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Abstract

Computable general equilibrium models and other types of variational inequalities play a
key role in computational economics. This paper describes the design and implementation
of a pathsearch-damped Newton method for solving such problems. Our algorithm improves
on the typical Newton method (which generates and solves a sequence of LCP’s) in both
speed and robustness. The underlying complementarity problem is reformulated as a normal
map so that standard algorithmic enchancements of Newton’s method for solving nonlinear
equations can be easily applied. The solver is implemented as a GAMS subsystem, using an
interface library developed for this purpose. Computational results obtained from a number
of test problems arising in economics are given.

1 Introduction

The variational inequality (VI) is of fundamental importance in computational economics
and in many other disciplines as well. In economics, examples include general, Walrasian,
Nash, and spatial price equilibrium models, as well as the optimality conditions for non-
linear programming. VI’s are common in mathematical programming, game theory, and
transportation and regional science as well.

Recently, a complementarity format has been incorporated into the GAMS language and
been made available by GAMS Development Corporation. This format (called GAMS/MCP)
makes use of the CPLIB library (Dirkse, Ferris, Preckel & Rutherford 1993) to formulate
complementarity problems and pass them on to a complementarity solver. The computed so-
lution is then returned to CPLIB and reported by GAMS. Rutherford (199456) demonstrates
the use of the GAMS/MCP system for equilibrium analysis and game theory models. In addi-
tion, Rutherford (1994a) has embedded MPSGE, a modeling language designed specifically
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for solving Arrow-Debreu economic equilibrium models, in GAMS/MCP. An equilibrium
model can be described at a higher level using MPSGE than is possible using GAMS/MCP
alone, greatly reducing the work of model formulation. These two systems allow the equilib-
rium modeler to take advantage of the power and flexibility of the GAMS modeling language,
while our solver, implemented as a GAMS subsystem, is available for solving such models.

A number of methods, surveyed by Harker & Pang (1990), have been proposed and
used for computing solutions to variational and complementarity problems. Among the
most powerful of these is the adaptation of Newton’s method for variational inequalities
due originally to Josephy (1979) (see also (Robinson 1993)). As in the smooth case, local
quadratic convergence in a region containing a solution point can be shown under suitable
conditions. Unfortunately, the method may fail to converge outside of this region, which
may be quite small. Thus, the success of Newton’s method, and Josephy’s variant for VI, is
very dependent on the starting point chosen. This lack of robustness in Newton’s method for
nonlinear equations has been reduced substantially through the use of linesearch techniques
which globalize the domain of convergence (Ortega & Rheinboldt 1970).

The PATH solver is an extension of Josephy’s variant of Newton’s method for comple-
mentarity problems which includes a pathsearch component. This pathsearch makes use of
a piecewise-linear path from the current iterate to the corresponding “Newton point”, and
generalizes the linesearch used in Newton’s method to enlarge the region of convergence. In
addition, our path construction technique, which is similar to the pivotal method proposed
by Lemke & Howson (1964), significantly reduces the number of pivot steps necessary to
identify the Newton point. The pathsearch damping depends on reformulating the problem
as one of solving a square system of nonsmooth equations.

The purpose of this paper is to describe the design and implementation of a robust, gen-
eral purpose, and efficient Newton method for solving large complementarity problems. Our
implementation makes use of sparse matrix algebra to increase the dimension of the problems
we can effectively solve. It also employs CPLIB to gain access to a large number of equi-
librium and complementarity models which have been formulated in GAMS/MCP format
(Dirkse & Ferris 19944, Rutherford 1994a). We believe that the GAMS/MCP system, cou-
pled with the PATH solver or with MILES (Anstreicher, Lee & Rutherford 1992, Rutherford
1994b), provide economists with more modeling and solving capability than has previously
been available. While it is possible to derive convergence results for the PATH solver (Dirkse
& Ferris 1994b), we will focus instead on the algorithm employed and the design and imple-
mentation issues involved.

In order to be solved by the PATH solver, a problem must be expressed as a Mixed
Complementarity Problem, or MCP. This formulation, also known as the rectangular or box-
constrained VI, represents a slight generalization of the standard non-negatively constrained
nonlinear complementarity problem, and is described in Section 2.

Some definitions are in order. The set IR} denotes the positive orthant, or the set of
points x € IR"™ such that + > 0. Assuming the set ' C IR" is closed and convex, we
denote the projection operator onto the set C' as ¢ (-); mo(x) is the unique point in C' which
minimizes the Euclidean norm ||¢ — z||, for ¢ € C'. The projection of a vector x onto R} is
denoted more simply by .



