
CRASH TECHNIQUES FOR LARGE-SCALE COMPLEMENTARITYPROBLEMS�STEVEN P. DIRKSEy AND MICHAEL C. FERRISzAbstract. Most Newton-based solvers for complementarity problems converge rapidly to asolution once they are close to the solution point and the correct active set has been found. Wediscuss the design and implementation of crash techniques that compute a good active set quicklybased on projected gradient and projected Newton directions. Computational results obtained usingthese crash techniques with PATH and SMOOTH, state-of-the-art complementarity solvers, aregiven, demonstrating in particular the value of the projected Newton technique in this context.Key words. complementarity problems, crash techniques, projected Newton, crossoverAMS subject classi�cations. 90C33, 49M15, 49M071. Introduction. The mixed complementarity problem (MCP) can be viewedas a generalization of a system of nonlinear equations. It is completely determinedby a nonlinear function F : Rn ! Rn and upper and lower bounds on the problemvariables. The variables z must lie between the given bounds ` and u, while con-straints on the nonlinear function are determined by the bounds on the variables inthe following manner: `i < zi < ui) Fi(z) = 0zi = `i) Fi(z) � 0zi = ui) Fi(z) � 0:(1)Note that a square system of nonlinear equationsF (x) = 0(2)and the nonlinear complementarity problem (NCP) are both special cases of the MCP,each obtained by a suitable choice of the bounds ` and u. In order that Newton typemethods can be applied, we will assume throughout this paper that F is continuouslydi�erentiable.We will use the notation B throughout this paper to represent the set fz j ` � z �ug, while the projection operator onto the set B is denoted by �B(�). We recall thatthe projection of x onto a closed convex set B is the closest point of B to x measuredin the Euclidean norm, so that the ith component of �B(x) is just the median valueof xi, `i and ui. The set B can be replaced by any closed convex set for the majorityof this paper. However, we restrict our attention to this set throughout the paperdue to the fact that our implementations exploit the particular structure of B whenperforming the requisite projections.While simplicial labeling techniques [37] and �xed point schemes [24, 38] possessvery powerful theoretical properties, Newton based techniques have proven very e�ec-tive for solving large-scale MCP's [7, 8, 12, 15, 17, 21, 23, 26, 31, 32, 33, 36, 39]. All of� This material is based on research supported by National Science Foundation Grant CCR-9157632.y GAMS Development Corporation, 1217 Potomac Street NW, Washington, D.C. 20007(steve@gams.com).z Computer Sciences Department, University of Wisconsin { Madison, 1210 West Dayton St.,Madison, Wisconsin 53706 (ferris@cs.wisc.edu).1

CRASH TECHNIQUES 2these algorithms maintain the excellent convergence properties of Newton's methodnear a solution to the MCP. However, the region on which this convergence is guar-anteed for a full Newton step may be quite small. Much e�ort has gone into provingglobal convergence properties for algorithms when started from points far away fromthe solution. The main purpose of this paper is to describe and test heuristic tech-niques that are used to quickly identify the active set. Once an approximate active sethas been identi�ed, we revert to a standard Newton based code to solve the problem.We �rst describe the reformulation of the MCP as a nonsmooth system of equa-tions using the normal map [19, 34, 35] de�ned below. This will enable us to describeour Newton method based on similar techniques for smooth systems of equations.Definition 1.1 (Normal Map). Given the closed convex set B � Rn and afunction F : B! Rn, the normal map FB(�) induced on F by B is de�ned asFB(x) := F (�B(x)) + (x � �B(x)):The problem we consider is to �nd a zero of the normal map, namely an x 2 Rnsatisfying 0 = FB(x) = F (�B(x)) + (x� �B(x)):(3)The following theorem is easily established using properties of the projection operatorand indicates the connection between zeros of the normal map and solutions of theMCP.Theorem 1.2. Given a rectangular set B := fz j ` � z � ug and functionF : B! Rn, then1. x 2 Rn is a zero of the normal map implies that z := �B(x) solves MCP2. z solves MCP implies that x := z � F (z) is a zero of the normal map.The normal map is intimately related to the normal cone to the set B.Definition 1.3 (Normal Cone). For the convex set B and a point z 2 B, thenormal cone to B at z is the setNB(z) := fy j y>(c� z) � 0; 8c 2 Bg:When z =2 B we de�ne NB(z) = ;. Simple algebraic manipulations show thatNB(z) = fy j y = �w + v; w; v � 0; w>(z � `) = 0; v>(u� z) = 0g:(4)De�nition 1.3 makes it clear that z solves (1) if and only if z solves the generalizedequation 0 2 F (z) +NB(z):(5)We can therefore approach MCP as either a zero-�nding problem (3) of the normalmap over the set of variables x 2 Rn or as the original problem of �nding a z 2 Bsatisfying (5). We will always use x to indicate the normal map variable and z todenote the variable in MCP.Note that the normal map is not in general di�erentiable everywhere. Due to thepolyhedral nature of the set B, it is a piecewise smooth map. The pieces of the mapcan be associated in a very natural way with the active set at the projected pointz = �B(x). The active set at z is the set of indices for which zi = `i or zi = ui; eachactive set therefore de�nes a face of the set B. It is well known that the collectionof these faces precisely determine the pieces of smoothness of the normal map. For

CRASH TECHNIQUES 3example, it was shown in [35] that these pieces are the (full dimensional) polyhedralsets F +NF that are indexed by the faces F ; here NF represents the normal cone tothe face F at any point in its relative interior.In the context of nonlinear equations, Newton's method proceeds by linearizingthe smooth function F . Since FB is nondi�erentiable, the standard version of New-ton's method for MCP approximates FB at xk 2 Rn with the piecewise a�ne mapLk := M�B(x) + q + x� �B(x)(6)where M := rF (�B(xk)) and q := F (�B(xk)) �M�B(xk):Thus, the piecewise smooth map FB has been approximated by a piecewise a�nemap. The Newton point xkN (a zero of the approximation Lk) is found by generatinga path pk, parametrized by a variable t which starts at 0 and increases to 1 so thatpk(0) = xk and pk(1) = xkN . The values of pk(t) at intermediate points in the pathare generated to satisfy Lk(pk(t)) = (1� t)rk;(7)where rk := FB(xk). The path is known to exist locally under fairly standard as-sumptions and can be generated using standard pivotal techniques to move from onepiece of the piecewise a�ne map to another. Further details can be found in [33].A Newton method for MCP would accept xkN as a new approximation to thesolution and re-linearize at this point. However, as is well known even in the literatureon smooth systems, this process is unlikely to converge for starting points that arenot close to a solution. In a damped Newton method for smooth systems of nonlinearequations (2), the merit function F (x)>F (x) is typically used to restrict the stepsize and enlarge the domain of convergence. In our implementation of the aboveNewton method, which we call PATH [17], the piecewise linear path pk is computedand searched using a non-monotone watchdog path-search. The watchdog techniqueallows path-searches to be performed infrequently, while the non-monotone techniqueallows the Newton point to be accepted more frequently. The combination of thesetechniques helps avoid convergence to minimizers of the merit function kFB(x)k2 thatare not zeros of FB, without detracting from the local convergence rates [17].There are two di�culties associated with such globalization. The �rst problem(that the linearization is only a good approximation locally) is dealt with e�ectivelyby the line/path search techniques outlined above and is not the concern of this paper.The second problem is that initially we may have a very poor estimate of whichpiece of the normal map contains the zero. Essentially, this amounts to the fact thatthe initial point gives a poor indication of the active set at a solution. In order toreduce the number of steps required to solve the problem, the starting point givento a solver can be adjusted using non-pivotal techniques so that the active set at theadjusted point more closely matches that at the solution to the MCP. Techniques foraccomplishing this cheaply are the subject of this paper and will be referred to as\crash techniques". The underlying idea is closely related to the crash proceduresthat are now commonplace in production style linear programming codes [14, 30],although we largely ignore the problem of modifying the active set to generate anonsingular basis. Our crash techniques are iterative in nature and employ a meritfunction to deal with the nonlinear nature of the problem. Once the initial point has

