CRASH TECHNIQUES FOR LARGE-SCALE COMPLEMENTARITY
PROBLEMS*

STEVEN P. DIRKSE! AND MICHAEL C. FERRIS?

Abstract. Most Newton-based solvers for complementarity problems converge rapidly to a
solution once they are close to the solution point and the correct active set has been found. We
discuss the design and implementation of crash techniques that compute a good active set quickly
based on projected gradient and projected Newton directions. Computational results obtained using
these crash techniques with PATH and SMOOTH, state-of-the-art complementarity solvers, are
given, demonstrating in particular the value of the projected Newton technique in this context.

Key words. complementarity problems, crash techniques, projected Newton, crossover

AMS subject classifications. 90C33, 49M15, 49MO07

1. Introduction. The mixed complementarity problem (MCP) can be viewed
as a generalization of a system of nonlinear equations. It is completely determined
by a nonlinear function F' : R® — R” and upper and lower bounds on the problem
variables. The variables z must lie between the given bounds ¢ and wu, while con-
straints on the nonlinear function are determined by the bounds on the variables in
the following manner:

b < zp <up = FZ(Z)

ANAYAR
coo

Note that a square system of nonlinear equations
(2) F(z)=0

and the nonlinear complementarity problem (NCP) are both special cases of the MCP,
each obtained by a suitable choice of the bounds £ and w. In order that Newton type
methods can be applied, we will assume throughout this paper that F' is continuously
differentiable.

We will use the notation B throughout this paper to represent the set {z | £ < z <
u}, while the projection operator onto the set B is denoted by wp(-). We recall that
the projection of x onto a closed convex set B is the closest point of B to x measured
in the Euclidean norm, so that the ith component of mg(z) is just the median value
of x;, £; and u;. The set B can be replaced by any closed convex set for the majority
of this paper. However, we restrict our attention to this set throughout the paper
due to the fact that our implementations exploit the particular structure of B when
performing the requisite projections.

While simplicial labeling techniques [37] and fixed point schemes [24, 38] possess
very powerful theoretical properties, Newton based techniques have proven very effec-

tive for solving large-scale MCP’s [7, 8, 12, 15, 17, 21, 23, 26, 31, 32, 33, 36, 39]. All of

* This material is based on research supported by National Science Foundation Grant CCR-
9157632.

t GAMS Development Corporation, 1217 Potomac Street NW, Washington, D.C. 20007
(steve@gams. com).

{ Computer Sciences Department, University of Wisconsin — Madison, 1210 West Dayton St.,
Madison, Wisconsin 53706 (ferris@cs.wisc.edu).

1

CRASH TECHNIQUES 2

these algorithms maintain the excellent convergence properties of Newton’s method
near a solution to the MCP. However, the region on which this convergence is guar-
anteed for a full Newton step may be quite small. Much effort has gone into proving
global convergence properties for algorithms when started from points far away from
the solution. The main purpose of this paper is to describe and test heuristic tech-
niques that are used to quickly identify the active set. Once an approximate active set
has been identified, we revert to a standard Newton based code to solve the problem.
We first describe the reformulation of the MCP as a nonsmooth system of equa-
tions using the normal map [19, 34, 35] defined below. This will enable us to describe
our Newton method based on similar techniques for smooth systems of equations.
DEFINITION 1.1 (NORMAL MAP). Given the closed conver set B C R" and a
funetion F : B — R", the normal map Fp(-) induced on F by B is defined as

Fa(x) = F(rp(x) + (x - ().

The problem we consider is to find a zero of the normal map, namely an x € R”
satisfying

(3) 0= Fa(x) = F(ra(®)) + (r - mn(2)).

The following theorem is easily established using properties of the projection operator
and indicates the connection between zeros of the normal map and solutions of the
MCP.
THEOREM 1.2. Given a rectangular set B := {z | £ < z < u} and function
F:B — R”, then
1. x € R" is a zero of the normal map implies that z .= wp(z) solves MCP
2. z solves MCP implies that x := z — F(z) is a zero of the normal map.
The normal map is intimately related to the normal cone to the set B.
DEFINITION 1.3 (NORMAL CONE). For the conver set B and a point z € B, the
normal cone to B at z is the set

Np(z) :={y [y (c—2) <0,Ve e B}.
When z ¢ B we define Ng(z) = (). Simple algebraic manipulations show that
(4) Ne(z)={y|ly=—w+v,w,v>0,w"(z—£) =0,v" (u—z)=0}.

Definition 1.3 makes it clear that z solves (1) if and only if z solves the generalized
equation

(5) 0€ F(z)+ Np(z).

We can therefore approach MCP as either a zero-finding problem (3) of the normal
map over the set of variables © € R” or as the original problem of finding a z € B
satisfying (5). We will always use # to indicate the normal map variable and z to
denote the variable in MCP.

Note that the normal map is not in general differentiable everywhere. Due to the
polyhedral nature of the set B, it is a piecewise smooth map. The pieces of the map
can be associated in a very natural way with the active set at the projected point
z = mp(x). The active set at z is the set of indices for which z; = ¢ or z; = u;; each
active set therefore defines a face of the set B. It is well known that the collection
of these faces precisely determine the pieces of smoothness of the normal map. For

CRASH TECHNIQUES 3

example, it was shown in [35] that these pieces are the (full dimensional) polyhedral
sets F + Nx that are indexed by the faces F; here Nz represents the normal cone to
the face F at any point in its relative interior.

In the context of nonlinear equations, Newton’s method proceeds by linearizing
the smooth function F'. Since Fp is nondifferentiable, the standard version of New-
ton’s method for MCP approximates Fg at ¥ € R” with the piecewise affine map

(6) Ly = Mrp(2)+ ¢+ 2 — m(2)
where
M = VF(ﬂ'B(l‘k)) and q:= F(?TB(l‘k)) — M?TB(l‘k).

Thus, the piecewise smooth map Fp has been approximated by a piecewise affine
map. The Newton point xﬁ, (a zero of the approximation Ly) is found by generating
a path p”, parametrized by a variable ¢ which starts at 0 and increases to 1 so that
p(0) = 2% and p*(1) = 2% . The values of p*(t) at intermediate points in the path
are generated to satisfy

(7) Le(p* (1) = (1 =)",

where r* := Fg(z*). The path is known to exist locally under fairly standard as-
sumptions and can be generated using standard pivotal techniques to move from one
piece of the piecewise affine map to another. Further details can be found in [33].

A Newton method for MCP would accept xﬁ, as a new approximation to the
solution and re-linearize at this point. However, as is well known even in the literature
on smooth systems, this process is unlikely to converge for starting points that are
not close to a solution. In a damped Newton method for smooth systems of nonlinear
equations (2), the merit function F'(x)TF(z) is typically used to restrict the step
size and enlarge the domain of convergence. In our implementation of the above
Newton method, which we call PATH [17], the piecewise linear path p* is computed
and searched using a non-monotone watchdog path-search. The watchdog technique
allows path-searches to be performed infrequently, while the non-monotone technique
allows the Newton point to be accepted more frequently. The combination of these
techniques helps avoid convergence to minimizers of the merit function ||FB($)||2 that
are not zeros of Fg, without detracting from the local convergence rates [17].

There are two difficulties associated with such globalization. The first problem
(that the linearization is only a good approximation locally) is dealt with effectively
by the line/path search techniques outlined above and is not the concern of this paper.

