
A Pathsearch Damped Newton Method for ComputingGeneral EquilibriaSteven P. Dirkse � Michael C. Ferris �April, 1994AbstractComputable general equilibrium models and other types of variational inequalities play akey role in computational economics. This paper describes the design and implementationof a pathsearch-damped Newton method for solving such problems. Our algorithm improveson the typical Newton method (which generates and solves a sequence of LCP's) in bothspeed and robustness. The underlying complementarity problem is reformulated as a normalmap so that standard algorithmic enchancements of Newton's method for solving nonlinearequations can be easily applied. The solver is implemented as a GAMS subsystem, using aninterface library developed for this purpose. Computational results obtained from a numberof test problems arising in economics are given.1 IntroductionThe variational inequality (VI) is of fundamental importance in computational economicsand in many other disciplines as well. In economics, examples include general, Walrasian,Nash, and spatial price equilibrium models, as well as the optimality conditions for non-linear programming. VI's are common in mathematical programming, game theory, andtransportation and regional science as well.Recently, a complementarity format has been incorporated into the GAMS language andbeen made available by GAMS Development Corporation. This format (called GAMS/MCP)makes use of the CPLIB library (Dirkse, Ferris, Preckel & Rutherford 1993) to formulatecomplementarity problems and pass them on to a complementarity solver. The computed so-lution is then returned to CPLIB and reported by GAMS. Rutherford (1994b) demonstratesthe use of the GAMS/MCP system for equilibriumanalysis and game theory models. In addi-tion, Rutherford (1994a) has embedded MPSGE, a modeling language designed speci�cally�Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706, email:dirkse@cs.wisc.edu, ferris@cs.wisc.edu. This material is based on research supported by the National ScienceFoundation Grant CCR{9157632 and the Air Force O�ce of Scienti�c Research Grant F49620{94{1{0036.1



for solving Arrow-Debreu economic equilibrium models, in GAMS/MCP. An equilibriummodel can be described at a higher level using MPSGE than is possible using GAMS/MCPalone, greatly reducing the work of model formulation. These two systems allow the equilib-riummodeler to take advantage of the power and 
exibility of the GAMS modeling language,while our solver, implemented as a GAMS subsystem, is available for solving such models.A number of methods, surveyed by Harker & Pang (1990), have been proposed andused for computing solutions to variational and complementarity problems. Among themost powerful of these is the adaptation of Newton's method for variational inequalitiesdue originally to Josephy (1979) (see also (Robinson 1993)). As in the smooth case, localquadratic convergence in a region containing a solution point can be shown under suitableconditions. Unfortunately, the method may fail to converge outside of this region, whichmay be quite small. Thus, the success of Newton's method, and Josephy's variant for VI, isvery dependent on the starting point chosen. This lack of robustness in Newton's method fornonlinear equations has been reduced substantially through the use of linesearch techniqueswhich globalize the domain of convergence (Ortega & Rheinboldt 1970).The PATH solver is an extension of Josephy's variant of Newton's method for comple-mentarity problems which includes a pathsearch component. This pathsearch makes use ofa piecewise-linear path from the current iterate to the corresponding \Newton point", andgeneralizes the linesearch used in Newton's method to enlarge the region of convergence. Inaddition, our path construction technique, which is similar to the pivotal method proposedby Lemke & Howson (1964), signi�cantly reduces the number of pivot steps necessary toidentify the Newton point. The pathsearch damping depends on reformulating the problemas one of solving a square system of nonsmooth equations.The purpose of this paper is to describe the design and implementation of a robust, gen-eral purpose, and e�cient Newton method for solving large complementarity problems. Ourimplementation makes use of sparse matrix algebra to increase the dimension of the problemswe can e�ectively solve. It also employs CPLIB to gain access to a large number of equi-librium and complementarity models which have been formulated in GAMS/MCP format(Dirkse & Ferris 1994a, Rutherford 1994a). We believe that the GAMS/MCP system, cou-pled with the PATH solver or with MILES (Anstreicher, Lee & Rutherford 1992, Rutherford1994b), provide economists with more modeling and solving capability than has previouslybeen available. While it is possible to derive convergence results for the PATH solver (Dirkse& Ferris 1994b), we will focus instead on the algorithm employed and the design and imple-mentation issues involved.In order to be solved by the PATH solver, a problem must be expressed as a MixedComplementarity Problem, or MCP. This formulation, also known as the rectangular or box-constrained VI, represents a slight generalization of the standard non-negatively constrainednonlinear complementarity problem, and is described in Section 2.Some de�nitions are in order. The set IRn+ denotes the positive orthant, or the set ofpoints x 2 IRn such that x � 0. Assuming the set C � IRn is closed and convex, wedenote the projection operator onto the set C as �C(�); �C(x) is the unique point in C whichminimizes the Euclidean norm kc� xk2 for c 2 C. The projection of a vector x onto IRn+ isdenoted more simply by x+. 2



