Formulations and solution algorithms for Complementarity Problems (or seven ways to skin a cat)

Michael C. Ferris

University of Wisconsin, Madison

Funded by AFOSR and NSF

Zinal, January 19, 2017

AVI over polyhedral convex set

An affine function

$$F: \mathbb{R}^n \to \mathbb{R}^n, \ F(z) = Mz + q, \ M \in \mathbb{R}^{n \times n}, \ q \in \mathbb{R}^n$$

A polyhedral convex set

$$\mathcal{C} = \{ z \in \mathbb{R}^n \mid Az(\geq, =, \leq)a, \ l \leq z \leq u \}, \ A \in \mathbb{R}^{m \times n}$$

Find a point $z^* \in \mathcal{C}$ satisfying

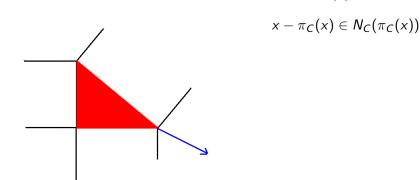
$$\begin{array}{ll} \langle F(z^*), y - z^* \rangle & \geq 0, \quad \forall y \in \mathcal{C} \\ (\Leftrightarrow) \ \langle -F(z^*), y - z^* \rangle & \leq 0, \quad \forall y \in \mathcal{C} \\ (\Leftrightarrow) \ -F(z^*) & \in N_{\mathcal{C}}(z^*) \end{array}$$

where

$$N_{\mathcal{C}}(z^*) = \{ v \mid \langle v, y - z^* \rangle \leq 0, \forall y \in \mathcal{C} \}$$

ELE NOR

Normal map for polyhedral C

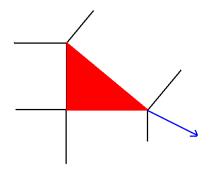


Ferris (Univ. Wisconsin)

projection: $\pi_C(x)$

15

Normal map for polyhedral C



projection:
$$\pi_C(x)$$

 $x - \pi_C(x) \in N_C(\pi_C(x))$
If $-M\pi_C(x) - q = x - \pi_C(x)$ then
So $z = \pi_C(x)$ solves
 $0 \in M\pi_C(x) + q + N_C(\pi_C(x))$
if and only if we can find x, a zero

of the normal map:

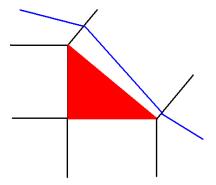
$$0 = M\pi_C(x) + q + x - \pi_C(x)$$

ъ

The PATHAVI algorithm

- Start in cell that has interior (face is an extreme point, so normal cone has interior primary ray)
- Move towards a zero of affine map in cell
- Update direction when hit boundary (pivot)
- Solves, or determines infeasible if *M* is copositive-plus on rec(*C*)
- Solves 2-person bimatrix games, 3-person games too, but these are nonlinear

But algorithm has exponential complexity (von Stengel et al)



Theorem

Suppose C is a polyhedral convex set and M is an L-matrix with respect to recC which is invertible on the lineality space of C. Then exactly one of the following occurs:

- PATHAVI solves (AVI)
- the following system has no solution

$$Mz + q \in (\operatorname{rec} \mathcal{C})^D, \qquad z \in \mathcal{C}.$$

Corollary

If M is copositive–plus with respect to $\operatorname{rec} C$, then exactly one of the following occurs:

- PATHAVI solves (AVI)
- (1) has no solution

Note also that if C is compact, then any matrix M is an L-matrix with respect to recC. So always solved.

Ferris (Univ. Wisconsin)

Experimental results: AVI vs MCP

PATH is a solver for MCP (mixed complementarity problem).

- Run PathAVI over AVI formulation.
- Run PATH over AVI in MCP form (poorer theory as recC larger).

Data generation

- *M* is an $n \times n$ symmetric positive definite/indefinite matrix.
- A has *m* randomly generated bounded inequality constraints.