The second problem is that initially we may have a very poor estimate of which
piece of the normal map contains the zero. Essentially, this amounts to the fact that
the initial point gives a poor indication of the active set at a solution. In order to
reduce the number of steps required to solve the problem, the starting point given
to a solver can be adjusted using non-pivotal techniques so that the active set at the
adjusted point more closely matches that at the solution to the MCP. Techniques for
accomplishing this cheaply are the subject of this paper and will be referred to as
“crash techniques”. The underlying idea is closely related to the crash procedures
that are now commonplace in production style linear programming codes [14, 30],
although we largely ignore the problem of modifying the active set to generate a
nonsingular basis. Our crash techniques are iterative in nature and employ a merit
function to deal with the nonlinear nature of the problem. Once the initial point has

CRASH TECHNIQUES 4

been adjusted by such a technique (the crash phase of the algorithm), the original
Newton type solver is initialized from the adjusted point.

Practical experience has already shown PATH [17] to be a very robust technique
for solving nonlinear MCP’s; and to be a reasonably fast one as well [7]. One reason
PATH represents a significant increase in speed over other pivotal algorithms is that
it begins pivoting for each subproblem (6) using the basis determined by the active
set at the current point ¥, and not the all-slack basis used by the Josephy-Newton
algorithm [27], for example. Close to a solution, the basis may change very little from
subproblem to subproblem, if at all, so PATH does not need to do any pivoting, and
behaves like Newton’s method applied to smooth systems of equations.

Even so, pivotal codes for MCP such as MILES [36] and PATH [17] may be forced
to perform a very large number of pivots in order to solve the initial subproblem.
Since these solvers use an active set approach, each pivot corresponds to a variable
entering or leaving the set of active constraints. Given such a technique, the number
of pivots required to solve a subproblem is bounded below by the size of the difference
between the initial and final active sets. This number can be expected to grow with
problem size. Even if an efficient factorization updating scheme is used to perform
each pivot step, the cost of this pivoting can become the dominant factor in solving
these problems. The goal of the crash phase is to quickly adjust the initial point
so that it corresponds more closely to such an active set so that very few pivots are
required to solve the problem.

Section 2 begins with a description of a unified approach for our crash techniques
using a given search direction, projections onto the feasible set, and a metric for com-
paring points z € B. A number of different choices for the search direction exist
within this framework. Directions based on projected gradient algorithms from non-
linear programming are considered first in Section 2.1. Section 2.2 describes a Newton
direction based on a system of reduced size determined by the active constraints, while
Section 2.4 describes a modified Newton direction based on a smoothing [12] of the
original problem. The computational testing of the crash procedures with both PATH
and SMOOTH as the Newton method, along with some results and conclusions based
on these tests, are described in Section 3. More extensive numerical results can be
found in Appendix A.

2. Crash Techniqes. In nonlinear programming, a technique that has been
fruitfully applied to identify a good active set is the projected gradient method [2].
Given the problem

min f(2)

the projected gradient method determines z¢*! from z* by choosing the largest o
from {@max, @¥max/2, @max/4, . . .} such that

Fa) = mp (2" — aV f(2F))
satisfies
(8) FEF) = f(FH (@) > oV () (25 = 25+ (o))

The scalars apax > 0, and o € (0,0.5) are fixed. Conditions under which this method
identifies the active set after a finite number of iterations are given in [10, 11]. Since
there is potential for a large change in the current active set as a result of a single step

CRASH TECHNIQUES 5

in this method, these methods are used in large scale codes to determine an active set
quickly, after which a Newton method is applied on the identified face [13]. Note that
when B is polyhedral, z5t1(a) defines a piecewise linear path for a € (0,00). The
fact that a large change in the active set can occur in the path search (8) should be
contrasted with techniques that line search between 2* and 2**1(1) for which a small
change in the active set is more typical.

Motivated by this work, all of our crash implementations are based on the follow-
ing sequence of steps. Given a point z* € B, let z5*1(a) := 2(«) where

(9) z(a) = (2" — ad).

If the direction d* = F(2*), and F is the gradient of a scalar function f, the direction
is identical to that given above. Previous work on projected gradient algorithms for
solving MCP and NCP includes [4], and sufficient conditions for the convergence of
such a method to a solution of an MCP (which include the Lipschitz continuity and
strong monotonicity of F) are given in [5]. These results are based on a contrac-
tion argument and require a fixed stepsize « chosen sufficiently small. Alternative
arguments for the affine case based on the notion of forward-backward splitting can
be found in [20] and its cited references. Results using an Armijo type line search
similar to (8) are scarce due to the lack of a good merit function. Some convergence
results for a number of projection methods based on a gap function derived from the
corresponding variational inequality are given in [22, 28].

In order to perform an Armijo search similar to (8), we require a merit function
to minimize, a function of the iterates z € B. The PATH solver uses ||FB(‘)|], so to
maintain consistency between the crash phase and the PATH algorithm, we use the
relationship between z and x to define

(10) v(a) = arg min {||Fp(x)|| | 2(a) = mB(2)}.

This has the effect of choosing to evaluate || F'g(+)|| at the best € R™ whose projection
onto B is z(«). The resulting path search uses the merit function ||Fp(z(«))|| and

chooses the least m € {0,1,2,...} such that for o« = (%)m,

(11) IFa(a(@))l < (1 — ac) | Pa((0)].

Note that for z € B, the representation of the normal cone (4) allows us to define
ri=z—w+4wvw

so that if —w 4+ v € Ng(z)

(12) Fg(z) = F(2) —w+v.

The computation of #(«) in (10) is therefore trivial and can be accomplished by assign-
ing values to w; and v; in the same simple loop that is used to calculate || Fg(z(a))||-
Essentially, values for w and v are determined by projecting —F'(z) onto Np(z).

Since there is currently no strong theoretical justification that the directions we
consider will be descent directions for ||FB(*)||, we need to terminate the crash proce-
dure if we fail to make improvement (or progress becomes slow) and revert to using the
Newton technique. The crash technique should also be stopped when the active set
ceases to change. The following tolerances are used to determine when to terminate
the crash phase.

CRASH TECHNIQUES 6

Qqpin minimum acceptable path length o
o decrease required in (11)
kmax ~maximum number of steps in crash phase
dmax maximum number of crash steps without a change in the active set
Pmin Minimum ratio of current decrease of ||Fp(‘)|| to maximum ob-
served decrease in any previous crash step
If any of the above settings are not satisfied, the crash phase terminates. In
addition, we require the problem to have at least nn;, variables in order to attempt
a crash phase. We spent some time tuning the various crash procedures that we
now outline by adjusting the parameters mentioned above. The choice of parameters
made for each technique is noted in the following sections describing how the particular
directions are chosen.

2.1. Projected Gradient Directions. It is well known that if we define the
(nonsmooth) mapping

(13) H(z) =z —rmp(z — F(2)),

then z solves MCP if and only if z is a zero of H. If we apply the standard forward-
backward splitting scheme to H, we generate our first crash technique, which is just
an implementation of the “projected gradient” technique (9) with

dr = F(zk)

Note that no factorization is performed, and only function evaluations (not Jacobian
evaluations) are required, so that these directions are very cheap to calculate. We
refer to this algorithm as PG. The parameter settings used in our computational tests
were amin = 2712, 0 =0, nmin = 1, kmax = 50, dmax = 1 and pmin = 0.05.

