
The Path Solver: A Non-Monotone StabilizationScheme for Mixed Complementarity ProblemsSteven P. Dirkse� Michael C. Ferris�September 1993AbstractThe Path solver is an implementation of a stabilized Newton method for the solution ofthe Mixed Complementarity Problem. The stabilization scheme employs a path-generationprocedure which is used to construct a piecewise-linear path from the current point to theNewton point; a step length acceptance criterion and a non-monotone pathsearch are thenused to choose the next iterate. The algorithm is shown to be globally convergent underassumptions which generalize those required to obtain similar results in the smooth case.Several implementation issues are discussed, and extensive computational results obtainedfrom problems commonly found in the literature are given.1 IntroductionAmong the many algorithms for solving nonlinear systems of equations, Newton's methodis perhaps the most well known; basic references for it and its many variants are found in[28, 7]. This powerful method has excellent local convergence properties, but may fail to beglobally convergent. Several damping strategies which involve searching the Newton direc-tion exist; these enlarge the domain of convergence for Newton's method. Computationalexperience with linesearch schemes has shown that convergence can be slowed consider-ably by the requirements these schemes impose. Recently, Grippo, Lampariello, and Lucidi[12, 13] and Ferris and Lucidi [10] have shown that the monotone descent requirement of thelinesearch can be relaxed somewhat without sacri�cing the global convergence properties.Other references on this subject are Pang, Han, and Rangaraj [31] and Rangaraj [35].A key generalization of Newton's method is its application to systems of nonsmooth equa-tions. Nonsmooth equations arise in a number of mathematical programming applications;�Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 537061



examples include Wilson's sequential quadratic programming (SQP) method [43, 11, 39],the generalized equations of Robinson [36, 37], and reformulations of variational inequal-ities (VI) and complementarity problems [39]. While these nonsmooth equations are notF(r�echet){di�erentiable, they are often B(ouligand){di�erentiable[38]; Pang [29] presents ageneralization of Newton's method based on this, while Harker and Xiao [19] describe thethe results of their computational study of this method as applied to a number of comple-mentarity problems. Other work in this area includes that of Han, Pang, and Rangaraj [14]and a recent article by Pang and Qi [32]. An extensive bibliography can be found in thesurvey article [18] by Harker and Pang.The primary aims of this paper are to introduce and describe a stabilization schemefor Newton methods for nonsmooth equations, present a global convergence result for theresulting algorithm, and give the results of an extensive computational study of this algo-rithm. The Newton method makes use of the path-following technique of Ralph [34]. A novelmethod of pathsearch damping, similar to the watchdog techniques used in the smooth case,is proposed. Strong global convergence results for this technique are given. The compu-tational results con�rm that the method does represent an increase in robustness over theundamped Newton method.The Path solver is an implementation of the damped Newton method described in thispaper. This solver makes use of the mixed complementarity problem (MCP) formulationde�ned below.De�nition 1 (MCP) Given a function f : IRn ! IRn and bounds l; u 2 IR n,s: t:�nd z 2 IRn; w; v 2 IRn+f(z) = w � v (1a)l � z � u (1b)(z � l)>w = 0 (1c)(u� z)>v = 0; (1d)where IR := IR [ f�1;+1g. The MCP is a very general problem and includes manystandard problem instances corresponding to special choices of f , l, and u. To illustrate,we will show how both the zero-�nding problem for a system of equations and the standardlinear complementarity problem (LCP) can be cast as MCP's.Example 2 Zero-�nding for systems of equations: �nd z s.t. f(z) = 0:Let the function f in our MCP be the given f . The variable z should be unbounded; (1b)leads us to set l = �1 and u = +1. Let z be a solution to our MCP; conditions (1c) and(1d) imply that v = w = 0, so that (1a) is reduced to f(z) = 0, which is exactly as desired.Example 3 The standard LCP: �nd z � 0;Mz + q � 0, s.t. z>(Mz + q) = 0:2



Let f(z) :=Mz+q in the MCP, and set l = 0 and u = +1. Assume z solves our MCP.(1b) implies that z � 0. (1d) implies that v = 0, which with (1a) implies that f(z) = w � 0.Since w = f(z) and l = 0, (1c) implies that z>(Mz + q) = 0.The generalization of the standard non-negatively constrained complementarity problemto the MCP is shown to be particularly useful in practice; models can be de�ned moresuccinctly and clearly and solved more robustly and e�ciently using this formulation.The paper is composed of 6 sections. In Section 2, we describe the non-monotone stabi-lization scheme for Newton's method as implemented in the Path solver. In Section 3, wepresent a global convergence result for the Path algorithm. Section 4 describes the imple-mentation of the Path solver and its linkage as a GAMS subsystem, while Section 5 givesour computational results (with comparison to other algorithms). Finally, Section 6 outlinesour conclusions based on this work.A word about notation is in order. The Euclidean unit ball is denoted by IB := fx j kxk2 �1g. The non-negative orthant in IRn is denoted by IRn+. The transpose of a matrix or vectorAis denoted by A>. Assuming the set C � IRn is closed and convex, we denote the projectionoperator onto the set C as �C(�); �C(x) is the unique point in C which minimizes theEuclidean norm kc� xk2 for c 2 C. The projection of a vector x onto IRn+ is denoted moresimply by x+.We write s # 0 to mean s ! 0; s > 0. Given a scalar or vector function h(s), we sayh(s) = o(s) (as s # 0) if h(s)= ksk ! 0 in norm as s # 0; similarly, h(s) = O(s) if h(s)= kskis bounded as s # 0. Similar de�nitions hold for the cases where s ! 1. A function f isLipschitz of modulus L � 0 on a subset X0 of IRn if kf(x)� f(y)k � L kx� yk 8x; y 2 X0.A function f is Lipschitzianly invertible of modulus L � 0 if f is bijective and its inversemapping is Lipschitz of modulus L.2 The PATH solverThe Path solver is an implementation of a stabilized Newton method for solving the MCP.The general form of the pathsearch technique is due to Ralph [34]. In this section, wedescribe this technique, along with several theoretical and computational enhancements. Inorder to do so, it will be convenient to express the MCP as the normal equationfB(x) = 0; (NE)where fB is the normal map of Robinson [40] imposed on f by the rectangular set B :=fz j l � z � ug: fB(x) := f(�B(x)) + x� �B(x):The relationship between NE and MCP is made clear by the transformations x = z � f(z)and z = �B(x); see [40]. Thus, we can view the MCP as the problem of �nding a zero3



of an equation, albeit a potentially non-smooth one. This framework enables us to applyNewton-type techniques from equation solving to �nd solutions for the MCP.In the classical Newton's method, the smooth function f is approximated at a point xkvia the linearization Ak de�ned byAk(x) := f(xk) +rf(xk)(x� xk): (2)This linearization Ak is said to be a �rst order approximation of f at xk. The Newton pointxkN is a zero of this approximation, that is, Ak(xkN) = 0. Assuming non-singularity of theJacobian matrix, this zero is unique, and it is a conceptually simple task to �nd it; onemerely solves the matrix equation rf(xk)dk = �f(xk). The Newton point is de�ned byxkN := xk + dk, and the Newton direction by dk. The next iterate in the Newton process isdetermined by a linesearch along this direction, that is,xk+1 := xk + �kdk;where �k satis�es some appropriate conditions. Thus, a linesearch-damped Newton methodcan be divided into three parts: linearization, direction-�nding, and linesearching. Ourpresentation will be organized similarly; the Path solver analogues of these three partsare approximation, path generation and pathsearch damping. The description of the non-monotone stabilization scheme which we have incorporated into the algorithm concludes thissection.2.1 ApproximationDue to the piecewise-linear nature of the projection operator �B(�), it is in general impossibleto approximate fB with a linear function. Instead, a �rst-order approximation is used, whichgeneralizes the familiar linearization used for smooth functions.De�nition 4 Let xk 2 IRn. A �rst-order approximation of fB at xk is a mapping Ak :IRn 7! IRn such that limx!xk kf(x)�Ak(x)k = 


x� xk


 = 0:This is expressed more compactly by saying f(x)�Ak(x) is o(x� xk). A �rst-order approx-imation of fB on X0 � IRn is a mapping A on X0 such that for each x 2 X0, A(x) is a�rst-order approximation of fB at x.Let A be a �rst-order approximation of f on X0. A is a uniform �rst-order approximation(with respect to X0) if there exists h : (0;1) 7! [0;1], with h(s) = o(s), such that for anyx; y 2 X0, kA(x)(y)� f(y)k � h(kx� yk): (3)4



