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 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.A Comparison of Large Scale MixedComplementarity Problem Solvers*STEPHEN C. BILLUPS sbillups@carbon.cudenver.eduMathematics Department, University of Colorado, Denver, Colorado 80217STEVEN P. DIRKSE steve@gams.comGAMS Development Corporation, Washington, DC 20007MICHAEL C. FERRIS ferris@cs.wisc.eduComputer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706Received Oct 1, 1995; Revised March 22, 1996Editor:Abstract. This paper provides a means for comparing various computer codes for solving largescale mixed complementarity problems. We discuss inadequacies in how solvers are currentlycompared, and present a testing environment that addresses these inadequacies. This testingenvironment consists of a library of test problems, along with GAMS andMATLAB interfaces thatallow these problems to be easily accessed. The environment is intended for use as a tool by otherresearchers to better understand both their algorithms and their implementations, and to directresearch toward problem classes that are currently the most challenging. As an initial benchmark,eight di�erent algorithm implementations for large scale mixed complementarity problems arebrie
y described and tested with default parameter settings using the new testing environment.Keywords: complementarity problems, variational inequalities, computation, algorithms1. IntroductionIn recent years, a considerable number of new algorithms have been developed forsolving large scale mixed complementarity problems. Many of these algorithmsappear very promising theoretically, but it is di�cult to understand how well theywill work in practice. Indeed, many of the papers describing these algorithms areprimarily theoretical papers and include only very minimal computational results.Even with extensive testing, there are inadequacies in the way the results are re-ported, which makes it di�cult to compare one approach against another.The purpose of this paper is to describe a testing environment for evaluatingthe strengths and weaknesses of various codes for solving large scale mixed com-plementarity problems. We believe that the environment is ideally suited for thecomputational study, development, and comparison of algorithm implementations.The careful description and documentation of the environment given here should* This material is based on research supported by National Science Foundation Grant CCR-9157632 and the Air Force O�ce of Scienti�c Research Grant F49620-94-1-0036.



2help algorithm designers focus their developmental e�orts toward practical and use-ful codes. To exhibit its intended usage, we benchmark eight di�erent algorithmimplementations for large scale mixed complementarity problems with the new test-ing environment. At the same time, we intend to provide a convenient mechanismfor modelers to provide new and challenging problems for use in solver compari-son. As an added bene�t, we believe the environment will help modelers determinewhich code best �ts their needs.The mixed complementarity problem (MCP) is a generalization of a system ofnonlinear equations and is completely determined by a nonlinear function F : Rn !Rn and upper and lower bounds on the variables. The variables z must lie betweenthe given bounds ` and u. The constraints on the nonlinear function are determinedby the bounds on the variables in the following manner:`i < zi < ui ) Fi(z) = 0zi = `i ) Fi(z) � 0zi = ui ) Fi(z) � 0:We will use the notation B to represent the set [`; u].Several special cases of this formulation are immediately obvious. For example,if ` � �1 and u � +1 then the last two implications are vacuous and MCP isthe problem of determining z 2 Rn such that F (z) = 0.As another example, the Karush-Kuhn-Tucker conditions for nonlinear programsof the formmin f(x)s:t: g(x) � 0are given byrf(x) + �rg(x) = 0;g(x) � 0; � � 0; �Tg(x) = 0:These are easily recast as an MCP by settingz = � x� � ; F (z) = � rf(x) + �rg(x)�g(x) � ; B = Rn �Rm+ :Here Rm+ represents the nonnegative orthant of Rm. Many problems in economicequilibrium theory can be cast as MCPs and an overview of how this is accom-plished is given in [31]. Other application areas are detailed in [7], [12]. There hasbeen much recent interest in less traditional applications of the complementarityframework. Some of these are based on the generalized equation literature [28] thatreformulates the MCP as 0 2 F (z) + NB(z). Here NB(z) is the classical normalcone to the set B at the point z de�ned byNB(z) := �y j yT (x� z) � 0 8x 2 B	 ;



3if z 2 B and is empty otherwise.Nonlinear complementarity problems appeared in the literature in [5]. The �rstalgorithms for these problems were based on simplicial labeling techniques originallydue to Scarf [32]. Extensions of these algorithms led to �xed point schemes [18], [33].Newton techniques [8], [22], [30] that are based on successive linearization of thenonlinear problem have proven very useful for solving these problems, althoughtheir convergence analysis is less satisfactory than the �xed point theory. Recentextensions have looked at reformulating the nonlinear complementarity problemas a system of nonsmooth nonlinear equations and solving these using a dampedNewton or Gauss-Newton approach [6], [8], [10], [11], [13], [16], [19], [20], [21], [23],[24], [25], [26], [27], [29], [34], [35].We are concerned in this paper with computational testing and comparison ofsuch algorithms. We see several problems with the current state of a�airs in theway solvers are developed and compared.1. Codes are tweaked to solve particular problems, with di�erent choices of controlparameters being used to solve di�erent problems. This is contrary to howsolvers are used in practice. In general, modelers are not interested in parameteradjustment; instead, they usually run codes only with default options. A goodcode will have a set of default parameters that performs well on most problems.2. Even when a consistent set of control parameters is used, codes are developedand tuned using the same limited set of test problems for which computationalresults are reported. Consequently, the results do not give a fair picture of howthe codes might behave on other problems. Enlarging the test suite and addingreal world problems alleviates some of these di�culties.3. There is no clear understanding of what makes problems di�cult. Thus, testcases reported do not necessarily re
ect the various di�culties that can causealgorithms to fail. As a result, it is extremely di�cult for a modeler to determinewhich algorithm will work best for his particular class of problems.4. The majority of papers written are theoretical in nature and provide computa-tional results only for naive implementations of the algorithms. While this canexhibit the potential of a particular approach, it is inadequate for evaluatinghow an algorithm will work in practice. Instead, computational results need tobe reported for sophisticated implementations of the algorithms. In particular,algorithm speci�c scaling, preprocessing or heuristics are crucial for improvedrobustness and developer supplied default settings should be used in all solvercomparisons.5. Test problems do not re
ect the interests of users with real-world applications.Thus, algorithms are developed which are good at solving \toy" problems, butare not necessarily good at solving problems of practical importance.These problems in the way solvers are currently tested result in two major de�-ciencies in the usefulness of test results. First, the reported results are inadequate



