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Extended Mathematical Programs

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

Give several examples of this: multi-agent competitive models, bilevel
programming, variational inequalities
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Model building with EMP

Take one system of (nonlinear) relations and annotate them to:
I form a simple nonlinear program (no annotations)
I form a complementarity problem from an embedded optimization

problem (nlp with side constraints outside of optimizers control)
I form an equilibrium model consisting of optimality conditions of several

nlp’s along with equilibrium constraints (MOPEC)
I form a bilevel program (an optimization problem with optimization

problems as constraints)
I Can assign multipliers (prices) from one sub-model as variables in

another model (PIES)
I Can reformulate nonsmooth models using duality (QS)
I Can introduce random variables into a model

The annotations essentially detail who controls which equations and
variables
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Spatial Price Equilibrium
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n ∈ {1, 2, 3, 4, 5, 6}
L ∈ {1, 2, 3}

Supply quantity: SL
Production cost: Ψ(SL) = ..

Demand: DL

Unit demand price: θ(DL) = ..
Transport: Tij

Unit transport cost: cij(Tij) = ..

One large system of equations and inequalities to describe this (GAMS).
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Nonlinear Program Model (Monopolist)

One producer controlling all regions

Full knowledge of demand system

Full knowledge of transportation system

max
(D,S ,T )∈F

∑
l∈L

θl(Dl)Dl −
∑
l∈L

Ψl(Sl)−
∑
i ,j

cij(Tij)Tij

s.t. Sl +
∑
i ,l

Til = Dl +
∑
l ,j

Tlj , ∀l ∈ L

EMP = NLP
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2 agents: NLP + VI Model (Monopolist)

One producer controlling all regions

Full knowledge of demand system

Price-taker in transportation system

pij

max
(D,S ,T )∈F

∑
l∈L

θl(Dl)Dl −
∑
l∈L

Ψl(Sl)−
∑
i ,j

���
�XXXXcij(Tij)Tij (1)

s.t. Sl +
∑
i ,l

Til = Dl +
∑
l ,j

Tlj , ∀l ∈ L

pij = cij(Tij) (2)

empinfo: equilibrium
vi tcDef tc

EMP = MOPEC =⇒ MCP
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EMP: MOPEC
Model has the format:

Agent o: min
x

f (x , y)

s.t. g(x , y) ≤ 0 (⊥ λ ≥ 0)

Agent v: H(x , y , λ) = 0 (⊥ y free)

Difficult to implement correctly (multiple optimization models)
Can do automatically - simply annotate equations
empinfo: equilibrium
min f x defg
vi H y
dualvar λ defg
EMP tool automatically creates an MCP

∇x f (x , y) + λT∇g(x , y) = 0

0 ≤ −g(x , y) ⊥ λ ≥ 0

H(x , y , λ) = 0
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World Bank Project (Uruguay Round)

24 regions, 22 commodities
I Nonlinear complementarity

problem
I Size: 2200 x 2200

Short term gains $53 billion p.a.
I Much smaller than previous

literature

Long term gains $188 billion p.a.
I Number of less developed

countries loose in short term

Unpopular conclusions - forced
concessions by World Bank

Region/commodity structure not
apparent to solver

Application: Uruguay Round
• World Bank Project with 

Harrison and Rutherford
• 24 regions, 22 commodities

– 2200 x 2200 (nonlinear)
• Short term gains $53 billion p.a.

– Much smaller than previous 
literature

• Long term gains $188 billion p.a.
– Number of less developed 

countries loose in short term
• Unpopular conclusions – forced 

concessions by World Bank
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Classic SPE Model (NLP + VI agents)

One producer controlling all regions

Price-taker in demand system

Price-taker in transportation system

πl pij

max
(D,S ,T )∈F

∑
l∈L
���

�XXXXθl(Dl)Dl −
∑
l∈L

Ψl(Sl)−
∑
i ,j

���
�XXXXcij(Tij)Tij (1)

s.t. Sl +
∑
i ,l

Til = Dl +
∑
l ,j

Tlj , ∀l ∈ L

pij = cij(Tij) (2)

πl = θl(Dl) (3)

empinfo: vi tcDef tc
vi pricedef price

EMP = MOPEC =⇒ MCP
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Cournot-Nash equilibrium (multiple agents)

Assumes that each agent (producer):

Treats other agent decisions as fixed

Is a price-taker in transport and demand

EMP info file
equilibrium
max obj(’one’) vars(’one’) eqns(’one’)
max obj(’two’) vars(’two’) eqns(’two’)
max obj(’three’) vars(’three’) eqns(’three’)
vi tcDef tc
vi pricedef price

EMP = MOPEC =⇒ MCP
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Nash Equilibria

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , q),∀i ∈ I

x−i are the decisions of other players.