Note the fundamental di�erence between �rst-order approximations to a function at a pointand on a set; the approximation on a set is an operator by which approximations at thepoints in that set can be obtained (e.g. for xk 2 X0, Ak := A(xk)).The non-di�erentiability of the normal map fB is due to the piecewise-linear nature ofthe projection operator �B(�). The standard �rst-order approximation of fB at xk is thepoint-based approximation of Robinson [39] obtained by linearizing f around �B(xk) andleaving the projection operator alone. This yieldsAk(x) := M�B(x) + q + x� �B(x); (4)where M := rf(�B(xk)) and q := f(�B(xk))�M�B(xk):A Newton point xkN is a zero of the approximation Ak. This point may not be unique.However, we will continue to use the notation xkN to refer to the unique Newton point foundby the path generation technique described in the next section. Much of the di�culty incomputing a zero of Ak is caused by the projection operator �B(�), which is nonsmooth. Ourmethod for �nding a zero depends on the notion of a path, which we now introduce.2.2 Path GenerationAn essential part of the algorithm is the path constructed between the current point xk andthe Newton point xkN . This path generalizes the Newton direction dk in the smooth case,and serves two purposes: it provides us with the Newton point, and it is the backbone of apathsearch scheme which serves to damp our Newton method and improve on its convergenceproperties. This piecewise linear path is constructed using pivotal techniques; each pivotstep results in a new linear piece of the path. In this section, we describe a parametricmethod used to construct the desired path from xk to xkN . However, we �rst describe theequivalence between the approximation Ak of (4) and another system more amenable topivotal techniques, and we review Lemke's method as a type of path construction technique.Instead of attempting to �nd a zero of the approximation Ak directly, this approximationis cast as a linear MCP, and solved using a pivotal technique. This technique yields a pathto the Newton point xkN ; furthermore, there is a simple relationship between the variablesused in the pivotal technique and those of (NE) which allows an easy transition from pointsx 2 IRn to points z 2 B � IRn, and vice versa. This will be crucial in the pathsearch stageof the algorithm. Set z = �B(x);v = (x� z)+;w = (z � x)+: (5)5



Since v and w are the positive and negative parts of x� z, it follows that v�w = x� z andx = z � w + v;where w � 0; v � 0; w>v = 0 (6a)z 2 B; (6b)z = �B(z � w + v): (6c)De�nition 5 Let B � IRn be rectangular, and x 2 IRn.1. The vectors z, w, and v de�ned by (5) are said to be the components of x.2. Vectors z, w, and v satisfying (6) are said to comprise x; (z;w; v) is called a triple.It is clear that there is a 1-1 correspondence between triples (z;w; v) and the pointsx 2 IRn; a triple (z;w; v) comprises x precisely when z, w, and v are the components of x.Moreover, the vector x solves fB(x) = 0 exactly when its components solve MCP, and viceversa. Indeed, the approximation Ak can be written using the components of x to obtain0 = Ak(x) = M�B(x) + q + x� �B(x)= Mz + q � w + v; (7)where (z;w; v) comprise x. It is in the form of (7) that the zero of the approximation Ak iscomputed. In the course of solving (7), valid triples (z;w; v) are maintained throughout; thevectors x comprised by these triples form a path.We now de�ne a path formally, using the de�nition from [34].De�nition 6 A path in IRn is a continuous function p : [0; T ] 7! IRn, where T 2 [0; 1]. TheNewton path satis�es the following additional conditions:pk(0) = xk; (8a)Ak(pk(t)) = (1 � t)fB(xk); 8 t 2 [0; T ]: (8b)The path pk may be denoted simply by p when the context makes the meaning clear. Notethat (8b) implies that the norm of the approximation at points on p decreases linearly asa function of 1 � t, and that the point p(1) is a Newton point. To avoid ambiguity, wewill assume that the notation xkN refers to this Newton point, which is unique, if it exists.Note also that (8a) requires that the path begin at the current point xk. When the feasibleset B = IRn+, the approximation (7) reduces to the linear complementarity problem (LCP),to which Lemke's method can be applied. We now consider Lemke's method as a pathconstruction technique. 6



In Lemke's method [24, 6], an extra column (called a covering vector) is added to thematrix M , along with an arti�cial variable �. Typically, the covering vector is taken to bethe unit vector e (the vector whose components are all ones). This vector is introduced toachieve feasibility for an augmented system, while also maintaining complementarity in theoriginal variables, that is, (7) is replaced byhM �I ei 264zw�375 = �q (9)z;w; � � 0;where (z;w; v � 0) comprise x. A ray start is performed, in which �0 is set to minf� j � �0; e� + q � 0g. This ray start leads directly to an initial basic feasible solution (BFS) [5]of the system (9). Note that the variables z and w are feasible for the LCP only if � = 0.In general, � will be basic in the initial BFS, with value �0 > 0, as a result of the ray start.Thus, Lemke's method speci�es pivoting rules which determine a sequence of entering andleaving variables and BFS which maintain the complementarity of z and w. The algorithmterminates successfully when a pivot results in � leaving the basis at 0. At this point, theLCP has been solved; the original variables z and w are both complementary and feasible.The solution to this LCP is the Newton iterate, and a path parameterized by t = 1 � ��0leading from the initial BFS to the Newton iterate has been constructed by the sequenceof Lemke pivots. At every point in this path, z and w comprise a vector x. Unfortunately,the Lemke path is not quite what is needed, since in general it does not include the currentpoint (zk; wk), violating condition (8a).In the general case, the approximation (7) is expressed using the triple (z;w; v); any pathp from xk to xkN can be expressed as a triple by letting (z(t); w(t); w(t)) be the componentsof p(t), that is, p(t) := z(t)� w(t) + v(t);for all t 2 [0; T ]. The requirements for a feasible path (8) require that(1 � t)fB(xk) = Ak(p(t))or applying (7) that (1 � t)r = Mz(t) + q � w(t) + v(t) (10)where r := fB(xk) is the \residual" vector at the start of the path. Clearly, setting p(0) = xksatis�es (10), while the triple (z(1); w(1); v(1)) comprises the Newton point xkN . The pathfrom xk to xkN is now determined by a sequence of pivots, which are analogous to the pivotsused in Lemke's method above and which we now describe.7



In the Path solver we use r as the covering vector. Thus in the general case, (9) becomes:hM �I I ri 26664zwvt 37775 = �q + rl � z � uw; v � 00 � t � 1 (11)The initial BFS is determined by the triple (zk; wk; vk), where t = 0. If the triple is non-degenerate (i.e., for all j 2 1; : : : ; n, exactly one of zkj , wkj , and vkj is not at a bound), thenthe choice of basis corresponding to the triple is unique; the basis consists of columns cor-responding to variables not at bound. The �rst entering variable is always t, which entersthe basis at its lower bound 0, and forces a variable to leave the basis. The leaving variable,chosen by a ratio test, must be one of four types, and determines the choice of enteringvariable according to the following pivot rules:wj: If wj leaves the basis, the next entering variable will be zj, which will enter at itslower bound lj.vj: If vj leaves the basis, the next entering variable will be zj, which will enter at itsupper bound uj.zj: If zj leaves the basis at lower bound, wj enters at 0. If zj leaves at upper bound,vj enters at 0.t: If t leaves the basis at upper bound 1, the Newton point xkN has been computedand can be recovered from the basis.The choice of entering variable drives a new pivot step. The path-construction algorithmcontinues taking pivot steps, using the pivot rules indicated above, until t leaves the basisat 1 (successful termination), t leaves at lower bound, or the ratio test results in no leavingvariable (ray termination). Note that once t enters the basis, the lower bound of 0 for tmay be relaxed or ignored. Relaxing this bound has proved useful in practice; some ofthe linearizations solved admit a Newton point only after a sequence of pivots in which toscillates and takes values less than 0. Each pivot step described above results in a new(linear) piece of the path. Thus, it is possible for a path to have a very large number ofpieces; consequently, it may be quite expensive to store. Since the techniques used for storingthe path depend upon how the path is to be searched, we defer a discussion of path storagetechniques to Section 2.3, where the pathsearch is considered.It is possible that the basis corresponding to the triple (zk; wk; vk) be rank de�cient. Inthis case, it is impossible to construct the path from the current point to the Newton pointby the path generation method described; instead, the Path solver constructs a path from8