4for modelers to determine which codes will be most successful for solving their prob-lems. Second, it is di�cult for algorithm developers to determine where additionalresearch needs to be directed.In order to overcome these di�culties, this paper proposes that a testing envi-ronment for large scale mixed complementarity problems be developed. The goalsof this environment are again twofold: �rst, it should provide a means of moreaccurately evaluating the strengths and weaknesses of various codes, and second,it should help direct algorithm developers toward addressing the issues of greatestimportance. A preliminary version of such an environment is described in Section 2and was used to generate the computational results reported in Section 4. A briefdescription of each of the codes tested is provided in Section 3.2. Testing EnvironmentThis section describes a testing environment that aims to correct many of theproblems discussed in the introduction concerning how codes are developed andtested. This environment has four main components: a library of test problems,GAMS and MATLAB interfaces that allow these problems to be easily accessed, atool for verifying the correctness of solutions, and some awk scripts for evaluatingresults.2.1. Test LibraryThe centerpiece of the testing environment is a large publicly available library of testproblems that re
ects the interests of users with real-world applications, and thatalso includes problems having known types of computational di�culties. Many ofthese problems are contained in the standard GAMS distribution [3], while othersare part of the expanding collection of problems called MCPLIB[7]. All of theproblems that are used in this work are publicly available and can be accessed bothfrom within the GAMS modeling system[3] and from within MATLAB[14].Because most of the problems in the test library come from real-world applica-tions, the library re
ects, as much as possible, the needs of the user community. Asthis library has become more popular among code developers, we have observed anincreased interest among modelers to contribute more and more challenging prob-lems to the library. The motivation is simple: modelers want to encourage thedevelopment of codes capable of solving their most di�cult problems.We note that many of the problems contained in the test library are di�cult forvarying reasons. We believe that it is important to identify the characteristics thatmake problems hard. This is a daunting task; toward this end, we give an incom-plete classi�cation of the types of problem di�culties that may prove challengingfor di�erent algorithms.1. Nonlinearity. We characterize the nonlinearity of a problem by how well a locallinearization of the function models the original problem. One di�culty encoun-



5tered in highly nonlinear problems is the presence of local minima of the un-derlying merit function that do not correspond to solutions. Several algorithmsinclude features that allow them to escape such local minima, for example, per-turbational schemes and nonmonotone watchdog procedures. Thus, we expectthat certain algorithms will be more sensitive to the degree of nonlinearity thanothers.2. Active Set Determination. For many problems, once the active set is deter-mined, (that is, once we determine which variables are at their upper and lowerbounds) the given algorithm is quick to converge. Thus, quick identi�cationof the active set can greatly improve the performance of the algorithm. Thisseems to be particularly true for problems that are nearly linear.3. Problem Size. Some algorithms may be better at exploiting problem structurethan others, making them less sensitive to the size of the problem. One weaknessof our current test suite is that it does not address the issue of size very well.We have attempted to include problems of reasonable size, but it is clear thatthe test library needs to be expanded in this area.4. Sensitivity to Scaling. Our experience is that modelers, of necessity, tend tobecome very good at scaling their models so that relevant matrices are rea-sonably well-conditioned. Indeed, most of the problems in our model libraryare well scaled. However, models under development are often poorly scaled.Frequently, solutions are used to scale models properly and to aid in the modelconstruction. Thus, sensitivity to scaling is quite important. In general it isvery di�cult to scale highly nonlinear functions e�ectively, so that an algo-rithm that is less sensitive to scaling may prove to be more practical for highlynonlinear problems.5. Others. Several other problem characteristics have been proposed, but have notbeen well studied in the context of real models. These include monotonicity,multiple solutions, and singularity at the solution.Tables 1 and 2 describe the problems that are included in the test library. Furtherdocumentation on these problems can be found in [31] and [7] respectively. Since thestarting point can greatly in
uence the performance of an algorithm, the libraryincludes multiple starting points for most problems. We note that many of theeconomic problems have the �rst starting point very close to a solution. This is the\calibration" point and is used by a modeler to test whether the model reproducesbenchmark data. The following abbreviations are used when referring to the typeof the problem:



6MCP General mixed complementarity problemLMCP Linear mixed complementarity problemNCP Nonlinear complementarity problemLCP Linear complementarity problemMPSGE General economic equilibrium problems de�ned withthe MPSGE macro languageNE Nonlinear equationsNLP Optimality conditions of a nonlinear programThe tables also include a column labeled \other". In this column we have addedsome known characteristics of the problems. Thus \M" is entered in this column ifthe problem is known to be monotone. Similarly a digit \4" for example indicatesthe number of known solutions. If an \S" occurs in this column then the submatrixof the Jacobian corresponding to the \active constraints" is known to have conditionnumber greater than 108 at a solution. The fact that one of these entries does notappear in the table only signi�es that the authors do not know whether the problemhas this particular characteristic.2.2. InterfacesTo make the test library useful, two interfaces are provided that make the problemseasily accessible both for testing of mature codes and for evaluating prototypealgorithms.The �rst interface is a means for programs to communicate directly with theGAMS modeling language [3]. For realistic application problems, we believe thatthe use of a modeling system such as AMPL[17] or GAMS is crucial. In earlierwork with Rutherford[9], we developed the GAMS/CPLIB interface that providessimple routines to obtain function and Jacobian evaluations and recover problemdata. This makes it easy to hook up any solver that is written in Fortran or Cas a subsystem of GAMS. The advantages of using a modeling system are many;some of the most important advantages include automatic di�erentiation, easy datahandling, architecture-independent interfaces between models and solvers, and theability to extend models easily to answer new questions arising from solutions ofcurrent models. In addition, modeling languages provide a ready library of exampleson which to test solvers. GAMS was chosen for our work instead of AMPL becauseit is a mature product with many users, resulting in the availability of many real-world problems.While we believe that any mature code should be connected with a modelinglanguage, we also feel that there should be an easier means for making the library oftest problems available to prototype algorithms. The MATLAB interface describedin [14] provides such a means. Using MATLAB, it is possible to quickly implementa prototype version of a new algorithm, which can be tested on the entire suiteof test problems with the MATLAB interface. Thus, the test library can play an



