The PATH Solver: A Non-Monotone Stabilization
Scheme for Mixed Complementarity Problems

Steven P. Dirkse* Michael C. Ferris*
September 1993

Abstract

The PATH solver is an implementation of a stabilized Newton method for the solution of
the Mixed Complementarity Problem. The stabilization scheme employs a path-generation
procedure which is used to construct a piecewise-linear path from the current point to the
Newton point; a step length acceptance criterion and a non-monotone pathsearch are then
used to choose the next iterate. The algorithm is shown to be globally convergent under
assumptions which generalize those required to obtain similar results in the smooth case.
Several implementation issues are discussed, and extensive computational results obtained
from problems commonly found in the literature are given.

1 Introduction

Among the many algorithms for solving nonlinear systems of equations, Newton’s method
is perhaps the most well known; basic references for it and its many variants are found in
[28, 7]. This powerful method has excellent local convergence properties, but may fail to be
globally convergent. Several damping strategies which involve searching the Newton direc-
tion exist; these enlarge the domain of convergence for Newton’s method. Computational
experience with linesearch schemes has shown that convergence can be slowed consider-
ably by the requirements these schemes impose. Recently, Grippo, Lampariello, and Lucidi
[12, 13] and Ferris and Lucidi [10] have shown that the monotone descent requirement of the
linesearch can be relaxed somewhat without sacrificing the global convergence properties.
Other references on this subject are Pang, Han, and Rangaraj [31] and Rangaraj [35].

A key generalization of Newton’s method is its application to systems of nonsmooth equa-
tions. Nonsmooth equations arise in a number of mathematical programming applications;

*Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706

examples include Wilson’s sequential quadratic programming (SQP) method [43, 11, 39],
the generalized equations of Robinson [36, 37], and reformulations of variational inequal-
ities (VI) and complementarity problems [39]. While these nonsmooth equations are not
F(réchet)—differentiable, they are often B(ouligand)—differentiable[38]; Pang [29] presents a
generalization of Newton’s method based on this, while Harker and Xiao [19] describe the
the results of their computational study of this method as applied to a number of comple-
mentarity problems. Other work in this area includes that of Han, Pang, and Rangaraj [14]
and a recent article by Pang and Qi [32]. An extensive bibliography can be found in the
survey article [18] by Harker and Pang.

The primary aims of this paper are to introduce and describe a stabilization scheme
for Newton methods for nonsmooth equations, present a global convergence result for the
resulting algorithm, and give the results of an extensive computational study of this algo-
rithm. The Newton method makes use of the path-following technique of Ralph [34]. A novel
method of pathsearch damping, similar to the watchdog techniques used in the smooth case,
is proposed. Strong global convergence results for this technique are given. The compu-
tational results confirm that the method does represent an increase in robustness over the
undamped Newton method.

The PATH solver is an implementation of the damped Newton method described in this
paper. This solver makes use of the mixed complementarity problem (MCP) formulation

defined below.
Definition 1 (MCP) Given a function f:IR"™ — IR" and bounds [,u € R™,

find zc€IR", w,v€ R}

flz)=w—v (la)
ot [<z<u (1b)
(z=DTw=0 (lc)
(u—2)Tv =0, (1d)

where IR := IR U {—o00,+oo}. The MCP is a very general problem and includes many
standard problem instances corresponding to special choices of f, [, and u. To illustrate,
we will show how both the zero-finding problem for a system of equations and the standard
linear complementarity problem (LCP) can be cast as MCP’s.

Example 2 Zero-finding for systems of equations: find z s.t. f(z) = 0.

Let the function f in our MCP be the given f. The variable z should be unbounded; (1b)
leads us to set | = —oo and u = +o00. Let z be a solution to our MCP; conditions (1¢) and
(1d) imply that v = w = 0, so that (1a) is reduced to f(z) =0, which is exactly as desired.

Example 3 The standard LCP: find = > 0, Mz 4 ¢ >0, s.t. zT(Mz+¢q) = 0.