a new point to the Newton point. This new point is chosen so as to correspond to a basis;for all constrained variables, slack columns are made basic. If there are no free variables,this all-slack basis is guaranteed to be of full rank. Furthermore, is is possible, by a simplechoice of the basic values for the slack variables w and v, to duplicate exactly the sequenceof pivots performed by Lemke's complementary pivot algorithm. In the case where there arefree variables, it may not be possible to choose a full-rank basis corresponding to any validtriple, since the columns corresponding to the free variables must always be in the basis; asu�cient condition is that the principal submatrix Mf corresponding to the free variablesbe of full rank. In this case, a basis can be obtained by choosing as many slack columns aspossible. In [4], Cao and Ferris describe a scheme whereby the lineality of the feasible set Bis factored out, and a new problem solved over a reduced space. The full rank condition onMf is a necessary condition in that context.Having generated the path, we now return to the nonlinear model and describe ourglobalization strategy, pathsearch damping.2.3 Pathsearch DampingIn pathsearch-damped Newton's method for �nding a zero of the function fB, the path fromxk to xkN is searched for a point satisfying some descent condition. This condition is often asu�cient reduction in the norm of fB or in some other merit function. These merit functionsare nonnegative functions whose zeroes coincide exactly with those of fB. Thus, while thepath is computed in order to �nd a zero of Ak, the next iterate will be a point on thispath yielding a suitable decrease in the merit function. In the smooth case, the Newtondirection yields a zero of the approximation and also serves as a descent direction for themerit function [7]. The paths we construct have similar properties.Recall from Section 2.2, (8b) that the norm of the approximation Ak goes to zero linearlyin (1 � t) on the path p. We use this and the approximation properties of Ak to show thatthe norm of fB must decrease on the path near t = 0. Let � 2 (0; 1); thenkfB(p(t))k = kAk(p(t)) + o(t)k= (1 � t) kfB(xk)k+ o(t)� (1� �t) kfB(xk)k ; (12)for some �t 2 (0; 1) and all t 2 [0; �t). Thus, the norm of fB decreases on a section of the pathnear 0, so that p is a \descent path" for fB. Note that the relaxation parameter � < 1, sothat the norm of fB for acceptable points on p does not have to be as small as predictedby the approximation Ak; in practice, � will be chosen to be close to 0, so that almost anydecrease in kfBk will be su�cient for acceptance.For solving f(x) = 0 (Example 2), one possible merit function �(�) is�(x) := 12f(x)>f(x);9



the norm function of f . In this case the Newton direction d = �rf(xk)�1f(xk) is a descentdirection for �; note that�0(xk) d = f(xk)>rf(xk) d= f(xk)>rf(xk)(�rf(xk)�1)f(xk)= �f(xk)>f(xk)< 0:In order to �nd a value of t which satis�es (12), an Armijo search [1, 7] can be performedon the path p. In a typical implementation of this technique, a parameter 
 2 (0; 1) ischosen, and the points p(1); p(
1); p(
2); : : : are tried, until a value of t is found for whichkfB(p(t))k � (1 � �t) kfB(xk)k :In the smooth case, the path p consists of the line between xk and xkN , so that both storingp and computing p(t) are trivial tasks. This is not the case when p is piecewise linear; inthis case, it is necessary to modify the standard linesearch techniques to accommodate thespecial form of the path. In [34], Ralph suggests two approaches to pathsearching. The�rst, called the forward pathsearch, checks that the descent condition (12) is satis�ed as thepath is being constructed. Assuming that each pivot step in the path generation algorithmresults in an increase in the value of t from told to tnew, the forward pathsearch ensures thattnew satis�es (12). The path generation / pathsearch routine terminates when the Newtonpoint is found, or when a pivot step results in an unacceptable value of tnew. In the lattercase, the line segment between p(told) and p(tnew) is searched for an acceptable point, whichbecomes the next iterate xk+1. The primary advantage of the forward pathsearch lies in itssimplicity; the path is searched as it is constructed, so that it does not need to be stored.As reported in [34], the chief drawback of the forward pathsearch lies in the fact that thesearch begins on the wrong end of the path. When the Newton point p(1) is acceptable, allthe function evaluations performed in checking that the descent condition is satis�ed duringpath construction are essentially wasted. Also, the forward pathsearch is too restrictive inthe sense that an acceptable Newton point may exist at the end of a path which has beenterminated due to a failure to satisfy (12) at an intermediate point on the path. Since wewish to accept the Newton step as often as possible, it seems reasonable to check the Newtonpoint �rst. Recognizing this, Ralph [34] suggests a backward pathsearch, in which the pathis constructed without checking the descent condition. Instead, a list is made, with eachelement in the list containing the values of the variables at a breakpoint in the path. Whenthe path has been fully constructed, the endpoint is checked. If this point satis�es (12), thispoint is accepted as the next iterate; if not, a recursive bisection search is carried out on thelist. This bisection search checks (12) for a point near the center of the list; if this point isacceptable, the second half of the list is searched; if not, the �rst half is searched. In thisway, the Newton point is checked �rst, when it is part of the path. Ralph demonstratesthat this leads to fewer function evaluations. Unfortunately, the backward pathsearch also10



requires that the sequence of pivot steps be recorded. This may require a large amount ofspace, which cannot be estimated before path construction. The amount of storage requiredat each pivot step is O(n), while the number of pivot steps may be exponential in n. Thisis a serious drawback for large-scale problems. Also, a bisection of the list may not lead toa bisection of the current section of the path to be searched; the change in t at each pivotvaries widely and non-uniformly.Motivated by the success of the backwards pathsearch in reducing the number of necessaryfunction evaluations and in increasing the chance of accepting the Newton point, we haveimplemented a backtracing pathsearch. As in the backwards pathsearch, we construct thepath without searching it; path generation is completed when the Newton point is foundor when ray termination occurs, but not when t oscillates or when the descent criteria areviolated. However, instead of saving all of the variable values at each pivot, only informationabout the entering variable is stored, on a stack which grows with the path. When pathgeneration terminates at a point p(T ), the only information about the path that exists is thecurrent basis and a record of the entering variables which led to this basis. At this point, thebacktracing pathsearch traces the path in the reverse direction from that of its construction,using the information about the entering variables from the stack to \unpivot", i.e., toreconstruct the breakpoints of the path, along with their associated bases. Backtracing endswhen an acceptable point is found. Backtracing is essentially as expensive as is constructingthe path; however, this expense is only incurred when a backtrace is necessary. When thepoint p(T ) is acceptable, the information about the path (which can be saved quite cheaply)can be thrown away, without any real backtracing taking place. Also, in this case, at mostone function evaluation will be performed.The forward pathsearch requires little storage, at the cost of added computation (in theform of function evaluations) and reduced robustness. The backward pathsearch requiresa minimal number of function evaluations and increases robustness, at the cost of a largestorage requirement. The backtracing pathsearch possesses the advantages of both of theabove methods, while its drawback (the computational cost of reconstructing parts of thepath) is evidenced only when p(T ) is unacceptable and a non-trivial pathsearch must beperformed. The non-monotone stabilization techniques discussed in the next section serveto reduce the number of pathsearches performed and make the backtracing pathsearch aneven better choice.2.4 Non-Monotone StabilizationIn a linesearch-damped Newton method, the line from xk to xkN is searched for a pointsatisfying some descent condition, usually expressed in terms of a decrease in some meritfunction. Implementations of these methods invariably require a monotonic decrease in thismerit function, although there is evidence which indicates that this requirement may impedeor block convergence to the solution of the equation [12, 13, 10]. Various non-monotone sta-bilization (NMS) schemes for Newton's method have been proposed, each seeking to improvee�ciency by relaxing the requirement of monotone descent. The Path solver implements a11



scheme of this type, modi�ed to incorporate a pathsearch rather than a linesearch.The NMS scheme implemented makes use of a watchdog technique to reduce the num-ber of pathsearches performed, and allows a non-monotonic decrease in the merit functionassociated with the points chosen as a result of these pathsearches. The number of path-searches is reduced by taking a d-step in the majority of cases. A d-step is acceptable ifthe point returned by the path generation procedure is suitably close to the current point.The measure of closeness, �, decreases as the algorithm progresses. In order to monitorthese steps, the non-monotone descent criteria for the merit function are checked at leastonce every �n number of iterations. The current merit function value is compared with areference value R, which is computed from previous function values. Steps in which thesechecks on the current merit function value occur are called m-steps. The points at whichthese criteria are checked and satis�ed are called check points. An m-step is also taken whena d-step is unacceptable, that is, when it is too large. A watchdog step occurs when descentcriteria are violated; when this occurs, the algorithm returns to the most recent check point,re-generates the path from the check point (if necessary), and backtraces the path until thenon-monotone descent criteria are satis�ed.For future reference we introduce a new index j which is set initially to j = 0 andincremented each time we de�ne a new check point. If `(j) is the index of the jth checkpoint, then we indicate by fx`(j)g the sequence of check points (where the merit functionhas been evaluated) and by fRjg the sequence of reference values associated with the checkpoints. Each check point xk+1 := pk(tk) is chosen so that the step length tk satis�es equation(NmD) below, a generalization of a descent condition for the monotone linesearch: given areference value R � 


fB(xk)