2 The Mixed Complementarity Problem

The Nonlinear Complementarity Problem (NCP) typically considered in the literature (Harker
& Pang 1990) is that of finding z such that

F(z)>0, z>0, (F(z2),z)=0, (NCP)

where F': R} — IR" is a (usually) continuously differentiable function of the variable z. If
we define a rectangular set or box B :={z | { < z < u}, where (; € [—00,00), u; € (—00, 0],
we see that the constraint z > 0 in the definition of NCP is a special instance of z € B,
where { = 0 and u = co. The Mixed Complementarity Problem (MCP) is the generalization
of NCP to the case where the variable z is subject to box constraints.

Definition 1 (MCP) Given a function F : R" — IR" and bounds { and u,

find zc€IR", w,v € R}

Flz)=w—v (la)
i (< z<u (1b)
(z=0OTw=0 (lc)
(u—2)Tv=0 (1d)

In this formulation, w and v are the positive and negative parts of F'(z), which must be
complementary to the difference between z and its lower and upper bounds ¢ and u, respec-
tively. Note that the choice of z completely determines w and v, so that we can speak of z
solving MCP where convenient.

Many problems commonly considered in the literature are equivalent or can be reduced
to MCP, including nonlinear equations (B := IR") and nonlinear complementarity problems.
MCP reduces to NCP when the box B defined by ¢ and w is the positive orthant (i.e. £:=10
and u := o0). These bounds imply that z > 0, while (1d) implies that v = 0, so that
F(z)=w >0, while (F(z), z) = 0 follows from (1c).

The variational inequality, or VI, has much in common with the MCP. Given a convex
set ¢ C IR" and a function F': ¢ — IR", VI(F, () is defined as follows: find z € C such
that

(F(z),(c—2)) >0, VYceC. (VI)
If the feasible set C' is rectangular, then VI(F,C) and the MCP defined by F and C are

completely equivalent, as their solution sets are identical. A proof of this is elementary.
When ' is polyhedral rather than rectangular, VI(F,C') can be reduced to an MCP by
explicitly including the dual variables to the constraints defining C'. Thus, given a box B
and a set X := {z | Az < b}, where A € IR™*", it can be shown that VI(F¥, BN X) is
equivalent to VI(H, B x IRY"), where

rew=| |



When equality constraints are used to define X, the associated dual variables u are free. Two
advantages to using the MCP formulation as opposed to the NCP are the explicit treatment
of simple bounds on the variables z and the availability of free variables, which enable the
explicit representation of equality constraints. This is more efficient than introducing extra
variables and equations to deal with general bounds and equality constraints.

In order to perform computational tests of our algorithm for solving MCP, we have
formed MCPLIB, a library of complementarity models expressed in GAMS/MCP format
(Dirkse & Ferris 1994a). These models come from a wide variety of disciplines, as indicated
in Table 1. In addition to providing a convenient environment in which to test our solver,
MCPLIB serves as an example of what is possible using the complementarity format present
in GAMS, and provides a means by which other algorithm developers can test their own
solvers and compare them with those already available.

Table 1: MCPLIB models

Model origin GAMS file Size
Nonlinear equations
Distillation column modeling hydroc* 39, 99
non methan08 39

Nonlinear programming

NLP test problem from Colville (1968) colvnep, colvdual | 15, 20
Obstacle problems obstacle, bratu N

Nonlinear complementarity

josephy, kojshin 4

Elastohydrodynamic lubrication ehl_kost N
Variational inequalities
Nash equilibrium nash, choi 10, 14
Spatial price equilibrium sppe, tobin 27, 42
Walrasian equilibrium mathi* 4
non scarfa®, scarfb™ | 14, 40
Traffic assignment bertseka, gafni 15,5
Invariant capital stock hanskoop 14
Project Independence energy system (PIES) pies 42
Von Thiinen land use vonthun 186

Extended linear-quadratic programming
Optimal control opt_cont N

In addition, Rutherford (1994a) has embedded MPSGE, a modeling language designed
specifically for solving Arrow-Debreu economic equilibrium models, in GAMS/MCP. There
is also a library of general equilibrium models which accompanies this. With MPSGE, an
equilibrium model can be described at a higher level than that possible using GAMS/MCP
alone. Although not as flexible as GAMS/MCP, MPSGE allows a much more concise defini-

tion of those models for which it is appropriate, thus avoiding the tedium and error associated
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with a more explicit definition.