CRASH TECHNIQUES 4been adjusted by such a technique (the crash phase of the algorithm), the originalNewton type solver is initialized from the adjusted point.Practical experience has already shown PATH [17] to be a very robust techniquefor solving nonlinear MCP's, and to be a reasonably fast one as well [7]. One reasonPATH represents a signi�cant increase in speed over other pivotal algorithms is thatit begins pivoting for each subproblem (6) using the basis determined by the activeset at the current point xk, and not the all-slack basis used by the Josephy-Newtonalgorithm [27], for example. Close to a solution, the basis may change very little fromsubproblem to subproblem, if at all, so PATH does not need to do any pivoting, andbehaves like Newton's method applied to smooth systems of equations.Even so, pivotal codes for MCP such as MILES [36] and PATH [17] may be forcedto perform a very large number of pivots in order to solve the initial subproblem.Since these solvers use an active set approach, each pivot corresponds to a variableentering or leaving the set of active constraints. Given such a technique, the numberof pivots required to solve a subproblem is bounded below by the size of the di�erencebetween the initial and �nal active sets. This number can be expected to grow withproblem size. Even if an e�cient factorization updating scheme is used to performeach pivot step, the cost of this pivoting can become the dominant factor in solvingthese problems. The goal of the crash phase is to quickly adjust the initial pointso that it corresponds more closely to such an active set so that very few pivots arerequired to solve the problem.Section 2 begins with a description of a uni�ed approach for our crash techniquesusing a given search direction, projections onto the feasible set, and a metric for com-paring points z 2 B. A number of di�erent choices for the search direction existwithin this framework. Directions based on projected gradient algorithms from non-linear programming are considered �rst in Section 2.1. Section 2.2 describes a Newtondirection based on a system of reduced size determined by the active constraints, whileSection 2.4 describes a modi�ed Newton direction based on a smoothing [12] of theoriginal problem. The computational testing of the crash procedures with both PATHand SMOOTH as the Newton method, along with some results and conclusions basedon these tests, are described in Section 3. More extensive numerical results can befound in Appendix A.2. Crash Techniqes. In nonlinear programming, a technique that has beenfruitfully applied to identify a good active set is the projected gradient method [2].Given the problem minz2B f(z)the projected gradient method determines zk+1 from zk by choosing the largest �from f�max; �max=2; �max=4; : : :g such thatzk+1(�) = �B(zk � �rf(zk))satis�es f(zk) � f(zk+1(�)) � �rf(zk)(zk � zk+1(�))(8)The scalars �max > 0, and � 2 (0; 0:5) are �xed. Conditions under which this methodidenti�es the active set after a �nite number of iterations are given in [10, 11]. Sincethere is potential for a large change in the current active set as a result of a single step

CRASH TECHNIQUES 5in this method, these methods are used in large scale codes to determine an active setquickly, after which a Newton method is applied on the identi�ed face [13]. Note thatwhen B is polyhedral, zk+1(�) de�nes a piecewise linear path for � 2 (0;1). Thefact that a large change in the active set can occur in the path search (8) should becontrasted with techniques that line search between zk and zk+1(1) for which a smallchange in the active set is more typical.Motivated by this work, all of our crash implementations are based on the follow-ing sequence of steps. Given a point zk 2 B, let zk+1(�) := z(�) wherez(�) = �B(zk � �dk):(9)If the direction dk = F (zk), and F is the gradient of a scalar function f , the directionis identical to that given above. Previous work on projected gradient algorithms forsolving MCP and NCP includes [4], and su�cient conditions for the convergence ofsuch a method to a solution of an MCP (which include the Lipschitz continuity andstrong monotonicity of F) are given in [5]. These results are based on a contrac-tion argument and require a �xed stepsize � chosen su�ciently small. Alternativearguments for the a�ne case based on the notion of forward-backward splitting canbe found in [20] and its cited references. Results using an Armijo type line searchsimilar to (8) are scarce due to the lack of a good merit function. Some convergenceresults for a number of projection methods based on a gap function derived from thecorresponding variational inequality are given in [22, 28].In order to perform an Armijo search similar to (8), we require a merit functionto minimize, a function of the iterates z 2 B. The PATH solver uses kFB(�)k, so tomaintain consistency between the crash phase and the PATH algorithm, we use therelationship between z and x to de�nex(�) := arg minx fkFB(x)k j z(�) = �B(x)g:(10)This has the e�ect of choosing to evaluate kFB(�)k at the best x 2 Rn whose projectiononto B is z(�). The resulting path search uses the merit function kFB(x(�))k andchooses the least m 2 f0; 1; 2; : : :g such that for � = (12)m,kFB(x(�))k � (1� ��) kFB(x(0))k :(11)Note that for z 2 B, the representation of the normal cone (4) allows us to de�nex := z �w + vso that if �w + v 2 NB(z) FB(x) = F (z) �w + v:(12)The computation of x(�) in (10) is therefore trivial and can be accomplished by assign-ing values to wi and vi in the same simple loop that is used to calculate kFB(x(�))k.Essentially, values for w and v are determined by projecting �F (z) onto NB(z).Since there is currently no strong theoretical justi�cation that the directions weconsider will be descent directions for kFB(�)k, we need to terminate the crash proce-dure if we fail to make improvement (or progress becomes slow) and revert to using theNewton technique. The crash technique should also be stopped when the active setceases to change. The following tolerances are used to determine when to terminatethe crash phase.