, the step length tk satis�es


fB(pk(t))


 � (1� �t)R: (NmD)If Tk satis�es (NmD), then the pathsearch will choose the step length tk := Tk. If not, werequire that the step length be chosen to be large enough, in some sense. This is accomplishedby making the technical assumption that tk be at least � times as large as the largest interval[0; T ] on which (NmD) is satis�ed, for some � 2 (0; 1). Thus, we require that the step lengthtk satisfy the following:(NmD) holds for Tk implies tk := Tk; otherwise,9 � 2 (0; 1) s.t. tk � � supfT j (NmD) holds 8 t 2 [0; T ]g: (NmPs)Note that the backtracing pathsearch described in Section 2.3 yields a value tk which satis�es(NmPs). To see this, note that, given a linear segment of the path from p(told) to p(tnew)for which (NmD) holds at told but not at tnew, the segment can be searched using an Armijotechnique for a point at which (NmPs) is satis�ed, where � depends on the pathsearchparameters used.In order to complete the description of the algorithm we must specify the rule employedfor updating Rj, the reference value for the merit function. This is initially set to kfB(x0)k.12



Whenever a point x`(j) is generated such that 


fB(x`(j))


 < Rj , the reference value is updatedby taking into account the memory (that is, a �xed number m(j) � �m of previous values)of the merit function. To be precise, we require the updating rule for Rj+1 to satisfy thefollowing condition.Reference Updating Rule: Given �m � 0, let m(j + 1) be such thatm(j + 1) � min [m(j) + 1; �m];let Mj+1 := max0� i�m(j+1) 


fB(x`(j+1� i))


 ; (13)and choose the value Rj+1 to satisfy


fB(x`(j+1))


 � Rj+1 �Mj+1: (14)These conditions on the reference values include several ways of determining the sequencefRjg in an implementation of the algorithm. For example, any of the following updatingrules can be used: Rj+1 =Mj+1 = max0� i�m(j+1) 


fB(x`(j+1� i))


 ; (15)Rj+1 = max24


fB(x`(j+1))


 ; 1m(j + 1) + 1 m(j+1)Xi=0 


fB(x`(j+1� i))


35 ; (16)Rj+1 = min �Mj+1; 12 �Rj + 


fB(x`(j+1))


�� : (17)We note that (15) is the easiest to satisfy and is used in the Path solver, while (16) and(17) de�ne conditions which guarantee \mean descent".We should stress at this point that the stabilization technique di�ers from standardlinesearch techniques in two ways. Firstly, the acceptance criteria for the pathsearch arerelaxed signi�cantly by replacing the current merit function value by a reference value,typically taken to be the maximum over a �xed number of previous merit function values.Secondly, the pathsearch is skipped entirely when the Newton point is close to the currentpoint (within the d-step tolerance �) and an m-step is not required.The algorithm can be outlined as follows:13



Algorithm Path1) [Initialization] Let x0, �n >= 1, � = �� > 0, � 2 (0; 1) be given:set k = 0, check point = 0, j = 0, �0 = �, R0 = kfB(x0)k.2) If fB(xk) = 0, stop.3) Using the approximation Ak, generate a path pk : [0; Tk] 7! IRn; Tk 2 (0; 1], satisfying (8).4) If (k < check point + �n) thend-step:if (


pk(Tk)� pk(0)


 < �), the step is small enough; accept it:set xk+1 := pk(Tk);set � = � � �;else the step is too large; go to m-step:elsem-step:if (


fB(pk(Tk))


 � (1 � �Tk)Rj), accept the step:set xk+1 := pk(Tk);else perform a watchdog step:set k = check point, � = �j;if necessary, generate the path pk from xk to pk(Tk);backtrace pk to �nd tk 2 (0; Tk] satisfying (NmPs); set xk+1 := pk(tk);increment j; update Rj ; set �j = �; set check point = k + 1.5) Increment k, and go to Step 2.In Step 3 above, it is assumed that Tk is as large as possible, i.e., that if Tk < 1, Ak is notcontinuously invertible near pk(Tk). For practical reasons and robustness, the Path solverchecks whether the function fB is de�ned at a given point before accepting that point. Thischeck, not described in the algorithm above, yields a function value at each point. When thisfunction value is computed after a d-step and found to be lower than the reference value, thereference value and check point are updated. If the function at the prospective new iterate isunde�ned, a watchdog step is performed in the same manner as that performed for a failingm-step. 14



3 A Global Convergence ResultIn this section, we present a global convergence result for the Path solver. This resultgeneralizes the work of Ralph [34] through the addition of the watchdog technique describedearlier. Before doing so, we include, without proof, a path lifting result from Ralph [34]which guarantees the existence of the paths used in our algorithm.Lemma 7 Let � : X 7! Y , x 2 X and �(x) 6= 0. Suppose the restricted mapping �� :=� j U : U 7! V is continuously invertible, where U and V are neighborhoods of x and �(x),respectively. If U is open, and � > 0 is such that �(x) + � IB � V , then, for 0 � T �minf �k�(x)k; 1g, the unique path p of domain [0; T ] such thatp(0) = x�(p(t)) = (1 � t)�(x) 8 t 2 [0; T ]is given by p(t) = ���1((1 � t)�(x)) 8 t 2 [0; T ]:We now present our main result, which gives the convergence properties of the Pathalgorithm. Note that (A3), the third assumption below, is a technical one which states thatthe domains of the paths used by the algorithm can be closed.Theorem 8 Let f : IRn 7! IRn be continuous, �0 > 0 and X0 := fx 2 IRn j kfB(x)k � �0g.Let �; � 2 (0; 1), �� > 0, and �m; �n 2 IN be the parameters governing the pathsearch, and letX ���n := X0 + ���n IB. Suppose(A1) A is a uniform �rst-order approximation of f on X0, i.e., (3) holds.(A2) A(x) is uniformly Lipschitzianly invertible near each x 2 X ���n; i.e., for some �, �;and L > 0 and for each x 2 X ���n, there exist sets Ux and Vx containing x+ � IB andfB(x) + � IB respectively, such that A(x) j Ux : Ux 7! Vx is Lipschitzianly invertible ofmodulus L.(A3) For each x 2 X ���n and T 2 (0; 1], if p : [0; T ) 7! IRn is such that p(0) = x and, foreach t 2 [0; T ), A(p(t)) = (1 � t)fB(x) and A(x) is continuously invertible near p(t),then there exists p(T ) := limt"T p(t) with A(x)(p(T )) = (1 � T )fB(x).Then for any x0 2 X0, Algorithm Path produces a sequence fxkg such that eitherfB(xk) = 0 for some k � 0 or the sequence fxkg converges to a zero x� of fB at a Q-superlinear rate.Furthermore, the residuals fB(xk) converge to zero, and the sequence of reference valuesfRjg converges to zero at an R-linear rate. If for some c > 0 the approximation A satis�eskA(x)(x�)� fB(x�)k � ckx� x�k2 on some neighborhood of x�, the sequence fxkg convergesto x� at a Q-quadratic rate. 15



Proof Assume that fB(xk) 6= 0 for each k. We note �rst that given xk 2 X ���n, there existsa unique path pk : I 7! IRn of largest domain I such that the following hold:1. p(0) = xk;2. I = [0; T ] for some T 2 (0; 1];3. 8 t 2 I;Ak(p(t)) = (1 � t)fB(xk); and4. 8 t < T;Ak is continuously invertible near pk(t).To see this, note that Ralph [34] has shown that the sets Ux and Vx in (A2) can be assumedto be open. Let Âk be the Lipschitzianly invertible mapping obtained by restricting Ak tothe neighborhood Uxk around xk. (A2), Lemma 7, and (A3) imply the existence of the pathdescribed above, where the technical assumption (A3) is used to close the domain of thepath.Thus, the paths required by the algorithm are guaranteed to exist when fxkg � X ���n.Note that the Path algorithm will construct these paths, and that the backtracing path-search described in Section 2.3 will yield a point which satis�es (NmPs). (See note followingde�nition of (NmPs)).To see that the algorithm is well de�ned, we need only show that the sequence of iteratesremains in X ���n, where the pathsearch is well de�ned. To do this, we show that the algorithmcan take only a limited number of bounded steps before the iterates are forced to return toX0. It will be convenient to de�ne the index|(k) := max [j j `(j) � k]:Thus `(|(k)) is the largest iteration index not exceeding k at which the merit function hasbeen evaluated. For example,k = 0 1 2 : : : 10 11 : : : 57 : : : : : :j = 0 1 2 : : :`(j) = 0 10 57 : : :|(k) = 0 : : : 0 1 : : : 1 2 2 : : :We use the notation dk := pk(Tk)� pk(0)to denote the di�erence between the initial and terminal points of the path pk. The dk aboveshould not be confused with the notation for the search direction d used in the smooth case;rather, 


dk


 is the size of a possible d-step.If the point xk+1 is a check point, then it has been generated as the result of an m-step,so that 


fB(xk+1)