2 The Mixed Complementarity ProblemThe Nonlinear ComplementarityProblem (NCP) typically considered in the literature (Harker& Pang 1990) is that of �nding z such thatF (z) � 0; z � 0; hF (z); zi = 0; (NCP)where F : IRn+ ! IRn is a (usually) continuously di�erentiable function of the variable z. Ifwe de�ne a rectangular set or box B := fz j ` � z � ug, where `i 2 [�1;1), ui 2 (�1;1],we see that the constraint z � 0 in the de�nition of NCP is a special instance of z 2 B,where ` = 0 and u =1. The Mixed Complementarity Problem (MCP) is the generalizationof NCP to the case where the variable z is subject to box constraints.De�nition 1 (MCP) Given a function F : IRn ! IRn and bounds ` and u,s: t:�nd z 2 IRn; w; v 2 IRn+F (z) = w � v (1a)` � z � u (1b)(z � `)>w = 0 (1c)(u� z)>v = 0 (1d)In this formulation, w and v are the positive and negative parts of F (z), which must becomplementary to the di�erence between z and its lower and upper bounds ` and u, respec-tively. Note that the choice of z completely determines w and v, so that we can speak of zsolving MCP where convenient.Many problems commonly considered in the literature are equivalent or can be reducedto MCP, including nonlinear equations (B := IRn) and nonlinear complementarity problems.MCP reduces to NCP when the box B de�ned by ` and u is the positive orthant (i.e. ` := 0and u := 1). These bounds imply that z � 0, while (1d) implies that v � 0, so thatF (z) = w � 0, while hF (z); zi = 0 follows from (1c).The variational inequality, or VI, has much in common with the MCP. Given a convexset C � IRn and a function F : C ! IRn, VI(F;C) is de�ned as follows: �nd z 2 C suchthat hF (z); (c� z)i � 0; 8 c 2 C: (VI)If the feasible set C is rectangular, then VI(F;C) and the MCP de�ned by F and C arecompletely equivalent, as their solution sets are identical. A proof of this is elementary.When C is polyhedral rather than rectangular, VI(F;C) can be reduced to an MCP byexplicitly including the dual variables to the constraints de�ning C. Thus, given a box Band a set X := fz j Az � bg, where A 2 IRm�n, it can be shown that VI(F;BTX) isequivalent to VI(H;B � IRm+ ), whereH(z; u) = " F (z) +A>u�Az + b # :3



When equality constraints are used to de�neX, the associated dual variables u are free. Twoadvantages to using the MCP formulation as opposed to the NCP are the explicit treatmentof simple bounds on the variables z and the availability of free variables, which enable theexplicit representation of equality constraints. This is more e�cient than introducing extravariables and equations to deal with general bounds and equality constraints.In order to perform computational tests of our algorithm for solving MCP, we haveformed MCPLIB, a library of complementarity models expressed in GAMS/MCP format(Dirkse & Ferris 1994a). These models come from a wide variety of disciplines, as indicatedin Table 1. In addition to providing a convenient environment in which to test our solver,MCPLIB serves as an example of what is possible using the complementarity format presentin GAMS, and provides a means by which other algorithm developers can test their ownsolvers and compare them with those already available.Table 1: MCPLIB modelsModel origin GAMS �le SizeNonlinear equationsDistillation column modeling hydroc* 39, 99" " methan08 39Nonlinear programmingNLP test problem from Colville (1968) colvncp, colvdual 15, 20Obstacle problems obstacle, bratu NNonlinear complementarity josephy, kojshin 4Elastohydrodynamic lubrication ehl kost NVariational inequalitiesNash equilibrium nash, choi 10, 14Spatial price equilibrium sppe, tobin 27, 42Walrasian equilibrium mathi* 4" " scarfa*, scarfb* 14, 40Tra�c assignment bertseka, gafni 15, 5Invariant capital stock hanskoop 14Project Independence energy system (PIES) pies 42Von Th�unen land use vonthun 186Extended linear-quadratic programmingOptimal control opt cont NIn addition, Rutherford (1994a) has embedded MPSGE, a modeling language designedspeci�cally for solving Arrow-Debreu economic equilibrium models, in GAMS/MCP. Thereis also a library of general equilibrium models which accompanies this. With MPSGE, anequilibrium model can be described at a higher level than that possible using GAMS/MCPalone. Although not as 
exible as GAMS/MCP, MPSGE allows a much more concise de�ni-tion of those models for which it is appropriate, thus avoiding the tedium and error associated4



with a more explicit de�nition.As an example of how GAMS/MCP is used, we include the GAMS model for a simpleWalrasian equilibrium problem given by Mathiesen (1987). The equilibrium conditions forthis model are b� d(p) +Ay � 0; p � 0; ? (2)�A>p � 0; y � 0; ?; (3)where the demand function d(�) is de�ned bydi(p) := ai Pk bkpkpiand the data a, b and A are given. The GAMS model for this problem, without the obviousparameter de�nitions, is given in Figure 1. The key statement in the model in Figure 1 issets COM / 1 * 3 /, /* commodities */S / 1 /; /* production sectors/activities */alias (COM,K);parameters a(COM), /* demand shares */b(COM), /* endowments */A(COM,S); /* activity analysis */positive variablesp(COM), /* commodity prices */y(S); /* activity levels */equationssupply(COM), /* excess */profit(S);supply(COM) .. b(COM) -a(COM) * sum(K, b(K)*p(K)) / p(COM)+ sum(S, A(COM,S)*y(S)) =g= 0;profit(S) .. -sum(COM, p(COM)*A(COM,S)) =g= 0;model mathiesen / supply.p, profit.y /;solve mathiesen using mcp;Figure 1: A Walrasian model in GAMS/MCP formatthe model statement. The dot notation is used there to indicate that a complementarityrelationship must hold between the associated function{variable pair. The complementarityrelationships determined by all function{variable pairs de�ned in the model statement, whencoupled with the bounds de�ned for the variables, are equivalent to an MCP given by afunction F and a box B. It is this F and B which are passed to a solver.Our solver makes use of CPLIB, a subroutine library that acts as an interface to GAMS.Its primary function is to interpret the complementarity relationships de�ned by the model5