7Table 1. GAMSLIB ModelsModel Type n nnz density othercafemge MPSGE 101 900 8.82%cammcp NCP 242 1621 2.77%cammge MPSGE 128 1227 7.49%cirimge MPSGE 9 33 40.74%co2mge MPSGE 208 1463 3.38%dmcmge MPSGE 170 1594 5.52%ers82mcp MCP 232 1552 2.88%etamge MPSGE 114 848 6.53%�nmge MPSGE 153 1915 8.18%gemmcp MCP 262 2793 4.07%gemmge MPSGE 178 3441 10.86%hansmcp NCP 43 398 21.53%hansmge MPSGE 43 503 27.20%harkmcp NCP 32 131 12.79%harmge MPSGE 11 60 49.59%kehomge MPSGE 9 75 92.59% 3kormcp MCP 78 423 6.95%mr5mcp NCP 350 1687 1.38%nsmge MPSGE 212 1408 3.13%oligomcp NCP 6 21 58.33%sammge MPSGE 23 117 22.12%scarfmcp NCP 18 150 46.30%scarfmge MPSGE 18 181 55.86%shovmge MPSGE 51 375 14.42%threemge MPSGE 9 77 95.06%transmcp LCP 11 34 28.10%two3mcp NCP 6 29 80.56%unstmge MPSGE 5 25 100.00%vonthmcp NCP 125 760 4.86% Svonthmge MPSGE 80 594 9.28%wallmcp NE 6 25 69.44%



8 Table 2. MCPLIB ModelsModel Type n nnz density otherbertsekas NCP 15 74 32.89%billups NCP 1 1 100.00% 1bert oc LMCP 5000 21991 0.09% Mbratu NLP 5625 33749 0.11%choi NCP 13 169 100.00%colvdual NLP 20 168 42.00%colvnlp NLP 15 113 50.22%cycle LCP 1 1 100.00% M1ehl kost MCP 101 10201 100.00%explcp LCP 16 152 59.38% 1freebert MCP 15 74 32.89%gafni MCP 5 25 100.00%hanskoop NCP 14 129 65.82%hydroc06 NE 29 222 26.40%hydroc20 NE 99 838 8.55%josephy NCP 4 16 100.00% 1kojshin NCP 4 16 100.00% 2mathinum NCP 3 9 100.00%mathisum NCP 4 14 87.50%methan08 NE 31 225 23.41%nash MCP 10 100 100.00%obstacle LMCP/NLP 2500 14999 0.24% M1opt cont LMCP 288 4928 5.94% M1pgvon105 NCP 105 796 7.22% Spgvon106 NCP 106 898 7.99% Spies MCP 42 183 10.37%powell NLP 16 203 79.30% Spowell mcp NCP 8 54 84.38%scarfanum NCP 13 98 57.99%scarfasum NCP 14 109 55.61%scarfbnum NCP 39 361 23.73%scarfbsum NCP 40 614 38.38%sppe NCP 27 110 15.09%tobin NCP 42 243 13.78%



9active role in in
uencing the development of new algorithms. It must be noted,however, that there are subtle di�erences between the MATLAB models and theGAMS models. In particular, many GAMS models vary not only the startingpoint for di�erent runs, but also some of the underlying nonlinearities, whereasthe MATLAB models vary only the starting point. Thus, a completely accuratecomparison must be carried out exclusively in GAMS or exclusively in MATLAB.2.3. Veri�cation of SolutionsSince stopping criteria vary from algorithm to algorithm, a standardized measureis needed to ensure that di�erent algorithms produce solutions that have someuniformity in solution quality. To achieve this goal, we developed an additionalsolver, accessible through GAMS, that evaluates the starting point and returns thevalue of the following merit function:kF (�B(x)) + x� �B(x)k2 ; (1)where �B represents the projection operator onto the set B. To use this veri�cationtest, we �rst solve the problem with the algorithm we are testing, and pass thesolution to our \special" solver to verify that the standardized residual is not toolarge. Since the special solver is callable from GAMS, this can be achieved byadding a few lines to the GAMS problem �les.2.4. Data ExtractionThe output of MCP codes is typically quite extensive and varies from solver tosolver. To extract pertinent information from this output, we have written severalawk scripts that read through the �les, and then generate data tables. These scriptsrequire slight modi�cations for each solver, but are a tremendous help in extractingdata to produce meaningful information.3. Description of AlgorithmsIdeally, the computational study of algorithms should be performed using onlymature, sophisticated codes, so that the strengths and limitations of each algorithmwould be accurately re
ected in the numerical results. Unfortunately, many of thealgorithms proposed for complementarity problems are not accompanied by suchmature codes. Of the algorithms described below, the implementations of MILES,PATH, and SMOOTH are the most mature. For the remaining algorithms, we havedeveloped our own implementations which incorporate the GAMS interface.All of the algorithms outlined have been coded to take explicit advantage of theMCP structure; however, several of them were originally devised for the specialcase of the nonlinear complementarity problem (NCP)



10 z � 0; F (z) � 0; zTF (z) = 0and will be described below in this context. We now give a brief description of thecodes that were tested and indicate pertinent references for further details.3.1. MILESMILES [30] is an extension of the classical Josephy-Newton method for NCP inwhich the solution to each linearized subproblem0 2 F (zk) +rF (zk)(z � zk) +NB(z)is computed via Lemke's almost-complementary pivot algorithm. This Newtonpoint is used to de�ne the Newton direction, which is then used in a dampedlinesearch. The merit function used measures both the violation in feasibility andin complementarity. MILES also employs a restart procedure in cases where theNewton point cannot be computed due to termination in a secondary ray. Everylinearized subproblem is rescaled to equilibrate the elements appearing in the dataof the subproblem.3.2. PATHThe PATH solver [8] applies techniques similar to those used in Newton methodsfor smooth systems to the following reformulation of the MCP0 = F (�B(x)) + x� �B(x):Here �B represents the projection operator onto the set B, which is in generalnot di�erentiable. The algorithm consists of a sequence of major iterations, eachconsisting of an approximation or linearization step similar to that of MILES, theconstruction of a path to the Newton point (the solution to the approximation), anda possible search of this path. When the Newton point does not exists or the pathcannot be entirely constructed, a step along the partially computed path is takenbefore the problem is relinearized. A nonmonotone watchdog strategy is employedin applying the path search; this helps avoid convergence to local minima of themerit function (1), and keeps the number of function evaluations required as smallas possible.Other computational enhancements employed by PATH are a projected Newtonpreprocessing phase (used to �nd an initial point that better corresponds to theoptimal active set) and the addition of a diagonal perturbation term to the Ja-cobian matrix when rank de�ciency is detected. The Jacobian elements are alsoautomatically scaled by the algorithm at each major iteration.