(<i>m</i> , <i>n</i>)	PathAVI		PATH		% negative
	status	# iterations	status	# iterations	eigenvalues
(180,60)	S	55	S	72	0
(180,60)	S	45	S	306	20
(180,60)	S	2	F	9616	60
(180,60)	S	1	F	10981	80
(360,120)	S	124	S	267	0
(360,120)	S	55	S	1095	20
(360,120)	S	2	F	10020	60
(360,120)	S	1	F	7988	80

Extension to Nonlinear Model

- So now we can solve AVI, what happens when F is nonlinear
- Embed AVI solver in a Newton Method each Newton step solves an AVI
- Nonlinear equations F(x) = 0
- Newton's Method

 $F(x^{k}) + \nabla F(x^{k})d^{k} = 0$ $x^{k+1} = x^{k} + d^{k}$

- Damp using Armijo linesearch on $\frac{1}{2} \|F(x)\|_2^2$
- Descent direction gradient of merit function
- Properties
 - Well defined
 - Global and local-fast convergence

Nonsmooth Newton Method Given x^k

solve:
$$0 \in F(x^k) + \nabla F(x^k)(x - x^k) + N_C(x)$$

 $d_k = x^* - x^k, x^*$ from above
 $x^{k+1} = x^k + \alpha d^k$

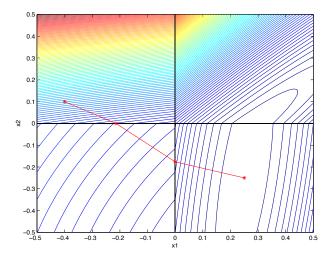
• Equivalent piecewise smooth equation $F_+(x) = 0$

$$F_+(x) \equiv F(\pi_C(x)) + x - \pi_C(x)$$

(when $C = \mathbb{R}^n_+$ then $\pi_C(x) = max(x, 0)$ is easy to compute)

- Nonsmooth Newton Method
 - Iteratively solve piecewise linear system of equations, via pivoting
 - Damp using Armijo search on $\frac{1}{2} \|F_+(x)\|_2^2$
- Properties
 - Global and local-fast convergence
 - Merit function not differentiable

Piecewise Linear Example



三日 のへの

-

• • • • • • • • • • • •

Fischer-Burmeister Function

$$\phi(a, b) := \sqrt{a^2 + b^2} - a - b$$

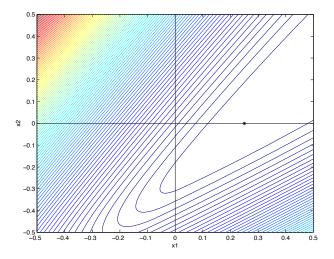
 $\phi(a, b) = 0 \iff 0 \le a \perp b \ge 0$

• $\Phi(x)$ defined componentwise

$$\Phi_i(x) \equiv \sqrt{(x_i)^2 + (F_i(x))^2 - x_i - F_i(x)}$$

- $\Phi(x) = 0$ if and only if x solves NCP(F)
- Not continuously differentiable semismooth
- Natural merit function $(\frac{1}{2} \|\Phi(x)\|_2^2)$ is differentiable

Fischer-Burmeister Example



Ferris (Univ. Wisconsin)

Zinal, Jan 2017 11 / 30

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の< ○

Review

- Nonlinear Complementarity Problem
- Piecewise smooth system of equations
 - Use nonsmooth Newton Method
 - Solve linear complementarity problem per iteration
 - Merit function not differentiable

• Fischer-Burmeister

- Differentiable merit function
- Combine to obtain new algorithm
 - Well defined
 - Global and local-fast convergence

ELE NOR

Feasible Descent Framework

- Calculate direction using a local method
 - Generates feasible iterates
 - Local fast convergence
 - Used nonsmooth Newton Method
- Accept direction if descent for $\frac{1}{2} \|\Phi(x)\|^2$
- Otherwise use projected gradient step

Theorem

Let $\{x^k\} \subseteq \Re^n$ be a sequence generated by the algorithm that has an accumulation point x^* which is a strongly regular solution of the NCP. Then the entire sequence $\{x^k\}$ converges to this point, and the rate of convergence is Q-superlinear.