Unfortunately, the above direction frequently does not give descent for our cho-
sen merit function. A more theoretically justifiable algorithm can be generated by
considering the following problem motivated by the decomposition in (12)

3 T
zeB,—zETvneNB(z)(F(Z) w4+ v) (F(z) —w+v).

We apply a splitting method (fixing w and v and solving for z, and conversely) to
solve this problem. In fact, we generate z*t1 by considering

I}éiél (F(z) — wh + vk)T(F(z) —wk 4+ vk)

and update w* and v* using

min F(z%) = w4+ 0)"(F(z%) = w+v).
min (P e T (EE) -
The second problem is solved in the simple loop described in the previous section,
whereas an iteration of the standard projected gradient method is used for the first
problem. In effect, we just choose

dF = VF(zk)T(F(zk) — w4+ vk)

in the general scheme (9). The parenthetical expression above is precisely the resid-
ual term that is used as the covering vector in the PATH algorithm. We term this
algorithm PGT. The parameter settings used to test this algorithm were identical to
those used in PG.

Note that unlike PG, the PGT direction requires a Jacobian evaluation and a
matrix-vector product per iteration, while neither requires a factorization.

CRASH TECHNIQUES 7

2.2. Projected Newton Directions. The chief drawback of the algorithms of
Section 2.1 is the quality of the search directions obtained. While they were simple
and inexpensive to compute, they did not in all cases provide us with a sufficient
decrease in ||Fg(-)|| or in an adequate change in the current set of active constraints.
Motivated by the work of [3], in which similar results are reported, we now describe
a technique in which a Newton direction for a reduced system is computed and used
in a path search similar to that of (8). The Newton direction for the reduced system
1s essentially the same direction used in the initial pivot step of the path construction
phase of the PATH solver. While the path construction algorithm stops at a boundary
and recomputes the direction (i.e. performs a pivot step), the projected Newton
technique takes a full or damped step and projects back onto the feasible set. By
ignoring the bounds in the computation of the search direction and using them only
when projecting, we can make large changes in the active set, while the reduced system
makes the factorization involved in the computation of the search direction cheaper
to perform.

In [31], Pang gives a global convergence result for Newton’s method applied to
B-differentiable functions, and applies this result to the NCP formulated using the
mapping H defined in (13). He notes that the corresponding direction-finding problem
has reduced size, although the active set used and the reduced system are different
from ours.

We will use the notation A and Z to indicate the following index sets:

(14a) A(z) :={i | & = z, Fi(z) > 0} U {i | u; =z, Fi(z) <0}

(14b) T:={i|i¢A}

Typically, the dependence of these sets on z will be implicit. The set A represents
the box constraints that are active (and correct) at z = wg(z), that is, for which F'
has the right sign. The set Z is an approximation of the indices which are not active
at the solution.

The reduced system

(15) VFII(Zk)dI = FI(Zk)

computes the nonzero part of the search direction d. Assuming a reordering of the
variables, the new iterate is 2*T! := z(a), where

omn([][%])

Again, « is chosen via a path search (11) to reduce ||Fp(x(«))||, where z(«) is defined
using (10). The new iterate z5*! leads to a new choice of index sets .4 and 7.

We refer to the algorithm described above as PN. The parameter settings used in
our computational tests were amin = 272, ¢ = 0.05, 7min = 10, kmax = 50, Smax = 1
and ppin = 0. In addition, we required that the active set change in at least 10 index
positions in the PN technique, as opposed to only one position in PG and PGT.

In solving the reduced system (15) above, the submatrix V Frz(2*) may be rank
deficient. For example, if #* is obtained from 2* as in (10), then this is the case
when z* is a local minimizer of || Fg(-)||, but ||FB(1"“)|| # 0. In [6], Billups shows it
may be possible to solve a sequence of linearized problems with a perturbed function

BN

CRASH TECHNIQUES 8

F derived from F' to obtain a new iterate & such that ||Fg(z)|| < ||FB($k)|| The
perturbed function Fy takes the simple form Fy := F(z) + A(z — &), where z is
the current point. If an algorithm can guarantee monotonic descent in ||Fg(-)||, this
technique can be used to escape a region of convergence to a non-global minimizer of
||F()||. In addition, A can be chosen as large as is necessary for VFrz(2*) + Al to
be invertible.

In our projected Newton crash technique, we have implemented a procedure for
perturbing the Jacobian of F when V Frz(2*) is singular for which multiples of the
identity are added in until a numerically nonsingular matrix results. The algorithm
chooses the minimum A € {0, 10,100, ...} such that VFrz(z*) + Al is nonsingular.
The perturbations are reduced at each iteration using

A:=max(.9A, [|Fs(x)|| /100).

Unlike the PATH algorithm, the PN algorithm belongs entirely to the family
of complementarity algorithms that determine their search directions by solving a
single linear system based on a “derivative approximation” at the current point (e.g.
SMOOTH][12], B-DIFF[25], SEMISMOOTH][26]). In spite of this, there are some
differences between PN and these methods. While SMOOTH solves a system of order
n at each iteration, PN solves a reduced system, as does B-DIFF. More importantly,
PN computes a search direction for the original z variables only, and not for the
slack variables w and v, as is the case with SMOOTH and B-DIFF. PN computes
the correct update for the slacks only after the function F' is evaluated at an updated
point z. This can be important in nonlinear problems, as illustrated in the following

example.
Consider the MCP defined by the function

Z1 L 1 — 5
(17) F(,zz)_[z%—l—zg]
and the nonnegative orthant, where the initial iterate % = (1,—1)7 is given, 2° =
(2% = (1,0)7, F(z°) = (=4,0)7, and ||FB(1‘0)|| = 4. The linearization of F' at
1 0
2 0

direction for the current piece of the linear map is determined via the system

a R

The computed direction d = (—4, 8)7 is the direction taken by B-DIFF, while SMOOTH
takes a similar but somewhat different direction, depending on the smoothing param-
eter being used. If we consider the Newton point z} := 2% —d = (5,-9)7, we see
that Fg(z) = (0,16)™ and ||FB(1‘11\,)|| = 16, even though mg(z}) is the solution to
MCP(F,B). This is because the second row of (18) does a poor job of computing the
correct update for xs, the slack variable corresponding to Fa(x). A line search results
in the choice of o = .25 and z! = (2, —3). Three more steps are required before the
solution is obtained.

In contrast, the PN algorithm computes an update to the inactive set of variables
(i.e. z1) based on the system 1-d = —4. The updates to z take the form

oem([3] (7))

2% is Mz + ¢, where M := and ¢ := :i)] Since zJ < 0, the Newton

CRASH TECHNIQUES 9

When o = 1, the PN algorithm determines that z(«) = (5,0)7, z(«) = (5,—-25)7,
and ||Fp(x(a))|| = 0, so that z(a) solves the MCP.

2.3. Smooth. We first describe the method that is implemented in the code
SMOOTH [12] in the context of nonlinear complementarity problems and then show
in the next section how we modify this to generate a new crash technique for MCP.

The algorithm is based on the mapping H defined in (13). Since this mapping
is nonsmooth, Newton’s method is not directly applicable. Instead of applying New-
ton’s method on the pieces of smoothness of the projection operator, the nonsmooth
function is smoothed, replacing the projection operator 7g(-) by a function P#(.).
The functions P? converge pointwise to g as 3 — oo. Effectively, the nonsmooth
map H is replaced by

Hﬁ(z) ::z—Pﬁ(z—F(z))

where PP : R? — R” is defined by
3 1
Pr(z) =z — 3 log(1 + exp(—£z;)).