 < R|(k) � 


fB(x0)


and xk+1 2 X0. 16



If the point xk+1 is not a check point, then it has been generated as the result of a(bounded) d-step, so that xk+1 satis�esxk+1 = x`(|(k)) + kXi=`(|(k)) di;where kdik � �� and k� `(|(k)) < �n. Since x`(|(k)) is a check point, it must be in X0, so thatxk+1 2 X ���n.Thus, we have shown that the algorithm is well-de�ned and that every iterate xk 2 X ���n.We now demonstrate the global convergence of our method. We �rst show that fB convergesto 0 (i.e limk!1 


fB(xk)


 = 0). This result is used to show convergence of the iterates, andto derive rates for their local convergence.To show convergence of ffB(xk)g to zero, the sequence fxkg can be split into two sub-sequences: fx`(k)g, the points at which a reference value has been de�ned, and fxr(k)g, theremainder of the points.If the sequence fxr(k)g is �nite, then the algorithm will eventually take only m-steps.Once this point is reached, a pathsearch is performed at each iteration, and there can beno further watchdog steps taken. Ralph [34] shows that in this case, the residual norms


fB(xk)


 converge linearly to zero.Assume then that fxr(k)g is an in�nite sequence. We show �rst that for large enough k,xr(k) 2 X0. Recall that xr(k) is the result of a d-step, so that xr(k) = xr(k)�1 + dr(k)�1, wheredr(k)�1 is bounded as follows: 


dr(k)�1


 � �� �k:Thus, limk!1 


dr(k)�1


 = 0. Choose K so that 


dr(k)�1


 � �̂ 8 k � K � �n, where �̂ issuch that h(�) � �L 8 � � �̂. (Recall from De�nition 4 that h(s) is o(s).) The Lipschitzinvertibility of A yieldskp(t)� p(0)k = 


Â�1k ((1� t)fB(xk))� Â�1k (fB(xk))


 � Lt 


fB(xk)


 ; (18)so that for all k � K � �n, we have, by the uniformity of A,


fB(p(Tr(k)�1))


 � 


Ar(k)�1(p(Tr(k)�1))


+ h(


dr(k)�1


) by (3)� (1� Tr(k)�1) 


fB(xr(k)�1)


+ 1L 


dr(k)�1


 by (8b)� (1� Tr(k)�1) 


fB(xr(k)�1)


+ Tr(k)�1 


fB(xr(k)�1)


 by (18)� 


fB(xr(k)�1)


 :Since the Path algorithm takes at most �n d-steps before taking an m-step, and we haveshown previously that all the points resulting from m-steps are in X0, the above resultshows that xr(k) 2 X0 for k � K. 17



We now show that the sequence fRjg converges linearly to 0. Recall from the algorithmdescription that the number of consecutive d-steps is bounded above by �n, after which anm-step must occur. Let fxs(k)g be the sequence of iterates which have occurred as the resultof an m-step, but whose predecessors have occurred as the result of a d-step. The algorithmrequires that xs(k) := ps(k)�1(Ts(k)�1) satis�es


fB(xs(k))


 � (1� �Ts(k)�1)R|(s(k)�1): (19)Since xs(k)�1 is the result of d-step, 


fB(xs(k)�1)


 � �0 for large enough k, where �0 is anupper bound for kfBk on the level set X0. Since by (A2), As(k)�1 is continuously invertiblein an �-neighborhood of fB(xs(k)�1), we can use Lemma 7 to show thatTs(k)�1 � minf ��0 ; 1g;thus bounding (1 � �Ts(k)�1) away from 1. We now need only show that a result similar to(19) holds for x`(k) when x`(k) is the result of consecutive m-steps. This is precisely whatRalph ([34], Theorem 9) has shown in proving convergence for his algorithm; this and (19)imply that for large enough k,


fB(x`(k))


 � (1 � �T̂ )R|(`(k)�1) (20)holds for some T̂ 2 (0; 1). Applying (20) and our rule (15) for updating the reference values,we have R|(`(k+ �m)) � (1� �T̂ )R|(`(k));which gives us R-linear convergence of the reference values at the rate of (1 � �T̂ ) 1�m . Theentire sequence ffB(xk)g converges to 0 as well, since for large enough k,R|(`(k)) � 


fB(xi)


 for i � `(k);since all d-steps following iteration `(k) result in a decrease in kfBk, while all m-steps fol-lowing `(k) result in iterates xi at which R|(`(k)) > kfB(xik.Thus, we have established that f


fB(xk)


g converges to 0. We show now that, after acertain point, the algorithm takes only Newton steps. Let 
 := minf�; �̂Lg, where � is de�nedin (A2) and �̂ is such that h(�) � �(1 � �)L 8 � � �̂. Let K be chosen so that 


fB(xk)


 � 
for k � K. Then for k � K, the following hold:


fB(xk)


 � �; (21)


fB(xkN)


 � (1� �) 


fB(xk)


 ; (22)18



where (21) follows directly from the choice of 
. To see (22), note that (21) and Lemma 7imply that the Path algorithm �nds the Newton point xkN := pk(1), so that by the uniformityof A, 


fB(xkN)


 � 


Ak(xkN)


+ h(


dk


) = h(


dk


)� h(L 


fB(xk)


) by (18)� L 


fB(xk)


 (1� �)L by choice of 
� (1� �) 


fB(xk)


 :Hence by (22), xk+1 = xkN for k � K.We show now that the sequence fxkg is Cauchy. For k � K,


xk+1 � xk


 = 


Â�1k (0)� Â�1k (fB(xk))


� L 


fB(xk)


� L(1� �)k�K 


fB(xK)


 ;the last equality following from (22). Choosing s � r � K implies thatkxs � xrk � 1Xk=r 


xk+1 � xk


� 1Xk=r L 


fB(xK)


(1� �)K (1 � �)k= L 


fB(xK)


(1� �)K � (1 � �)r ! 0 as r !1:This implies convergence of fxkg. Let x� := limk!1 xk. Since f


fB(xk)


g ! 0, the continu-ity of fB implies fB(x�) = 0.To see the Q-superlinear rate of convergence for the iterates, note that for some �K � K,k � �K implies that x� 2 xk + � IB (i.e., x� is in the range of the inverse of the linearizationÂ�1k ), and the following applies:


xk+1 � x�


 = 


Â�1k (fB(x�))� Â�1k (Ak(x�))


� L kfB(x�)�Ak(x�)k (23)� L h(


xk � x�


); (24)where the last inequality depends on the uniformity of A. Since h(s) is o(s), inequality (24)shows convergence at a Q-superlinear rate. 19



If the approximation A also satis�es the inequality


A(xk)(x�)� fB(x�)