statement, verify that these relationships are valid, and provide the user with function,gradient, and bound information for the corresponding F and B. There are also routinesfor getting initial values of the problem variables and for reporting solution results, as wellas a number of routines which enable the user to read and write model data and parametervalues. In addition, CPLIB provides the Fortran programmer with the option of dynamicallyallocating one block of memory, to be used by the solution algorithm. This avoids the needto build any limits on problem size into a solver at compile time.3 The PATH SolverThe PATH solver is an implementation of a stabilized Newton method for solving MCP whichgeneralizes similar techniques used for solving nonlinear equations. The algorithm employedmakes use of the path construction and searching techniques �rst explored by Ralph (1994)and later developed by Dirkse & Ferris (1994b). Before describing this algorithm, we reviewlinesearch damped Newton's method for nonlinear equations. In the sequel, we shall assumethat the function F is di�erentiable on the box B.In the classical damped Newton method for solvingF (x) = 0 (4)(see for example Ortega & Rheinboldt (1970)), the smooth function F is approximated at apoint xk by a linearization Ak de�ned byAk(x) := F (xk) + F 0(xk)(x� xk): (5)The Newton point xkN is a zero of this approximation, i.e. Ak(xkN) = 0. If the Jacobianmatrix F 0(xk) is nonsingular, this zero is unique, and is conceptually easy to �nd. Uponsolving the matrix equation F 0(xk)dk = �F (xk), the Newton point is given by xkN = xk+dk,where dk is the Newton direction. The next iterate in the Newton process is determined bya linesearch along this direction. The new pointxk+1 := xk + �dk;is chosen to satisfy some descent criteria in kFk, with the ultimate goal of �nding a pointx� such that kF (x�)k = 0. Such a point must solve F (x�) = 0 as well.In a damped Newton method for (4), the fact that a solution x� is also a minimizer ofkFk is crucial. However, a solution z� of MCP will not generally minimize kFk. In order toapply a damped Newton method, we must rewrite MCP as a zero-�nding problem. To doso, note that since MCP and VI(F;B) are equivalent, z solves MCP if and only ifh�F (z); b� zi � 0; 8 b 2 B: (6)If we de�ne x := z � F (z), then the inequalityhx� z; b� zi � 0; 8 b 2 B (7)6



follows from (6). But (7) is the projection inequality (Hiriart-Urruty & Lamarechal 1993);assuming z 2 B, (7) holds if and only if z := �B(x), the Euclidean projection of x onto B.Hence, the following equation �F (�B(x)) = x� �B(x); (8)is satis�ed. Conversely, if (8) holds, then since the projection inequality (7) holds for z =�B(x), it follows that (6) holds as well. Thus, �B(x) solves MCP, so that solving equation (8)is equivalent to solving MCP. This is made precise in the following de�nition and theorem.De�nition 2 (Normal Map) Given a convex set B � IRn and a function F : B ! IRn,the normal map FB(�) induced on F by B is de�ned asFB(x) := F (�B(x)) + (x� �B(x)):The corresponding normal equation is then de�ned as0 = FB(x) = F (�B(x)) + (x� �B(x)): (NE)Thus we have shown the following result.Theorem 3 Given a rectangular set B := fz j ` � z � ug and function F : B ! IRn, thevector x 2 IRn solves NE ) z := �B(x) solves MCP, while z solves MCP ) x := z � F (z)solves NE.Since the projection mapping �B is continuous (Hiriart-Urruty & Lamarechal 1993), anecessary and su�cient condition for the continuity of FB is the continuity of F on B.However, since �B is nondi�erentiable, FB also fails to be di�erentiable. In order to betterunderstand the nondi�erentiability of FB, we must take a closer look at the projection �B.We �rst de�ne the faces of B = fz j ` � z � ug. In this case, the faces are essentiallydetermined by forcing some of the de�ning inequalities of B, namely ` � z � u to be satis�edas equalities. Thus, if I and J are disjoint subsets of f1; : : : ; ng, then a corresponding faceof B is fz 2 B j zI = `I ; zJ = uJ g. For example, if B = IRn, then B has only one face,namely B itself. On the other hand, if B = IR2+, the nonnegative orthant of IR2, then thefour faces of B are (0; 0), 0� IR+, IR+�0, and IR2+. These faces are critically related to �Bas we now show. Given a face F of the set B, let � represent all the points in IRn that areprojected onto F by �B. The collection of all such � is called the normal manifold . The sets� are called cells of the normal manifold. It was shown in (Robinson 1992) that each cellis polyhedral and has dimension n and that this collection of cells forms a partition of IRn.Returning to our two examples above, when B = IRn, the only cell is � = IRn, which hasdimension n and partitions IRn. For B = IR2+, the four cells are the orthants of IR2, each ofwhich have dimension 2 and which partition IR2.The normal manifold in IR2 corresponding to the box B := [0;1) � [0; 1] is given inFigure 2.The projection �B(x) onto the box B := [`; u] can be computed component-wise as follows(�B(x))i = 8>><>>:`i if xi < `i;xi if `i � xi � ui;ui if ui < xi: (9)7



