfer energy w(t) from season t to season t + 1. Minimize fixed and expected variable costs. Here T(b) is the number of hours in load block b of annual load duration curve.

P: 
$$\min \psi = \sum_{k} (K_{k}x_{k} + L_{k}z_{k}) + \sum_{t} \mathbb{E}_{\omega}[Z(t,\omega)]$$
  
s.t.  $Z(t,\omega) = \sum_{b} T(b) (\sum_{k} C_{k}y_{k}(t,\omega,b) + Vq(t,\omega,b)),$   
 $x_{k} \leq u_{k},$   
 $z_{k} \leq x_{k} + U_{k},$   
 $y_{k}(t,\omega,b) \leq \mu_{k}(t,\omega,b)z_{k},$   
 $\sum_{b} T(b)y_{k}(t,\omega,b) \leq v_{k}(t,\omega)\sum_{b} T(b)z_{k} + w(t-1) - w(t),$   
 $q(t,\omega,b) \leq d(t,\omega,b),$   
 $d(t,\omega,b) \leq \sum_{k} y_{k}(t,\omega,b) + q(t,\omega,b),$   
 $w(t) \leq W,$   
 $y, q, w \geq 0.$ 

11 / 29

## Shedding load incurs VOLL penalties

Plant k has current capacity  $U_k$ , expansion  $x_k$  at capital cost  $K_k$  per MW, maintenance cost  $L_k$  per MW, and SRMC  $C_k$ . Transfer energy w(t) from season t to season t + 1. Minimize fixed and expected variable costs.

P: 
$$\min \psi = \sum_{k} (K_{k}x_{k} + L_{k}z_{k}) + \sum_{t} \mathbb{E}_{\omega}[Z(t,\omega)]$$
  
s.t.  $Z(t,\omega) = \sum_{b} T(b) (\sum_{k} C_{k}y_{k}(t,\omega,b) + Vq(t,\omega,b)),$   
 $x_{k} \leq u_{k},$   
 $z_{k} \leq x_{k} + U_{k},$   
 $y_{k}(t,\omega,b) \leq \mu_{k}(t,\omega,b)z_{k},$   
 $\sum_{b} T(b)y_{k}(t,\omega,b) \leq v_{k}(t,\omega) \sum_{b} T(b)z_{k} + w(t-1) - w(t),$   
 $q(t,\omega,b) \leq d(t,\omega,b),$   
 $d(t,\omega,b) \leq \sum_{k} y_{k}(t,\omega,b) + q(t,\omega,b),$   
 $w(t) \leq W,$   
 $y, q, w \geq 0.$ 

### Capacity of wind and run-of-river is random in a season

Plant k has current capacity  $U_k$ , expansion  $x_k$  at capital cost  $K_k$  per MW, maintenance cost  $L_k$  per MW, and SRMC  $C_k$ . Minimize fixed and expected variable costs.

P: 
$$\min \psi = \sum_{k} (K_{k}x_{k} + L_{k}z_{k}) + \sum_{t} \mathbb{E}_{\omega}[Z(t,\omega)]$$
  
s.t.  $Z(t,\omega) = \sum_{b} T(b) (\sum_{k} C_{k}y_{k}(t,\omega,b) + Vq(t,\omega,b)),$   
 $x_{k} \leq u_{k},$   
 $z_{k} \leq x_{k} + U_{k},$   
 $y_{k}(t,\omega,b) \leq \mu_{k}(t,\omega,b)z_{k},$   
 $\sum_{b} T(b)y_{k}(t,\omega,b) \leq v_{k}(t,\omega)\sum_{b} T(b)z_{k} + w(t-1) - w(t),$   
 $q(t,\omega,b) \leq d(t,\omega,b),$   
 $d(t,\omega,b) \leq \sum_{k} y_{k}(t,\omega,b) + q(t,\omega,b),$   
 $w(t) \leq W,$   
 $y, q, w \geq 0.$ 

### Energy input from reservoir inflows is random in a season

Plant k has current capacity  $U_k$ , expansion  $x_k$  at capital cost  $K_k$  per MW, maintenance cost  $L_k$  per MW, and SRMC  $C_k$ . Minimize fixed and expected variable costs.

P: 
$$\min \psi = \sum_{k} (K_{k}x_{k} + L_{k}z_{k}) + \sum_{t} \mathbb{E}_{\omega}[Z(t,\omega)]$$
  
s.t.  $Z(t,\omega) = \sum_{b} T(b) (\sum_{k} C_{k}y_{k}(t,\omega,b) + Vq(t,\omega,b)),$   
 $x_{k} \leq u_{k},$   
 $z_{k} \leq x_{k} + U_{k},$   
 $y_{k}(t,\omega,b) \leq \mu_{k}(t,\omega,b)z_{k},$   
 $\sum_{b} T(b)y_{k}(t,\omega,b) \leq v_{k}(t,\omega)\sum_{b} T(b)z_{k} + w(t-1) - w(t),$   
 $q(t,\omega,b) \leq d(t,\omega,b),$   
 $d(t,\omega,b) \leq \sum_{k} y_{k}(t,\omega,b) + q(t,\omega,b),$   
 $w(t) \leq W,$   
 $y, q, w \geq 0.$ 