As an example of how GAMS/MCP is used, we include the GAMS model for a simple
Walrasian equilibrium problem given by Mathiesen (1987). The equilibrium conditions for
this model are

b—d(p)+Ay =0, p=0, L (2)
~ATp>0, y>0, L, (3)

where the demand function d(-) is defined by

a; r brpr

di(p) = )

and the data a, b and A are given. The GAMS model for this problem, without the obvious
parameter definitions, is given in Figure 1. The key statement in the model in Figure 1 is

sets COM / 1 * 3 /, /* commodities */

S/ 1/; /* production sectors/activities */

alias (COM,K);

parameters a(COM), /* demand shares */

b(COM), /* endowments */

A(COM,S); /* activity analysis */

positive variables

p(COM) , /* commodity prices */

y(8); /* activity levels */

equations

supply (COM) , /* excess */

profit(8);

supply (COM) .. b(COM) -a(COM) * sum(K, b(K)*p(K)) / p(COM)
+ sum(S, A(COM,S)*y(S)) =g= 0;

profit(S) .. -sum(COM, p(COM)*A(COM,S)) =g= 0;

model mathiesen / supply.p, profit.y /;
solve mathiesen using mcp;

Figure 1: A Walrasian model in GAMS/MCP format

the model statement. The dot notation is used there to indicate that a complementarity
relationship must hold between the associated function—variable pair. The complementarity
relationships determined by all function—variable pairs defined in the model statement, when
coupled with the bounds defined for the variables, are equivalent to an MCP given by a
function F' and a box B. It is this F' and B which are passed to a solver.

Our solver makes use of CPLIB, a subroutine library that acts as an interface to GAMS.
Its primary function is to interpret the complementarity relationships defined by the model



statement, verify that these relationships are valid, and provide the user with function,
gradient, and bound information for the corresponding F' and B. There are also routines
for getting initial values of the problem variables and for reporting solution results, as well
as a number of routines which enable the user to read and write model data and parameter
values. In addition, CPLIB provides the Fortran programmer with the option of dynamically
allocating one block of memory, to be used by the solution algorithm. This avoids the need
to build any limits on problem size into a solver at compile time.

3 The PATH Solver

The PATH solver is an implementation of a stabilized Newton method for solving MCP which
generalizes similar techniques used for solving nonlinear equations. The algorithm employed
makes use of the path construction and searching techniques first explored by Ralph (1994)
and later developed by Dirkse & Ferris (19945). Before describing this algorithm, we review
linesearch damped Newton’s method for nonlinear equations. In the sequel, we shall assume
that the function F' is differentiable on the box B.

In the classical damped Newton method for solving

F(z)=0 (4)

(see for example Ortega & Rheinboldt (1970)), the smooth function F'is approximated at a
point z* by a linearization A, defined by

Ap(x) := F(2®) + F'(2®)(x — 2). (5)

The Newton point x%; is a zero of this approximation, i.e. Ag(x%) = 0. If the Jacobian
matrix F'(z¥) is nonsingular, this zero is unique, and is conceptually easy to find. Upon
solving the matrix equation F'(z%)d* = —F'(z*), the Newton point is given by % = 2% + d*,
where d* is the Newton direction. The next iterate in the Newton process is determined by
a linesearch along this direction. The new point

2= 2k )\dk,

is chosen to satisfy some descent criteria in ||F'||, with the ultimate goal of finding a point
x* such that |[F(2*)|] = 0. Such a point must solve F(z*) = 0 as well.

In a damped Newton method for (4), the fact that a solution #* is also a minimizer of
|| F'|| is crucial. However, a solution z* of MCP will not generally minimize || F'||. In order to
apply a damped Newton method, we must rewrite MCP as a zero-finding problem. To do
so, note that since MCP and VI(F, B) are equivalent, z solves MCP if and only if

(—F(2),b—2z) <0, Vbe B. (6)
If we define & := z — F(z), then the inequality

(v —z,b—2) <0, vbe B (7)



follows from (6). But (7) is the projection inequality (Hiriart-Urruty & Lamarechal 1993);
assuming z € B, (7) holds if and only if z := mg(x), the Euclidean projection of  onto B.
Hence, the following equation

—F(mp(2)) = ¢ — mp(z), (8)

is satisfied. Conversely, if (8) holds, then since the projection inequality (7) holds for z =
mr(x), it follows that (6) holds as well. Thus, () solves MCP, so that solving equation (8)
is equivalent to solving MCP. This is made precise in the following definition and theorem.

Definition 2 (Normal Map) Given a conver set B C R" and a function ' : B — IR",
the normal map Fg(-) induced on F' by B is defined as

Fg(x) := F(rp(x)) + (v — mp(2)).
The corresponding normal equation is then defined as
0 = Fp(x) = F(rp(x)) + (x — mp(x)). (NE)
Thus we have shown the following result.