B

Figure 2: Normal Manifold for B = [0;1)� [0; 1]In this case, IRn is partitioned into at most 3n rectangular cells where in each cell the functionused to compute �B(x)i is a�ne. Thus, the restriction of the projection operator �B to eachof these cells is a�ne.The normal manifold provides a useful tool for working with the normal map, since itpartitions IRn into a number of cells on each of which �B is a�ne. This in turn allows us toview FB as a smooth nonlinear function on the interior of each each of these cells, or as apiecewise-smooth function over the whole space.In Newton's method for smooth functions, the function F is linearized around a currentiterate xk. In order to linearize FB around xk, we must linearize the function F around thepoint �B(xk). The projection operator, being already piecewise-linear, is left as is. Thislinearization yields a piecewise-linear normal map Ak de�ned byAk(x) := M�B(x) + q + x� �B(x); (10)where M := F 0(�B(xk)) and q := F (�B(xk))�M�B(xk):Construction of the Newton point xkN (i.e. the zero of Ak) is where the majority of thework in this algorithm is performed. We describe here a pivotal method for computing thispoint, given �rst by Ralph (1994), which results in a piecewise linear path from the currentpoint xk to the Newton point. The path pk is parametrized by a variable t which starts at0 and increases to 1 so that pk(0) = xk and pk(1) = xkN . The values of pk(t) at intermediatepoints in the path are generated to satisfyAk(pk(t)) = (1� t)r; (11)8



where r = FB(xk). To calculate the intermediate values of pk(t) we introduce the triplet(z(t); w(t); v(t)) which is de�ned usingz(t) := �B(pk(t)); (12)w(t) := (z(t)� pk(t))+; v(t) := (pk(t)� z(t))+: (13)It is easy to see that pk(t) = z(t)� w(t) + v(t):Substituting these variables into (11) gives the following system:hM �I I ri 26664zwvt 37775 = �q + rl � z � uw; v � 00 � t � 1: (14)The pivotal technique we employ guarantees that the complementarity conditions (12) and(13) are satis�ed at every point on the path. The simple bounds on z determine which cell ofthe normal manifold we are currently in, and thus the direction of movement is determinedby solving the �rst equation of (14). Essentially, we remain in the current cell by �xing someof the variables at their bounds { these are the nonbasic variables. The remaining variables,the so called basic variables, should then correspond to linearly independent columns of thematrix hM �I Ii. These columns make up what is normally called the basis matrix. The�rst equation then uniquely determines a direction in which to move, so that (z(t); w(t); v(t))are updated. When some of the components of ` and u are �nite, a step in this directionwill in general reach a bound before t reaches 1. In this case, the boundary of the currentcell is reached and the set of �xed variables has to be updated. One variable is added to the�xed set, and another is released from its bound, thus determining a pivot. In this manner,a sequence of pivot steps is performed (similar to those of Lemke's method), each of whichincreases t, and that together form the piecewise-linear path pk(t) from xk to xkN . If thebounds on z are in�nite, this is a simple task, since t moves from 0 to 1 in one pivot step,assuming M is invertible. This single pivot step corresponds exactly to the direction �ndingstep in a smooth Newton method.The crucial property of this path is that the norm of the approximation Ak decreaseslinearly in t on the path, i.e. 


Ak(pk(t))


 = (1� t)Ak(xk): (15)This property, fundamental to Newton's method, is illustrated in Figure 3. In this �gure, thefunction F (x) :=Mx+ q, while the boxes are de�ned as IR2 and [0;1)� [0; 1], respectively.9



The contour lines shown represent the Euclidean norm of the piecewise-linear functions FB,while the paths to the Newton point for each mapping are given by the dashed lines. Notethe change in FB at the cell boundaries evident in Figure 3. Each linear segment of eachpath represents a direction taken to minimize the norm of the a�ne map corresponding tothe current cell of the normal manifold.
Figure 3: Contour Plots for FBA number of di�culties can arise while constructing the path. The initial basis may notbe invertible, the value of t may not increase monotonically on the path, and the Newtonpoint pk(1) may never be reached, due either to a cycling of bases or to ray termination.These issues are addressed in Section 4.The path described above enables the application of damping techniques to achieve globalconvergence. In a pathsearch step, the path pk is searched for a point pk(t) which satis�es


FB(pk(t))


 � (1 � �t) 


FB(pk(0))


 ; (16)where � 2 (0; 1). If Ak is a \good" approximation to FB at xk, then (16) is satis�ed for some�t > 0, since 


Ak(pk(t))


 goes to zero linearly as t goes from 0 to 1. The new iterate xk+1in the Newton process is de�ned to be pk(�t). Given the appropriate hypotheses, it can beshown that the sequence 


FB(xk)


 decreases linearly to 0 when �t is chosen to satisfy (16).In a typical linesearch or pathsearch method, the new iterate xk+1 is required to satisfya descent condition similar to (16), which results in a monotonic decrease in kFBk or in arelated merit function. There is evidence indicating that this requirement may impede orblock convergence to the solution of the desired equation (Grippo, Lampariello & Lucidi1986, Grippo, Lampariello & Lucidi 1991, Ferris & Lucidi 1994). Various non-monotone sta-bilization (NMS) schemes for Newton's method have been proposed, each seeking to improvee�ciency by relaxing the requirement of monotone descent. The PATH solver implements ascheme of this type, modi�ed to incorporate a pathsearch rather than a linesearch.10