2

Let f(z) := Mz+q in the MCP, and set | =0 and u = +00. Assume z solves our MCP.
(1b) implies that z > 0. (1d) implies that v = 0, which with (1a) implies that f(z) = w > 0.
Since w = f(z) and [l =0, (1c) implies that z"(Mz + q) = 0.

The generalization of the standard non-negatively constrained complementarity problem
to the MCP is shown to be particularly useful in practice; models can be defined more
succinctly and clearly and solved more robustly and efficiently using this formulation.

The paper is composed of 6 sections. In Section 2, we describe the non-monotone stabi-
lization scheme for Newton’s method as implemented in the PATH solver. In Section 3, we
present a global convergence result for the PATH algorithm. Section 4 describes the imple-
mentation of the PATH solver and its linkage as a GAMS subsystem, while Section 5 gives
our computational results (with comparison to other algorithms). Finally, Section 6 outlines
our conclusions based on this work.

A word about notation is in order. The Euclidean unit ball is denoted by B := {z | ||z||, <
1}. The non-negative orthant in IR" is denoted by IR’ . The transpose of a matrix or vector A
is denoted by AT. Assuming the set ' C IR" is closed and convex, we denote the projection
operator onto the set C' as w¢(-); me(x) is the unique point in €' which minimizes the
Euclidean norm ||¢ — x|, for ¢ € C'. The projection of a vector + onto IR} is denoted more
simply by 4.

We write s | 0 to mean s — 0,s > 0. Given a scalar or vector function h(s), we say
h(s) =o(s) (as s | 0) if h(s)/||s|| — 0 in norm as s | 0; similarly, h(s) = O(s) if h(s)/||s]|
is bounded as s | 0. Similar definitions hold for the cases where s — oco. A function f is
Lipschitz of modulus L > 0 on a subset Xo of R" if ||f(x) — f(y)|| S L ||z —y| Ya,y € Xo.
A function f is Lipschitzianly invertible of modulus L > 0 if f is bijective and its inverse
mapping is Lipschitz of modulus L.

2 The PATH solver

The PATH solver is an implementation of a stabilized Newton method for solving the MCP.
The general form of the pathsearch technique is due to Ralph [34]. In this section, we
describe this technique, along with several theoretical and computational enhancements. In
order to do so, it will be convenient to express the MCP as the normal equation

fe(z) =0, (NE)

where fp is the normal map of Robinson [40] imposed on f by the rectangular set B :=
{z 1<z <u}:
I8(x) := f(rB(2)) + 2 — 75().

The relationship between NE and MCP is made clear by the transformations @ = z — f(2)
and z = wp(x); see [40]. Thus, we can view the MCP as the problem of finding a zero

of an equation, albeit a potentially non-smooth one. This framework enables us to apply
Newton-type techniques from equation solving to find solutions for the MCP.

In the classical Newton’s method, the smooth function f is approximated at a point z*
via the linearization Ay defined by

An(a) = J(a) + V() @ = ab). (2)

This linearization Ay is said to be a first order approximation of f at x. The Newton point
2% is a zero of this approximation, that is, Ag(z%) = 0. Assuming non-singularity of the
Jacobian matrix, this zero is unique, and it is a conceptually simple task to find it; one
merely solves the matrix equation V f(2)d* = —f(2*). The Newton point is defined by
2k = 2% + d*, and the Newton direction by d*. The next iterate in the Newton process is

determined by a linesearch along this direction, that is,
UARRIEES LT U L

where A satisfies some appropriate conditions. Thus, a linesearch-damped Newton method
can be divided into three parts: linearization, direction-finding, and linesearching. Our
presentation will be organized similarly; the PATH solver analogues of these three parts
are approximation, path generation and pathsearch damping. The description of the non-
monotone stabilization scheme which we have incorporated into the algorithm concludes this
section.

2.1 Approximation

Due to the piecewise-linear nature of the projection operator xg(+), it is in general impossible
to approximate fg with a linear function. Instead, a first-order approximation is used, which
generalizes the familiar linearization used for smooth functions.