- Method is well defined
- Accumulation points are stationary points
- Locally projected gradient steps not used

Ferris (Univ. Wisconsin)

Computational Details

- Preprocessing to simplify without changing underlying problem
- Crashing method to quickly identify basis
- Nonmonotone search with watchdog
- Perturbation scheme for rank deficiency
- Stable interpolating pathsearch
- Restart strategy
- Projected gradient searches

Nonlinear Complementarity Problems

- Given $F: \Re^n \to \Re^n$
- Find $x \in \Re^n$ such that

 $0 \le F(x) \qquad x \ge 0$ $x^T F(x) = 0$

• Compactly written

 $0 \leq F(x) \perp x \geq 0$

• Equivalent to nonsmooth equation (min-map):

 $\min(x,F(x))=0$

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のなべ

Nonsmooth alternatives

The normal map is one nonsmooth equation reformulation of the nonlinear complementarity problem.

We have just seen two alternatives

- Fischer-Burmeister $\Phi(x) = 0$
- in-map min(x, F(x)) = 0

Alternative methods generate generalized derivatives of these nonsmooth functions and use within nonsmooth Newton methods

- Approaches are relatively simple to implement and work well in many (well defined) cases
- Fundamental difference is nonsmoothness is outside F
- PATH tends to perform better (due to the heuristic extensions) on harder/messier problems

JIN NOR

Smoothing: The Fischer Function [Burmeister]

• For NCP (with $\mu > 0$):

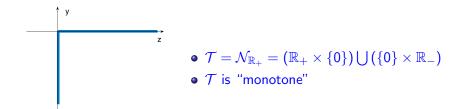
$$0 = \phi_{\mu}(x_i, F_i(x)), i = 1, 2, \dots, n$$

where

$$\phi_{\mu}(a,b) := \sqrt{a^2 + b^2 + \mu} - a - b$$

- Gives rise to semismooth algorithms
- Need to drive μ to 0, no longer nonsmooth
- Available within NLPEC

Complementarity Problems via Graphs



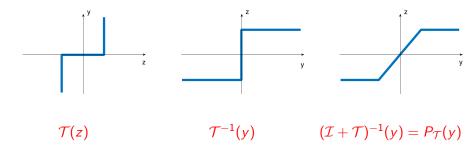
$$-y \in \mathcal{T}(z) \iff (z,-y) \in \mathcal{T} \iff 0 \leq y \perp z \geq 0$$

By approximating (smoothing) graph can generate interior point algorithms for example $yz = \epsilon, y, z > 0$

 $0 \in F(z) + \mathcal{N}_{\mathbb{R}^n_+}(z) \iff (z, -F(z)) \in \mathcal{T}^n \iff 0 \leq F(z) \perp z \geq 0$

Operators and Graphs $(\mathcal{C} = [-1, 1], \mathcal{T} = \mathcal{N}_{\mathcal{C}})$

$$z_i = -1, -F_i(z) \le 0 \text{ or } z_i \in (-1, 1), -F_i(z) = 0 \text{ or } z_i = 1, -F_i(z) \ge 0$$



 $P_{\mathcal{T}}(y)$ is the projection of y onto [-1,1]

JI SOCO

- - E - N

Generalized Equations

ullet Suppose ${\mathcal T}$ is a maximal monotone operator

$$0 \in F(z) + \mathcal{T}(z)$$
 (GE)

- Define $P_{\mathcal{T}} = (\mathcal{I} + \mathcal{T})^{-1}$
- If \mathcal{T} is polyhedral (graph of \mathcal{T} is a finite union of convex polyhedral sets) then $P_{\mathcal{T}}$ is piecewise affine (continous, single-valued, non-expansive)

$$egin{aligned} \mathfrak{O} \in F(z) + \mathcal{T}(z) & \iff & z \in F(z) + \mathcal{I}(z) + \mathcal{T}(z) \ & \iff & z - F(z) \in (\mathcal{I} + \mathcal{T})(z) \iff \mathcal{P}_{\mathcal{T}}(z - F(z)) = z \end{aligned}$$

Use in fixed point iterations (cf projected gradient methods): this is in fact just the min-map!