The NMS scheme implemented makes use two ideas. The �rst is an adaptation of thewatchdog technique (Chamberlain, Powell & Lemarechal 1982) to reduce the number ofpathsearches and therefore the number of function evaluations performed. The second is toallow a non-monotonic decrease in the merit function associated with the points chosen asa result of the pathsearches that are carried out. In the majority of cases, the watchdogtechnique elects to accept the Newton point if the point returned by the path generationprocedure is suitably close to the current point. The measure of closeness, �, decreasesas the algorithm progresses. In order to monitor these d-steps, the non-monotone descentcondition (17) below is checked at least once every �n iterations. The current merit functionvalue is compared with a reference value R, which is computed from previous function values.Steps in which these checks on the current merit function value occur are called m-steps.The points at which these criteria are checked and satis�ed are called check points. Anm-step is also taken when a d-step is unacceptable, that is, when it is too large. A watchdogstep occurs when descent criteria are violated; when this occurs, the algorithm returns tothe most recent check point, re-generates the path from the check point (if necessary), andsearches the path for a point that satis�es


FB(pk(t))


 � (1� �t)R: (17)An example of how these di�erent types of steps interleave is given in Section 5.To summarize, the PATH solver uses a pivotal technique to construct a path pk(�), param-eterized by t, from the current point xk to the Newton point xkN of the nonsmooth equationFB(x) = 0. The watchdog stabilization technique is used to determine whether the pathshould be searched for a point pk(�t) satisfying a nonmonotone descent condition, or if theNewton point should be accepted without searching the path. The algorithm spends mostof its time in the path construction step, while the pathsearches, when they are performed,are also quite costly. How these steps are performed, and how the algorithm as a whole isimplemented, is the topic of the next section.4 Implementation IssuesThe PATH solver is an implementation of the algorithm described in Section 3. It is writtenprimarily in C, although it employs Fortran routines as well. Logically, it can be dividedinto two parts, the front end and solver. The front end acts as an interface to the routineswhich provide evaluations of the function F and its Jacobian J , the initial values and lowerand upper bounds for the problems variables z, and other data speci�c to the problem. Thesolver is called by the front end to solve the MCP de�ned by F and B. The code for thesolver remains the same, regardless of which front end is used. Compiler 
ags are used toensure that calls to the proper front end are made.The computational tests of the PATH solver have been done primarily using the GAMSfront end and CPLIB, a library of routines used to evaluate F and J . These interface routinesare written in Fortran for greater compatibility with the GAMS I/O library, a set of Fortranroutines supplied by GAMS Development Corporation and required to interpret the problemas written to disk by the GAMS compiler. 11



Two other front ends exist as well. The �rst of these is a stand alone version, written in Cand consisting of a main program whose task is simply to call the PATH solver and a numberof auxiliary functions whose purpose is to evaluate F and J and provide the variable bounds,initial iterate, and other information required by the solver. Most recently, an AMPL linkhas been completed as well, which allows complementarity problems to be formulated in theAMPL modeling language (Fourer, Gay & Kernighan 1993) in a manner similar to GAMS.The AMPL complementarity link is programmed in C, as are the publicly available AMPLI/O routines (Gay 1993) necessary for interpreting the output of the AMPL compiler.Although the PATH solver is written almost entirely in C, it is designed so that callsto numerical Fortran routines (e.g. for function evaluation) can be made without di�culty.Unfortunately, output to �les opened in Fortran is not as easily accomplished in C, whilethe code to accomplish this would vary from platform to platform. The PATH solver avoidsthis problem by using macros to write to one of three well-de�ned �les. When used with aFortran front end, the macros expand to functions which write to strings and call Fortranroutines to write the strings to �les. When used with a C front end, the macros expand tofunctions which perform the desired output. This technique eliminates the need for separateoutput code throughout the solver; instead, one macro is used, whose de�nition depends onthe front end in use.At its top level, the solver consists of an outer iteration loop. At the beginning of eachouter iteration, F and J are evaluated at the current point and a test for convergence isperformed. Then, a linear subproblem is solved via a path construction technique and a newiterate obtained, perhaps as the result of a pathsearch. The time required to evaluate F andJ varies from problem to problem and depends on the complexity and sparsity of F . If nopathsearch is necessary, the majority of the work in the outer loop is the construction of thepath. When a pathsearch is performed, the work required depends on how quickly (17) canbe satis�ed.The path is constructed by following a sequence of directions, each computed to leadto the zero of the a�ne map corresponding to the current cell. Each direction is followeduntil either the boundary of the current cell or the Newton point is reached. If a boundaryis reached, the a�ne map changes, the direction needs to be recomputed, and we have abreakpoint in the path. Each successive a�ne map corresponds to a basis, each di�eringfrom its predecessor in only one column. Thus, the sequence of directions can be computedusing any basis updating scheme. The PATH solver was tested using three di�erent basispackages, the Harwell LA05 code (Reid 1982), the basis routines from MINOS 5.4 (Murtagh& Saunders 1983), and a simple basis package coded in C. We found that the MINOS routineswere fastest, and have used those exclusively in subsequent testing, although the others canbe substituted by setting appropriate compilation 
ags. The cell boundaries are found viaa pivot step identical to that used in the simplex method for linear programming. We havechosen to employ a Devex-type choice of leaving variable in which the bounds are relaxed bya �xed slack tolerance (Harris 1973). This leads to fewer iterations and more stable bases.We have assumed throughout that the basis corresponding to the current values of(z;w; v) is in fact invertible, although this is not always the case in practice. If the ini-tial basis (as determined by xk) is not invertible, the PATH solver cannot begin to constructthe path. In this case, the current point is abandoned, and the PATH solver attempts to12