113.3. NE/SQPThe NE/SQP algorithm [26] is based upon reformulating the NCP as the systemof nonsmooth equations0 = H(z) := minfz; F (z)g:In [2] the NE/SQP algorithm is extended to the MCP by using the reformulation0 = H(z) := minfz � `;maxfz � u; F (z)gg (2)Both algorithms use a Gauss-Newton approach that attempts to minimize�(z) := kH(z)k2 (3)to �nd a zero of H. The nonsmoothness of the equations is handled using di-rectional derivatives of H. Speci�cally, at each iteration, a search direction iscalculated by minimizing a convex quadratic program whose objective function isformed by squaring a linear approximation of H. At points where the derivativeis not well de�ned, the linear approximation is created by choosing a particularelement of the subdi�erential. Once this direction is determined, an Armijo-typelinesearch is used to calculate the step size to be taken along that direction. Theadvantage of this approach is that the direction �nding subproblems are alwayssolvable. This is in contrast to Newton-based approaches, which may fail due to asingular Jacobian matrix, and to PATH and MILES, which determine the searchdirection by attempting to solve a linear complementarity problem, which may, infact, be unsolvable.One weakness of the algorithm is that it is vulnerable to converging to localminima of the merit function � that are not solutions to the problem. The codeuses scaling of the subproblems and enforces a small cushion between the iteratesand the boundary of B as suggested in [26].3.4. SMOOTHThe SMOOTH algorithm [4] is based upon reformulating the NCP as a system ofnonsmooth equationsx = �Rn+(x� F (x));and then approximately solving a sequence of smooth approximations, which lead toa zero of the nonsmooth system. More precisely, at each iteration, a smooth approx-imation to the original system is formed where the accuracy of the approximationis determined by the residual of the current point, that is 


x� �Rn+(x� F (x))


.The smooth approximation p� to �Rn+ corresponds to an integration of the sigmoid



12function that is commonly used in machine learning. Applying a single step of New-ton's method to this smooth function generates a search direction. The next iterateis then generated by performing an Armijo-type linesearch of the merit functionkx� p�(x� F (x))kalong this direction. Assuming this new point produces an improved residual, thenext iteration is based upon a tighter approximation of the nonsmooth equations.An initial scaling of the data is used in the code, and the PATH preprocessor isused. However, in SMOOTH, the preprocessor is used to try to solve the MCPinstead of merely to identify the active set. If this technique fails, the code isrestarted and the smoothing technique is then used to �nd a solution.3.5. QPCOMPQPCOMP [2] is an enhancement of the NE/SQP algorithm, which adds a proximalperturbation strategy that allows the iterates to escape local minima of the meritfunction � de�ned in (3). In essence, the algorithm detects when the iterates appearto be converging to a local minimum, and then approximately solves a sequence ofperturbed problems to escape the domain of convergence of that local minimum.The perturbed problems are formed by replacing F with the perturbed functionF�;�z := F (z) + �(z � �z); (4)where the centering point �z is generally chosen to be the current iterate, and theperturbation parameter � is chosen adaptively in a manner that guarantees globalconvergence to a solution when F is both continuously di�erentiable and pseu-domonotone at a solution. In general, the perturbed function is updated after eachiteration. Thus, the perturbed problems are not solved exactly; they are just usedto determine the next step.An important aspect of the algorithm is that F is perturbed only when the iteratesare not making good progress toward a zero of the merit function. In particular,during the perturbation strategy, whenever an iterate is encountered where themerit function (of the unperturbed problem) has been su�ciently reduced, thealgorithm reverts to solving the unperturbed problem. Thus, near a solution, thealgorithm maintains the fast local convergence rates of the underlying NE/SQPalgorithm.We note that NE/SQP is equivalent to QPCOMP without the proximal pertur-bation strategy. Thus, to test NE/SQP, we simply ran the QPCOMP algorithmwith the proximal perturbation strategy turned o�.3.6. PROXIPROXI [1], like NE/SQP and QPCOMP is based upon reformulating the MCP asthe system of nonsmooth equations (2). However, instead of solving this system



13using a Gauss-Newton approach, PROXI uses a nonsmooth version of Newton'smethod. Speci�cally, at each iteration, the search direction is calculated by solvinga linear system that approximates H at the current iterate. Again, if H is notdi�erentiable at the current iterate, the linear approximation is created by choosinga particular element of the subdi�erential.Like QPCOMP, PROXI uses a proximal perturbation strategy to allow the iter-ates to escape local minima of the merit function � de�ned in (3). This strategyalso allows the algorithm to overcome di�culties resulting from singular Jacobianmatrices. In particular, if the Newton equation is unsolvable at a particular iter-ation, the algorithm simply creates a slightly perturbed problem using (4) with avery small �. The resulting Newton equation for the perturbed function will thenbe solvable. This strategy for dealing with unsolvable Newton subproblems is con-siderably more e�cient than the Gauss-Newton approach used by NE/SQP andQPCOMP.3.7. SEMISMOOTHSEMISMOOTH [1] is an implementation of an algorithm described in [6]. Thisalgorithm is based upon the function�(a; b) =pa2 + b2 � (a+ b);which was introduced by [15]. This function has the property that�(a; b) = 0() a � 0; b � 0; ab = 0:Using this function, the NCP is reformulated as the semismooth system of equations0 = �(z);where �i(z) := �(zi; Fi(z)). This reformulation has the nice feature that the naturalmerit function 	(z) := k�(z)k2 is continuously di�erentiable. The SEMISMOOTHalgorithm described in [1] extends the approach to the MCP by using the reformu-lation of MCP given by�i(z) := �(zi � `i; �(ui � zi;�Fi(z))):To solve the reformulated system of equations, a generalization of Newton'smethod is used wherein at each iteration, the search direction dk is found by solvingthe systemHkd = ��(zk);where Hk is an element of the B-subdi�erential of �. The next point zk+1 is thenchosen by performing a nonmonotone, Arimijo linesearch along the direction dk.