CRASH TECHNIQUES 6�min minimum acceptable path length �� decrease required in (11)kmax maximum number of steps in crash phase�max maximumnumber of crash steps without a change in the active set�min minimum ratio of current decrease of kFB(�)k to maximum ob-served decrease in any previous crash stepIf any of the above settings are not satis�ed, the crash phase terminates. Inaddition, we require the problem to have at least nmin variables in order to attempta crash phase. We spent some time tuning the various crash procedures that wenow outline by adjusting the parameters mentioned above. The choice of parametersmade for each technique is noted in the following sections describing how the particulardirections are chosen.2.1. Projected Gradient Directions. It is well known that if we de�ne the(nonsmooth) mapping H(z) := z � �B(z � F (z));(13)then z solves MCP if and only if z is a zero of H. If we apply the standard forward-backward splitting scheme to H, we generate our �rst crash technique, which is justan implementation of the \projected gradient" technique (9) withdk = F (zk):Note that no factorization is performed, and only function evaluations (not Jacobianevaluations) are required, so that these directions are very cheap to calculate. Werefer to this algorithm as PG. The parameter settings used in our computational testswere �min = 2�12, � = 0, nmin = 1, kmax = 50, �max = 1 and �min = 0:05.Unfortunately, the above direction frequently does not give descent for our cho-sen merit function. A more theoretically justi�able algorithm can be generated byconsidering the following problem motivated by the decomposition in (12)minz2B;�w+v2NB(z)(F (z) �w + v)>(F (z)� w + v):We apply a splitting method (�xing w and v and solving for z, and conversely) tosolve this problem. In fact, we generate zk+1 by consideringminz2B (F (z)� wk + vk)>(F (z) �wk + vk)and update wk and vk usingmin�w+v2NB(zk) (F (zk)� w + v)>(F (zk) �w + v):The second problem is solved in the simple loop described in the previous section,whereas an iteration of the standard projected gradient method is used for the �rstproblem. In e�ect, we just choosedk = rF (zk)>(F (zk)� wk + vk)in the general scheme (9). The parenthetical expression above is precisely the resid-ual term that is used as the covering vector in the PATH algorithm. We term thisalgorithm PGT. The parameter settings used to test this algorithm were identical tothose used in PG.Note that unlike PG, the PGT direction requires a Jacobian evaluation and amatrix-vector product per iteration, while neither requires a factorization.

CRASH TECHNIQUES 72.2. Projected Newton Directions. The chief drawback of the algorithms ofSection 2.1 is the quality of the search directions obtained. While they were simpleand inexpensive to compute, they did not in all cases provide us with a su�cientdecrease in kFB(�)k or in an adequate change in the current set of active constraints.Motivated by the work of [3], in which similar results are reported, we now describea technique in which a Newton direction for a reduced system is computed and usedin a path search similar to that of (8). The Newton direction for the reduced systemis essentially the same direction used in the initial pivot step of the path constructionphase of the PATH solver. While the path construction algorithm stops at a boundaryand recomputes the direction (i.e. performs a pivot step), the projected Newtontechnique takes a full or damped step and projects back onto the feasible set. Byignoring the bounds in the computation of the search direction and using them onlywhen projecting, we can make large changes in the active set, while the reduced systemmakes the factorization involved in the computation of the search direction cheaperto perform.In [31], Pang gives a global convergence result for Newton's method applied toB-di�erentiable functions, and applies this result to the NCP formulated using themappingH de�ned in (13). He notes that the corresponding direction-�nding problemhas reduced size, although the active set used and the reduced system are di�erentfrom ours.We will use the notation A and I to indicate the following index sets:A(z) := fi j `i = zi; Fi(z) � 0g [fi j ui = zi; Fi(z) � 0g(14a) I := fi j i 62 Ag(14b)Typically, the dependence of these sets on z will be implicit. The set A representsthe box constraints that are active (and correct) at z = �B(x), that is, for which Fhas the right sign. The set I is an approximation of the indices which are not activeat the solution.The reduced system rFII(zk)dI = FI(zk)(15)computes the nonzero part of the search direction d. Assuming a reordering of thevariables, the new iterate is zk+1 := z(�), wherez(�) := �B�� zkIzkA � � � � dI0 �� :(16)Again, � is chosen via a path search (11) to reduce kFB(x(�))k, where x(�) is de�nedusing (10). The new iterate zk+1 leads to a new choice of index sets A and I.We refer to the algorithm described above as PN. The parameter settings used inour computational tests were �min = 2�12, � = 0:05, nmin = 10, kmax = 50, �max = 1and �min = 0. In addition, we required that the active set change in at least 10 indexpositions in the PN technique, as opposed to only one position in PG and PGT.In solving the reduced system (15) above, the submatrix rFII(zk) may be rankde�cient. For example, if xk is obtained from zk as in (10), then this is the casewhen xk is a local minimizer of kFB(�)k, but

FB(xk)

 6= 0. In [6], Billups shows itmay be possible to solve a sequence of linearized problems with a perturbed function

CRASH TECHNIQUES 8F� derived from F to obtain a new iterate x̂ such that kFB(x̂)k <

FB(xk)

. Theperturbed function F� takes the simple form F� := F (x) + �(x � �x), where �x isthe current point. If an algorithm can guarantee monotonic descent in kFB(�)k, thistechnique can be used to escape a region of convergence to a non-global minimizer ofkFB(�)k. In addition, � can be chosen as large as is necessary for rFII(zk) + �I tobe invertible.In our projected Newton crash technique, we have implemented a procedure forperturbing the Jacobian of F when rFII(zk) is singular for which multiples of theidentity are added in until a numerically nonsingular matrix results. The algorithmchooses the minimum � 2 f0; 10; 100; : : :g such that rFII(zk) + �I is nonsingular.The perturbations are reduced at each iteration using� := max(:9�; kFB(x)k=100):Unlike the PATH algorithm, the PN algorithm belongs entirely to the familyof complementarity algorithms that determine their search directions by solving asingle linear system based on a \derivative approximation" at the current point (e.g.SMOOTH[12], B-DIFF[25], SEMISMOOTH[26]). In spite of this, there are somedi�erences between PN and these methods. While SMOOTH solves a system of ordern at each iteration, PN solves a reduced system, as does B-DIFF. More importantly,PN computes a search direction for the original z variables only, and not for theslack variables w and v, as is the case with SMOOTH and B-DIFF. PN computesthe correct update for the slacks only after the function F is evaluated at an updatedpoint z. This can be important in nonlinear problems, as illustrated in the followingexample.Consider the MCP de�ned by the functionF � z1z2 � := � z1 � 5z21 + z22 �(17)and the nonnegative orthant, where the initial iterate x0 = (1;�1)> is given, z0 =�B(x0) = (1; 0)>, FB(x0) = (�4; 0)>, and

FB(x0)

 = 4. The linearization of F atz0 is Mx + q, where M := � 1 02 0 � and q := � �5�1 �. Since x02 < 0, the Newtondirection for the current piece of the linear map is determined via the system� 1 02 1 � � d1d2 � = � �40 � :(18)The computed direction d = (�4; 8)> is the direction taken by B-DIFF, while SMOOTHtakes a similar but somewhat di�erent direction, depending on the smoothing param-eter being used. If we consider the Newton point x1N := x0 � d = (5;�9)>, we seethat FB(x1N) = (0; 16)> and

FB(x1N)

 = 16, even though �B(x1N) is the solution toMCP(F;B). This is because the second row of (18) does a poor job of computing thecorrect update for x2, the slack variable corresponding to F2(x). A line search resultsin the choice of � = :25 and x1 = (2;�3). Three more steps are required before thesolution is obtained.In contrast, the PN algorithm computes an update to the inactive set of variables(i.e. z1) based on the system 1 � d = �4. The updates to z take the formz(�) := �B�� 10 � � � � �40 �� :(19)