construct an invertible basis for system (14) by using as many slack columns as possible. Ifnone of the z variables are free, this basis is always invertible. If all the variable are non-negatively constrained, this slack basis is identical to that used to start Lemke's method forLCP, while the proper choice of the initial point x = �w leads to a path which is identicalto the one computed by Lemke's method. While this path cannot be searched to guaranteea decrease in kFBk, it does provide an e�ective restart away from a singular basis. We referto any basis containing the maximum number of slack columns as a Lemke basis.As the path is constructed, the leaving variables determined by each pivot step are storedon a stack, so that the path can be reconstructed by using this information and the currentbasis. The path construction phase of the algorithm terminates at a Newton point, at thebase of a ray, or as the result of an iteration interrupt. In the latter instances, the parametert often fails to increase monotonically on the path. An option exists to truncate such pathsso that their �nal point corresponds to a basis with the maximum t value attained on thepath, since the norm of the approximation Ak is minimized at this point. In any case, thecomputed path is returned, in the form of a current basis and a stack, and the outer iterationloop continues.Once the path is constructed, the stabilization techniques determinewhether a pathsearchis necessary. If so, a backtrace of the path is performed, in which the path is reconstructedin reverse order from its computation, using the information stored on the stack. At eachbreakpoint, the descent condition (17) is checked. The search is terminated when (17) issatis�ed. If no breakpoint satis�es these conditions, the initial segment of the path is searchedusing an Armijo technique (Armijo 1966). While backtracing the path is as expensive as theoriginal construction, this is only necessary when a pathsearch is performed, and the numberof searches is kept to a minimum by the watchdog stabilization technique. In addition, thepath is backtraced only up the point satisfying (17), which may require little or no workat all. An obvious alternative to the backtrace is to search the path as it is constructed,but this leads to an excessive amount of essentially wasted function evaluations when theNewton point is ultimately chosen, and was found to be overly restrictive as well. Ideally,we would like to store the path in its entirety and save the expense of recomputing it, butthis approach was rejected due to the large amount of memory this would require.In the above descriptions of the algorithm and its implementation, a number of parame-ters and options, most unmentioned, exist and must be speci�ed. For example, (17) dependson a tolerance �, while the memory available to the basis routines is controlled by two \elbowroom" tolerances. In addition, verbosity 
ags exist to print information useful to algorithmdeveloper and user alike. The PATH solver provides default settings which are appropriatefor most problems, but in order to speed solution for a di�cult problem or to obtain detailedinformation, it may be necessary to modify some parameters. In all, there are 40 optionswhich can be set via an options �le, following the keyword{value syntax used by MINOS.5 Computational ResultsIn this section, we compare the performance of the PATH solver to that of the undampedNewton method of Josephy (1979). Since Josephy's method can be viewed as a variant ofour algorithm, (i.e. no pathsearch is carried out, and a particular choice of initial basis and13



basic values is made for each subproblem), a separate code for each method is not necessary.Instead, the Josephy method is the result of a particular setting of PATH solver options.This makes possible a meaningful comparison of solution times, as any di�erences are theresult of the algorithm used and not of the implementation.In order to compare the two methods, we have used them to solve the larger problemsin a library of general equilibrium models provided by Tom Rutherford and formulated inthe MPSGE language (Rutherford 1994a). The details of the CAMEROON model (GAMSmodel library sequence number 140) are given by Condon, Dahl & Devarajan (1987). TheCO2 model, number 142, is described by Perroni & Rutherford (1993) and is used to calcu-late the amount of global carbon emissions in the year 2020 under various scenarios. TheETAMACRO model of Manne (1977), number 144, is a macroeconomic interaction modelfor the United States, while the FINLAND model of Torma & Rutherford (1992), number145, was developed to investigate the e�ects of tax reform in Finland. The GEMTAP model,number 146, is an updated version of a model for tax policy analysis described by Ballard,Fullerton, Shoven & Whalley (1984), while the VONTH model, number 156, is a land usemodel derived from MacKinnon (1976). Frequently in these model formulations, the �rstrun is just for calibration purposes.Table 2: PATH resultsproblem / run major minor func grad timeCAMEROON 4 4 5 5 1.27CO2 2 13 51 14 14 3.483 4 5 5 5 1.404 4 5 5 5 1.235 5 6 6 6 1.356 6 10 7 7 1.807 7 13 8 8 2.04ETAMACRO 21 101 52 22 5.04FINLAND 2 4 212 5 5 4.753 4 4 5 5 3.074 4 13 5 5 2.905 4 4 5 5 3.11GEMTAP 2 24 70 43 25 28.643 6 8 7 7 6.504 6 10 7 7 6.425 26 134 70 27 33.90VONTH 13 74 14 14 1.72Table 2 indicates the number of major and minor iterations required to solve each prob-lem using the PATH solver, along with the number of function and gradient evaluationsand the amount of time required. Similar results obtained using Josephy-Newton's methodare given in Table 3. The bar graph in Figure 4 demonstrates the di�erence in solution14