The function PP is chosen (componentwise) for the nonlinear complementarity prob-
lem as the integral of the sigmoid function. In the case of finite lower and upper
bounds on a variable, a reformulation using (12) is used. No smoothing at all is
performed when the corresponding variable is free. Let S?(z) be a diagonal matrix
whose diagonal entries are given by

g
(5° i = S - Bi(2)).

To apply Newton’s method, H? is linearized about the point 2z, and d* is defined as
the difference between the solution of the linearization and 2. It is easy to see that
d* satisfies

(20) KPP - PR+ (1= SP(F) + SP(R)VF(7)dE =0

The code SMOQOTH solves this system and applies a standard Armijo line search with
merit function H?(z)THP(z). The parameter 3 is iteratively updated as

8 =max{g,v/n/ |H(")|}

and replaced by /B if 8 < 1.

The default version of the code SMOOTH uses the PN crash technique outlined
in the previous section (without the proximal perturbation). The results that are
reported under the heading PN(2) are precisely those used in [12] and are given
below: amin = 2712, 0 = 0.05, nmin = 10, kmax = 50, dmayx = 00 and pmin = 0. Note
that this “crash technique” does not terminate when the active set settles down but
continues to try to solve the problem even in this case.

2.4. Projected Smooth Directions. We observed that the projected Newton
crash technique considerably improved the SMOOTH algorithm, but that there were
several instances in which the smoothing enabled a hard problem to be solved. We
outline here a hybrid technique that modifies the search direction using smoothing,
but maintains a smaller system to be solved at each step of the crash phase.

CRASH TECHNIQUES 10

The main advantage of the projected Newton crash technique was the reduced
sized system that is solved at every iteration. In order to generate a similar system,
with smoothing, we examine the equation (20) in more detail. The first observation
is that the constant term PP(z* — F(2*)) is an approximation to mp(2* — F(2*)) so
we replace it with the exact term. Since our projected path search (11) is used with
the merit function ||F(z(a)||, the fact that this approximation may stop d* being a
descent direction for ||Hﬁ || is irrelevant. We use a slightly different form of smoothing
to that given in Section 2.3, namely one that results in

1 — exp [B(6; — wi)]
(1 —exp[B(t; — z + Fi(2))]) (1 — exp [B(z — Fi(2) — w)])

The advantage of this formulation is that no special cases need to be considered; the

(S7(2))is =

instances where £; or u; are infinite are taken care of automatically. We now consider
the indices ¢ € A. For such indices, the modified constant term in (20) is now exactly
0, and when 8 — oo the corresponding value of (S°(z));; tends to 0, resulting in
d* = 0. The projected Newton technique takes such a step automatically, and for
the projected smooth crash technique this is a very good approximation of the step
that would be calculated by (20). Thus, we set d¥ = 0 for all i € .A. The remaining
components of d¥ are calculated from the smoothing equation:

= wn (= P2+ (= S57(5) + SE7 () V ez () = 0.

The crash technique that uses this direction is called PS. The parameter settings
used in our computational tests for PS were identical to those in PN. The smoothing
parameter [is iteratively updated as

= max{@,v/n/|F(x(e))l]}

and replaced by +/F if 3 < 1. The proximal perturbation strategy used was also
identical to that described in Section 2.2.

3. Computational Results. Computational tests of the various crash tech-
niques discussed in this paper have been performed using the GAMS [9] modeling
system. The models used were taken from the model library distributed with GAMS
and from MCPLIB [16], a growing collection of models available via anonymous ftp
from ftp.cs.wisc.edu://math-prog/mcplib/. All the codes tested are written in C
and linked to GAMS using the CPLIB [18] interface library. Furthermore, the same
linear algebra subroutines are used throughout. All tests were done using a SUN
SPARC 10/51 with 96 Mb of RAM, allowing a meaningful comparison of solution
times between algorithms.

In our tests, the same runs (a solve of a model from a particular starting point)
were carried out using the PATH solver without benefit of a crash phase (heading
NONE in the tables) and each of the following crash techniques; PG (Section 2.1),
PGT (Section 2.1), PN (Section 2.2), and PS (Section 2.4). The same runs were also
performed using SMOOTH without a crash phase and using different parameters for
PN(2) (see Section 2.3). Tables 1 and 2 have been constructed in order to compress the
results of all these runs, and allow us to draw some conclusions from our computational
study. Detailed results for the individual runs can be found in Appendix A. The
abbreviations used for the column headings in all these tables are precisely those
given above.

CRASH TECHNIQUES 11

TaABLE 1
Costs and Benefits of Crash Techniques.

Crash Technique
metric PG PGT PN PS PN(2)
very beneficial || 7% 8% 40% 3% 33%
beneficial 13% 10% 46% 40% 47%
not costly 60% 66% 81% 67% 95%
not very costly || 78% 85% 8% T76% @ 97%

In order to gauge the effectiveness (i.e., the costs and benefits) of using a particular
crash technique, we compare the performance of a base algorithm with and without
a crash phase, using the following metrics:

beneficial: We say a crash technique P that requires time Tp to complete a run

is “beneficial” compared to completing a run without a crash phase in time
Ty it Tp < %TN, and “very beneficial” if Tp < %TN.
not costly: We say a crash technique P is “not costly” compared to having no
crash phase if Tp < %TN, and “not very costly” if Tp < 27Ty.
Since this method of reporting is somewhat dependent on the base algorithm chosen,
we give results for crash techniques applied to both PATH and SMOOTH.

Table 1 shows that the projected Newton based crash procedures are beneficial
nearly half of the time, and in most of these cases they improved performance sub-
stantially. However, one of the design goals for a crash technique should be to improve
performance on some or most of the problems without degrading performance on any
of them. While this goal was not entirely reached, the PN technique was “not very
costly” compared to the base PATH algorithm 85% of the time. It can be seen in the
Appendix that most of the models on which it performed poorly are those for which
the model size and run times are quite small. Compared to the base SMOOTH algo-
rithm, using PN(2) was “not very costly” 97% of the time, and also gave substantial
gains in a large portion of the runs.

While Table 1 shows comparisons between crash techniques; Table 2 compares
the different combinations of crash techniques and base algorithms used. The more
general column headings indicate the base algorithm, while the individual column
headings indicate what crash technique was applied. In computing the cumulative
time required for all the runs with a given algorithm, one must decide how to assign
times to algorithms for failed runs. We chose the maximum times required for any
successful algorithm on the run in question. In addition to cumulative time, the
algorithms are compared on the following basis:

success: Success 1s achieved if a solution is computed.

competitive: We say the time Tp for crash procedure P is “competitive” with
the time Tg taken by the best algorithm on that run if Tp < 27g, and “very
competitive” if Tp < %TB.