Definition 4 Let ¥ € IR". A first-order approximation of fg at z* is a mapping Ay, :
R" — IR" such that

Tim [[f() = Au(@)ll/ |« = 2*| = 0.

This is expressed more compactly by saying f(x) — Ap(x) is o(x — 2%). A first-order approx-
imation of fz on Xo C IR" is a mapping A on Xo such that for each x € Xo, A(x) is a
first-order approximation of fp at x.

Let A be a first-order approximation of f on Xo. A is a uniform first-order approximation
(with respect to Xo) if there exists h : (0,00) — [0, 00], with h(s) = o(s), such that for any
z,y € Xo,

[AG@)(y) = Sl < hllle = yl)- (3)

Note the fundamental difference between first-order approximations to a function at a point
and on a set; the approximation on a set is an operator by which approximations at the
points in that set can be obtained (e.g. for z; € Xy, Ay := A(z")).

The non-differentiability of the normal map fg is due to the piecewise-linear nature of
the projection operator 7p(+). The standard first-order approximation of fg at z* is the
point-based approximation of Robinson [39] obtained by linearizing f around mg(x*) and
leaving the projection operator alone. This yields

Ap(z) == Mrp(x)+ ¢+ 2 — 7p(a), (4)

where

M =V f(rp(z")) and q:= f(rp(z")) = Mrp(zh).

A Newton point z% is a zero of the approximation A;. This point may not be unique.
However, we will continue to use the notation z%; to refer to the unique Newton point found
by the path generation technique described in the next section. Much of the difficulty in
computing a zero of Ay, is caused by the projection operator 7g(-), which is nonsmooth. Our
method for finding a zero depends on the notion of a path, which we now introduce.

2.2 Path Generation

An essential part of the algorithm is the path constructed between the current point 2* and
the Newton point z%. This path generalizes the Newton direction d* in the smooth case,
and serves two purposes: it provides us with the Newton point, and it is the backbone of a
pathsearch scheme which serves to damp our Newton method and improve on its convergence
properties. This piecewise linear path is constructed using pivotal techniques; each pivot
step results in a new linear piece of the path. In this section, we describe a parametric
method used to construct the desired path from z* to z%. However, we first describe the
equivalence between the approximation Ay of (4) and another system more amenable to
pivotal techniques, and we review Lemke’s method as a type of path construction technique.

Instead of attempting to find a zero of the approximation Ay directly, this approximation
is cast as a linear MCP, and solved using a pivotal technique. This technique yields a path
to the Newton point z¥%; furthermore, there is a simple relationship between the variables
used in the pivotal technique and those of (NE) which allows an easy transition from points
x € IR" to points z € B C IR", and vice versa. This will be crucial in the pathsearch stage
of the algorithm. Set

Since v and w are the positive and negative parts of © — z, it follows that v —w = x — z and

rT=z—w+0,

where
w > 0, v >0, w'v =0 (6a)
z € B, (6b)
z=mg(z —w+v). (6¢)

Definition 5 Let B C IR" be rectangular, and x € R".
1. The vectors z, w, and v defined by (5) are said to be the components of x.

2. Vectors z, w, and v satisfying (6) are said to comprise x; (z,w,v) is called a triple.

It is clear that there is a 1-1 correspondence between triples (z,w,v) and the points
x € R"; a triple (z,w,v) comprises « precisely when z, w, and v are the components of x.
Moreover, the vector a solves fg(x) = 0 exactly when its components solve MCP, and vice
versa. Indeed, the approximation Aj can be written using the components of = to obtain

0=A(x) = Mrp(x)+q+x—7p(x)

o (")
=Mz+qg—w+w,

where (z,w,v) comprise x. It is in the form of (7) that the zero of the approximation Ay is
computed. In the course of solving (7), valid triples (z,w, v) are maintained throughout; the
vectors @ comprised by these triples form a path.

We now define a path formally, using the definition from [34].