Normal Map

• Suppose ${\mathcal T}$ is a maximal monotone operator

$$0 \in F(z) + \mathcal{T}(z)$$
 (GE)

• Define $P_{\mathcal{T}} = (I + \mathcal{T})^{-1}$ (continuous, single-valued, non-expansive)

$$0 \in F(z) + \mathcal{T}(z) \iff z \in F(z) + \mathcal{I}(z) + \mathcal{T}(z)$$

$$\iff z - F(z) = x \text{ and } x \in (\mathcal{I} + \mathcal{T})(z)$$

$$\iff z - F(z) = x \text{ and } P_{\mathcal{T}}(x) = z$$

$$\iff P_{\mathcal{T}}(x) - F(P_{\mathcal{T}}(x)) = x$$

$$\iff 0 = F(P_{\mathcal{T}}(x)) + x - P_{\mathcal{T}}(x)$$

This is the so-called Normal Map Equation

伺 ト イヨト イヨト ヨヨ のくら

Splitting Methods

• Suppose $\mathcal T$ is a maximal monotone operator

$$0 \in F(z) + \mathcal{T}(z)$$
 (GE)

- $\bullet\,$ Can devise Newton methods (e.g. SQP) that treat F via calculus and ${\cal T}$ via convex analysis
- Alternatively, can split F(z) = A(z) + B(z) (and possibly T also) so we solve solve (GE) by solving a sequence of problems involving just

$$\mathcal{T}_1(z) = A(z)$$
 and $\mathcal{T}_2(z) = B(z) + \mathcal{T}(z)$

where each of these is "simpler"

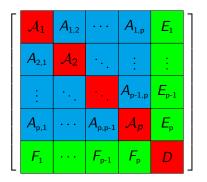
• Forward-Backward splitting (or ADMM):

$$z^{k+1} = (I + c_k T_2)^{-1} (I - c_k T_1) (z^k),$$

The problem

• MOPEC: *x**, *y*:

$$\begin{aligned} & \underset{x_i \in \mathcal{K}_i(x_{-i}^*, y)}{\min} \theta(x_i, x_{-i}^*, y), \forall i \\ & \underset{y \text{ solves }}{\min} VI(F(x^*, \cdot), C) \end{aligned}$$



Ferris (Univ. Wisconsin)

Zinal, Jan 2017 23 / 30

三日 のへの

Strongly Convex Nash Equilibria

$$\min_{\substack{x_1 \ge 0}} \frac{1}{2} x_1^2 - \theta x_1 x_2 - 4 x_1 \text{ s.t. } x_1 + x_2 \ge 1$$
$$\min_{\substack{x_2 \ge 0}} \frac{1}{2} x_2^2 - x_1 x_2 - 3 x_2$$

• No solution for $\theta \geq 1$:

$$x_1(x_2) = (\theta x_2 + 4)_+, \ x_2(x_1) = (x_1 + 3)_+$$

• Solution
$$-\frac{4}{3} \le \theta < 1$$
: $x_1 = \frac{4+3\theta}{1-\theta}$, $x_2 = x_1 + 3$

• Solution
$$heta \leq -rac{4}{3}$$
: $x_1 = 0$, $x_1 = 3$

• Jacobi works provided $\theta < 1$, but theory fails

ELE NOR

The Issues

This is not the optimality conditions of a single optimization problem:

$$0 \leq \begin{bmatrix} 1 & 1 & | & -\theta \\ 1 & 0 & 1 \\ \hline -1 & | & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ -p_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} \perp \begin{bmatrix} x_1 \\ -p_1 \\ x_2 \end{bmatrix} \geq 0$$

- \bullet The matrix ${\cal A}$ in general is never diagonally dominant except in trivial cases
- Iterations based on succesive inversion of local blocks (or successive optimization of local strategies) can converge.
- We establish sufficient conditions which guarantee convergence of block Jacobi and block Gauss-Seidel iterations for such matrices.