143.8. SEMICOMPSEMICOMP [1] is an enhancement of the SEMISMOOTH algorithm, which, likeQPCOMP and PROXI, adds a proximal perturbation strategy to allow iterates toescape local minima of the merit function. The algorithm is identical to SEMIS-MOOTH except when the iterates stop making satisfactory progress toward a zeroof �. In this case, the proximal perturbation strategy described for the QPCOMPalgorithm is employed to allow the iterates to escape the troublesome region. Specif-ically, at each iteration, a perturbed function is created by (4), and then the SEMIS-MOOTH algorithm is used to calculate a new point based on this perturbed func-tion. The perturbed function is then updated and the process repeats. The processcontinues until a new point is encountered where the merit function is su�cientlysmaller than the merit function at any previous point. At this point, the algorithmreverts back to the unperturbed SEMISMOOTH algorithm.4. Computational ComparisonWith the exception of NE/SQP and QPCOMP, each of the eight algorithms de-scribed in the previous section was run on all of the problems in the test libraryfrom all of the starting points. Since NE/SQP and QPCOMP were implementedusing a dense QP code, we only ran the problems with fewer than 110 variablesfor these solvers. Table A.1 in appendix A shows the execution time needed byeach algorithm on a SPARC 10/51, while Table A.2, also in Appendix A, showsthe number of function and Jacobian evaluations required by each algorithm. Toabbreviate the results, we excluded any problems that were solved in less than 2seconds by all of the algorithms we tested.Each algorithm minimizes its own merit function as described in Section 3 andall were terminated when this measure was reduced below 10�6. Since the meritfunctions are di�erent for each code, we tested the solutions to ensure that thestandardized residual given by (1) was always less than 10�5. It is possible thatone more or one less \Newton" step would be carried out if the same merit functionwas used for every algorithm. Since this is impractical, the method we now outlinefor reporting our results makes these small changes entirely irrelevant.How one chooses to summarize data of this nature depends on what one's goalsare. From a modeling standpoint, one could determine which models were themost di�cult to solve by aggregating results for each model. From a computationalstandpoint, one can compare the solvers using many di�erent criteria, includingnumber of successes/failures, cumulative solution time required, number of caseswhere solution time is \acceptable", number of function/gradient evaluations re-quired, etc. As examples of useful metrics, we have chosen the following:success Success is achieved if a solution is computed.



15competitive We say the time TC for a code C is \competitive" withthe time Tmin taken by the best code on that run ifTC � 2Tmin, and \very competitive" if TC � 43 Tmin.Tables 3 and 4 summarize our results for two sets of models, the large ones (� 110variables) for which only the sparsity-exploiting solvers were run, and the smallerones on which all solvers were run.Table 3. Code Comparisons { Large Models SEMI- SEMI-MILES PATH PROXI COMP SMTH SMTHvery comp. 37% 65% 50% 22% 17% 59%competitive 56% 80% 67% 41% 43% 76%success 83% 98% 89% 91% 86% 98%Table 4. Code Comparisons { Small ModelsNE/ QP SEMI- SEMI-MILES SQP PATH PROXI COMP COMP SMTH SMTHvery comp. 32% 0% 43% 34% 0% 26% 25% 24%competitive 45% 2% 67% 54% 1% 44% 40% 52%success 84% 67% 94% 95% 90% 88% 65% 92%5. ConclusionsThe testing environment we have described addresses many of the problems wehave observed about how codes are developed and tested. In particular, with a largecollection of test problems available, it is more di�cult to tune a code to the test set.Moreover, even if such tuning is successful, the resulting code will be good at solvingthe types of problems that are represented in the library, namely, the problemsthat are of interest to the user community. The inclusion of problems with knowndi�culties allows codes to be compared by how well they solve di�erent classesof problems, thus allowing users to more accurately choose codes that meet theirneeds. Finally, by categorizing problems with di�erent computational di�culties,



16the library can be used to highlight the areas where research energies most need tobe directed.Our testing indicates superior performance by the PATH, SMOOTH, and PROXIalgorithms. However, as the codes continue to mature, it is possible that theirrelative performance will change. It is not our intention to declare a winner, butrather to \clarify the rules" so that code developers will focus on the right issueswhen developing algorithms. To a large extent, we have accomplished this with ourtesting environment.It is unfortunate that the scope of our testing could not have been more broad.Some of the algorithms mentioned above were coded by the authors of this paper(not the originators of the algorithm), while there are numerous other algorithmsthat we were not able to test at all. This is due primarily to the fact that thesealgorithms do not have GAMS interfaces. It is our hope that as the CPLIB interfacebecomes more widely known, other code developers will hook up their solvers toGAMS. This will allow their algorithms to be easily compared with other codesusing our testing environment.Lastly, we wish to emphasize that the test library is continually being expanded.In particular, we are always eager to add challenging new real world models to thelibrary. To this end, we have begun to augment the MCPLIB by adding new modelsthat have recently come to our attention. The 10 models listed in Table 5 have beenused in various disciplines to answer questions that give rise to complementarityproblems. Some of these models are solved from many di�erent starting points,indicated by the \solves" column. The �rst 6 are economic models, the next twoarise from applications in tra�c equilibrium and multi-rigid-body contact problems,the �nal two correspond to complementarity problems for which all solutions arerequired. The numbers of solutions for the last two problems are known to beodd, the number listed below is a lower bound. These problems appear to be moredi�cult than most of the problems solved in this paper. Certainly, some are muchlarger, while others have singularities either at solutions or starting points. Mostof these problems do not have underlying monotonicity.The results that we present in Tables 6 and 7 for these models are somewhatdi�erent to the results in Appendix A and are motivated more by the modelsthemselves. For the games and tinloi models, it is important to �nd all solutionsof the model, and so after a �xed number of runs from a variety of starting points,we report the number of distinct solutions found for these models in Table 6.For the remaining problems, we just report one statistic in Table 7 for each model.If every problem was solved, we report the total resources used to solve the completemodel, otherwise we report an error using a letter to signify some sort of failure\F", memory error \M", time limit exceeded \T" or iteration limit exceeded \I".Only the �rst error is listed per problem, while the numbers in parentheses are thenumber of problems that failed to solve.It is our intention to add these models and newer models that are brought to ourattention to MCPLIB. In this way we hope that the problem library will continue