CRASH TECHNIQUES 9When � = 1, the PN algorithm determines that z(�) = (5; 0)>, x(�) = (5;�25)>,and kFB(x(�))k = 0, so that z(�) solves the MCP.2.3. Smooth. We �rst describe the method that is implemented in the codeSMOOTH [12] in the context of nonlinear complementarity problems and then showin the next section how we modify this to generate a new crash technique for MCP.The algorithm is based on the mapping H de�ned in (13). Since this mappingis nonsmooth, Newton's method is not directly applicable. Instead of applying New-ton's method on the pieces of smoothness of the projection operator, the nonsmoothfunction is smoothed, replacing the projection operator �B(�) by a function P �(�).The functions P � converge pointwise to �B as � ! 1. E�ectively, the nonsmoothmap H is replaced by H�(z) := z � P �(z � F (z))where P � : Rn ! Rn is de�ned byP �i (z) := zi � 1� log(1 + exp(��zi)):The function P � is chosen (componentwise) for the nonlinear complementarity prob-lem as the integral of the sigmoid function. In the case of �nite lower and upperbounds on a variable, a reformulation using (12) is used. No smoothing at all isperformed when the corresponding variable is free. Let S� (z) be a diagonal matrixwhose diagonal entries are given by(S�(z))ii = @P �i@zi (zi � Fi(z)):To apply Newton's method, H� is linearized about the point zk, and dk is de�ned asthe di�erence between the solution of the linearization and zk. It is easy to see thatdk satis�es zk � P �(zk � F (zk)) + (I � S� (zk) + S�(zk)rF (zk))dk = 0(20)The code SMOOTH solves this system and applies a standard Armijo line search withmerit function H�(z)>H�(z). The parameter � is iteratively updated as� = maxf�;pn=

H(zk)

gand replaced by p� if � < 1.The default version of the code SMOOTH uses the PN crash technique outlinedin the previous section (without the proximal perturbation). The results that arereported under the heading PN(2) are precisely those used in [12] and are givenbelow: �min = 2�12, � = 0:05, nmin = 10, kmax = 50, �max = 1 and �min = 0. Notethat this \crash technique" does not terminate when the active set settles down butcontinues to try to solve the problem even in this case.2.4. Projected Smooth Directions. We observed that the projected Newtoncrash technique considerably improved the SMOOTH algorithm, but that there wereseveral instances in which the smoothing enabled a hard problem to be solved. Weoutline here a hybrid technique that modi�es the search direction using smoothing,but maintains a smaller system to be solved at each step of the crash phase.

CRASH TECHNIQUES 10The main advantage of the projected Newton crash technique was the reducedsized system that is solved at every iteration. In order to generate a similar system,with smoothing, we examine the equation (20) in more detail. The �rst observationis that the constant term P �(zk � F (zk)) is an approximation to �B(zk � F (zk)) sowe replace it with the exact term. Since our projected path search (11) is used withthe merit function kFB(x(�)k, the fact that this approximation may stop dk being adescent direction for

H�

 is irrelevant. We use a slightly di�erent form of smoothingto that given in Section 2.3, namely one that results in(S� (z))ii = 1� exp [�(`i � ui)](1� exp [�(`i � zi + Fi(z))])(1� exp [�(zi � Fi(z)� ui)])The advantage of this formulation is that no special cases need to be considered; theinstances where `i or ui are in�nite are taken care of automatically. We now considerthe indices i 2 A. For such indices, the modi�ed constant term in (20) is now exactly0, and when � ! 1 the corresponding value of (S� (z))ii tends to 0, resulting indki = 0. The projected Newton technique takes such a step automatically, and forthe projected smooth crash technique this is a very good approximation of the stepthat would be calculated by (20). Thus, we set dki = 0 for all i 2 A. The remainingcomponents of dki are calculated from the smoothing equation:zkI � �B(zk � F (zk))I + (I � S�II(zk) + S�II(zk)rFII(zk))dkI = 0:The crash technique that uses this direction is called PS. The parameter settingsused in our computational tests for PS were identical to those in PN. The smoothingparameter � is iteratively updated as� = maxf�;pn= kFB(x(�))kgand replaced by p� if � < 1. The proximal perturbation strategy used was alsoidentical to that described in Section 2.2.3. Computational Results. Computational tests of the various crash tech-niques discussed in this paper have been performed using the GAMS [9] modelingsystem. The models used were taken from the model library distributed with GAMSand from MCPLIB [16], a growing collection of models available via anonymous ftpfrom ftp.cs.wisc.edu://math-prog/mcplib/. All the codes tested are written in Cand linked to GAMS using the CPLIB [18] interface library. Furthermore, the samelinear algebra subroutines are used throughout. All tests were done using a SUNSPARC 10/51 with 96 Mb of RAM, allowing a meaningful comparison of solutiontimes between algorithms.In our tests, the same runs (a solve of a model from a particular starting point)were carried out using the PATH solver without bene�t of a crash phase (headingNONE in the tables) and each of the following crash techniques; PG (Section 2.1),PGT (Section 2.1), PN (Section 2.2), and PS (Section 2.4). The same runs were alsoperformed using SMOOTH without a crash phase and using di�erent parameters forPN(2) (see Section 2.3). Tables 1 and 2 have been constructed in order to compress theresults of all these runs, and allow us to draw some conclusions from our computationalstudy. Detailed results for the individual runs can be found in Appendix A. Theabbreviations used for the column headings in all these tables are precisely thosegiven above.

CRASH TECHNIQUES 11Table 1Costs and Bene�ts of Crash Techniques.Crash Techniquemetric PG PGT PN PS PN(2)very bene�cial 7% 8% 40% 37% 33%bene�cial 13% 10% 46% 40% 47%not costly 60% 66% 81% 67% 95%not very costly 78% 85% 85% 76% 97%In order to gauge the e�ectiveness (i.e., the costs and bene�ts) of using a particularcrash technique, we compare the performance of a base algorithm with and withouta crash phase, using the following metrics:bene�cial: We say a crash technique P that requires time TP to complete a runis \bene�cial" compared to completing a run without a crash phase in timeTN if TP � 34 TN , and \very bene�cial" if TP � 12 TN .not costly: We say a crash technique P is \not costly" compared to having nocrash phase if TP � 43 TN , and \not very costly" if TP � 2TN .Since this method of reporting is somewhat dependent on the base algorithm chosen,we give results for crash techniques applied to both PATH and SMOOTH.Table 1 shows that the projected Newton based crash procedures are bene�cialnearly half of the time, and in most of these cases they improved performance sub-stantially. However, one of the design goals for a crash technique should be to improveperformance on some or most of the problems without degrading performance on anyof them. While this goal was not entirely reached, the PN technique was \not verycostly" compared to the base PATH algorithm 85% of the time. It can be seen in theAppendix that most of the models on which it performed poorly are those for whichthe model size and run times are quite small. Compared to the base SMOOTH algo-rithm, using PN(2) was \not very costly" 97% of the time, and also gave substantialgains in a large portion of the runs.While Table 1 shows comparisons between crash techniques, Table 2 comparesthe di�erent combinations of crash techniques and base algorithms used. The moregeneral column headings indicate the base algorithm, while the individual columnheadings indicate what crash technique was applied. In computing the cumulativetime required for all the runs with a given algorithm, one must decide how to assigntimes to algorithms for failed runs. We chose the maximum times required for anysuccessful algorithm on the run in question. In addition to cumulative time, thealgorithms are compared on the following basis:success: Success is achieved if a solution is computed.competitive: We say the time TP for crash procedure P is \competitive" withthe time TB taken by the best algorithm on that run if TP � 2TB, and \verycompetitive" if TP � 43 TB .The data in Table 2 clearly shows that the projected Newton crash procedures aresuperior to the projected gradient ones in the overall success rate, the improvementover the base algorithm, and in the number of runs for which the algorithm's solutiontime is competitive with the best time obtained. The cumulative times required tocomplete all the runs also indicate that the Newton techniques did well. What thetables do not show is the dramatic improvement in time obtained on some of the largermodels, where speedups on the order of 100 were achieved by each of the projected