 � c 


xk � x�


2 (25)for some c > 0 and on some neighborhood of x�, then for large enough k, (23) and (25)together yield 


xk+1 � x�


 � cL


xk � x�


2;so that a quadratic rate of convergence is achieved.Note that although Theorem 8 deals with the normal map fB, the result holds for moregeneral nonsmooth mappings; the restriction to the normal map fB is made only for the sakeof consistency with the rest of the paper.4 ImplementationThe Path solver was designed and implemented primarily to solve complementarity prob-lems, using the pathsearch damped Newton method described above. The solver is writtenin the C language, and is designed to operate on its own or as a GAMS subsystem; thecurrent implementation relies on GAMS/CPLIB (a software library developed in part by theauthors [9]) to formulate the problems under consideration and provide function and deriva-tive information. This interface with GAMS grants the user a convenient and 
exible meansof de�ning the problem to be solved, as well as ready access to a library of complementarityproblems already formulated in the GAMS language [8]. Since large, sparse problems arefrequently encountered, the Path solver handles data in a sparse format. It also incorpo-rates a DEVEX-type [20] scheme in the implementation of the ratio test, which increasesnumerical stability. Furthermore, it is possible, by making the proper choice of basis andbasic values, to duplicate the sequence of pivots taken by Lemke's method, without makingany changes to the parametric path generation code. This can be done automatically, bysetting an option, and makes comparisons with Lemke's method a trivial task. These andother options can be set in an options �le. In this section, use of the GAMS interface andoptions �le are discussed further.4.1 The GAMS InterfaceGAMS [3] is an algebraic modeling system which allows models to be expressed in a clear,concise, and easily modi�ed way. Furthermore, it allows the model to be expressed indepen-dently of any solution algorithm for it. By using GAMS/CPLIB, MCP's can be formulatedand made available to solvers in a highly portable fashion, as described in [9] and illustratedbelow.The key elements of the MCP are the function f and the bounds l and u; these determinethe problem completely. Fortunately, specifying the bounds is a trivial task. In GAMS, each20



variable consists of three parts; the level value and explicit lower and upper bounds, whichmay be in�nite. The bounds and initial level values can be assigned values in the GAMScode. Thus, any variables in the model are included with their bounds. The initial levelvalues are also available to a solver, and may serve as an initial iterate, as is the case for thePath solver.The way in which the function f is de�ned is a bit more complicated. Instead of explicitlyde�ning f , the GAMS user de�nes the complementarity relationship desired; the function fis de�ned by CPLIB in a manner consistent with this complementarity relationship. This isbest illustrated by example. Consider the following quadratic program:minimizex 12x>Qx+ c>xsubject to Ax � b (QP)Assuming Q is symmetric positive semi-de�nite, the KKT conditionsQx+ c+A>u = 0; x free; ?b�Ax � 0; u � 0; ? (KKT)for (QP) are necessary and su�cient, and can be expressed as a MCP, in GAMS form.Example 9 KKT conditions in GAMS form:sets J / 1 * 8 / /* row indices for M /*I / 1 * 5 / /* constraints */alias (JJ, J) ;parameters Q(JJ,J),c(I),A(I,J),b(I) ;$include 'QP.dat' /* matrix data, etc. */variables x(J), /* primal variables */u(I) ; /* duals */u.lo(I) = 0; /* non-negative var */equations delx(J),delu(I);delx(J) .. sum (JJ, Q(J,JJ)*x(JJ)) + c(J) + sum(I, u(I)*A(I,J)) =g= 0;delu(I) .. b(I) =g= sum(J, A(I,J)*x(J)) ;model qp / delx.x, delu.u / ;option mcp = path ;solve qp using mcp ;The KKT conditions are expressed as a number of complementarity pairs; each pairconsists of a function and an associated variable, along with their respective constraints and21



bounds. In the GAMS/CPLIB system, the functions are de�ned by the equation statement,and the variables are associated with the functions in the model statement. It is important tonote that in the MCP model formulated by GAMS, constraints for each function are inferredfrom the variable bounds and complementarity relationship; the inequality used to de�neeach function (the =g= in delx(J) and delu(I) above) is meaningful only as a consistencycheck.4.2 Features and OptionsAs is the case with most implementations of solution algorithms, the Path solver has evolvedconsiderably during the course of its existence. The number of parameters over which theuser has control has been increased, and features have been added, as described in thissection. The Path solver makes use of an options �le to set parameter values, 
ags, andswitches.In its basic mode, the Path solver performs as indicated in Section 2, �nding Newtonpoints of approximations via a path generation technique and choosing the successive iteratesby means of a backtracing pathsearch. Most of the computational e�ort is expended indoing pivots during the path generation phase. A sparse basis updating routine is crucialin minimizing the amount of work done in this phase. The Path solver uses a sparsematrix package to do the pivoting; the addition of a basis updating scheme is planned. Italso incorporates a DEVEX-type [20] scheme in the implementation of the ratio test, whichincreases numerical stability.Typically, the initial basis and the residual vector r in the path generation scheme arechosen so as to ensure that the path p begins at xk. However, as described in Section 2.2,this �rst basis may be rank de�cient; in that case, it may possible to start from a new pointcorresponding to a full-rank basis, one containing as many slack columns as possible. Forthe special case of an LCP this new point leads to a sequence of pivots which correspondexactly to those taken by Lemke's method. The user can specify whether to use Lemke'smethod for all subproblems, for none, or only for those in which the basis chosen initially isrank de�cient.Parameters, 
ags, and switches are reset using the options �le, or, in some cases, by usingGAMS option statements. The format of the Path options �le path.opt is similar to theMINOS options �le format described in [27]; it consists of keywords and values. Blank linesare permitted. Any line starting with an asterisk (\*") is ignored (i.e., it is a comment).Each line can set at most one option. Keywords are uniquely determined by their �rst threecharacters; the remaining characters are ignored. Boolean values are determined by the �rstcharacter in the value �eld; y/n/0/1 are acceptable. Relevant keywords and their meaningsare summarized in Tables 1 and 2.The performance of the non-monotone stabilization technique can be sensitive to thevalues of the parameters which control it; these parameters can be set via the options �le.The user can also exercise considerable control over the amount and type of output producedby the Path solver through the use of the verbosity 
ags (described in Table 2) and the22



iterlog frequency option.Table 1: Options �le algorithm parameterskeywords value descriptionlemke �rst y/n The �rst linearization will be solved \Lemke-style"lemke option required All linearizations are solved \Lemke-style"allowed When the initial basis is rank-de�cient, a \Lemke-style" basis is tried.banned The algorithm will never switch over to a \Lemke-style" basis.major iterations integer k Maximum number of linearizations solvedminor iterations k Maximum number of pivots allowed per linearizationnms do y/n Use non-monotone stabilization techniques; if not, thepoint returned by the pathsearch is always accepted.Default: yes.reference ifactor real c The reference value is initialized to c � kfB(x0)k. De-fault: 5reference min c The reference value is constrained to be no less thanc. Default: 20stepsize ifactor c The initial step size �� is set to c � kx0 � x1Nk. Default:20stepsize imin c The initial step size in constrained to be no less thanc. Default: 20save best y/n Cycling may occur in the path generation code. Whensave best is on, a point corresponding to the best(highest) t-value is returned. Default: yestolerance factor c A tolerance (not necessarily a zero tolerance) suppliedto the factorization routines. Default: .01tol slack c During the pivoting, the bounds are relaxed by c inorder to choose a leaving variable.tol convergence c Convergence is declared when kfBk < c. Default:1.e-9The GAMS option statement is used to set the reslim and iterlim options. Theiterlim option sets the limit on the cumulative total of pivots performed during problemsolution; the default is 1000. The reslim option sets the time limit (in seconds) for thesolver; the default is 1000. 23



Table 2: Options �le verbosity parameterskeywords value descriptioniterlog freq k Information line logged for every k'th major iterationv
 backtrace y/n for each backtrace performed, log the steps takenv
 initpoint y/n log z0 and f(z0)v
 leaves y/n for each pivot, log leaving and entering variablesv
 mcp y/n for each major iteration, log the linear MCP to be solvedv
 nms y/n log actions of the non-monotone stabilization schemev
 ratiotest y/n for each pivot, the vectors involved in the ratio test areloggedv
 raybase y/n when ray termination occurs, log the base of the rayv
 silent y/n keeps some warning/error messages from being loggedv
 solution y/n �nal problem solution is loggedv
 summary y/n at solution, summary solver statistics are loggedv
 tprint y/n at each pivot, the value of the parameter t is logged5 Computational ResultsThis section contains computational results obtained from several complementarity problemsconsidered in the literature. These problems, described in greater detail in [8], have beenformulated in GAMS and are available from the authors. The following algorithms arecompared:Path The Path solver described in this paper.Pathb The Path solver set to solve the �rst approximation from the Lemke-typebasis described in Section 2.2.J-N The classic Josephy-Newton's method, as described in [21]. The resultsshown were obtained by running the Path solver with the options �le setto emulate Josephy-Newton's method.B-DIFF The B-di�erentiable equations approach of Harker and Xiao [19], in whicheach major iteration involves a linesearch of a direction determined by solv-ing a system of equations.NE/SQP In [30], Pang and Gabriel describe a scheme in which the search directionis determined by solving a quadratic program; this direction is linesearchedas well.Unless otherwise noted, the results for the Path solver were obtained using default values forall parameters; in no case was the code modi�ed to improve performance for any particularproblem. For B-DIFF and NE/SQP we include only results available in the literature [19, 30].24