Definition 6 A path in R" is a continuous function p : [0,T] — IR", where T € [0,1]. The
Newton path satisfies the following additional conditions:

pH(0) = 2F, (8a)
AGHD) = (1= O s(eh), Vi [0,T]. (3h)

The path p* may be denoted simply by p when the context makes the meaning clear. Note
that (8b) implies that the norm of the approximation at points on p decreases linearly as
a function of 1 — ¢, and that the point p(1) is a Newton point. To avoid ambiguity, we
will assume that the notation x%; refers to this Newton point, which is unique, if it exists.
Note also that (8a) requires that the path begin at the current point z¥. When the feasible
set B = IR}, the approximation (7) reduces to the linear complementarity problem (LCP),
to which Lemke’s method can be applied. We now consider Lemke’s method as a path
construction technique.

In Lemke’s method [24, 6], an extra column (called a covering vector) is added to the
matrix M, along with an artificial variable A. Typically, the covering vector is taken to be
the unit vector e (the vector whose components are all ones). This vector is introduced to
achieve feasibility for an augmented system, while also maintaining complementarity in the
original variables, that is, (7) is replaced by

z
[M —I el |w| =—¢q 9)
A
zyw, A >0,

where (z,w,v = 0) comprise x. A ray start is performed, in which g is set to min{A | A >
0, eX 4 ¢ > 0}. This ray start leads directly to an initial basic feasible solution (BFS) [5]
of the system (9). Note that the variables z and w are feasible for the LCP only if A = 0.
In general, A will be basic in the initial BFS, with value Ag > 0, as a result of the ray start.
Thus, Lemke’s method specifies pivoting rules which determine a sequence of entering and
leaving variables and BFS which maintain the complementarity of z and w. The algorithm
terminates successfully when a pivot results in A leaving the basis at 0. At this point, the
LCP has been solved; the original variables z and w are both complementary and feasible.
The solution to this LCP is the Newton iterate, and a path parameterized by t = 1 — %
leading from the initial BFS to the Newton iterate has been constructed by the sequence
of Lemke pivots. At every point in this path, z and w comprise a vector x. Unfortunately,
the Lemke path is not quite what is needed, since in general it does not include the current
point (2*,w"), violating condition (8a).

In the general case, the approximation (7) is expressed using the triple (z,w, v); any path
p from z* to 2% can be expressed as a triple by letting (z(),w(t),w(t)) be the components
of p(t), that is,

p(t) := 2() = w(t) + v(t),

for all t € [0,T]. The requirements for a feasible path (8) require that
(1 =) fp(®) = A(p(1))
or applying (7) that

(I —=t)yr=Mz(t)+q—w(t)+ov(t) (10)

where r := fg(z¥) is the “residual” vector at the start of the path. Clearly, setting p(0) = z*
satisfies (10), while the triple (z(1),w(1),v(1)) comprises the Newton point z%,. The path
from z* to 2% is now determined by a sequence of pivots, which are analogous to the pivots
used in Lemke’s method above and which we now describe.

In the PATH solver we use r as the covering vector. Thus in the general case, (9) becomes:

M -1 I r

~ < £

(11)

[<z<u
w,v >0
0<t<1

The initial BFS is determined by the triple (¥, w", v*), where t = 0. If the triple is non-
degenerate (i.e., for all j € 1,... ,n, exactly one of Zf, wf, and vf is not at a bound), then
the choice of basis corresponding to the triple is unique; the basis consists of columns cor-
responding to variables not at bound. The first entering variable is always ¢, which enters
the basis at its lower bound 0, and forces a variable to leave the basis. The leaving variable,
chosen by a ratio test, must be one of four types, and determines the choice of entering

variable according to the following pivot rules:

w;: If w; leaves the basis, the next entering variable will be z;, which will enter at its
lower bound ;.

v;: If v; leaves the basis, the next entering variable will be z;, which will enter at its
upper bound u;.

zj: I z; leaves the basis at lower bound, w; enters at 0. If z; leaves at upper bound,
v; enters at 0.

t: If t leaves the basis at upper bound 1, the Newton point x% has been computed

and can be recovered from the basis.