CRASH TECHNIQUES 12Table 2Algorithm ComparisonPATH + SMOOTH +metric NONE PG PGT PN PS NONE PN(2)very comp. 46% 15% 18% 66% 43% 18% 52%competitive 51% 37% 43% 76% 62% 35% 61%success 88% 77% 88% 96% 91% 78% 86%total time 11221 10386 11296 692 819 9235 985Newton crash techniques.In comparing the PG and PN techniques, we see that the higher cost of eachNewton iteration was fully justi�ed by the quality of the search direction computed.The gradient directions, despite their low cost, were of limited utility in speedingup the solution process. One of the reasons for this is the sparsity of the Jacobianmatrices involved. For a sparse matrix, doing a function-only evaluation in GAMSmay take as much as 30 { 40% of the time required to evaluate both the function andits Jacobian. If the computation of the Newton direction from the reduced systemof equations is similarly inexpensive, the di�erence in cost between the two types ofiteration will be small enough to make the Newton direction most attractive.Close inspection of the Appendix reveals cases where the combination of crashphase with the base algorithm fails but the base algorithm alone succeeds. This isdue to the fact that every crash technique forces monotonic decrease in kFB(�)k andhence can converge to a local minimum of this merit function. In contrast, the basealgorithm may escape such local minima using a combination of the watchdog andnonmonotone path search schemes. It is clear from our computational results thatthis phenomenon is unlikely to occur with the PN approach. In fact, it is much morelikely that this approach can modify the initial point and move it into an appropriatedomain of convergence for the base algorithm.Given the success of the projected Newton crash technique in improving the basicPATH algorithm, one is led to ask whether the PN procedure could not be used as asolver in its own right. In order to test this, we ran all the models with PN procedureonly. While this technique was quite fast (339 seconds cumulative, not including failedruns), it was not very robust, as it solved only 60% of the models. Thus, we see thatwhile the basic PATH algorithm lacks some of the speed of the PN technique, it morethan compensates for this in increased robustness.4. Conclusions. We feel that the computational results presented here demon-strate the potential value of crash techniques applied to both pivotal and non-pivotalcomplementarity codes. Of the techniques considered, a projected Newton crash tech-nique (PN) is the most e�ective. This crash technique results in a more robust solutionprocess and signi�cant overall gains in solution times. For this reason, it is the currentalgorithm default for GAMS/PATH, the commercial release of the PATH solver, andthe default choice for SMOOTH as well.The increase in robustness obtained using the PN technique is one of the chiefadvantages of that scheme, as practitioners value robustness more than speed. Thisgain in robustness is brought about largely by the perturbation techniques used in thePN technique in the rank de�cient case. Similar techniques could also be incorporatedinto the standard PATH algorithm. This is a subject of current research.

CRASH TECHNIQUES 13Interior point and smoothing approaches circumvent the active set problem byreplacing the active set identi�cation problem by some topological di�culty, typicallya penalty function or smoothing approximation. This has proven successful in manycases, although some skill is required in choosing appropriate parameters and dealingwith ill-conditioning. However, such methods are typically outperformed by activeset methods when a good approximation to the active set exists, for example withrestarts, perturbation of previous problems or good starting points. Furthermore,some applications exploit the nature of a basic solution. Thus, there is a growingliterature in linear programming [1, 29] related to \crossover". This is the techniqueof taking an approximation generated by an interior point method and identifyinga \near-optimal" active set for constructing an advanced basis in a pivotal basedtechnique. It is certainly possible that interior point methods or smoothing methodsmay be used as alternative crash procedures for mixed complementarity codes in thefuture. However, the initial active set is currently determined just using the pointreturned by the crash technique. Appropriate modi�cations that identify \almostactive" constraints would be required if an interior point crossover were to be used.This is also the subject of current research.REFERENCES[1] A. B. Berkelaar, B. Jansen, K. Roos, and T. Terlaky, Basis and tripartition identi�cationfor quadratic programming and linear complementarity problems, tech. rep., DepartmentofEconometrics and Operations Research, Erasmus University, Rotterdam, The Netherlands,1996.[2] D. P. Bertsekas, On the Goldstein-Levitin-Poljak gradient projection algorithm, IEEE Trans-actions on Automatic Control, AC-21 (1976), pp. 174{184.[3] D. P. Bertsekas, Projected Newton methods for optimization problems with simple constraints,SIAM Journal on Control and Optimization, 20 (1982), pp. 221{246.[4] D. P. Bertsekas and E. M. Gafni, Projection methods for variational inequalities with ap-plication to the tra�c assignment problem, Mathematical Programming Study, 17 (1982),pp. 139{159.[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: NumericalMethods, Prentice Hall, Englewood Cli�s, NJ, 1989.[6] S. C. Billups, Algorithms for Complementarity Problems and Generalized Equations, PhDthesis, University of Wisconsin{Madison, Madison, Wisconsin, Aug. 1995.[7] S. C. Billups, S. P. Dirkse, and M. C. Ferris, A comparison of large scale mixed comple-mentarity problem solvers, Computational Optimization and Applications, forthcoming,(1996).[8] S. C. Billups and M. C. Ferris, QPCOMP: A quadratic program based solver for mixedcomplementarity problems, Mathematical Programming, forthcoming, (1996).[9] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User's Guide, The Scienti�c Press,South San Francisco, CA, 1988.[10] J. V. Burke and J. J. Mor�e, On the identi�cation of active constraints, SIAM Journal onNumerical Analysis, 25 (1988), pp. 1197{1211.[11] P. H. Calamai and J. J. Mor�e, Projected gradient methods for linearly constrained problems,Mathematical Programming, 39 (1987), pp. 93{116.[12] C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear andmixed complementarity problems, ComputationalOptimization and Applications, 5 (1996),pp. 97{138.[13] A. R. Conn, N. I. M. Gould, and P. L. Toint, LANCELOT: A Fortran package for Large{Scale Nonlinear Optimization (Release A), no. 17 in Springer Series in ComputationalMathematics, Springer Verlag, Heidelberg, Berlin, 1992.[14] CPLEX Optimization Inc., Using the CPLEX(TM) Linear Optimizer and CPLEX(TM)Mixed Integer Optimizer (Version 2.0), Incline Village, Nevada, 1992.[15] T. De Luca, F. Facchinei, and C. Kanzow, A semismooth equation approach to the solutionof nonlinear complementarity problems, Preprint 93, Institute of Applied Mathematics,University of Hamburg, Hamburg, Germany, 1995.