Theorem 3 Given a rectangular set B :={z | { < z < u} and function F' : B — R", the
vector ¥ € R" solves NE = z := wg(x) solves MCP, while z solves MCP = x := z — F(z)
solves NF.

Since the projection mapping mp is continuous (Hiriart-Urruty & Lamarechal 1993), a
necessary and sufficient condition for the continuity of Fg is the continuity of F' on B.
However, since mp is nondifferentiable, Fg also fails to be differentiable. In order to better
understand the nondifferentiability of Fg, we must take a closer look at the projection 7p.

We first define the faces of B = {z| ¢ <z <w}. In this case, the faces are essentially
determined by forcing some of the defining inequalities of B, namely / < z < wu to be satisfied
as equalities. Thus, if I and J are disjoint subsets of {1,... ,n}, then a corresponding face
of Bis{z€ B|z=/{;, zy=uy}. For example, if B = IR", then B has only one face,
namely B itself. On the other hand, if B = IR?_, the nonnegative orthant of IR?, then the
four faces of B are (0,0), 0 x R4, IRy x0, and lRi These faces are critically related to mp
as we now show. Given a face [’ of the set B, let o represent all the points in IR" that are
projected onto F' by mg. The collection of all such o is called the normal manifold. The sets
o are called cells of the normal manifold. It was shown in (Robinson 1992) that each cell
is polyhedral and has dimension n and that this collection of cells forms a partition of IR".
Returning to our two examples above, when B = IR", the only cell is ¢ = IR", which has
dimension n and partitions IR". For B = ]Ri, the four cells are the orthants of IR, each of
which have dimension 2 and which partition IR,

The normal manifold in IR* corresponding to the box B := [0,00) x [0,1] is given in
Figure 2.
The projection mg(x) onto the box B := [{, u| can be computed component-wise as follows
0 iz < &',

u; I u; < x5



———— —
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Figure 2: Normal Manifold for B = [0, 00) x [0, 1]

In this case, IR" is partitioned into at most 3" rectangular cells where in each cell the function
used to compute (), is affine. Thus, the restriction of the projection operator mp to each
of these cells is affine.

The normal manifold provides a useful tool for working with the normal map, since it
partitions IR" into a number of cells on each of which g is affine. This in turn allows us to
view Fg as a smooth nonlinear function on the interior of each each of these cells, or as a
piecewise-smooth function over the whole space.

In Newton’s method for smooth functions, the function [ is linearized around a current
iterate z*. In order to linearize Fz around z*, we must linearize the function /' around the
point mp(z*). The projection operator, being already piecewise-linear, is left as is. This
linearization yields a piecewise-linear normal map Aj defined by

Ap(z) == Mrp(x) + g+ 2 — mp(a), (10)

where

M = F/(ﬂ'B(l'k)) and q:= F(TI'B(J}k)) — Mﬂ'B(l'k).

Construction of the Newton point x%; (i.e. the zero of Ay) is where the majority of the
work in this algorithm is performed. We describe here a pivotal method for computing this
point, given first by Ralph (1994), which results in a piecewise linear path from the current
point ¥ to the Newton point. The path p* is parametrized by a variable ¢ which starts at
0 and increases to 1 so that p*(0) = 2* and p*(1) = z%,. The values of p*(¢) at intermediate
points in the path are generated to satisfy

Ar(p* (1) = (1 = t)r, (11)

oo



where r = Fg(z*). To calculate the intermediate values of p*(¢) we introduce the triplet
(2(t),w(t),v(t)) which is defined using
2(t) = we(p" (1)), (12)
w(t) = (=(1) = P ()4, o(t) = (0" (1) = 2(1))4- (13)
It is easy to see that
pE(t) = =(t) — w(t) + v(t).
Substituting these variables into (11) gives the following system:

{M -1 1 r} =—q+r

~ < £

14
[<z<u (14)

w,v >0
0<t <.