The results presented in this section indicate that the Path solver improves on the clas-sical Josephy-Newton's method in both speed and robustness. When both algorithms work,they will usually take the same number of major iterations; however, the Path solver makesuse of the current basis to take a \warm start" on each major iteration, thus reducing thenumber of pivots required. For the larger problems, this has a noticeable e�ect on the so-lution times. The nonmonotone stabilization techniques employed are of crucial importancein making the Path solver robust (see Sections 5.1, 5.3, 5.4, 5.7 and 5.8). Without theuse of these techniques, the Path solver would behave about as well as Josephy-Newton'smethod; with them, it solves the problems considered from a larger set of initial points,as the theory behind the Path algorithm would lead us to expect. Also, the Path solvermakes use of the MCP formulation; this greater generality enables problems to be solvedmore quickly and robustly as well (see Tables 8, 9, 11 and 12). The task of formulating themodels and performing the computational experiments was eased greatly by the use of theGAMS environment, which made the formulations easier to write, read, and modify, as wellas freeing us from the task of writing gradient evaluation routines. Unfortunately, the Pathsolver, like the other algorithms considered in this section, is hampered by the presence ofrank de�ciency at a solution point. This has been a challenging problem in the past, and isthe subject of current research in the area.5.1 Walrasian Equilibrium ModelsIn [25], Mathiesen gives a simple example of a 4-variable Walrasian equilibriummodel. In thismodel market, there are three commodities (with their corresponding price variables) andone production process or sector (with its corresponding level of activity). The consumerssell their initial endowment of goods to the producer, and buy back the goods produced. Anequilibrium is a set of prices and a level of production which satisfy a number of equilibriumconditions on the supplies, demands, prices, and activity levels. The optimal prices aredetermined only in a relative sense; if the price vector p� is optimal, then so is the pricevector �p�, for � > 0. The price system can be normalized by �xing a numeraire price orby �xing the sum of the prices; because of its greater generality, we have taken the latterapproach.The parameters for Mathiesen's model are the consumer's initial commodity endowmentvector b and the budget share parameters (�; 1 � �; 0) which determine which productiongoods the consumer purchases. In all the numerical tests, the initial endowment b1 is 0; thevalues used for b2, b3, and � are indicated below. Note that for the run with b3 set to 0.5,the Path solver �nds a solution point di�erent from that found by NE/SQP.Two other examples of Walrasian equilibrium problems are due to Scarf [41]. In the �rstmodel, there are six commodities and eight production sectors; thus, the NCP formulationfor this problem contains 14 variables. The second problem is one with 40 variables, 14corresponding to commodity prices and 26 to production activity levels. The B-DIFF resultswere obtained using a proximal point modi�cation to that algorithm.25



Table 3: Mathiesen's Walrasian Problem� = :75; b = (0; 1; :5)algorithm start point major (minor) func / grad timePath (1, 1, 1, 1) 5 (11) 12 / 6 .09J-N " " failed (*)NE/SQP " " 11� = :75; b = (0; 1; 2)algorithm start point major (minor) func / grad timePath (1, 1, 1, 1) 5 (5) 6 / 6 .06J-N " " 5 (20) 6 / 6 .09NE/SQP " " 3� = :9; b = (0; 5; 3)algorithm start point major (minor) func / grad timePath (2.5, 5.5, 1.5, 4.5) 6 (6) 7 / 7 .07J-N " " 4 (16) 6 / 24 .06B-DIFF " " 5Path (3.5, 4.5, 0.5, 4.0) 4 (4) 5 / 5 .04J-N " " 4 (16) 5 / 5 .05B-DIFF " " 4Path (2.5, 1.5, 1.5, 3.5) 10 (24) 25 / 11 .19J-N " " failed (*)B-DIFF " " 6Path (3.5, 6.5, 0.5, 5.5) 5 (5) 6 / 6 .05J-N " " 5 (20) 6 / 6 .05B-DIFF " " 5
26



Table 4: Scarf's Walrasian Problemsalgorithm start point major (minor) func / grad timePath (p1; y1) 4 (9) 5 / 5 .29J-N " " 4 (71) 5 / 5 .48B-DIFF " " 5NE/SQP " " 6Path (p2; y2) 3 (8) 4 / 4 .24J-N " " 3 (52) 4 / 4 .36B-DIFF " " 5Path (p3; y3) 4 (10) 5 / 5 .31J-N " " 4 (77) 5 / 5 .47NE/SQP " " 28 /p1 = (:2; :2; :2; :1; :1; :2); y1 = (:5; 0; 4; 0; 0; 0; :4; 0)p2 = (:1; :1; :1; :1; :1; :2); y2 = y1p3 = (1; 1; 1; 1; 1; 1); y3 = (:4; 1; 0; 3; 0; 0; 1; 0)algorithm start point major (minor) func / grad timePath (p1; y1) 3 (36) 4 / 4 1.47J-N " " 3 (102) 4 / 4 3.41NE/SQP (p1; ???) 3p1 = (1; : : : ; 1); y1 = (1; : : : ; 1)
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5.2 A Nash EquilibriumIn [26], a 10-variable Nash equilibrium problem is described; solution techniques for thisproblem are discussed in [17]. All the methods performed well on this problem; however,since all variables are positive at the solution, the warm start taken by the Path solvermakes it particularly e�ective. Table 5: A Nash Problemalgorithm start point major (minor) func / grad timePath (1, 1, : : : , 1) 6 (6) 7 / 7 .52J-N " " 6 (66) 7 / 7 .52B-DIFF " " 13Path (10, 10, : : : , 10) 6 (6) 7 / 7 .52J-N " " 6 (66) 7 / 7 .52B-DIFF " " 105.3 Small Quadratic NCP's (Kojima-Shindo)The Path solver has been tested on two very similar 4-variable NCP's, due to Kojima [22]and Kojima and Shindo [23], whose functions are quadratic. The problem from [22] was alsoused in numerical tests done by Josephy in [21], and is referred to as the Josephy problemhere and in [19].When previous versions of the Path solver which utilized a forward pathsearch and didnot include the watchdog techniques of the current version were tested on these problems,they tended to perform poorly from some of the start points considered. The stabilizationtechniques have yielded the Path solver results shown in Tables 6 and 7. These results wereachieved without the heuristic used in [19]: this heuristic has the e�ect of moving to a basisfor which both B-DIFF and the Path solver have little di�culty.5.4 A Non-Linear Program from PowellIn [33], Powell gives a nonlinear program containing 5 variables and three equality con-straints. This problem can be expressed using inequalities by rewriting the 3 equality con-straints as 6 inequalities. If the unbounded variables for this problem are split into theirpositive and negative parts, then the KKT conditions for this modi�ed problem can beexpressed as an NCP in 16 variables. However, if the MCP formulation is used, it is un-necessary to modify the constraints or the variables; the MCP contains only 8 variables,all of which are free, so that we have the special case of a system of non-linear equations.28



Table 6: Josephy's Problemalgorithm start point major (minor) func / grad timePath (0, 0, 0, 0) 6 (7) 7 / 7 .08Pathb " " 6 (7) 7 / 7 .08J-N " " failed (*)B-DIFF " " 7Path (1, 1, 1, 1) 8 (14) 14 / 9 .12Pathb " " 4 (6) 5 / 5 .05J-N " " 4 (12) 5 / 5 .06B-DIFF " " 10Path (100, 100, 100, 100) 21 (30) 22 / 22 .24Pathb " " 10 (12) 11 / 11 .10J-N " " 10 (30) 11 / 11 .11B-DIFF " " 15Path (1, 0, 1, 0) 24 (49) 25 / 25 .27Pathb " " 3 (5) 4 / 4 .05J-N " " 3 (9) 4 / 4 .06B-DIFF " " 7Path (1, 0, 0, 0) 3 (4) 4 / 4 .04Pathb " " 3 (5) 4 / 4 .04J-N " " 3 (9) 4 / 4 .05B-DIFF " " 7Path (0, 1, 1, 0) 17 (44) 24 / 18 .21Pathb " " 4 (6) 5 / 5 .06J-N " " 4 (12) 5 / 5 .05B-DIFF " " 9
29