17Table 5. New ModelsModel Type n nnz density solves othershubik MCP 33 207 19.01% 48 Sjmu MCP 2253 10123 0.20% 1asean9a NE 10199 72320 0.07% 1eppa MPSGE 1269 10130 0.63% 8uruguay MPSGE 2281 90206 1.73% 2hanson NE 487 3868 1.63% 2 Strafelas MCP 2904 15000 0.18% 2lincont LCP 419 23626 13.46% 1games NCP 16 256 60.94% 25 5tinloi LCP 146 5694 26.71% 64 3Table 6. Distinct Solutions FoundModel MILES PATH PROXI S/COMP S/SMTH SMOOTHgames 3 5 2 3 3 4tinloi 2 3 1 1 1 2Table 7. Summary for New ModelsModel MILES PATH PROXI S/COMP S/SMTH SMOOTHshubik I(13) F(9) F(25) I(34) I(42) I(15)jmu I 110.81 F F T 214.32asean9a T 62.08 M 92.85 94.3 91.62eppa 249.61 203.79 M T(7) F(7) 239.73uruguay I(1) 2760.17 M M 68161.10 4519.53hanson F(1) 39.36 F(1) F(1) I(1) 4.94trafelas T(2) 150.55 F(1) T(2) T(2) 346.23lincont 9.99 10.76 F F T 718.27
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20Table A.1. Execution Times (sec.)Problem st. NE/ QP- SEMI- SEMI-Name pt. MILES SQP PATH PROXI COMP COMP SMTH SMTHbert oc 1 6.15 { 2.63 2.61 { 11.38 13.50 3.23bert oc 2 7.07 { 3.13 3.24 { 46.44 54.41 2.57bert oc 3 fail { 2.10 2.78 { 15.52 17.99 2.55bert oc 4 136.4 { 2.29 2.67 { 5.80 5.91 2.62bertsekas 1 0.07 fail 0.08 0.39 2.83 0.64 fail 0.24bertsekas 2 0.28 fail 0.04 0.27 2.41 0.59 fail 0.05billups 1 fail fail fail 0.02 0.11 0.10 0.90 failbratu 1 fail { 138.52 149.37 { 7452.38 fail 135.48cafemge 1 0.18 18.16 0.29 0.50 20.11 0.50 0.66 0.41cafemge 2 0.23 16.57 0.26 0.35 14.19 0.50 0.39 0.25cammcp 1 0.50 { 0.21 2.89 { fail fail 0.23choi 1 8.13 2.00 2.09 2.03 2.28 2.95 2.93 2.10co2mge 2 0.43 { 0.50 0.48 { 2.02 2.42 0.52co2mge 6 0.62 { 0.46 fail { fail fail 1.96colvdual 1 0.05 fail 0.11 0.25 5.76 0.12 0.10 0.11colvdual 2 0.07 fail 0.09 0.50 5.39 fail fail 0.10colvnlp 1 0.03 fail 0.05 0.09 2.13 0.08 0.09 0.06colvnlp 2 0.05 fail 0.03 0.05 1.62 0.06 0.05 0.05dmcmge 1 0.20 { 3.75 fail { fail fail 5.42dmcmge 2 0.50 { 0.55 fail { 133.73 fail 0.60ehl kost 1 23.58 fail 3.86 18.50 611.41 18.99 15.02 4.73ehl kost 2 23.92 248.79 13.56 37.67 250.28 49.06 58.25 12.58ehl kost 3 24.15 fail 9.76 64.88 866.08 233.23 240.12 90.38�nmge 2 0.38 { 1.95 11.34 { fail fail 5.16�nmge 4 0.48 { 1.72 12.34 { fail fail 9.18freebert 1 0.03 fail 0.07 0.39 2.72 0.51 fail 0.04freebert 3 0.10 fail 0.05 0.25 2.86 0.55 fail 0.04freebert 4 fail fail 0.09 0.31 2.47 0.60 fail failfreebert 5 fail fail 0.04 0.12 1.38 0.15 0.12 0.04freebert 6 fail fail 0.08 0.33 3.02 0.53 fail failgemmcp 1 2.12 { 0.21 0.16 { 0.19 0.18 0.24gemmge 2 0.47 { 3.24 3.31 { 3.31 3.60 4.18gemmge 3 0.55 { 1.85 1.89 { 2.88 3.92 1.85gemmge 4 0.52 { 2.51 2.37 { 2.84 3.22 1.84gemmge 5 0.55 { 8.85 5.00 { 5.32 6.93 2.28hanskoop 1 0.07 0.37 0.05 0.10 0.37 fail fail 0.33hanskoop 2 0.08 0.04 0.06 0.01 0.05 fail fail 0.02



21Table A.1. Execution Times (continued)Problem st. NE/ QP- SEMI- SEMI-Name pt. MILES SQP PATH PROXI COMP COMP SMTH SMTHhanskoop 3 fail 0.34 0.11 0.09 0.42 fail fail 0.23hanskoop 4 1.10 0.06 0.05 0.01 0.05 fail fail 0.02hanskoop 5 0.07 fail 0.09 0.10 0.70 0.07 0.08 0.30hanskoop 7 0.07 fail 0.05 0.09 0.86 fail fail 0.22hanskoop 9 fail 0.50 0.10 0.24 0.43 0.09 0.10 0.23hansmcp 1 0.10 fail 0.47 0.14 fail 0.16 0.16 0.13hansmge 1 0.10 3.14 0.36 0.70 2.86 0.84 0.88 0.64harkmcp 4 0.07 6.96 0.12 0.21 9.31 fail fail 0.37harmge 1 0.03 fail 0.06 0.44 1.86 1.52 fail 0.09harmge 2 0.80 fail 0.03 0.02 0.14 0.01 fail 0.03harmge 3 0.07 fail 0.04 0.03 0.13 0.02 fail 0.04harmge 4 0.08 fail 0.05 0.03 0.15 0.01 fail 0.04harmge 5 0.08 fail 0.05 0.04 0.16 0.02 fail 0.04harmge 6 fail fail 0.06 fail 3.24 0.02 fail 2.08hydroc20 1 fail 16.11 0.38 0.44 13.31 0.54 0.41 0.36josephy 1 fail fail 0.03 0.02 0.08 0.02 0.01 0.03josephy 2 fail fail 0.04 0.02 0.07 0.02 0.02 0.02josephy 4 fail fail 0.02 0.01 0.04 0.01 0.01 0.02josephy 6 fail 0.04 fail 0.02 0.05 0.01 0.01 0.02kojshin 1 fail fail 0.03 0.01 0.07 0.02 0.03 0.03kojshin 3 0.03 fail 0.06 0.05 0.12 0.06 0.07 0.11kormcp 1 0.23 2.82 0.08 0.06 2.82 0.07 0.05 0.05mr5mcp 1 0.60 { 0.62 2.17 { 2.09 2.01 0.62nsmge 1 0.25 { 0.91 1.64 { 1.69 1.65 2.40obstacle 1 2.37 { 2.36 3.40 { 6.86 5.59 2.39obstacle 2 fail { 5.90 7.33 { 18.01 15.56 6.39obstacle 3 fail { 5.03 8.85 { 11.77 9.45 6.27obstacle 4 3.98 { 4.84 9.29 { 11.01 10.66 6.12obstacle 5 fail { 8.04 4.52 { 15.08 14.59 7.13obstacle 6 fail { 8.86 9.92 { 19.62 21.14 10.07obstacle 7 fail { 7.39 7.57 { 12.84 15.52 7.97obstacle 8 fail { 13.84 7.54 { 14.76 14.32 10.58opt cont127 1 8.52 { 8.14 9.91 { 46.05 45.58 6.38opt cont255 1 fail { 14.86 18.71 { 107.97 110.61 13.80opt cont31 1 2.10 { 1.36 1.51 { 5.55 4.45 1.65opt cont511 1 fail { 39.51 43.19 { 348.63 360.42 37.52pgvon105 1 fail fail 1.54 7.99 fail fail fail failpgvon105 2 0.42 41.51 0.77 2.18 50.91 fail fail fail



