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Convex subdifferentials
SUBGRADIENTS

0

(g, 1)

f(z)

�
x, f(x)

⇥

z

• Let f : �n → (−⇣,⇣] be a convex function.
A vector g ⌘ �n is a subgradient of f at a point
x ⌘ dom(f) if

f(z) ≥ f(x) + (z − x)�g,  z ⌘ �n

• Support Hyperplane Interpretation: g is
a subgradient if and only if

f(z)− z�g ≥ f(x)− x�g,  z ⌘ �n

so g is a subgradient at x if and only if the hyper-
plane in ��n+1 that has normal (−g, 1) and passes
through x, f(x)

⇥
supports the epigraph of f .

• The set of all subgradients at x is the subdiffer-
ential of f at x, denoted ◆f(x).

By convention ◆f(x) = Ø for x / dom(f).

◆

• ⌘
2

Assume f is convex, then
f (z) ≥ f (x) +∇f (x)T (z − x)
(linearization is below the
function)

Incorporate constraints by
allowing f to take on +∞ if
constraint is violated
f : Rn 7→ (−∞,+∞]

∂f (x) ={
g : f (z) ≥ f (x) + gT (z − x), ∀z

}
,

the subdifferential of f at x

If f is differentiable and convex, then ∂f (x) = {∇f (x)}
e.g. f (z) = 1

2z
TQz + pT z , then ∂f (x) = {Qx + p}

x∗ solves min f (x) if and only if 0 ∈ ∂f (x∗)
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Indicator functions and normal cones

ψC(z) =

{
0 if z ∈ C
∞ else

ψC is a convex function when C is a
convex set

EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

• Let C be a convex set, and ⌅C be its indicator
function.

• For x ⌘/ C, ◆⌅C(x) = Ø (by convention).

• For x ⌘ C, we have g ⌘ ◆⌅C(x) iff

⌅C(z) ≥ ⌅C(x) + g�(z − x),  z ⌘ C,

or equivalently g�(z − x) ⌥ 0 for all z ⌘ C. Thus
◆⌅C(x) is the normal cone of C at x, denoted
NC(x):

NC(x) = g g�(z x) 0, z C .
⇤

| − ⌥  ⌘
⌅

C

NC(x)

x C

NC(x)

x

5

If x ∈ C, then

g ∈ ∂ψC(x)

⇐⇒ ψC(z) ≥ ψC(x) + gT (z − x), ∀z
⇐⇒ 0 ≥ gT (z − x), ∀z ∈ C

Normal cone to C at x ,

NC(x):= ∂ψC(x) =

{{
g : gT (z − x) ≤ 0, ∀z ∈ C

}
if x ∈ C

∅ if x /∈ C
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Some calculus

fi : Rn 7→ (−∞,∞], i = 1, . . . ,m, proper, convex functions

F = f1 + · · ·+ fm

assume
m⋂

i=1

rint(dom(fi )) 6= ∅ then (as sets)

∂F (x) = ∂f1(x) + · · ·+ ∂fm(x), ∀x

C =
m⋂

i=1

Ci , then ψC = ψCi + · · ·+ ψCm , so NC = NCi + · · ·+ NCm

x∗ solves min
x∈C

f (x) ⇐⇒ x∗ solves min
x

(f + ψC)(x)

⇐⇒ 0 ∈ ∂(f + ψC)(x∗) ⇐⇒ 0 ∈ ∇f (x∗) + NC(x∗)
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Special cases and examples

Normal cone is a cone

x ∈ int(C), then NC(x) = {0}
C = Rn, then NC(x) = {0}, ∀x ∈ C

EXAMPLE: POLYHEDRAL CASE

NC(x)

C

a1

a2

x

• For the case of a polyhedral set

C = {x | a�ix ⌥ bi, i = 1, . . . ,m},

we have

NC(x) =

� {0} if x ⌘ int(C),
cone

�
{ai | a�ix = bi}

⇥
if x ⌘/ int(C).