Table 7: Kojima / Shindo's Problemalgorithm start point major (minor) func / grad timePath (0, 0, 0, 0) 5 (6) 6 / 6 .06Pathb " " 5 (6) 6 / 6 .07J-N " " failed (*)NE/SQP " " 7Path (1, 1, 1, 1) 4 (6) 5 / 5 .04Pathb " " 4 (6) 5 / 5 .06J-N " " 4 (12) 5 / 5 .06NE/SQP " " 7More importantly, the smaller problem is not as sensitive to the choice of starting point, asevidenced by the data in Table 8. The starting points given in Table 8 and 9 are the initialvalues for the free variable x in the original minimization problem; all constraint multiplierswere initialized to zero. Table 8: Powell's NLP, NCP Formulationalgorithm start point major (minor) func / grad timePath (-2, 2, 2, -1, -1) 9 (16) 10 / 10 .62J-N 8 (122) 9 / 9 .84Path (*) (-3, 3, 3, -1, -1) 21 (101) 35 / 22 2.20J-N (*) 5 (29) 6 / 6 .26Path (-5, 5, 5, -1, -1) 10 (17) 11 / 11 .68J-N (*) 6 (34) 7 / 7 .30Table 9: Powell's NLP, MCP Formulationalgorithm start point major (minor) func / grad timePath (-2, 2, 2, -1, -1) 8 (8) 9 / 9 .19Path (-3, 3, 3, -1, -1) 11 (11) 12 / 12 .27Path (-5, 5, 5, -1, -1) 9 (9) 10 / 10 .22In Table 8, the \(*)" indicates where an algorithm terminated in a solution to the NCP30



which is known to be non-optimal for the source NLP. While the Path solver did �nd afalse optimum when running on the NCP, the objective value was better than that foundby Josephy-Newton's method when used with the same starting point. Note also that thePath solver terminated at the global optimum when run on the MCP model. While Harkerand Xiao [19] report computational experience using this problem, we have not includedtheir results here. We believe that the complementarity formulation they employed does notaccurately re
ect Powell's constraints, and that it is unlikely that their solutions correspondto feasible points for the original problem.5.5 The Hansen{Koopmans ProblemIn [15], Hansen and Koopmans consider the problem of determining an invariant capitalstock. A capital stock is an investment of capital into various production processes for agiven period of time; this investment strategy determines what investments are possibleduring the next time period and the utility earned during the current time period. The totalutility is a discounted sum of the utilities from each time period. An invariant capital stockis an initial investment of capital which has the property that the discounted sum of theutilities is maximumized when the initial capital stock remains unchanged during each ofthe following time periods.The Path solver was tested on a 14-variable example taken from [15]; all the data inTable 10 were obtained using a discount factor of � = 0:7 and the starting points indicated.In addition, we have used a two-stage approach to test the Path solver and the Josephy-Newton method. First, the problem was solved with the lower bounds on six of the variablesset to �= 1e-05 instead of 0 to prevent function evaluation errors; the solution to this problemwas then used as an initial iterate for the original problem. This re�nement step was doneat a cost of one major and one minor iteration; the solution to the modi�ed problem wasclose to that for the original.Table 10: Hansen / Koopmans' Problemalgorithm start point major (minor) func / grad timePath (0.3, : : : , 0.3, 0, 0, 0, 0) 16 (35) 18 / 18 .54J-N " " 16 (175) 18 / 18 .79NE/SQP " " 10Path (0.5, : : : , 0.5, 0, 0, 0, 0) 16 (33) 18 / 18 .54J-N " " 16 (175) 18 / 18 .79NE/SQP " " 1131



5.6 A Tra�c Assignment ModelIn [2], Bertsekas and Gafni describe a tra�c assignment problem and its formulation as aNCP in 15 variables. However, this problem can be formulated more concisely as a MCP,using only 5 variables. The problem is one of �nding an equilibrium tra�c 
ow between�ve locations, subject to certain demand constraints. In Tables 11 and 12, we give resultscomparing solver performance for both of these formulations. Notice that the results inTable 12 are uniformly better than those of Table 11.Table 11: Tra�c Equilibrium, NCP Formulationalgorithm start point major (minor) func / grad timePath (0, 0, : : : , 0) 4 (17) 5 / 5 .21J-N " " 4 (55) 5 / 5 .22B-DIFF " " 4Path (0.5, 0.5, : : : , 0.5) 4 (6) 5 / 5 .21J-N " " 4 (60) 5 / 5 .27B-DIFF " " 5Path (100, 100, : : : , 100) 12 (28) 13 / 13 .57J-N " " 12 (150) 13 / 13 .68Table 12: Tra�c Equilibrium, MCP Formulationalgorithm start point major (minor) func / grad timePath (0, : : : , 0) 3 (6) 4 / 4 .13Path demand / 0.5 3 (5) 4 / 4 .13Path demand 4 (11) 5 / 5 .18Path (100, 100, : : : , 100) 4 (11) 5 / 5 .185.7 Spatial Price EquilibriumsIn [42], Tobin gives an example of a multi-commodity market modeled as a network. A typeof Nash equilibrium point for this market called a spatial price equilibrium (SPE) is sought.At this equilibrium point, the market is in a steady state; no player will have a reasonto change prices or supply and demand levels. In this example, the prices are variables;the supplies and demands are a function of the prices. The equilibrium conditions can be32



formulated as an NCP in 42 variables. Interestingly, some of the linear subproblems whicharise when solving this model result in a cyclic pattern of bases. In dealing with this, thestabilization techniques (particularly the savebest option) of the Path solver are useful; theminor iterations limit was set to 50 for these runs.Table 13: Tobin's SPE Problemalgorithm start point major (minor) func / grad timePath (0, 0, : : : , 0) 9 (43) 10 / 10 .67Pathb " " 9 (43) 10 / 10 .7J-N " " 9 (174) 10 / 10 1.50B-DIFF " " 16NE/SQP " " 20Path (1, 1, : : : , 1) 17 (413) 18 / 18 13.14Pathb " " 9 (33) 10 / 10 .56J-N " " 9 (170) 10 / 10 1.41B-DIFF " " 15NE/SQP " " 20In another example of spatial competition, Harker [16] gives an example of an oligopolis-tic market. In this market, the supplies and demands are the variables; these supplies anddemands determine the prices. As in the previous example, the conditions for a spatial priceequilibrium lead to an NCP, in 27 variables.Table 14: Harker's SPE Problemalgorithm start point major (minor) func / grad timePath (0, 0, : : : , 0) 7 (34) 8 / 8 .31J-N " " 7 (185) 8 / 8 1.28B-DIFF " " 10Path (1, 1, : : : , 1) 5 (7) 6 / 6 .17J-N " " 5 (134) 6 / 6 .97B-DIFF " " 105.8 A Cycling ExampleIn [34], Ralph gives an example of a NCP for which undamped Newton methods cycle; thepathsearch damping does not su�er from this problem, however. The NCP is based on the33



familiar example used to motivate linesearch damping for Newton methods for systems ofequations, where f(x) = tan�1(x). While Josephy-Newton's method cycles between majoriterations for this problem, the Path solver solves the problem in 33 major iterations. Theconvergence in this case is achieved by setting the acceptable step length reduction factor� = 0:99. The number of major iterations could be reduced by choosing parameter valueswhich result in more restrictive step length acceptance criteria, and an earlier application ofthe pathsearch.6 ConclusionIn this paper, we have introduced a novel nonmonotone stabilization technique for Newton'smethod as applied to nonsmooth equations and particularly to the normal map fB. Undercertain assumptions regarding the approximations to fB, we have shown in Section 3 that thePath algorithm constructs a sequence of iterates which converges superlinearly or quadrat-ically to a solution of the normal equation, thus demonstrating the theoretical e�ectivenessof our method.The computational results presented in Section 5 demonstrate the e�ectiveness of thePath solver in solving complementarity problems. In particular, the stabilization techniquesare shown to be e�ective in increasing the robustness of our method and eliminating thedivergence or cycling which might otherwise occur in some of the problems considered. Also,the warm start makes use of the current solution estimate to decrease the number of pivotsteps necessary to solve the linear subproblems of the major iterations.The GAMS model library we have formed has helped greatly in testing the Path solver.In the future, this library will be used to test solution techniques aiming to deal moree�ectively with the rank-de�cient case.The authors wish to thank Danny Ralph for helpful comments regarding this paper.References[1] L. Armijo. Minimization of functions having Lipschitz-continuous �rst partial deriva-tives. Paci�c Journal on Mathematics, 16:1{3, 1966.[2] D. P. Bertsekas and E. M. Gafni. Projection methods for variational inequalities with ap-plication to the tra�c assignment problem. Mathematical Programming Study, 17:139{159, 1982.[3] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User's Guide. The Scienti�c Press,South San Francisco, CA, 1988.[4] M. Cao and M. C. Ferris. A pivotal method for a�ne variational inequalities. Tech-nical Report 1114, Computer Sciences Department, University of Wisconsin, MadisonWisconsin 53706, October 1992. 34
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