22Table A.1. Execution Times (continued)Problem st. NE/ QP- SEMI- SEMI-Name pt. MILES SQP PATH PROXI COMP COMP SMTH SMTHpgvon105 3 fail 33.47 1.58 52.13 58.80 fail fail failpgvon105 4 fail fail fail fail fail 28.09 fail failpgvon106 1 fail fail 19.77 13.21 fail fail fail 125.46pgvon106 2 fail fail 1.80 fail fail fail fail 5.37pgvon106 3 fail fail 1.29 fail fail fail fail 8.48pgvon106 4 fail fail fail 2.46 fail 38.30 fail failpgvon106 5 5.33 fail fail fail fail fail fail failpgvon106 6 fail fail fail fail fail fail fail 3.76pies 1 0.07 fail 0.13 0.29 7.26 0.11 0.13 0.27sammge 1 0.07 fail 0.01 0.01 fail 0.00 0.00 0.00sammge 3 0.10 0.27 0.05 0.16 0.26 0.17 fail 0.18sammge 5 0.12 0.42 0.07 0.12 0.48 0.36 fail 0.13sammge 6 0.13 0.45 0.05 0.27 0.58 0.40 fail 0.13sammge 7 0.18 0.69 0.06 0.13 0.58 0.23 fail 0.20sammge 8 0.10 0.78 0.05 0.63 0.74 0.39 fail 0.19sammge 9 0.10 0.71 0.07 0.45 0.69 0.65 fail 0.20sammge 10 0.17 fail 0.01 0.01 fail 0.01 0.00 0.01sammge 13 0.05 0.30 0.12 0.20 0.28 0.23 fail 0.23sammge 14 0.12 0.29 0.11 0.17 0.35 0.23 fail 0.18sammge 15 0.05 0.27 0.06 0.48 0.31 0.38 fail 0.25sammge 16 0.05 0.47 0.11 0.26 0.46 0.31 fail 0.10sammge 17 0.10 0.62 0.09 0.57 1.05 0.20 fail 0.17sammge 18 0.08 0.37 0.11 0.46 0.45 0.50 fail 0.16scarfasum 2 0.15 fail 0.04 0.15 1.51 0.15 0.12 0.10scarfasum 3 0.13 0.29 0.07 0.15 0.37 fail fail 0.05scarfbnum 1 0.08 6.27 0.39 0.57 6.42 1.01 fail 0.32scarfbnum 2 0.10 6.01 0.44 0.43 6.09 7.36 fail 0.32scarfbsum 1 0.17 fail fail 0.49 8.77 0.39 0.31 0.24scarfbsum 2 0.18 fail 3.43 5.16 31.11 1.22 fail 0.66threemge 7 0.08 { 0.06 fail { 0.14 0.13 0.05threemge 8 0.07 { 0.06 fail { 0.12 0.14 0.05threemge 11 0.12 { 0.05 fail { 0.82 fail 0.05transmcp 1 0.03 fail 0.04 0.09 1.22 0.23 fail 0.05transmcp 2 0.03 fail 0.01 0.00 fail 0.00 fail 0.00transmcp 3 0.03 0.02 0.02 0.01 0.02 0.03 fail 0.02transmcp 4 0.03 0.11 0.02 0.01 0.10 0.04 fail 0.02vonthmcp 1 fail { fail fail { fail fail failvonthmge 1 0.08 fail 1.06 fail fail fail fail 17.14