• Proof: Given x, disregard inequalities with
a�ix < bi, and translate C to move x to 0, so it
becomes a cone. The polar cone is NC(x).

6

C =
{
z : aTi z ≤ bi , i = 1, . . . ,m

}

polyhedral

NC(x) ={
m∑

i=1

λiai : 0 ≤ bi − aTi x ⊥ λi ≥ 0

}

⊥ makes product of items around it
0, i.e.

(bi − aTi x)λi = 0, i = 1, . . . ,m
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Combining: KKT conditions

Example: convex optimization first-order optimality condition:

x∗ solves min
x∈C

f (x) ⇐⇒ 0 ∈ ∇f (x∗) + NC(x∗)

⇐⇒ 0 = ∇f (x∗) + y , y ∈ NC(x∗)

⇐⇒ 0 = ∇f (x∗) + y , y = ATλ,

0 ≤ b − Ax∗ ⊥ λ ≥ 0

⇐⇒ 0 = ∇f (x∗) + ATλ,

0 ≤ b − Ax∗ ⊥ λ ≥ 0

More generally, if C = {z : g(z) ≤ 0}, g convex, (with CQ)

x∗ solves min
x∈C

f (x) ⇐⇒ 0 ∈ ∇f (x∗) + NC(x∗)

⇐⇒ 0 = ∇f (x∗) +∇g(x∗)λ,

0 ≤ −g(x∗) ⊥ λ ≥ 0
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Variational Inequality (replace ∇f (z) with F (z))

F : Rn → Rn

Ideally: C ⊆ Rn – constraint set; Often: C ⊆ Rn – simple bounds

VI (F , C) : 0 ∈ F (z) + NC(z)

VI generalizes many problem classes

Nonlinear Equations: F (z) = 0 set C ≡ Rn

Convex optimization: F (z) = ∇f (z)

For NCP: 0 ≤ F (z) ⊥ z ≥ 0, set C ≡ Rn
+

For MCP (rectangular VI), set C ≡ [l , u]n.

For LP, set F (z) ≡ ∇f (z) = p and C = {z : Az = a,Hz ≤ h}.
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VI: 0 ∈ F (z) +NC(z)

C

−F (z∗)

z∗

Nomal cone NC (z∗)

v

y − z∗

Many applications where F is not the derivative of some f
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Other applications of complementarity

Economics: Walrasian equilibrium (supply equals demand), taxes and
tariffs, computable general equilibria, option pricing (electricity
market), airline overbooking

Transportation: Wardropian equilibrium (shortest paths), selfish
routing, dynamic traffic assignment

Applied mathematics: Free boundary problems

Engineering: Optimal control (ELQP)

Mechanics: Structure design, contact problems (with friction)

Geology: Earthquake propogation
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Tradeoff accuracy and simple structure
Many models from statistics: e.g. regression:

min
x
‖Ax − y‖2

Additional structure: Compressed sensing: sparse signal to account for y

min
x
‖Ax − y‖2

2 s.t. ‖x‖0 ≤ c

Regularized regression:

min
x
‖Ax − y‖2

2 + α ‖x‖1

Machine learning: SVM for classification

min
w ,ξ,γ

∑

i

ξi +
α

2
‖w‖2 s.t. D(Aw − γ1) ≥ 1− ξ

General model:
min
x∈X

E (x) + αS(x)

X are constraints, E measures “error” and S penalizes bad structure
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Image denoising (Wright)

Rudin-Osher-Fatemi (ROF) model (`2−TV). Given a domain Ω ⊂ R2 and
an observed image f : Ω 7→ R, seek a restored image u : Ω 7→ R that
preserves edges while removing noise. The regularized image u can
typically be stored more economically. Seek to “minimize” both

‖u − f ‖2 and

the total-variation (TV) norm
∫

Ω |∇u| dx
Use constrained formulations, or a weighting of the two objectives:

min
u

P(u) := ‖u − f ‖2
2 + α

∫

Ω
|∇u| dx

The minimizing u tends to have regions in which u is constant (∇u = 0).
More “cartoon-like” when α is large.
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Original, noisy, denoised (tol = 10−2, 10−4)

Figure: CAMERAMAN: original (left) and noisy (right)

Stephen Wright (UW-Madison) TV-Regularized Image Denoising Vienna, July 2009 19 / 34

Figure: Denoised CAMERAMAN: Tol=10−2 (left) and Tol=10−4 (right).