The data in Table 2 clearly shows that the projected Newton crash procedures are
superior to the projected gradient ones in the overall success rate, the improvement
over the base algorithm, and in the number of runs for which the algorithm’s solution
time is competitive with the best time obtained. The cumulative times required to
complete all the runs also indicate that the Newton techniques did well. What the
tables do not show is the dramatic improvement in time obtained on some of the larger
models, where speedups on the order of 100 were achieved by each of the projected

CRASH TECHNIQUES 12

TABLE 2
Algorithm Comparison

PATH + SMOOTH +
metric NONE PG PGT PN PS | NONE PN(2)
very comp. 46% 15% 18% 66% 43% 18% 52%
competitive 51% 37% 3% 6% 62% 35% 61%
success 88% 1% 88% 96% 91% 8% 86%
total time 11221 10386 11296 692 819 9235 985

Newton crash techniques.

In comparing the PG and PN techniques, we see that the higher cost of each
Newton iteration was fully justified by the quality of the search direction computed.
The gradient directions, despite their low cost, were of limited utility in speeding
up the solution process. One of the reasons for this is the sparsity of the Jacobian
matrices involved. For a sparse matrix, doing a function-only evaluation in GAMS
may take as much as 30 — 40% of the time required to evaluate both the function and
its Jacobian. If the computation of the Newton direction from the reduced system
of equations is similarly inexpensive, the difference in cost between the two types of
iteration will be small enough to make the Newton direction most attractive.

Close inspection of the Appendix reveals cases where the combination of crash
phase with the base algorithm fails but the base algorithm alone succeeds. This is
due to the fact that every crash technique forces monotonic decrease in ||Fg(+)|| and
hence can converge to a local minimum of this merit function. In contrast, the base
algorithm may escape such local minima using a combination of the watchdog and
nonmonotone path search schemes. It is clear from our computational results that
this phenomenon is unlikely to occur with the PN approach. In fact, 1t is much more
likely that this approach can modify the initial point and move it into an appropriate
domain of convergence for the base algorithm.

Given the success of the projected Newton crash technique in improving the basic
PATH algorithm, one is led to ask whether the PN procedure could not be used as a
solver in its own right. In order to test this, we ran all the models with PN procedure
only. While this technique was quite fast (339 seconds cumulative, not including failed
runs), it was not very robust, as it solved only 60% of the models. Thus, we see that
while the basic PATH algorithm lacks some of the speed of the PN technique, it more
than compensates for this in increased robustness.

4. Conclusions. We feel that the computational results presented here demon-
strate the potential value of crash techniques applied to both pivotal and non-pivotal
complementarity codes. Of the techniques considered, a projected Newton crash tech-
nique (PN) is the most effective. This crash technique results in a more robust solution
process and significant overall gains in solution times. For this reason, it is the current
algorithm default for GAMS/PATH, the commercial release of the PATH solver, and
the default choice for SMOOTH as well.

The increase in robustness obtained using the PN technique is one of the chief
advantages of that scheme, as practitioners value robustness more than speed. This
gain in robustness is brought about largely by the perturbation techniques used in the
PN technique in the rank deficient case. Similar techniques could also be incorporated
into the standard PATH algorithm. This is a subject of current research.

CRASH TECHNIQUES 13

Interior point and smoothing approaches circumvent the active set problem by
replacing the active set identification problem by some topological difficulty, typically
a penalty function or smoothing approximation. This has proven successful in many
cases, although some skill is required in choosing appropriate parameters and dealing
with 1ill-conditioning. However, such methods are typically outperformed by active
set methods when a good approximation to the active set exists, for example with
restarts, perturbation of previous problems or good starting points. Furthermore,
some applications exploit the nature of a basic solution. Thus, there is a growing
literature in linear programming [1, 29] related to “crossover”. This is the technique
of taking an approximation generated by an interior point method and identifying
a “near-optimal” active set for constructing an advanced basis in a pivotal based
technique. It is certainly possible that interior point methods or smoothing methods
may be used as alternative crash procedures for mixed complementarity codes in the
future. However, the initial active set is currently determined just using the point
returned by the crash technique. Appropriate modifications that identify “almost
active” constraints would be required if an interior point crossover were to be used.
This is also the subject of current research.

REFERENCES

[1] A.B. BERKELAAR, B. JanseN, K. Roos, AND T. TERLAKY, Basis and tripartition identification
for quadratic programming and linear complementarity problems, tech. rep., Department of
Econometrics and Operations Research, Erasmus University, Rotterdam, The Netherlands,
1996.

[2] D. P. BERTSEKAS, On the Goldstein-Levitin-Poljak gradient projection algorithm, IEEE Trans-
actions on Automatic Control, AC-21 (1976), pp. 174-184.

[3] D.P.BERTSEKAS, Projected Newton methods for optimization problems with simple constraints,

SIAM Journal on Control and Optimization, 20 (1982), pp. 221-246.

. P. BERTSEKAS AND E. M. GAFNI, Projection methods for variational inequalities with ap-
plication to the traffic assignment problem, Mathematical Programming Study, 17 (1982),
pp. 139-159.

[5] D. P. BERTSEKAS AND J. N. TSITSIKLIS, Parallel and Distributed Computation: Numerical

Methods, Prentice Hall, Englewood Cliffs, NJ, 1989.

[6] S. C. Brups, Algorithms for Complementarity Problems and Generalized Equations, PhD
thesis, University of Wisconsin-Madison, Madison, Wisconsin, Aug. 1995.

. C. BiLLups, S. P. DIRKSE, AND M. C. FERRIS, A comparison of large scale mized comple-
mentarity problem solvers, Computational Optimization and Applications, forthcoming,
(1996).

[8] S. C. BiLups anD M. C. FERRIS, QPCOMP: A quadratic program based solver for mized
complementarity problems, Mathematical Programming, forthcoming, (1996).

[9] A. BROOKE, D. KENDRICK, AND A. MEERAUS, GAMS: A User’s Guide, The Scientific Press,
South San Francisco, CA, 1988.

[10] J. V. BURKE AND J. J. MORE, On the identification of active constraints, SIAM Journal on
Numerical Analysis, 25 (1988), pp. 1197-1211.

[11] P. H. CALAMAT AND J. J. MORR, Projected gradient methods for linearly constrained problems,
Mathematical Programming, 39 (1987), pp. 93-116.

[12] C. CHEN AND O. L. MANGASARIAN, A class of smoothing functions for nonlinear and
mized complementarity problems, Computational Optimization and Applications, 5 (1996),
pp. 97-138.

[13] A. R. Conn, N. I. M. GouLp, AND P. L. ToiNnT, LANCELOT: A Fortran package for Large—
Scale Nonlinear Optimization (Release A), no. 17 in Springer Series in Computational
Mathematics, Springer Verlag, Heidelberg, Berlin, 1992.

[14] CPLEX OpTiMIZATION INC., Using the CPLEX(TM) Linear Optimizer and CPLEX(TM)
Mized Integer Optimizer (Version 2.0), Incline Village, Nevada, 1992.

[15] T. DE Luca, F. FaccHINEI, AND C. KaNzOW, A semismooth equation approach to the solution
of nonlinear complementarity problems, Preprint 93, Institute of Applied Mathematics,
University of Hamburg, Hamburg, Germany, 1995.

=
o

=
w2

CRASH TECHNIQUES 14

[16] S. P. DirxsE AND M. C. FERRIS, MCPLIB: A collection of nonlinear mized complementarity
problems, Optimization Methods and Software, 5 (1995), pp. 319-345.

, The PATH solver: A non-monotone stabilization scheme for mized complementarity
problems, Optimization Methods and Software, 5 (1995), pp. 123-156.