Table 3: Josephy resultsproblem / run major minor func grad timeCAMEROON failedCO2 2 failed3 4 806 5 5 4.994 4 810 5 5 4.925 5 1002 6 6 6.526 6 1240 7 7 7.677 7 1436 8 8 10.08ETAMACRO failedFINLAND 2 4 838 5 5 8.313 4 674 5 5 7.874 4 821 5 5 9.005 4 688 5 5 6.53GEMTAP 2 failed3 6 1993 7 7 30.904 6 2003 7 7 30.205 failedVONTH 13 979 14 14 3.95times between the two algorithms by plotting the times required to solve the GEMTAPand FINLAND problems for each of the runs in which Josephy's method was able to com-pute a solution. These tables show that the PATH solver can be expected to solve generalequilibrium problems in a robust manner, as opposed to the undamped method of Josephy.In addition, the PATH solver requires considerably less solution time, due to the smallernumber of pivots performed. This is the result of the warm start taken by the PATH solveron the subproblems; in most cases, the optimal basis remains the same over the last fewsubproblems, so that only one pivot step is required for each.Of particular interest is the ETAMACRO model formulated by Manne (1977) and mod-i�ed to have shorter time periods of four years' duration. While Josephy's method divergeswhen applied to this problem, the stabilization techniques employed by the PATH solverresult in a solution. Table 4 contains data from a run of the PATH solver on the modi�edETAMACRO problem.In Table 4, information from the log line printed at each major iteration is given. Thisdemonstrates the behavior of the stabilization techniques used. The �rst two subproblemssolved terminate at the Newton point. Note that for numerical reasons, the PATH solverforces t from 1 down to 0 instead of vice versa. Thus, the point pk(0) is the Newton point atiteration k. Note also that kFB(x̂1)k and kFB(x̂2)k are very much larger than kFB(x0)k. Thealgorithm parameters were set to check the descent condition after two iterations, so thatinstead of accepting x̂2, the algorithm returns to the check point x0. In doing so, the pointsx̂1 and x̂2 are discarded. In the table, this is indicated by the �rst horizontal line. The path15



GEMTAP FINLAND
0

10

20

30

40

PATH

Josephy

Figure 4: Comparison of Solution TimesIterate pivots F evals t value kFBkx0 0 1 5.1863e+01x̂1 16 2 0 3.1458e+06x̂2 12 3 0 6.0384e+06x0 0 5.1863e+01x1 16 21 .874 4.5335e+01�x2 12 22 0 3.1459e+06�x3 12 23 0 6.0384e+06x1 0 4.5335e+01x2 12 36 .596 3.4070e+01x3 2 37 0 3.8274e+01x4 1 38 0 1.5150e+01x5 1 39 0 6.0979e+00x6 1 40 0 1.7764e+00x7 1 41 0 2.5578e-01x8 1 42 0 7.0422e-03x9 1 43 0 5.6718e-06x10 1 44 0 3.6886e-12Table 4: PATH output, modi�ed ETAMACRO16



is reconstructed from x0, and instead of accepting the resulting Newton point, a backtracingpathsearch is performed. This pathsearch terminates at t = :874 and a point x1 whichbecomes the new check point. The pathsearch required 18 function evaluations and resultedin a decrease in kFBk. The algorithm continues from x1 by taking two Newton steps �x2 and�x3, but again, the descent conditions are not satis�ed. Thus, a watchdog step is performedand the algorithm returns to the check point x1, as indicated by the second horizontal linein Table 4. The path from x1 is reconstructed, and the nonmonotone linesearch proceduregives t = :596 and the new check point x2.The Newton point x3 does not satisfy any monotone descent criterion; it is, however,accepted by the watchdog method. This is fortunate, since from this point on, the PATHsolver computes Newton points which satisfy any reasonable descent criteria. Note that theoptimal basis has been reached at this point, so that each succeeding iteration requires onlyone pivot step. Each of these single pivot steps result in a linear path from the currentiterate to the Newton point.Although the above problems are too small to demonstrate the e�ciency of PATH forsolving very large general equilibrium problems, it is noted elsewhere (Dirkse & Ferris 1994a)that PATH is an e�ective solver for large scale MCP's. For instance, an optimal controlexample with 8192 variables and constraints is solved in less that 1 hour on a DECstation5000.6 ConclusionsIn this paper we have described an algorithm, PATH, for solving Mixed ComplementarityProblems. The algorithm is shown to be markedly superior to the standard Newton methodfor such problems, both in speed and robustness. Combined with GAMS/MCP and MPSGE,PATH represents a valuable tool for computing general equilibria. We believe this advancesthe state of the art in this area.ReferencesAnstreicher, K. M., Lee, J. & Rutherford, T. F. (1992), `Crashing a maximum-weight com-plementarity basis', Mathematical Programming 54(3), 281{294.Armijo, L. (1966), `Minimization of functions having Lipschitz-continuous �rst partial deriva-tives', Paci�c Journal on Mathematics 16, 1{3.Ballard, C., Fullerton, D., Shoven, J. & Whalley, J. (1984), A General Equilibrium Modelfor Tax Policy Evaluation, University of Chicago Press.Chamberlain, R. M., Powell, M. J. D. & Lemarechal, C. (1982), `The watchdog techniquefor forcing convergence in algorithms for constrained optimization', Mathematical Pro-gramming Study 16, 1{17.Colville, A. R. (1968), A comparative study on nonlinear programming codes, TechnicalReport 320{2949, IBM New York Scienti�c Center.17