Stephen Wright (UW-Madison) TV-Regularized Image Denoising Vienna, July 2009 20 / 34
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Conclusions

Convexity separates easy optimization problems from hard ones

Modern convex analysis extends linear programming to richer but still
tractable settings

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

Variational inequalities and set valued analysis important tools for big
data problems

Modeling, optimization, statistics and computation embedded within
the application domain is critical

Many new settings available for deployment; need for more theoretic
and algorithmic enhancements
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Complementarity Problems via Graphs

T = NR+ = (R+ × {0})
⋃

({0} × R−)

T is “monotone”

−y ∈ T (z) ⇐⇒ (z ,−y) ∈ T ⇐⇒ 0 ≤ y ⊥ z ≥ 0

By approximating (smoothing) graph can generate interior point
algorithms for example yz = ε, y , z > 0

0 ∈ F (z) +NRn
+

(z) ⇐⇒ (z ,−F (z)) ∈ T n ⇐⇒ 0 ≤ F (z) ⊥ z ≥ 0
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Operators and Graphs (C = [−1, 1], T = NC)

zi = −1,−Fi (z) ≤ 0 or zi ∈ (−1, 1),−Fi (z) = 0 or zi = 1,−Fi (z) ≥ 0

T (z) T −1(y) (I + T )−1(y) = PT (y)

PT (y) is the projection of y onto [−1, 1]
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Generalized Equations

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1

If T is polyhedral (graph of T is a finite union of convex polyhedral
sets) then PT is piecewise affine (continous, single-valued,
non-expansive)

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) ∈ (I + T )(z) ⇐⇒ PT (z − F (z)) = z

Use in fixed point iterations (cf projected gradient methods)
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Splitting Methods

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Can devise Newton methods (e.g. SQP) that treat F via calculus and
T via convex analysis

Alternatively, can split F (z) = A(z) + B(z) (and possibly T also) so
we solve solve (GE) by solving a sequence of problems involving just

T1(z) = A(z) and T2(z) = B(z) + T (z)

where each of these is “simpler”

Forward-Backward splitting (or ADMM):

zk+1 = (I + ckT2)−1 (I − ckT1)
(
zk
)
,
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Normal Map

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1 (continuous, single-valued, non-expansive)

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) = x and x ∈ (I + T )(z)

⇐⇒ z − F (z) = x and PT (x) = z

⇐⇒ PT (x)− F (PT (x)) = x

⇐⇒ 0 = F (PT (x)) + x − PT (x)

This is the so-called Normal Map Equation
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Normal manifold = {Fi + NFi
}
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C = {z |Bz ≥ b},NC (z) = {B ′v |v ≤ 0, vI(z) = 0}
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C = {z |Bz ≥ b},NC (z) = {B ′v |v ≤ 0, vI(z) = 0}
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C = {z |Bz ≥ b},F (z) = Mz + q
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The PATH algorithm

Start in cell that has interior
(face is an extreme point)

Move towards a zero of
affine map in cell

Update direction when hit
boundary (pivot)

Solves or determines
infeasible if M is
copositive-plus on rec(C )

Solves 2-person bimatrix
games, 3-person games too,
but these are nonlinear

Cao/Ferris Path (Eaves) 
•  Start in cell that has 

interior (face is an 
extreme point) 