CRASH TECHNIQUES 14[16] S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarityproblems, Optimization Methods and Software, 5 (1995), pp. 319{345.[17] , The PATH solver: A non-monotone stabilization scheme for mixed complementarityproblems, Optimization Methods and Software, 5 (1995), pp. 123{156.[18] S. P. Dirkse, M. C. Ferris, P. V. Preckel, and T. Rutherford, The GAMS callableprogram library for variational and complementarity solvers, Mathematical ProgrammingTechnical Report 94-07, Computer SciencesDepartment,University of Wisconsin,Madison,Wisconsin, 1994. Available from ftp://ftp.cs.wisc.edu/math-prog/tech-reports/.[19] B. C. Eaves, On the basic theorem of complementarity, Mathematical Programming, 1 (1971),pp. 68{87.[20] J. Eckstein and M. C. Ferris, Operator splitting methods for monotone linear complemen-tarity problems, TMC 239, Thinking Machines Corporation, Cambridge, MA 02142, 1992.[21] A. Fischer and C. Kanzow, On �nite termination of an iterative method for linear comple-mentarity problems, Preprint MATH{NM{10{1994, Institute for Numerical Mathematics,Technical University of Dresden, Dresden, Germany, 1994.[22] M. Fukushima, Equivalent di�erentiable optimization problems and descent methods for asym-metric variational inequality problems, MathematicalProgramming, 53 (1992), pp. 99{110.[23] S. A. Gabriel and J. J. Mor�e, Smoothing of mixed complementarity problems, PreprintMCS-P541-0995, Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, Illinois, 1995.[24] C. B. Garcia and W. I. Zangwill, Pathways to Solutions, Fixed Points, and Equilibria,Prentice-Hall, Inc, Englewood Cli�s, New Jersey, 1981.[25] P. T. Harker and B. Xiao, Newton's method for the nonlinear complementarity problem: AB{di�erentiable equation approach, Mathematical Programming, 48 (1990), pp. 339{358.[26] H. Jiang and L. Qi, A new nonsmooth equations approach to nonlinear complementarityproblems, SIAM Journal on Control and Optimization, forthcoming, (1996).[27] N. H. Josephy, Newton's method for generalized equations, Technical Summary Report 1965,Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1979.[28] T. Larsson and M. Patriksson, A class of gap functions for variational inequalities, Mathe-matical Programming, 64 (1994), pp. 53{79.[29] N. Megiddo, On �nding primal{ and dual{optimal bases, ORSA Journal on Computing, 3(1991), pp. 63{65.[30] B. A. Murtagh and M. A. Saunders, MINOS 5.0 user's guide, Technical Report SOL 83.20,Stanford University, Stanford, California, 1983.[31] J. S. Pang, Newton's method for B{di�erentiable equations, Mathematics of Operations Re-search, 15 (1990), pp. 311{341.[32] J. S. Pang and S. A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complemen-tarity problem, Mathematical Programming, 60 (1993), pp. 295{338.[33] D. Ralph, Global convergence of damped Newton's method for nonsmooth equations, via thepath search, Mathematics of Operations Research, 19 (1994), pp. 352{389.[34] S. M. Robinson, Mathematical foundations of nonsmooth embedding methods, MathematicalProgramming, 48 (1990), pp. 221{229.[35] , Normal maps induced by linear transformations, Mathematics of Operations Research,17 (1992), pp. 691{714.[36] T. F. Rutherford,MILES: A mixed inequality and nonlinear equation solver. Working Paper,Department of Economics, University of Colorado, Boulder, 1993.[37] H. E. Scarf, The approximation of �xed points of a continuous mapping, SIAM Journal onApplied Mathematics, 15 (1967), pp. 1328{1343.[38] M. J. Todd, Computation of Fixed Points and Applications, vol. 124 of Lecture Notes inEconomics and Mathematical Systems, Springer-Verlag, Heidelberg, 1976.[39] B. Xiao and P. T. Harker, A nonsmooth Newton method for variational inequalities: I:Theory, Mathematical Programming, 65 (1994), pp. 151{194.

CRASH TECHNIQUES 15Table 3Solution Times - PATH crash techniquemodel NONE PG PGT PN PSasean9a 1 18.82 24.46 25.36 18.74 16.25bert oc 1 41.16 41.21 39.73 3.06 5.84bert oc 2 55.04 61.54 85.92 3.21 5.00bert oc 3 43.83 47.76 46.08 2.51 3.15bert oc 4 53.14 56.56 86.94 2.60 3.06bratu 1 436.40 442.45 448.86 148.09 122.42cafemge 1 2.08 3.41 2.25 0.38 1.26cafemge 2 0.33 0.45 0.39 0.33 0.51cammcp 1 0.31 0.42 fail 0.39 0.81co2mge 2 1.18 1.54 2.68 0.58 1.40co2mge 3 0.34 0.55 0.40 0.30 0.37co2mge 4 0.43 0.68 0.39 0.42 0.35co2mge 5 0.43 0.78 0.54 0.39 0.37co2mge 6 0.49 0.79 0.74 0.55 1.15co2mge 7 0.66 0.90 1.49 0.59 0.64dmcmge 1 fail fail fail 3.90 2.78dmcmge 2 fail fail fail 0.57 2.41ehl kost 1 4.58 fail 9.35 5.01 19.37ehl kost 2 7.55 fail 11.60 17.05 30.32ehl kost 3 141.74 fail 151.03 9.76 46.48ers82mcp 1 0.47 0.59 fail 0.47 0.38eta2100 1 6.38 18.50 7.26 4.74 17.59�nmge 2 2.41 2.51 2.73 2.02 3.49�nmge 3 0.87 1.26 1.33 0.97 1.36�nmge 4 1.19 2.64 1.62 2.08 4.97�nmge 5 1.16 1.52 1.76 1.24 1.69gemmcp 1 0.26 0.70 0.56 0.27 0.22gemmcp 2 0.05 0.40 0.37 0.05 0.04gemmcp 3 0.92 0.98 1.30 0.91 1.04gemmcp 4 0.86 1.23 0.93 0.90 1.08gemmcp 5 0.68 1.04 1.07 0.86 0.86gemmge 2 4.87 4.87 7.75 3.00 5.67gemmge 3 2.62 2.69 2.87 2.34 failgemmge 4 2.60 3.10 3.15 2.23 4.83gemmge 5 9.49 12.66 9.74 8.77 3.30hansmcp 1 0.38 0.32 0.32 2.14 failhansmge 1 0.18 0.22 0.31 0.28 0.40hydroc20 1 7.13 7.06 12.09 0.54 0.49jmu 1 fail fail fail 130.93 111.05mr5mcp 1 0.66 fail 1.08 0.83 1.76