The pivotal technique we employ guarantees that the complementarity conditions (12) and
(13) are satisfied at every point on the path. The simple bounds on z determine which cell of
the normal manifold we are currently in, and thus the direction of movement is determined
by solving the first equation of (14). Essentially, we remain in the current cell by fixing some
of the variables at their bounds — these are the nonbasic variables. The remaining variables,
the so called basic variables, should then correspond to linearly independent columns of the
matrix {M —1I []. These columns make up what is normally called the basis matrix. The
first equation then uniquely determines a direction in which to move, so that (z(¢),w(t), v(t))
are updated. When some of the components of ¢/ and wu are finite, a step in this direction
will in general reach a bound before ¢ reaches 1. In this case, the boundary of the current
cell is reached and the set of fixed variables has to be updated. One variable is added to the
fixed set, and another is released from its bound, thus determining a pivot. In this manner,
a sequence of pivot steps is performed (similar to those of Lemke’s method), each of which
increases ¢, and that together form the piecewise-linear path p*(t) from z* to zf%. If the
bounds on z are infinite, this is a simple task, since ¢ moves from 0 to 1 in one pivot step,
assuming M is invertible. This single pivot step corresponds exactly to the direction finding
step in a smooth Newton method.

The crucial property of this path is that the norm of the approximation A, decreases
linearly in ¢ on the path, i.e.

| At ()] = (1= D) Ak(b). (15)

This property, fundamental to Newton’s method, is illustrated in Figure 3. In this figure, the
function F'(x) := Mx + ¢, while the boxes are defined as IR* and [0, c0) x [0, 1], respectively.



The contour lines shown represent the Euclidean norm of the piecewise-linear functions Fg,
while the paths to the Newton point for each mapping are given by the dashed lines. Note
the change in Fp at the cell boundaries evident in Figure 3. Each linear segment of each
path represents a direction taken to minimize the norm of the affine map corresponding to
the current cell of the normal manifold.

Figure 3: Contour Plots for I'p

A number of difficulties can arise while constructing the path. The initial basis may not
be invertible, the value of ¢ may not increase monotonically on the path, and the Newton
point p*(1) may never be reached, due either to a cycling of bases or to ray termination.
These issues are addressed in Section 4.

The path described above enables the application of damping techniques to achieve global
convergence. In a pathsearch step, the path p* is searched for a point p*(¢) which satisfies

|Fs(F )] < (= at) | Far(0))] (16)

where o € (0,1). If Ay is a “good” approximation to Fg at z¥, then (16) is satisfied for some
t > 0, since

‘Ak(pk(t))H goes to zero linearly as ¢t goes from 0 to 1. The new iterate xyiq
in the Newton process is defined to be p*(#). Given the appropriate hypotheses, it can be
shown that the sequence HFB(xk)H decreases linearly to 0 when ¢ is chosen to satisfy (16).

In a typical linesearch or pathsearch method, the new iterate #**' is required to satisfy
a descent condition similar to (16), which results in a monotonic decrease in ||Fg|| or in a
related merit function. There is evidence indicating that this requirement may impede or
block convergence to the solution of the desired equation (Grippo, Lampariello & Lucidi
1986, Grippo, Lampariello & Lucidi 1991, Ferris & Lucidi 1994). Various non-monotone sta-
bilization (NMS) schemes for Newton’s method have been proposed, each seeking to improve
efficiency by relaxing the requirement of monotone descent. The PATH solver implements a
scheme of this type, modified to incorporate a pathsearch rather than a linesearch.
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The NMS scheme implemented makes use two ideas. The first is an adaptation of the
watchdog technique (Chamberlain, Powell & Lemarechal 1982) to reduce the number of
pathsearches and therefore the number of function evaluations performed. The second is to
allow a non-monotonic decrease in the merit function associated with the points chosen as
a result of the pathsearches that are carried out. In the majority of cases, the watchdog
technique elects to accept the Newton point if the point returned by the path generation
procedure is suitably close to the current point. The measure of closeness, A, decreases
as the algorithm progresses. In order to monitor these d-steps, the non-monotone descent
condition (17) below is checked at least once every n iterations. The current merit function
value is compared with a reference value R, which is computed from previous function values.
Steps in which these checks on the current merit function value occur are called m-steps.
The points at which these criteria are checked and satisfied are called check points. An
m-step is also taken when a d-step is unacceptable, that is, when it is too large. A watchdog
step occurs when descent criteria are violated; when this occurs, the algorithm returns to
the most recent check point, re-generates the path from the check point (if necessary), and
searches the path for a point that satisfies

| st )] < (1= on)R. (17)

An example of how these different types of steps interleave is given in Section 5.

To summarize, the PATH solver uses a pivotal technique to construct a path p*(-), param-
eterized by ¢, from the current point * to the Newton point x%; of the nonsmooth equation
Fg(x) = 0. The watchdog stabilization technique is used to determine whether the path
should be searched for a point p*(7) satisfying a nonmonotone descent condition, or if the
Newton point should be accepted without searching the path. The algorithm spends most
of its time in the path construction step, while the pathsearches, when they are performed,
are also quite costly. How these steps are performed, and how the algorithm as a whole is
implemented, is the topic of the next section.