•  Move towards a zero of 
affine map in cell 

•  Update direction when 
hit boundary 

•  Solves or determines 
infeasible if M is 
copositive-plus on rec(C) 

•  Nails 2-person game 

But algorithm has exponential complexity (von Stengel et al)
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Theorem

Suppose C is a polyhedral convex set and M is an L–matrix with respect
to recC which is invertible on the lineality space of C. Then exactly one of
the following occurs:

PATHAVI solves (AVI)

the following system has no solution

Mz + q ∈ (recC)D , z ∈ C. (1)

Corollary

If M is copositive–plus with respect to recC, then exactly one of the
following occurs:

PATHAVI solves (AVI)

(1) has no solution

Note also that if C is compact, then any matrix M is an L–matrix with
respect to recC. So always solved.
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Experimental results: AVI vs MCP
PATH is a solver for MCP (mixed complementarity problem).

Run PathAVI over AVI formulation.

Run PATH over AVI in MCP form (poorer theory as recC larger).
Data generation

I M is an n × n symmetric positive definite/indefinite matrix.
I A has m randomly generated bounded inequality constraints.

(m, n)
PathAVI PATH % negative

status # iterations status # iterations eigenvalues

(180,60) S 55 S 72 0
(180,60) S 45 S 306 20
(180,60) S 2 F 9616 60
(180,60) S 1 F 10981 80

(360,120) S 124 S 267 0
(360,120) S 55 S 1095 20
(360,120) S 2 F 10020 60
(360,120) S 1 F 7988 80

Ferris (Univ. Wisconsin) Optimality and Complementarity Zinal, Jan 2017 12 / 16



Complementarity Systems (DVI)

dx
dt (t) = f (x(t), z(t))

y(t) = h(x(t), z(t))

0 ≤ y(t) ⊥ z(t) ≥ 0

saturation relay relay with dead zone

Ferris (Univ. Wisconsin) Optimality and Complementarity Zinal, Jan 2017 13 / 16



Complementarity Systems (DVI)

dx
dt (t) = f (x(t), z(t))

y(t) = h(x(t), z(t))

0 ≤ y(t) ⊥ z(t) ≥ 0

saturation relay relay with dead zone

Ferris (Univ. Wisconsin) Optimality and Complementarity Zinal, Jan 2017 13 / 16



Complementarity Systems (DVI)

dx
dt (t) = f (x(t), z(t))

y(t) = h(x(t), z(t))

(z(t),−y(t)) ∈ T

saturation relay relay with dead zone
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Bimatrix Games: Golden Balls

VI can be used to formulate many standard problem instances
corresponding to special choices of M and C.

Nash game: two players have I and J pure strategies.

p and q (strategy probabilities) belong to unit simplex 4I and 4J

respectively.

Payoff matrices A ∈ RJ×I and B ∈ R I×J , where Aj ,i is the profit
received by the first player if strategy i is selected by the first player
and j by the second, etc.

The expected profit for the first and the second players are qTAp and
pTBq respectively.

A Nash equilibrium is reached by the pair of strategies (p∗, q∗) if and
only if

p∗ ∈ arg min
p∈4I

〈Aq∗, p〉 and q∗ ∈ arg min
q∈4J

〈BTp∗, q〉
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Formulation using complementarity

The optimality conditions for the above problems are:

−Aq∗ ∈ N4I
(p∗) and − BTp∗ ∈ N4J

(q∗)

Therefore the corresponding VI is affine and can be written as:

0 ∈
[

0 A
BT 0

] [
p
q

]
+ N4I×4J

(

[
p
q

]
). (2)
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

dualvar (use multipliers from one agent as variables for another)

QS functions (both in objectives and constraints)

Currently available within GAMS (full license available to course
participants until March X, 2017 - contact me!)

Some solution algorithms implemented in modeling system -
limitations on size, decomposition and advanced algorithms

QS extensions to Moreau-Yoshida regularization, compositions,
composite optimization
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