[18] S. P. Dirksg, M. C. FERrris, P. V. PRECKEL, AND T. RUTHERFORD, The GAMS callable
program library for variational and complementarity solvers, Mathematical Programming
Technical Report 94-07, Computer Sciences Department, University of Wisconsin, Madison,
Wisconsin, 1994. Available from ftp://ftp.cs.wisc.edu/math-prog/tech-reports/.

[19] B. C. EavEs, On the basic theorem of complementarity, Mathematical Programming, 1 (1971),
pp. 68-87.

[20] J. EcksTEIN AND M. C. FERRIS, Operator splitting methods for monotone linear complemen-
tarity problems, TMC 239, Thinking Machines Corporation, Cambridge, MA 02142, 1992.

[21] A. FiscHER AND C. Kanzow, On finite termination of an iterative method for linear comple-
mentarity problems, Preprint MATH-NM-10-1994, Institute for Numerical Mathematics,
Technical University of Dresden, Dresden, Germany, 1994.

[22] M. FUkusHIMA, Equivalent differentiable optimization problems and descent methods for asym-
metric variational inequality problems, Mathematical Programming, 53 (1992), pp. 99-110.

[23] S. A. GABRIEL AND J. J. MORE, Smoothing of mived complementarity problems, Preprint MCS-
P541-0995, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois, 1995.

[24] C. B. Garcia aNnD W. I. ZANGWILL, Pathways to Solutions, Fized Points, and Fquilibria,
Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1981.

[25] P. T. HARKER AND B. X140, Newton’s method for the nonlinear complementarity problem: A

B-differentiable equation approach, Mathematical Programming, 48 (1990), pp. 339-358.

H. Jiang AND L. QI, A new nonsmooth equations approach to monlinear complementarity

problems, SIAM Journal on Control and Optimization, forthcoming, (1996).
[27] N. H. JosEPHY, Newton’s method for generalized equations, Technical Summary Report 1965,
T
N

(17]

26]

Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1979.
. LARSSON AND M. PATRIKSSON, A class of gap functions for variational inequalities, Mathe-
matical Programming, 64 (1994), pp. 53-79.
. MEGIDDO, On finding primal— and dual-optimal bases, ORSA Journal on Computing, 3
(1991), pp. 63-65.
[30] B. A. MURTAGH AND M. A. SAUNDERS, MINOS 5.0 user’s guide, Technical Report SOL 83.20,
Stanford University, Stanford, California, 1983.
[31] J. S. PanG, Newton’s method for B-differentiable equations, Mathematics of Operations Re-
search, 15 (1990), pp. 311-341.
[32] J. S. PanG AND S. A. GABRIEL, NE/SQP: A robust algorithm for the nonlinear complemen-
tarity problem, Mathematical Programming, 60 (1993), pp. 295-338.
[33] D. RaLPH, Global convergence of damped Newton’s method for nonsmooth equations, via the
path search, Mathematics of Operations Research, 19 (1994), pp. 352-389.
[34] S. M. ROBINSON, Mathematical foundations of nonsmooth embedding methods, Mathematical
Programming, 48 (1990), pp. 221-229.
, Normal maps induced by linear transformations, Mathematics of Operations Research,
17 (1992), pp. 691-714.
[36] T.F.RUTHERFORD, MILES: A mived inequality and nonlinear equation solver. Working Paper,
Department of Economics, University of Colorado, Boulder, 1993.
[37] H. E. Scarr, The approvimation of fized points of a continuous mapping, SIAM Journal on
Applied Mathematics, 15 (1967), pp. 1328-1343.
[38] M. J. Topp, Computation of Fived Points and Applications, vol. 124 of Lecture Notes in
Fconomics and Mathematical Systems, Springer-Verlag, Heidelberg, 1976.
[39] B. X140 anD P. T. HARKER, A nonsmooth Newton method for variational inequalities: I:
Theory, Mathematical Programming, 65 (1994), pp. 151-194.

(28]

(29]

35]

CRASH TECHNIQUES

Solution Times -

TABLE 3

PATH crash technique

model NONE PG PGT PN PS
asean9a 1 18.82 24.46 2536 18.74 16.25
bert_oc 1 41.16 4121 39.73 3.06 5.84
bert_oc 2 55.04 61.54 85.92 3.21 5.00
bert_oc 3 43.83 47776 46.08 2.51 3.15
bert_oc 4 53.14 56.56 86.94 2.60 3.06
bratu 1 436.40 44245 448.86 148.09 122.42
cafemge 1 2.08 3.41 2.25 0.38 1.26
cafemge 2 0.33 0.45 0.39 0.33 0.51
cammcp 1 0.31 0.42 fail 0.39 0.81
co2mge 2 1.18 1.54 2.68 0.58 1.40
co2mge 3 0.34 0.55 0.40 0.30 0.37
co2mge 4 0.43 0.68 0.39 0.42 0.35
co2mge b 0.43 0.78 0.54 0.39 0.37
co2mge 6 0.49 0.79 0.74 0.55 1.15
co2mge 7 0.66 0.90 1.49 0.59 0.64
dmemge 1 fail fail fail 3.90 2.78
dmcemge 2 fail fail fail 0.57 2.41
ehl _kost 1 4.58 fail 9.35 5.01 19.37
ehl_kost 2 7.5b fail 11.60 17.05 30.32
ehl_kost 3 141.74 fail 151.03 9.76 46.48
ers82mcep 1 0.47 0.59 fail 0.47 0.38
eta2100 1 6.38 18.50 7.26 4.74 17.59
finmge 2 2.41 2.51 2.73 2.02 3.49
finmge 3 0.87 1.26 1.33 0.97 1.36
finmge 4 1.19 2.64 1.62 2.08 4.97
finmge b 1.16 1.52 1.76 1.24 1.69
gemmcp 1 0.26 0.70 0.56 0.27 0.22
gemmcp 2 0.05 0.40 0.37 0.05 0.04
gemmcep 3 0.92 0.98 1.30 0.91 1.04
gemmcp 4 0.86 1.23 0.93 0.90 1.08
gemmcp 5 0.68 1.04 1.07 0.86 0.86
gemmge 2 4.87 4.87 7.75 3.00 5.67
gemmge 3 2.62 2.69 2.87 2.34 fail
gemmge 4 2.60 3.10 3.15 2.23 4.83
gemmge b 9.49 12.66 9.74 8.77 3.30
hansmcp 1 0.38 0.32 0.32 2.14 fail
hansmge 1 0.18 0.22 0.31 0.28 0.40
hydroc20 1 7.13 7.06 12.09 0.54 0.49
jmu 1 fail fail fail 130.93 111.05
mrbmep 1 0.66 fail 1.08 0.83 1.76