23Table A.2. Function and Jacobian Evaluations f(j)Problem st. NE/ QP- SEMI- SEMI-Name pt. MILES SQP PATH PROXI COMP COMP SMTH SMTHbert oc 1 13(12) { 4(4) 4(3) { 21(11) 21(11) 4(4)bert oc 2 21(13) { 4(4) 4(3) { 143(42) 143(42) 4(4)bert oc 3 fail { 4(4) 4(3) { 41(15) 41(15) 4(4)bertsekas 1 259(36) fail 27(6) 138(37) 151(44) 251(42) fail 113(27)bertsekas 2 5(4) fail 5(5) 83(31) 126(40) 327(38) fail 7(7)bertsekas 3 12(11) 9(8) 12(12) 21(20) 9(8) 181(39) 181(39) 67(24)billups 1 fail fail fail 23(22) 23(22) 631(76) 6903(345) failbratu 1 fail { 48(26) 48(25) { 3164(538) fail 48(26)cafemge 1 8(6) 16(10) 9(7) 23(9) 16(10) 18(10) 18(10) 9(8)cafemge 2 6(5) 15(8) 6(6) 17(7) 15(8) 11(8) 11(8) 6(6)cammcp 1 4(3) { 4(4) 77(23) { fail fail 4(4)choi 1 5(4) 5(4) 5(5) 5(4) 5(4) 6(5) 6(5) 5(5)co2mge 2 9(6) { 9(7) 7(5) { 62(15) 63(16) 7(6)co2mge 6 6(5) { 7(7) fail { fail fail 81(13)colvdual 1 4(3) fail 15(13) 201(36) 252(78) 44(16) 44(16) 40(15)colvdual 2 4(3) fail 16(12) 250(55) 184(59) fail fail 52(17)colvnlp 1 4(3) fail 10(7) 77(16) 178(54) 46(16) 46(16) 37(14)colvnlp 2 4(3) fail 5(5) 29(12) 137(30) 26(15) 26(15) 23(10)dmcmge 1 99(27) { 34(18) fail { fail fail 97(23)dmcmge 2 13(8) { 6(6) fail { 3099(661) fail 6(6)ehl kost 1 6(5) fail 6(6) 25(14) 108(105) 32(15) 32(15) 6(6)ehl kost 2 8(7) 97(30) 19(19) 95(28) 97(30) 125(34) 125(34) 21(12)ehl kost 3 16(11) fail 11(11) 144(44) 409(79) 671(114) 671(114) 262(55)�nmge 2 5(4) { 7(7) 151(25) { fail fail 60(13)�nmge 4 5(4) { 8(8) 135(28) { fail fail 110(20)freebert 1 4(3) fail 5(5) 138(37) 151(44) 266(46) fail 6(6)freebert 3 4(3) fail 5(5) 106(35) 173(45) 206(42) fail 6(6)freebert 4 fail fail 27(6) 138(37) 151(44) 240(42) fail failfreebert 5 fail fail 5(5) 53(14) 116(23) 49(14) 49(14) 5(5)freebert 6 fail fail 27(6) 106(35) 173(45) 200(40) fail failgemmcp 1 2(1) { 2(2) 2(1) { 2(1) 2(1) 2(2)gemmge 1 fail { fail 2(1) { 2(1) 2(1) 2(2)gemmge 2 7(5) { 18(7) 22(7) { 16(9) 16(9) 21(6)gemmge 3 6(5) { 6(6) 6(5) { 10(8) 10(8) 6(6)gemmge 4 7(6) { 6(6) 7(6) { 8(7) 8(7) 6(6)gemmge 5 10(7) { 26(21) 25(11) { 31(13) 31(13) 13(7)hanskoop 1 6(4) 15(10) 13(7) 42(16) 15(10) fail fail 110(36)hanskoop 2 2(1) 2(1) 14(6) 2(1) 2(1) fail fail 2(1)



24Table A.2. Function and Jacobian Evaluations (continued)Problem st. NE/ QP- SEMI- SEMI-Name pt. MILES SQP PATH PROXI COMP COMP SMTH SMTHhanskoop 3 fail 18(11) 23(14) 44(13) 18(11) fail fail 78(31)hanskoop 4 2(1) 2(1) 14(6) 2(1) 2(1) fail fail 2(1)hanskoop 5 6(5) fail 19(11) 68(15) 27(11) 20(8) 20(8) 102(34)hanskoop 7 7(5) fail 11(6) 37(15) 45(13) fail fail 83(25)hanskoop 9 fail 23(13) 16(13) 187(41) 23(13) 20(15) 20(15) 95(31)hansmcp 1 6(4) fail 45(18) 18(9) fail 24(13) 24(13) 10(8)hansmge 1 4(3) 11(8) 12(8) 37(15) 11(8) 47(17) 47(17) 26(13)harkmcp 4 5(4) 29(13) 13(6) 23(14) 27(14) fail fail 31(17)harmge 1 284(60) fail 11(7) 222(38) 132(57) 672(75) fail 33(11)harmge 2 5(4) fail 5(5) 5(4) 5(4) 3(2) fail 5(5)harmge 3 5(4) fail 5(5) 5(4) 5(4) 3(2) fail 5(5)harmge 4 8(5) fail 8(6) 5(4) 5(4) 3(2) fail 8(6)harmge 5 8(5) fail 8(6) 8(5) 8(5) 3(2) fail 8(6)harmge 6 fail fail 13(8) fail 379(78) 3(2) fail 1117(139)hydroc20 1 fail 10(8) 11(9) 10(8) 10(8) 12(9) 12(9) 10(9)josephy 1 fail fail 7(7) 37(14) 13(7) 10(7) 10(7) 24(9)josephy 2 fail fail 15(11) 15(7) 15(7) 12(7) 12(7) 9(6)josephy 4 fail fail 4(4) 5(4) 5(4) 6(5) 6(5) 5(4)josephy 6 fail 4(3) fail 12(6) 12(6) 13(7) 13(7) 9(6)kojshin 1 fail fail 6(6) 18(9) 16(7) 22(10) 22(10) 33(10)kojshin 3 11(10) fail 17(17) 97(22) 35(10) 92(23) 122(30) 189(27)kormcp 1 4(3) 4(3) 4(4) 4(3) 4(3) 4(3) 4(3) 4(4)mr5mcp 1 7(6) { 7(7) 64(15) { 26(13) 26(13) 7(7)nsmge 1 82(17) { 10(8) 35(14) { 23(12) 23(12) 44(18)obstacle 1 50(14) { 11(11) 11(10) { 15(14) 15(14) 11(11)obstacle 2 fail { 12(12) 12(11) { 17(14) 17(14) 12(12)obstacle 3 fail { 17(11) 21(13) { 14(13) 14(13) 17(11)obstacle 4 2(1) { 12(11) 23(16) { 17(16) 17(16) 12(11)obstacle 5 fail { 7(7) 8(6) { 8(7) 8(7) 7(7)obstacle 6 fail { 16(10) 16(9) { 20(13) 20(13) 16(10)obstacle 7 fail { 12(10) 17(9) { 17(12) 17(12) 12(10)obstacle 8 fail { 17(11) 9(6) { 10(7) 10(7) 17(11)opt cont127 1 8(3) { 6(6) 6(5) { 27(12) 27(12) 6(6)opt cont255 1 fail { 6(6) 6(5) { 31(14) 31(14) 6(6)opt cont31 1 2(1) { 6(6) 5(4) { 11(9) 11(9) 6(6)opt cont511 1 fail { 6(6) 6(5) { 73(20) 73(20) 6(6)pgvon105 1 fail fail 64(16) 403(75) fail fail fail failpgvon105 2 33(14) 199(39) 27(10) 135(23) 213(30) fail fail fail
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