4 Implementation Issues

The PATH solver is an implementation of the algorithm described in Section 3. It is written
primarily in C, although it employs Fortran routines as well. Logically, it can be divided
into two parts, the front end and solver. The front end acts as an interface to the routines
which provide evaluations of the function F' and its Jacobian .J, the initial values and lower
and upper bounds for the problems variables z, and other data specific to the problem. The
solver is called by the front end to solve the MCP defined by F' and B. The code for the
solver remains the same, regardless of which front end is used. Compiler flags are used to
ensure that calls to the proper front end are made.

The computational tests of the PATH solver have been done primarily using the GAMS
front end and CPLIB, a library of routines used to evaluate F' and J. These interface routines
are written in Fortran for greater compatibility with the GAMS 1/O library, a set of Fortran
routines supplied by GAMS Development Corporation and required to interpret the problem
as written to disk by the GAMS compiler.
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Two other front ends exist as well. The first of these is a stand alone version, written in C
and consisting of a main program whose task is simply to call the PATH solver and a number
of auxiliary functions whose purpose is to evaluate F' and J and provide the variable bounds,
initial iterate, and other information required by the solver. Most recently, an AMPL link
has been completed as well, which allows complementarity problems to be formulated in the
AMPL modeling language (Fourer, Gay & Kernighan 1993) in a manner similar to GAMS.
The AMPL complementarity link is programmed in C, as are the publicly available AMPL
[/O routines (Gay 1993) necessary for interpreting the output of the AMPL compiler.

Although the PATH solver is written almost entirely in C, it is designed so that calls
to numerical Fortran routines (e.g. for function evaluation) can be made without difficulty.
Unfortunately, output to files opened in Fortran is not as easily accomplished in C, while
the code to accomplish this would vary from platform to platform. The PATH solver avoids
this problem by using macros to write to one of three well-defined files. When used with a
Fortran front end, the macros expand to functions which write to strings and call Fortran
routines to write the strings to files. When used with a C front end, the macros expand to
functions which perform the desired output. This technique eliminates the need for separate
output code throughout the solver; instead, one macro is used, whose definition depends on
the front end in use.

At its top level, the solver consists of an outer iteration loop. At the beginning of each
outer iteration, F' and J are evaluated at the current point and a test for convergence is
performed. Then, a linear subproblem is solved via a path construction technique and a new
iterate obtained, perhaps as the result of a pathsearch. The time required to evaluate ¥ and
J varies from problem to problem and depends on the complexity and sparsity of F. If no
pathsearch is necessary, the majority of the work in the outer loop is the construction of the
path. When a pathsearch is performed, the work required depends on how quickly (17) can
be satisfied.

The path is constructed by following a sequence of directions, each computed to lead
to the zero of the affine map corresponding to the current cell. Fach direction is followed
until either the boundary of the current cell or the Newton point is reached. If a boundary
is reached, the affine map changes, the direction needs to be recomputed, and we have a
breakpoint in the path. Each successive affine map corresponds to a basis, each differing
from its predecessor in only one column. Thus, the sequence of directions can be computed
using any basis updating scheme. The PATH solver was tested using three different basis
packages, the Harwell LA05 code (Reid 1982), the basis routines from MINOS 5.4 (Murtagh
& Saunders 1983), and a simple basis package coded in C. We found that the MINOS routines
were fastest, and have used those exclusively in subsequent testing, although the others can
be substituted by setting appropriate compilation flags. The cell boundaries are found via
a pivot step identical to that used in the simplex method for linear programming. We have
chosen to employ a Devex-type choice of leaving variable in which the bounds are relaxed by
a fixed slack tolerance (Harris 1973). This leads to fewer iterations and more stable bases.

We have assumed throughout that the basis corresponding to the current values of
(z,w,v) is in fact invertible, although this is not always the case in practice. If the ini-
tial basis (as determined by z*) is not invertible, the PATH solver cannot begin to construct
the path. In this case, the current point is abandoned, and the PATH solver attempts to
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construct an invertible basis for system (14) by using as many slack columns as possible. If
none of the z variables are free, this basis is always invertible. If all the variable are non-
negatively constrained, this slack basis is identical to that used to start Lemke’s method for
LCP, while the proper choice of the initial point + = —w leads to a path which is identical
to the one computed by Lemke’s method. While this path cannot be searched to guarantee
a decrease in || Fg||, it does provide an effective restart away from a singular basis. We refer
to any basis containing the maximum number of slack columns as a Lemke basis.