Condon, T., Dahl, H. & Devarajan, S. (1987), `Implementing a computable general equilib-rium model on GAMS { the Cameroon model', DRD Discussion Paper 290. The WorldBank, Washington DC.Dirkse, S. P. & Ferris, M. C. (1994a), MCPLIB: A collection of nonlinear mixed complemen-tarity problems, Technical Report 1215, Computer Sciences Department, University ofWisconsin, Madison, Wisconsin. Submitted for publication.Dirkse, S. P. & Ferris, M. C. (1994b), `The PATH solver: A non-monotone stabilizationscheme for mixed complementarity problems', Optimization Methods & Software. Toappear.Dirkse, S. P., Ferris, M. C., Preckel, P. V. & Rutherford, T. (1993), The GAMS callableprogram library for variational and complementarity solvers, Manuscript.Ferris, M. C. & Lucidi, S. (1994), `Nonmonotone stabilization methods for nonlinear equa-tions', Journal of Optimization Theory and Applications.Fourer, R., Gay, D. M. & Kernighan, B. W. (1993), AMPL: A Modeling Language forMathematical Programming, The Scienti�c Press, South San Francisco, CA.Gay, D. M. (1993), `Hooking your solver to AMPL', Numerical Analysis Manuscript 93{10.AT&T Bell Laboratories, Murray Hill, NJ.Grippo, L., Lampariello, F. & Lucidi, S. (1986), `A nonmonotone line search technique forNewton's method', SIAM Journal of Numerical Analysis 23, 707{716.Grippo, L., Lampariello, F. & Lucidi, S. (1991), `A class of nonmonotone stabilization meth-ods in unconstrained optimization', Numerische Mathematik 59, 779{805.Harker, P. T. & Pang, J.-S. (1990), `Finite-dimensional variational inequality and nonlinearcomplementarity problems: A survey of theory, algorithms, and applications', Mathe-matical Programming 48(2), 161{220.Harris, P. M. J. (1973), `Pivot selection methods of the Devex LP code', MathematicalProgramming 5, 1{28.Hiriart-Urruty, J.-B. & Lamarechal, C. (1993), Convex Analysis and Minimization Algo-rithms I, Vol. 305 of Grundlehren der mathematischen Wissenschaften, Springer Verlag.Josephy, N. H. (1979), Newton's method for generalized equations, Technical Summary Re-port 1965, Mathematics Research Center, University of Wisconsin{Madison, Madison,Wisconsin.Lemke, C. E. & Howson, Jr., J. T. (1964), `Equilibrium points of bimatrix games', SIAMJournal of Applied Mathematics 12, 413{423.MacKinnon, J. G. (1976), `A technique for the solution of spatial equilibriummodels', Jour-nal of Regional Science 16(3), 293{307. 18



Manne, A. S. (1977), ETA-Macro: A Model of energy-economy interactions, in C. J. Hitch,ed., `Modeling Energy-Economy Interactions', Resources for the Future, WashingtonDC.Mathiesen, L. (1987), `An algorithm based on a sequence of linear complementarity problemsapplied to a Walrasian equilibrium model: An example', Mathematical Programming37, 1{18.Murtagh, B. A. & Saunders, M. A. (1983), MINOS 5.0 user's guide, Technical Report SOL83-20, Department of Operations Research, Stanford University, CA.Ortega, J. M. & Rheinboldt, W. C. (1970), Iterative Solution of Nonlinear Equations inSeveral Variables, Academic Press.Perroni, C. & Rutherford, T. (1993), `International trade in carbon emission rights andbasic materials: General equilibrium calculations for 2020', Scandinavian Journal ofEconomics.Ralph, D. (1994), `Global convergence of damped Newton's method for nonsmooth equations,via the path search', Mathematics of Operations Research. To appear.Reid, J. K. (1982), `A sparsity-exploiting variant of the Bartels-Golub decomposition forlinear programming bases', Mathematical Programming 24, 55{69.Robinson, S. M. (1992), `Normal maps induced by linear transformations', Mathematics ofOperations Research 17(3), 691{714.Robinson, S. M. (1993), `Newton's method for a class of nonsmooth functions', Set ValuedAnalysis. To appear.Rutherford, T. F. (1994a), Applied general equilibrium modeling with MPSGE as a GAMSsubsystem, Manuscript, Department of Economics, University of Colorado, Boulder.Rutherford, T. F. (1994b), Extensions of GAMS for complementarity problems arising in ap-plied economic analysis, Manuscript, Department of Economics, University of Colorado,Boulder.Torma, H. & Rutherford, T. (1992), `A general equilibrium assessment of Finland's grand taxreform', working paper 15/1992. Department of Economics and Management, Universityof Jyvaskyla, Finland.
19