15

CRASH TECHNIQUES

Solution Times -

TABLE 4

PATH crash technique

model NONE PG PGT PN PS
obstacle 1 20.15 10.05 15.12 297 3.14
obstacle 2 160.88 165.50 158.67 6.96 13.26
obstacle 3 80.07 66.06 76.97 6.09 8.83
obstacle 4 47.16 29.64 44.80 6.13 7.36
obstacle 5 71.45 14.04 54.14 8.02 10.95
obstacle 6 114.87 93.98 118.32 10.79 12.91
obstacle 7 92.10 64.22 93.59 7.61 10.00
obstacle &8 113.03 65.61 115.51 13.80 12.33
opt_cont 1 1.05 0.20 0.21 0.44 0.25
opt_cont127 1 246.48 209.45 253.35 8.36 8.79
opt_cont2b5 1 || 1303.73 1089.88 1322.91 1876 19.21
opt_cont31 1 12.43 1.71 4.52 1.73 1.17
opt_contb11 1 || 7569.17 6540.97 7531.91 40.52 53.87
pgvonl05 1 1.68 1.27 2.14 4.48 1.46
pgvonl05 2 0.84 1.00 1.08 0.60 1.15
pgvonl05 3 0.87 1.22 0.82 1.29 0.84
pgvonl06 1 4.13 1.80 2.44 13.24 5.14
pgvonl06 2 6.11 3.37 2.93 3.97 3.37
pgvonl06 3 4.04 2.81 3.42 1.00 6.00
scarfbnum 1 0.07 fail fail 0.37 0.74
scarfbnum 2 0.10 fail 0.31 0.51 0.68
scarfbsum 1 0.12 fail 0.12 6.00 0.49
scarfbsum 2 0.15 fail 0.17 2.37 fail
srtestl 1 0.05 0.25 0.28 0.04 0.04
srtestl 2 fail fail fail 38.75 16.10
taxmge 2 2.60 2.71 3.11 2.57 fail
taxmge 3 0.39 1.57 1.34 0.40 fail
taxmge 4 1.83 fail 9.02 13.68 13.07
taxmge 5 fail fail fail fail fail
taxmge 6 fail fail fail fail fail
taxmge 7 fail fail 2.32 1.46 1.63
taxmge 8 fail fail 1.56 1.35 1.58
taxmge 9 fail fail 0.61 0.33 0.11
tobin 1 0.10 0.14 0.14 0.09 0.11
tobin 2 1.21 0.14 0.31 0.08 0.09
tradel2 1 12.39 12.94 11.70 26.96 75.19
tradel2 2 35.88 328.92 35.38 7.67 13.17
traffic 1 59.28 299.83 54.97 41.71 77.46
vonthmep 1 0.62 0.90 0.56 fail 0.47
vonthmge 1 0.48 0.62 0.59 1.44 1.07

16

CRASH TECHNIQUES

TABLE 5

Pre-processing Iterations - PATH crash technique

model NONE PG PGT PN PS
asean9a 1 0 0 0 1 3
bert_oc 1 0 0 2 3 5
bert_oc 2 0 0 3 3 4
bert_oc 3 0 0 2 3 4
bert_oc 4 0 0 9 3 4
bratu 1 0 1 2 25 13
cafemge 1 0 2 0 1 23
cafemge 2 0 0 2 1 7
cammcp 1 0 2 fail 2 10
co2mge 2 0 0 2 1 7
co2mge 3 0 0 2 1 4
co2mge 4 0 0 2 1 4
co2mge 5 0 0 2 1 4
co2mge 6 0 0 3 1 4
co2mge 7 0 0 4 1 7
dmemge 1 fail fail fail 1 0
dmcemge 2 fail fail fail 1 13
ehl kost 1 0 fail 0 1 21
ehl_kost 2 0 fail 0 1 7
ehl _kost 3 0 fail 0 1 33
ers82mcep 1 0 0 fail 1 5
eta2100 1 0 1 2 1 50
finmge 2 0 1 0 1 6
finmge 3 0 0 2 1 4
finmge 4 0 2 2 1 3
finmge 5 0 1 2 1 5
gemmep 1 0 0 2 1 1
gemmcp 2 0 0 2 0 0
gemmcp 3 0 1 2 1 5
gemmcp 4 0 1 2 1 5
gemmcp 5 0 0 2 1 4
gemmge 2 0 1 2 1 10
gemmge 3 0 1 2 1 fail
gemmge 4 0 1 2 1 2
gemmge b 0 1 2 1 8
hansmcp 1 0 1 4 9 fail
hansmge 1 0 1 2 2 11
hydroc20 1 0 0 2 1 8
jmu 1 fail fail fail 0 0
mrbmep 1 0 fail 0 1 16

17

Pre-processing Iterations -

CRASH TECHNIQUES

TABLE 6

PATH crash technique

model NONE PG PGT PN PS
obstacle 1 0 6 3 10 11
obstacle 2 0 3 2 11 12
obstacle 3 0 3 5 10 12
obstacle 4 0 2 21 9 13
obstacle b 0 4 6 6 5
obstacle 6 0 11 8 9 9
obstacle 7 0 11 5 9 10
obstacle 8 0 11 2 10 8
opt_cont 1 0 3 5 4 3
opt_cont127 1 0 2 3 4 4
opt_cont255 1 0 2 3 4 4
opt_cont31 1 0 4 10 4 3
opt_cont511 1 0 2 3 4 5
pgvonl05 1 0 1 6 1 4
pgvonl0h 2 0 2 0 59 1
pgvonl05 3 0 2 0 59 15
pgvonl06 1 0 1 4 0 4
pgvonl(6 2 0 3 0 1 96
pgvonl(6 3 0 3 0 3 96
scarfbnum 1 0 fail fail 1 50
scarfbnum 2 0 fail 4 1 49
scarfbsum 1 0 fail 0 1 16
scarfbsum 2 0 fail 0 1 fail
srtestl 1 0 1 0 0 0
srtestl 2 fail fail fail 1 0
taxmge 2 0 1 2 1 fail
taxmge 3 0 1 2 1 fail
taxmge 4 0 fail 2 1 3
taxmge 5 fail fail ~ fail fail fail
taxmge 6 fail fail ~ fail fail fail
taxmge 7 fail fail 2 42 34
taxmge 8 fail fail 2 42 34
taxmge 9 fail fail 2 42 34
tobin 1 0 4 5 1 10
tobin 2 0 4 2 2 8
tradel2 1 0 1 0 7 9
tradel2 2 0 1 2 1 7
traffic 1 0 1 3 21 21
vonthmep 1 0 2 0 faill 2
vonthmge 1 0 1 0 2 6

18

Jacobian Evaluations -

CRASH TECHNIQUES

TABLE 7

PATH crash technique

model NONE PG PGT PN PS
asean9a 1 4 4 4 4 4
bert_oc 1 2 2 3 4 6
bert_oc 2 2 2 4 4 5
bert_oc 3 2 2 3 4 5
bert_oc 4 2 2 10 4 5
bratu 1 4 5 5 26 14
cafemge 1 33 43 31 7 24
cafemge 2 6 6 7 6 8
cammcp 1 5 5 fail 5 11
co2mge 2 14 14 20 7 12
co2mge 3 4 4 5 4 5
co2mge 4 5 5 6 5 5
co2mge 5 6 6 8 5 5
co2mge 6 7 7 9 7 10
co2mge 7 7 7 15 8 8
dmemge 1 fail fail fail 18 13
dmcemge 2 fail fail fail 6 14
ehl kost 1 6 fail 7 6 22
ehl_kost 2 8 fail 9 19 18
ehl_kost 3 68 fail 70 11 34
ers82mcep 1 6 6 fail 6 6
eta2100 1 16 32 16 13 56
finmge 2 5 6 5 7 12
finmge 3 4 4 5 4 5
finmge 4 5 6 6 8 8
finmge 5 5 6 6 5 6
gemmep 1 2 2 3 2 2
gemmcp 2 1 1 2 1 1
gemmcp 3 6 7 7 6 6
gemmcp 4 6 7 6 6 6
gemmcp 5 5 5 6 5 5
gemmge 2 12 12 20 7 11
gemmge 3 6 7 7 6 fail
gemmge 4 7 8 8 6 9
gemmge b 25 26 26 21 9
hansmcp 1 28 29 26 38 fail
hansmge 1 4 5 5 8 12
hydroc20 1 22 24 30 9 9
jmu 1 fail fail fail 25 25
mrbmep 1 7 fail 7 7 17