As the path is constructed, the leaving variables determined by each pivot step are stored
on a stack, so that the path can be reconstructed by using this information and the current
basis. The path construction phase of the algorithm terminates at a Newton point, at the
base of a ray, or as the result of an iteration interrupt. In the latter instances, the parameter
t often fails to increase monotonically on the path. An option exists to truncate such paths
so that their final point corresponds to a basis with the maximum ¢ value attained on the
path, since the norm of the approximation Ay is minimized at this point. In any case, the
computed path is returned, in the form of a current basis and a stack, and the outer iteration
loop continues.

Once the path is constructed, the stabilization techniques determine whether a pathsearch
is necessary. If so, a backtrace of the path is performed, in which the path is reconstructed
in reverse order from its computation, using the information stored on the stack. At each
breakpoint, the descent condition (17) is checked. The search is terminated when (17) is
satisfied. If no breakpoint satisfies these conditions, the initial segment of the path is searched
using an Armijo technique (Armijo 1966). While backtracing the path is as expensive as the
original construction, this is only necessary when a pathsearch is performed, and the number
of searches is kept to a minimum by the watchdog stabilization technique. In addition, the
path is backtraced only up the point satisfying (17), which may require little or no work
at all. An obvious alternative to the backtrace is to search the path as it is constructed,
but this leads to an excessive amount of essentially wasted function evaluations when the
Newton point is ultimately chosen, and was found to be overly restrictive as well. Ideally,
we would like to store the path in its entirety and save the expense of recomputing it, but
this approach was rejected due to the large amount of memory this would require.

In the above descriptions of the algorithm and its implementation, a number of parame-
ters and options, most unmentioned, exist and must be specified. For example, (17) depends
on a tolerance o, while the memory available to the basis routines is controlled by two “elbow
room” tolerances. In addition, verbosity flags exist to print information useful to algorithm
developer and user alike. The PATH solver provides default settings which are appropriate
for most problems, but in order to speed solution for a difficult problem or to obtain detailed
information, it may be necessary to modify some parameters. In all, there are 40 options
which can be set via an options file, following the keyword—value syntax used by MINOS.

5 Computational Results

In this section, we compare the performance of the PATH solver to that of the undamped
Newton method of Josephy (1979). Since Josephy’s method can be viewed as a variant of
our algorithm, (i.e. no pathsearch is carried out, and a particular choice of initial basis and
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basic values is made for each subproblem), a separate code for each method is not necessary.
Instead, the Josephy method is the result of a particular setting of PATH solver options.
This makes possible a meaningful comparison of solution times, as any differences are the
result of the algorithm used and not of the implementation.

In order to compare the two methods, we have used them to solve the larger problems
in a library of general equilibrium models provided by Tom Rutherford and formulated in
the MPSGE language (Rutherford 1994a). The details of the CAMEROON model (GAMS
model library sequence number 140) are given by Condon, Dahl & Devarajan (1987). The
CO3 model, number 142, is described by Perroni & Rutherford (1993) and is used to calcu-
late the amount of global carbon emissions in the year 2020 under various scenarios. The
ETAMACRO model of Manne (1977), number 144, is a macroeconomic interaction model
for the United States, while the FINLAND model of Torma & Rutherford (1992), number
145, was developed to investigate the effects of tax reform in Finland. The GEMTAP model,
number 146, is an updated version of a model for tax policy analysis described by Ballard,
Fullerton, Shoven & Whalley (1984), while the VONTH model, number 156, is a land use
model derived from MacKinnon (1976). Frequently in these model formulations, the first
run is just for calibration purposes.

Table 2: PATH results

problem / run | major minor func grad time
CAMEROON 4 4 5 5 1.27
CO, 2 13 51 14 14 3.48

3 4 5 5 5 1.40

4 4 5 5 5 1.23

5 5 6 6 6 1.35

6 6 10 7 7 1.80

7 7 13 8 8 2.04
ETAMACRO 21 101 52 22 5.04
FINLAND 2 4 212 5 4.75
3 4 4 5 5 3.07

4 4 13 5 5 2.90

5 4 4 5 5 3.11

GEMTAP 2 24 70 43 25 28.64
3 6 8 7 7 6.50

4 6 10 7 7 6.42

5 26 134 70 27 33.90

VONTH 13 74 14 14 1.72

Table 2 indicates the number of major and minor iterations required to solve each prob-
lem using the PATH solver, along with the number of function and gradient evaluations
and the amount of time required. Similar results obtained using Josephy-Newton’s method
are given in Table 3. The bar graph in Figure 4 demonstrates the difference in solution
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Table 3: Josephy results