CRASH TECHNIQUES 16Table 4Solution Times - PATH crash techniquemodel NONE PG PGT PN PSobstacle 1 20.15 10.05 15.12 2.97 3.14obstacle 2 160.88 165.50 158.67 6.96 13.26obstacle 3 80.07 66.06 76.97 6.09 8.83obstacle 4 47.16 29.64 44.80 6.13 7.36obstacle 5 71.45 14.04 54.14 8.02 10.95obstacle 6 114.87 93.98 118.32 10.79 12.91obstacle 7 92.10 64.22 93.59 7.61 10.00obstacle 8 113.03 65.61 115.51 13.80 12.33opt cont 1 1.05 0.20 0.21 0.44 0.25opt cont127 1 246.48 209.45 253.35 8.36 8.79opt cont255 1 1303.73 1089.88 1322.91 18.76 19.21opt cont31 1 12.43 1.71 4.52 1.73 1.17opt cont511 1 7569.17 6540.97 7531.91 40.52 53.87pgvon105 1 1.68 1.27 2.14 4.48 1.46pgvon105 2 0.84 1.00 1.08 0.60 1.15pgvon105 3 0.87 1.22 0.82 1.29 0.84pgvon106 1 4.13 1.80 2.44 13.24 5.14pgvon106 2 6.11 3.37 2.93 3.97 3.37pgvon106 3 4.04 2.81 3.42 1.00 6.00scarfbnum 1 0.07 fail fail 0.37 0.74scarfbnum 2 0.10 fail 0.31 0.51 0.68scarfbsum 1 0.12 fail 0.12 6.00 0.49scarfbsum 2 0.15 fail 0.17 2.37 failsrtest1 1 0.05 0.25 0.28 0.04 0.04srtest1 2 fail fail fail 38.75 16.10taxmge 2 2.60 2.71 3.11 2.57 failtaxmge 3 0.39 1.57 1.34 0.40 failtaxmge 4 1.83 fail 9.02 13.68 13.07taxmge 5 fail fail fail fail failtaxmge 6 fail fail fail fail failtaxmge 7 fail fail 2.32 1.46 1.63taxmge 8 fail fail 1.56 1.35 1.58taxmge 9 fail fail 0.61 0.33 0.11tobin 1 0.10 0.14 0.14 0.09 0.11tobin 2 1.21 0.14 0.31 0.08 0.09trade12 1 12.39 12.94 11.70 26.96 75.19trade12 2 35.88 328.92 35.38 7.67 13.17tra�c 1 59.28 299.83 54.97 41.71 77.46vonthmcp 1 0.62 0.90 0.56 fail 0.47vonthmge 1 0.48 0.62 0.59 1.44 1.07

CRASH TECHNIQUES 17Table 5Pre-processing Iterations - PATH crash techniquemodel NONE PG PGT PN PSasean9a 1 0 0 0 1 3bert oc 1 0 0 2 3 5bert oc 2 0 0 3 3 4bert oc 3 0 0 2 3 4bert oc 4 0 0 9 3 4bratu 1 0 1 2 25 13cafemge 1 0 2 0 1 23cafemge 2 0 0 2 1 7cammcp 1 0 2 fail 2 10co2mge 2 0 0 2 1 7co2mge 3 0 0 2 1 4co2mge 4 0 0 2 1 4co2mge 5 0 0 2 1 4co2mge 6 0 0 3 1 4co2mge 7 0 0 4 1 7dmcmge 1 fail fail fail 1 0dmcmge 2 fail fail fail 1 13ehl kost 1 0 fail 0 1 21ehl kost 2 0 fail 0 1 7ehl kost 3 0 fail 0 1 33ers82mcp 1 0 0 fail 1 5eta2100 1 0 1 2 1 50�nmge 2 0 1 0 1 6�nmge 3 0 0 2 1 4�nmge 4 0 2 2 1 3�nmge 5 0 1 2 1 5gemmcp 1 0 0 2 1 1gemmcp 2 0 0 2 0 0gemmcp 3 0 1 2 1 5gemmcp 4 0 1 2 1 5gemmcp 5 0 0 2 1 4gemmge 2 0 1 2 1 10gemmge 3 0 1 2 1 failgemmge 4 0 1 2 1 2gemmge 5 0 1 2 1 8hansmcp 1 0 1 4 9 failhansmge 1 0 1 2 2 11hydroc20 1 0 0 2 1 8jmu 1 fail fail fail 0 0mr5mcp 1 0 fail 0 1 16

CRASH TECHNIQUES 18Table 6Pre-processing Iterations - PATH crash techniquemodel NONE PG PGT PN PSobstacle 1 0 6 3 10 11obstacle 2 0 3 2 11 12obstacle 3 0 3 5 10 12obstacle 4 0 2 21 9 13obstacle 5 0 4 6 6 5obstacle 6 0 11 8 9 9obstacle 7 0 11 5 9 10obstacle 8 0 11 2 10 8opt cont 1 0 3 5 4 3opt cont127 1 0 2 3 4 4opt cont255 1 0 2 3 4 4opt cont31 1 0 4 10 4 3opt cont511 1 0 2 3 4 5pgvon105 1 0 1 6 1 4pgvon105 2 0 2 0 59 1pgvon105 3 0 2 0 59 15pgvon106 1 0 1 4 0 4pgvon106 2 0 3 0 1 96pgvon106 3 0 3 0 3 96scarfbnum 1 0 fail fail 1 50scarfbnum 2 0 fail 4 1 49scarfbsum 1 0 fail 0 1 16scarfbsum 2 0 fail 0 1 failsrtest1 1 0 1 0 0 0srtest1 2 fail fail fail 1 0taxmge 2 0 1 2 1 failtaxmge 3 0 1 2 1 failtaxmge 4 0 fail 2 1 3taxmge 5 fail fail fail fail failtaxmge 6 fail fail fail fail failtaxmge 7 fail fail 2 42 34taxmge 8 fail fail 2 42 34taxmge 9 fail fail 2 42 34tobin 1 0 4 5 1 10tobin 2 0 4 2 2 8trade12 1 0 1 0 7 9trade12 2 0 1 2 1 7tra�c 1 0 1 3 21 21vonthmcp 1 0 2 0 fail 2vonthmge 1 0 1 0 2 6

CRASH TECHNIQUES 19Table 7Jacobian Evaluations - PATH crash techniquemodel NONE PG PGT PN PSasean9a 1 4 4 4 4 4bert oc 1 2 2 3 4 6bert oc 2 2 2 4 4 5bert oc 3 2 2 3 4 5bert oc 4 2 2 10 4 5bratu 1 4 5 5 26 14cafemge 1 33 43 31 7 24cafemge 2 6 6 7 6 8cammcp 1 5 5 fail 5 11co2mge 2 14 14 20 7 12co2mge 3 4 4 5 4 5co2mge 4 5 5 6 5 5co2mge 5 6 6 8 5 5co2mge 6 7 7 9 7 10co2mge 7 7 7 15 8 8dmcmge 1 fail fail fail 18 13dmcmge 2 fail fail fail 6 14ehl kost 1 6 fail 7 6 22ehl kost 2 8 fail 9 19 18ehl kost 3 68 fail 70 11 34ers82mcp 1 6 6 fail 6 6eta2100 1 16 32 16 13 56�nmge 2 5 6 5 7 12�nmge 3 4 4 5 4 5�nmge 4 5 6 6 8 8�nmge 5 5 6 6 5 6gemmcp 1 2 2 3 2 2gemmcp 2 1 1 2 1 1gemmcp 3 6 7 7 6 6gemmcp 4 6 7 6 6 6gemmcp 5 5 5 6 5 5gemmge 2 12 12 20 7 11gemmge 3 6 7 7 6 failgemmge 4 7 8 8 6 9gemmge 5 25 26 26 21 9hansmcp 1 28 29 26 38 failhansmge 1 4 5 5 8 12hydroc20 1 22 24 30 9 9jmu 1 fail fail fail 25 25mr5mcp 1 7 fail 7 7 17