19

Jacobian Evaluations -

CRASH TECHNIQUES

TABLE 8

PATH crash technique

model NONE PG PGT PN PS
obstacle 1 3 3 5 11 12
obstacle 2 3 4 4 12 13
obstacle 3 2 3 8 11 13
obstacle 4 2 3 23 11 14
obstacle b 2 3 9 7 7
obstacle 6 2 3 10 10 10
obstacle 7 2 3 6 10 11
obstacle 8 2 3 3 11 9
opt_cont 1 2 3 7 6 4
opt_cont127 1 2 3 4 6 5
opt_cont255 1 2 3 4 6 5
opt_cont31 1 2 3 12 6 4
opt_cont511 1 2 3 4 6 6
pgvonl05 1 26 19 34 24 22
pgvonl05 2 14 15 14 9 20
pgvonl05 3 14 22 14 14 16
pgvonl06 1 47 36 38 fail 69
pgvonl06 2 60 44 42 fail 44
pgvonl06 3 32 40 44 20 63
scarfbnum 1 5 fail fail 14 55
scarfbnum 2 5 fail 14 15 54
scarfbsum 1 4 fail 5 39 20
scarfbsum 2 4 fail 5 18 fail
srtestl 1 1 2 1 1 1
srtest] 2 fail fail fail 29 12
taxmge 2 11 12 12 11 fail
taxmge 3 2 7 6 2 fail
taxmge 4 7 fail 11 11 14
taxmge 5 fail fail ~ fail fail fail
taxmge 6 fail fail ~ fail fail fail
taxmge 7 fail fail 9 7 7
taxmge 8 fail fail 8 6 7
taxmge 9 fail fail 2 2 1
tobin 1 10 12 13 9 11
tobin 2 19 14 13 9 9
tradel2 1 7 8 7 17 32
tradel2 2 18 126 19 6 8
traffic 1 7 24 11 28 28
vonthmep 1 12 12 12 faill 9
vonthmge 1 14 16 14 22 17

20

CRASH TECHNIQUES

TABLE 9
Solution data - SMOOTH

Time | Jac | PP_Its
model NONE PN(2) NONE PN(2) NONE PN(2)

asean9a 1 23.22 18.42 4 4 0 3
bert_oc 1 4.96 3.15 4 4 0 3
bert_oc 2 61.03 3.36 41 4 0 3
bert_oc 3 6.86 2.88 5 4 0 3
bert_oc 4 13.78 2.52 11 4 0 3
bratu 1 79.36 151.62 7 26 0 25
cafemge 1 0.96 0.48 15 8 0 7
cafemge 2 0.58 0.33 8 6 0 5
cammcp 1 fail 0.38 fail 5 fail 4
co2mge 2 fail 0.44 fail 6 fail 5
co2mge 3 2.99 0.27 19 4 0 3
co2mge 4 0.95 0.36 7 5 0 4
co2mge 5 0.97 0.33 7 5 0 4
co2mge 6 fail 2.18 fail 13 fail 9
co2mge 7 0.73 0.56 8 8 0 7
dmcmge 1 23.04 5.61 84 23 0 10
dmcmge 2 || 206.18 0.87 447 6 0 5
ehl _kost 1 8.93 4.42 11 6 0 5
ehl_kost 2 21.31 11.80 18 12 0 11
ehl_kost 3 55.62 96.21 36 55 0 19
ers82mcep 1 0.46 0.43 5 6 0 5
eta2100 1 fail 48.73 fail 160 fail 50
finmge 2 5.83 6.81 13 13 0 0
finmge 3 1.38 0.85 4 4 0 3
finmge 4 11.37 10.56 20 20 0 0
finmge 5 4.19 1.53 12 6 0 5
gemmep 1 0.06 0.27 1 2 0 1
gemmcp 2 0.05 0.06 1 1 0 0
gemmcp 3 1.00 0.85 5 6 0 5
gemmcp 4 0.82 0.83 4 6 0 5
gemmcp 5 0.81 0.69 4 5 0 4
gemmge 2 3.40 4.21 6 6 0 0
gemmge 3 4.04 2.23 7 6 0 5
gemmge 4 2.57 2.24 5 6 0 5
gemmge b 3.25 3.11 6 7 0 6
hansmcp 1 0.12 0.12 8 8 0 0
hansmge 1 0.65 0.66 13 13 0 0
hydroc20 1 fail 0.40 fail 9 fail 8
Jmu 1 127.77 130.81 181 181 0 0
mrbmep 1 fail 0.63 fail 7 fail 6

CRASH TECHNIQUES

TABLE 10
Solution data - SMOOTH

Time | Jac | PP_Its
model NONE PN(2) NONE PN(2) NONE PN(2)
obstacle 1 13.36 3.19 6 11 0 10
obstacle 2 26.13 6.89 10 12 0 11
obstacle 3 20.08 6.42 7 11 0 10
obstacle 4 18.64 5.73 7 11 0 10
obstacle b 13.68 6.69 6 7 0 6
obstacle 6 19.59 10.78 7 10 0 9
obstacle 7 22.08 8.20 7 10 0 9
obstacle 8 18.18 13.02 6 11 0 10
opt_cont 1 3.92 0.42 10 6 0 5
opt_cont127 1 || 152.20 8.26 17 6 0 5
opt_cont2b5 1 || 253.77 17.77 14 6 0 5
opt_cont31 1 18.71 1.73 10 6 0 5
opt_cont511 1 fail 42.80 fail 6 fail 5
pgvonl05 1 fail fail fail fail fail fail

pgvonl0h 2 fail fail fail fail fail fail
pgvonl05 3 fail fail fail fail fail fail

pgvonl06 1 132.92 135.56 482 482 0 0
pgvonl(6 2 4.64 5.12 36 37 0 1
pgvonl(6 3 10.34 10.38 49 49 0 0
scarfbnum 1 0.32 0.31 20 20 0 0
scarfbnum 2 0.33 0.42 24 24 0 0
scarfbsum 1 0.23 0.26 11 11 0 0
scarfbsum 2 0.64 0.52 24 24 0 0
srtestl 1 0.04 0.05 1 1 0 0
srtestl 2 1.47 1.56 6 6 0 0
taxmge 2 fail fail fail fail fail fail
taxmge 3 fail fail fail fail fail fail
taxmge 4 6.56 fail 21 fail 0 fail
taxmge 5 fail fail fail fail fail fail
taxmge 6 fail fail fail fail fail fail
taxmge 7 fail fail fail fail fail fail
taxmge 8 fail fail fail fail fail fail
taxmge 9 fail fail fail fail fail fail
tobin 1 0.15 0.20 11 12 0 1
tobin 2 0.15 0.10 10 12 0 11
tradel2 1 47.65 31.72 24 18 0 1
tradel2 2 14.05 8.28 7 6 0 5
traffic 1 79.62 83.76 37 37 0 0
vonthmep 1 4.74 5.58 80 80 0 0
vonthmge 1 17.97 17.34 278 278 0 0