#### Environmental constraints

Some capacity  $x_k$ ,  $k \in \mathcal{N}$ , is "non renewable". Some generation  $y_k(\omega)$ ,  $k \in \mathcal{E}$  emits  $\beta_k y_k(\omega)$  tonnes of CO2. For a choice of  $\theta \in [0, 1]$  constraint is either:

$$\mathbb{E}_{\omega}[\sum_{k\in\mathcal{E}}\beta_{k}y_{k}(\omega)] \leq (1-\theta)\mathbb{E}_{\omega}[\sum_{k\in\mathcal{E}}\beta_{k}y_{k}(\omega, 2017)],$$
(reduce CO2 emissions compared with 2017)
$$\sum_{k\in\mathcal{N}}z_{k} \leq (1-\theta)\sum_{k\in\mathcal{N}}z_{k}(2017),$$
(reduce non-renewable capacity compared with 2017)
$$\mathbb{E}_{\omega}[\sum_{k\in\mathcal{N}}y_{k}(\omega)] \leq (1-\theta)\mathbb{E}_{\omega}[\sum_{k\in\mathcal{N}}y_{k}(\omega, 2017)],$$
(reduce non-renewable generation compared with 2017)

Could impose constraints almost surely instead of in expectation or with risk measure (small impact)

Ferris/Philpott



Since (renewable) geothermal and CCS emit some CO2 100% renewable yields modest reductions in CO2 emissions.

→ Ξ →

EL SQC

# Technology choices as $\theta$ increases (NR capacity redn)



- Use geothermal, CCS, wind, batteries
- Fairly constant capacity

ELE DOG

# Technology choices as $\theta$ increases (% CO2 redn)



- Rich portfolio of renewable technologies used
- More capacity needed as more uncertain generation

= nac

## Technology choices as carbon price (\$ per MW) increases



ELE NOR

# Technology choices (chance constraints)

Force zero emissions in at least 50% of years (normal hydrology)



Emissions increase by 60%, cost increases by 20% over 99% renewable case

| Ferris/Philpott | 100 percent renewables | Supported b | y DOE/ARPA-E | 21 / 29 |
|-----------------|------------------------|-------------|--------------|---------|

# Risk-averse solutions for 95% NR energy reduction



Generation mix at 95% NR reduction with increasing risk aversion

• Risk aversion modelled using  $(1 - \lambda)E[Z] + \lambda AVaR_{0.90}(Z)$ , for  $\lambda = 0, 0.5, 0.8$ 

Replace wind/battery with CCS

ELE NOR



Cost of actually reaching zero CO2 emissions (without geothermal or CCS) increases as we approach the limit.

ELE DOG

### New Zealand greenhouse gas emissions



#### Total GHG emissions in 2016 were 80 M t CO2 equivalent.

|          | / DI 1 |      |
|----------|--------|------|
| Forric . | Phil   | nott |
| I ELLS   |        | DOLL |
|          |        |      |

24 / 29

æ

### New Zealand greenhouse gas emissions



Ferris/Philpott

100 percent renewables

Supported by DOE/ARPA-E

25 / 29

## New Zealand greenhouse gas emissions



Ferris/Philpott

26 / 29

General equilibrium (with contracts/incentives)

Consumption  $d_k$ , energy  $y_j$ , flows f, prices  $\pi$ ,  $\sigma$ 

Consumers 
$$\max_{\substack{d_k \in \mathcal{C} \\ g_k \in \mathcal{C}}} \operatorname{utility}(d_k) - T_C(\sigma, d, f, y) - \pi^T d_k$$
  
Generators  $\max_{\substack{(y_j) \in \mathcal{G} \\ f \in \mathcal{F}}} \operatorname{profit}(y_j, \pi) - T_G(\sigma, d, f, y)$ 

Market clearing

$$0 \leq \pi \perp \sum_{j} \mathbf{y}_{j} - \sum_{k} \mathbf{d}_{k} - \mathcal{A}\mathbf{f} \geq 0$$
$$0 \leq \sigma \perp \mathbf{E} - \sum_{j} \mathcal{E}_{j}(\mathbf{y}_{j}) \geq 0$$

< 17 ▶

●●● ■目 ▲目▼ ●●●

## Conclusions

- 100% renewable electricity system has several interpretations with different implications.
- Policy should choose the objective function not the action: e.g. reducing thermal capacity ceteris paribus can increase average emissions.
- Uncertainty in the model makes a difference.
- Electricity system has uncertainties at many time scales. Can include these in a single model with some approximations.
- If geothermal and CCS are renewable then 100% renewable is feasible, but emission reduction is modest.
- 100% emission reduction in NZ electricity is needlessly expensive given proportion of electricity emissions.
- Next steps: A multistage model, and its competitive equilibrium counterpart.

28 / 29



The Te Apiti Wind Farm, Manawatu, New Zealand. Image credits: Jondaar\_1 / Flickr.

| _       | / <b>.</b> |     |
|---------|------------|-----|
| Lorrici | D b i      | not |
| I ELLS/ |            |     |
|         |            |     |

- Build and solve a social plannning model that optimizes electricity capacity investment with constraints on CO2 emissions.
- Social planning solution should be stochastic: i.e. account for future uncertainty
- Social planning solution should be risk-averse: because the industry is.
- Approximate the outcomes of the social plan by a competitive equilibrium with risk-averse investors.
- Compensate for market failures from imperfect competition or incomplete markets.