Economic Application

- Model is a partial equilibrium, geographic exchange model.
- Goods are distinguished by region of origin.
- There is one unit of region *r* goods.
- These goods may be consumed in region r or they may be exported.
- Each region solves:

 $\min_{X,T_r} f_r(X,T) \text{ s.t. } F(X,T) = 0, \ T_j = \overline{T}_j, j \neq r$

where $f_r(X, T)$ is a quadratic form and F(X, T) is linear and defines X uniquely as a function of T.

• *F*(*X*, *T*) defines an equilibrium; here it is simply a set of equations, not a complementarity problem

Results

Gauss-Seidel residuals							
Iteration	deviation						
1	3.14930		Tariff revenue				
2	0.90970		region	SysOpt	MOPEC		
3	0.14224		1	0.117	0.012		
4	0.02285		2	0.517	0.407		
5	0.00373		3	0.496	0.214		
6	0.00061		4	0.517	0.407		
7	0.00010		5	0.117	0.012		
8	0.00002						
9	0.00000						

- Note that competitive solution produces much less revenue than system optimal solution
- Model has non-convex objective, but each subproblem is solved globally (lindoglobal)

ELE NOR

MIP formulations for Complementarity

Set $y_i = F_i(x)$, then additionally

$$y_i \geq 0, x_i \geq 0, x_i y_i = 0$$

If we know upper bounds on x_i and y_i we can model as:

 $(x_i, y_i) \in SOS1$

or introduce binary variable z_i and

$$x_i \leq M z_i, y_i \leq M(1-z_i)$$

(or use indicator variables to turn on "fixing" constraints). Works if bounds are good and problem size is not too large. Issues with bounds on multipliers not being evident.

MPEC approaches

- Can use nonlinear programming approaches (e.g. NLPEC (see previous lecture))
- Knitro can process MPCC's and uses penalization for complementarity
- Implicit approach: generate y(x) where y solves the parametric (in x) complementarity problem, then solve

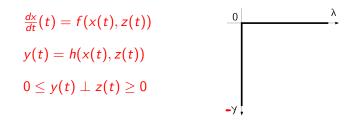
 $\min f(x, y(x))$

using a bundle trust region method for example. Difficult to deal with side constraints.

Conclusions

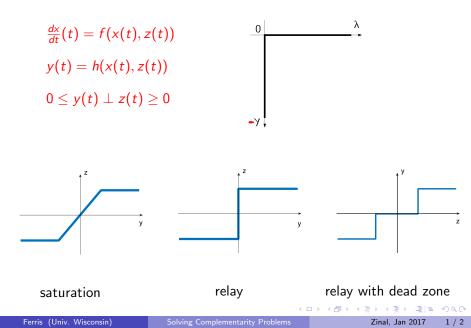
- Many formulations and algorithms for complementarity problems
- PATH algorithm is widely used, available in GAMS, AMPL, AIMMS, JUMP, Matlab, API-format
- Need for more theoretic and algorithmic enhancements in large scale and structured cases
- Need to find all solutions of complementarity problems, or to solve MPEC/MPCC to global optimality

Complementarity Systems (DVI)

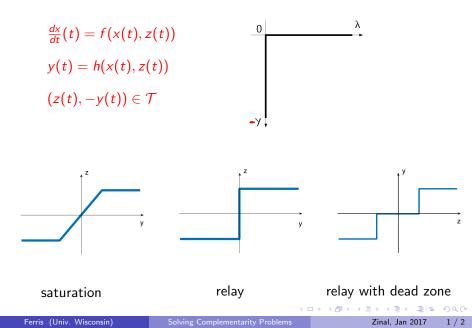


ELE NOR

Complementarity Systems (DVI)



Complementarity Systems (DVI)



Separable Structure

- Partition variables into (x, y)
- Identify separable structure

$$0 \in \left[\begin{array}{c} F(x) \\ G(x,y) \end{array}\right] + \left[\begin{array}{c} N_{\Re_{+}^{n}}(x) \\ N_{\Re_{+}^{n}}(y) \end{array}\right]$$

- Reductions possible if either
 - $0 \in F(x) + N_{\Re_+^n}(x)$ has a unique solution • $0 \in G(x, y) + N_{\Re_+^n}(y)$ has solution for all x
- Theory provides appropriate conditions
- Solve F and G sequentially