CRASH TECHNIQUES 20Table 8Jacobian Evaluations - PATH crash techniquemodel NONE PG PGT PN PSobstacle 1 3 3 5 11 12obstacle 2 3 4 4 12 13obstacle 3 2 3 8 11 13obstacle 4 2 3 23 11 14obstacle 5 2 3 9 7 7obstacle 6 2 3 10 10 10obstacle 7 2 3 6 10 11obstacle 8 2 3 3 11 9opt cont 1 2 3 7 6 4opt cont127 1 2 3 4 6 5opt cont255 1 2 3 4 6 5opt cont31 1 2 3 12 6 4opt cont511 1 2 3 4 6 6pgvon105 1 26 19 34 24 22pgvon105 2 14 15 14 9 20pgvon105 3 14 22 14 14 16pgvon106 1 47 36 38 fail 69pgvon106 2 60 44 42 fail 44pgvon106 3 32 40 44 20 63scarfbnum 1 5 fail fail 14 55scarfbnum 2 5 fail 14 15 54scarfbsum 1 4 fail 5 39 20scarfbsum 2 4 fail 5 18 failsrtest1 1 1 2 1 1 1srtest1 2 fail fail fail 29 12taxmge 2 11 12 12 11 failtaxmge 3 2 7 6 2 failtaxmge 4 7 fail 11 11 14taxmge 5 fail fail fail fail failtaxmge 6 fail fail fail fail failtaxmge 7 fail fail 9 7 7taxmge 8 fail fail 8 6 7taxmge 9 fail fail 2 2 1tobin 1 10 12 13 9 11tobin 2 19 14 13 9 9trade12 1 7 8 7 17 32trade12 2 18 126 19 6 8tra�c 1 7 24 11 28 28vonthmcp 1 12 12 12 fail 9vonthmge 1 14 16 14 22 17

CRASH TECHNIQUES 21Table 9Solution data - SMOOTHTime Jac PP Itsmodel NONE PN(2) NONE PN(2) NONE PN(2)asean9a 1 23.22 18.42 4 4 0 3bert oc 1 4.96 3.15 4 4 0 3bert oc 2 61.03 3.36 41 4 0 3bert oc 3 6.86 2.88 5 4 0 3bert oc 4 13.78 2.52 11 4 0 3bratu 1 79.36 151.62 7 26 0 25cafemge 1 0.96 0.48 15 8 0 7cafemge 2 0.58 0.33 8 6 0 5cammcp 1 fail 0.38 fail 5 fail 4co2mge 2 fail 0.44 fail 6 fail 5co2mge 3 2.99 0.27 19 4 0 3co2mge 4 0.95 0.36 7 5 0 4co2mge 5 0.97 0.33 7 5 0 4co2mge 6 fail 2.18 fail 13 fail 9co2mge 7 0.73 0.56 8 8 0 7dmcmge 1 23.04 5.61 84 23 0 10dmcmge 2 206.18 0.87 447 6 0 5ehl kost 1 8.93 4.42 11 6 0 5ehl kost 2 21.31 11.80 18 12 0 11ehl kost 3 55.62 96.21 36 55 0 19ers82mcp 1 0.46 0.43 5 6 0 5eta2100 1 fail 48.73 fail 160 fail 50�nmge 2 5.83 6.81 13 13 0 0�nmge 3 1.38 0.85 4 4 0 3�nmge 4 11.37 10.56 20 20 0 0�nmge 5 4.19 1.53 12 6 0 5gemmcp 1 0.06 0.27 1 2 0 1gemmcp 2 0.05 0.06 1 1 0 0gemmcp 3 1.00 0.85 5 6 0 5gemmcp 4 0.82 0.83 4 6 0 5gemmcp 5 0.81 0.69 4 5 0 4gemmge 2 3.40 4.21 6 6 0 0gemmge 3 4.04 2.23 7 6 0 5gemmge 4 2.57 2.24 5 6 0 5gemmge 5 3.25 3.11 6 7 0 6hansmcp 1 0.12 0.12 8 8 0 0hansmge 1 0.65 0.66 13 13 0 0hydroc20 1 fail 0.40 fail 9 fail 8jmu 1 127.77 130.81 181 181 0 0mr5mcp 1 fail 0.63 fail 7 fail 6

CRASH TECHNIQUES 22Table 10Solution data - SMOOTHTime Jac PP Itsmodel NONE PN(2) NONE PN(2) NONE PN(2)obstacle 1 13.36 3.19 6 11 0 10obstacle 2 26.13 6.89 10 12 0 11obstacle 3 20.08 6.42 7 11 0 10obstacle 4 18.64 5.73 7 11 0 10obstacle 5 13.68 6.69 6 7 0 6obstacle 6 19.59 10.78 7 10 0 9obstacle 7 22.08 8.20 7 10 0 9obstacle 8 18.18 13.02 6 11 0 10opt cont 1 3.92 0.42 10 6 0 5opt cont127 1 152.20 8.26 17 6 0 5opt cont255 1 253.77 17.77 14 6 0 5opt cont31 1 18.71 1.73 10 6 0 5opt cont511 1 fail 42.80 fail 6 fail 5pgvon105 1 fail fail fail fail fail failpgvon105 2 fail fail fail fail fail failpgvon105 3 fail fail fail fail fail failpgvon106 1 132.92 135.56 482 482 0 0pgvon106 2 4.64 5.12 36 37 0 1pgvon106 3 10.34 10.38 49 49 0 0scarfbnum 1 0.32 0.31 20 20 0 0scarfbnum 2 0.33 0.42 24 24 0 0scarfbsum 1 0.23 0.26 11 11 0 0scarfbsum 2 0.64 0.52 24 24 0 0srtest1 1 0.04 0.05 1 1 0 0srtest1 2 1.47 1.56 6 6 0 0taxmge 2 fail fail fail fail fail failtaxmge 3 fail fail fail fail fail failtaxmge 4 6.56 fail 21 fail 0 failtaxmge 5 fail fail fail fail fail failtaxmge 6 fail fail fail fail fail failtaxmge 7 fail fail fail fail fail failtaxmge 8 fail fail fail fail fail failtaxmge 9 fail fail fail fail fail failtobin 1 0.15 0.20 11 12 0 1tobin 2 0.15 0.10 10 12 0 11trade12 1 47.65 31.72 24 18 0 1trade12 2 14.05 8.28 7 6 0 5tra�c 1 79.62 83.76 37 37 0 0vonthmcp 1 4.74 5.58 80 80 0 0vonthmge 1 17.97 17.34 278 278 0 0