problem / run | major minor func grad time
CAMEROON failed
CO, 2 failed

3 4 806 5 5 4.99

4 4 810 5 5 4.92

5 5 1002 6 6 6.52

6 6 1240 7 7 7.67

7 7 1436 8 8 10.08
ETAMACRO failed

FINLAND 2 4 838 5 5 8.31

3 4 674 5 5 7.87

4 4 821 5 5 9.00

5 4 688 5 5 6.53
GEMTAP 2 failed

3 6 1993 7 7 30.90

4 6 2003 7 7 30.20
5 failed

VONTH 13 979 14 14 3.95

times between the two algorithms by plotting the times required to solve the GEMTAP
and FINLAND problems for each of the runs in which Josephy’s method was able to com-
pute a solution. These tables show that the PATH solver can be expected to solve general
equilibrium problems in a robust manner, as opposed to the undamped method of Josephy.
In addition, the PATH solver requires considerably less solution time, due to the smaller
number of pivots performed. This is the result of the warm start taken by the PATH solver
on the subproblems; in most cases, the optimal basis remains the same over the last few
subproblems, so that only one pivot step is required for each.

Of particular interest is the ETAMACRO model formulated by Manne (1977) and mod-
ified to have shorter time periods of four years” duration. While Josephy’s method diverges
when applied to this problem, the stabilization techniques employed by the PATH solver
result in a solution. Table 4 contains data from a run of the PATH solver on the modified
ETAMACRO problem.

In Table 4, information from the log line printed at each major iteration is given. This
demonstrates the behavior of the stabilization techniques used. The first two subproblems
solved terminate at the Newton point. Note that for numerical reasons, the PATH solver
forces ¢ from 1 down to 0 instead of vice versa. Thus, the point p*(0) is the Newton point at
iteration k. Note also that || Fig(2')|| and ||Fg(2?)|| are very much larger than ||Fg(2°)||. The
algorithm parameters were set to check the descent condition after two iterations, so that
instead of accepting #2, the algorithm returns to the check point 2°. In doing so, the points
2! and 22 are discarded. In the table, this is indicated by the first horizontal line. The path
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Figure 4: Comparison of Solution Times

Iterate | pivots | F evals | ¢ value | F's]|
20 0 1 5.1863e4-01
2! 16 2 0 3.1458e4-06
22 12 3 0 6.0384e4-06
2° 0 5.1863e+4-01
x! 16 21 874 4.5335e+01
z? 12 22 0 3.1459e4-06
z? 12 23 0 6.0384e4-06
x! 0 4.5335e+01
z? 12 36 .H96 3.4070e+01
z? 2 37 0 3.8274e+401
z? 1 38 0 1.5150e4-01
z° 1 39 0 6.0979e+00
z6 1 40 0 1.7764e+400
z7 1 41 0 2.5578e-01
8 1 42 0 7.0422e-03
z? 1 43 0 5.6718e-06
210 1 44 0 3.6886e-12

Table 4: PATH output, modified ETAMACRO
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is reconstructed from z°, and instead of accepting the resulting Newton point, a backtracing
pathsearch is performed. This pathsearch terminates at ¢ = .874 and a point z' which
becomes the new check point. The pathsearch required 18 function evaluations and resulted
in a decrease in || Fg||. The algorithm continues from z' by taking two Newton steps z* and
2>, but again, the descent conditions are not satisfied. Thus, a watchdog step is performed
and the algorithm returns to the check point z!, as indicated by the second horizontal line
in Table 4. The path from z! is reconstructed, and the nonmonotone linesearch procedure
gives t = .596 and the new check point z?2.

The Newton point z® does not satisfy any monotone descent criterion; it is, however,
accepted by the watchdog method. This is fortunate, since from this point on, the PATH
solver computes Newton points which satisfy any reasonable descent criteria. Note that the
optimal basis has been reached at this point, so that each succeeding iteration requires only
one pivot step. Each of these single pivot steps result in a linear path from the current
iterate to the Newton point.

Although the above problems are too small to demonstrate the efficiency of PATH for
solving very large general equilibrium problems, it is noted elsewhere (Dirkse & Ferris 1994 a)
that PATH is an effective solver for large scale MCP’s. For instance, an optimal control
example with 8192 variables and constraints is solved in less that 1 hour on a DECstation

5000.

6 Conclusions

In this paper we have described an algorithm, PATH, for solving Mixed Complementarity
Problems. The algorithm is shown to be markedly superior to the standard Newton method
for such problems, both in speed and robustness. Combined with GAMS/MCP and MPSGE,
PATH represents a valuable tool for computing general equilibria. We believe this advances
the state of the art in this area.
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