Quantities q given exogenously, or via complementarity:

0 ≤ H(x , q) ⊥ q ≥ 0

empinfo: equilibrium
min loss(i) x(i) cons(i)
vi H q

Applications: Discrete-Time Finite-State Stochastic Games.
Specifically, the Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry.
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Key point: models generated correctly solve quickly
Here S is mesh spacing parameter

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200 (with new basis extensions in PATH)

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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Bimatrix Games: Golden Balls

MOPEC can be used to formulate many standard problem instances
corresponding to special choices of M and C.

Nash game: two players have I and J pure strategies.

p and q (strategy probabilities) belong to unit simplex 4I and 4J

respectively.

Loss matrices A ∈ R I×J and B ∈ R I×J , where Ai ,j is the loss incurred
by the first player if strategy i is selected by the first player and j by
the second, etc.

The expected loss for the first and the second players are pTAq and
pTBq respectively.

A Nash equilibrium is reached by the pair of strategies (p∗, q∗) if and
only if

p∗ ∈ arg min
p∈4I

pTAq∗ and q∗ ∈ arg min
q∈4J

(p∗)TBq
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Formulation using complementarity

The optimality conditions for the above problems are:

−Aq∗ ∈ N4I
(p∗) and − BTp∗ ∈ N4J

(q∗)

Therefore the corresponding VI is affine and can be written as:

0 ∈
[

0 A
BT 0

] [
p
q

]
+ N4I×4J

(

[
p
q

]
). (1)
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General Equilibrium models

(C ) : max
xk∈Xk

Uk(xk) s.t. pT xk ≤ ik(y , p)

(I ) :ik(y , p) = pTωk +
∑
j

αkjp
Tgj(yj)

(P) : max
yj∈Yj

pTgj(yj)

(M) : max
p≥0

pT

∑
k

xk −
∑
k

ωk −
∑
j

gj(yj)

 s.t.
∑
l

pl = 1

This is an example of a MOPEC
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Optimal Yacht Rig Design

Current mast design trends use
a large primary spar that is
supported laterally by a set of
tension and compression
members, generally termed the
rig

Reduction in either the weight
of the rig or the height of the
VCG will improve performance

Design must work well under a
variety of weather conditions

Optimal Yacht Rig Design
• Current mast design 

trends use a large 
primary spar that is 
supported laterally by a 
set of tension and 
compression members, 
generally termed the rig

• Reduction in either the 
weight of the rig or the 
height of the VCG will 
improve performance
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Complementarity feature

Stays are tension only
members (in practice) -
Hookes Law

When tensile load becomes
zero, the stay goes slack
(low material stiffness)

0 ≥ s ⊥ s − kδ ≤ 0
I s axial load
I k member spring constant
I δ member extension

Either si = 0 or si = kδi

Complementarity Feature

• Stays are tension-
only members (in 
practice) – Hookes
Law

• When tensile load 
becomes zero, the 
stay goes slack (low 
material stiffness)

s: axial load
k: member spring constant
dl: member length extension
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EMP: MPCC: complementarity constraints

min
x ,y

f (x , y)

s.t. g(x , y) ≤ 0,
0 ≤ y ⊥ h(x , y) ≥ 0

g , h model “engineering” expertise: finite elements, etc

⊥ models complementarity, disjunctions

Complementarity “⊥” constraints available in AIMMS, AMPL and
GAMS

NLPEC: use the convert tool to automatically reformulate as a
parameteric sequence of NLP’s

Solution by repeated use of standard NLP software
I Problems solvable, local solutions, hard
I Southern Spars Company (NZ): improved from 5-0 to 5-2 in America’s

Cup!
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MPCC approaches

Implicit: minx f (x , y(x))

Auxiliary variables: s = h(x , y)

NCP functions: Φ(y , s) = 0

Smoothing: Φµ(y , s) = 0

Penalization: min f (x , y) + µyT s

Relaxation: yT s ≤ µ

Different problem classes require different solution techniques
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Parametric algorithm: NLPEC

Reftype mult

Aggregate none

Constraint inequality

Initmu = 0.01

Numsolves = 5

Updatefac = 0.1

Finalmu = 0

A solution procedure whereby µ is
successively reduced can be
implemented as a simple option file
to NLPEC

min
x∈Rn,y∈Rm,s∈Rm

f (x , y)

s.t. g(x , y) ≤ 0

s = h(x , y)

y ≥ 0, s ≥ 0

yi si ≤ µ, i = 1, . . . ,m.

Note that a series of approximate
problems are produced,
parameterized by µ > 0; each of
these approximate problems have
stronger theoretical properties than
the problem with µ = 0
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Bilevel Program (Stackelberg)

Assumes one leader firm, the rest follow

Leader firm optimizes subject to expected follower behavior

Follower firms act in a Nash manner

All firms are price-takers in transport and demand

EMP info file

bilevel obj(’one’) vars(’one’) eqns(’one’)
max obj(’two’) vars(’two’) eqns(’two’)
max obj(’three’) vars(’three’) eqns(’three’)
vi tcDef tc
vi pricedef price

EMP = bilevel =⇒ MPEC =⇒ (via NLPEC) NLP(µ)
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Hierarchical models

Bilevel programs:

min
x∗,y∗

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
y∗ solves min

y
v(x∗, y) s.t. h(x∗, y) ≤ 0

model bilev /deff,defg,defv,defh/;
empinfo: bilevel min v y defv defh

EMP tool automatically creates the MPCC

min
x∗,y∗,λ

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
0 ≤ ∇v(x∗, y∗) + λT∇h(x∗, y∗) ⊥ y∗ ≥ 0
0 ≤ −h(x∗, y∗) ⊥ λ ≥ 0
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Biological Pathway Models

Opt knock (a bilevel program)
max bioengineering objective (through gene knockouts)
s.t. max cellular objective (over fluxes)

s.t. fixed substrate uptake
network stoichiometry
blocked reactions (from outer problem)

number of knockouts ≤ limit

Also prediction models of the form:

min
∑
i ,j

‖wi − vj‖

s.t. Sv = w

− v̄L ≤ v ≤ v̄U , wj = w̄j

Can be modeled as an SOCP.
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The overall scheme!

Collection of algebraic equations

Form a bilevel program via emp

EMP tool automatically creates the MPCC (model transformation)

NLPEC tool automatically creates (a series of) NLP models (model
transformation)

GAMS automatically rewrites NLP models for global solution via
BARON (model transformation)

Is this global? What’s the hitch?

Note that heirarchical structure is available to solvers for analysis or
utilization
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Variational inequality (VI)

Given

a continuous function F : Rn → Rn

a closed convex set C

Find a z∗ ∈ C satisfying

〈F (z∗), y − z∗〉 ≥ 0, ∀y ∈ C

(⇐⇒) − F (z∗) ∈ NC (z∗)

NC (z∗) = {v | 〈v , y − z∗〉 ≤ 0, ∀y ∈ C}

Solving a VI is equivalent to solving
the generalized equation (GE)

0 ∈ F (z) + NC (z) (GE)

C

−F (z∗)

z∗

Nomal cone NC (z∗)

v

y − z∗
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Variational inequalities

Find z ∈ C such that

0 ∈ F (z) +NC (z)

Many applications where F is not the derivative of some f

model vi / F, g /;
empinfo: vi F z g

Convert problem into complementarity problem by introducing
multipliers on representation of C

Can now do MPEC (as opposed to MPCC)!

Projection algorithms, robustness (evaluate F only at points in X )
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What else can be modeled using complementarity

min(F (x),G (x)) ≤ y

min(F1(x),F2(x), . . . ,Fm(x)) = 0

kth largest of {F1(x),F2(x), . . . ,Fm(x)} = 0

Switch off: g(x)h(x) ≤ 0, h(x) ≥ 0
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Conclusions

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Extended Mathematical Programming available within the GAMS
modeling system

Able to pass additional (structure) information to solvers

Embedded optimization models automatically reformulated for
appropriate solution engine

Exploit structure in solvers

Extend application usage further
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