The choice of entering variable drives a new pivot step. The path-construction algorithm
continues taking pivot steps, using the pivot rules indicated above, until ¢ leaves the basis
at 1 (successful termination), ¢ leaves at lower bound, or the ratio test results in no leaving
variable (ray termination). Note that once ¢ enters the basis, the lower bound of 0 for ¢
may be relaxed or ignored. Relaxing this bound has proved useful in practice; some of
the linearizations solved admit a Newton point only after a sequence of pivots in which ¢
oscillates and takes values less than 0. Each pivot step described above results in a new
(linear) piece of the path. Thus, it is possible for a path to have a very large number of
pieces; consequently, it may be quite expensive to store. Since the techniques used for storing
the path depend upon how the path is to be searched, we defer a discussion of path storage
techniques to Section 2.3, where the pathsearch is considered.

It is possible that the basis corresponding to the triple (¥, w", v*) be rank deficient. In
this case, it is impossible to construct the path from the current point to the Newton point
by the path generation method described; instead, the PATH solver constructs a path from

a new point to the Newton point. This new point is chosen so as to correspond to a basis;
for all constrained variables, slack columns are made basic. If there are no free variables,
this all-slack basis is guaranteed to be of full rank. Furthermore, is is possible, by a simple
choice of the basic values for the slack variables w and v, to duplicate exactly the sequence
of pivots performed by Lemke’s complementary pivot algorithm. In the case where there are
free variables, it may not be possible to choose a full-rank basis corresponding to any valid
triple, since the columns corresponding to the free variables must always be in the basis; a
sufficient condition is that the principal submatrix M corresponding to the free variables
be of full rank. In this case, a basis can be obtained by choosing as many slack columns as
possible. In [4], Cao and Ferris describe a scheme whereby the lineality of the feasible set B
is factored out, and a new problem solved over a reduced space. The full rank condition on
My is a necessary condition in that context.

Having generated the path, we now return to the nonlinear model and describe our
globalization strategy, pathsearch damping.

2.3 Pathsearch Damping

In pathsearch-damped Newton’s method for finding a zero of the function fg, the path from
z¥ to x%; is searched for a point satisfying some descent condition. This condition is often a
sufficient reduction in the norm of fg or in some other merit function. These merit functions
are nonnegative functions whose zeroes coincide exactly with those of fg. Thus, while the
path is computed in order to find a zero of Ay, the next iterate will be a point on this
path yielding a suitable decrease in the merit function. In the smooth case, the Newton
direction yields a zero of the approximation and also serves as a descent direction for the
merit function [7]. The paths we construct have similar properties.

Recall from Section 2.2, (8b) that the norm of the approximation Ay goes to zero linearly
in (1 —1¢) on the path p. We use this and the approximation properties of Ay to show that
the norm of fg must decrease on the path near t = 0. Let o € (0,1); then

[/a(p)] = [[Ax(p(1)) + o(1)]
= (L =0 [[fp(zx)l[+ oft) (12)
< (L=at)|[fe(ax)ll,

for some ¢ € (0,1) and all ¢ € [0,¢). Thus, the norm of f5 decreases on a section of the path
near 0, so that p is a “descent path” for fg. Note that the relaxation parameter o < 1, so
that the norm of fp for acceptable points on p does not have to be as small as predicted
by the approximation Ay; in practice, o will be chosen to be close to 0, so that almost any
decrease in || f|| will be sufficient for acceptance.

For solving f(x) = 0 (Example 2), one possible merit function O(-) is

the norm function of f. In this case the Newton direction d = —V f(z*)~! f(2*) is a descent
direction for ©; note that

O'(z") d = f(z")"V f(z") d
FENTV =V M) ()
= — (") f(=")

< 0.

\Y
= \Y

In order to find a value of ¢ which satisfies (12), an Armijo search [1, 7] can be performed
on the path p. In a typical implementation of this technique, a parameter v € (0,1) is
chosen, and the points p(1), p(v*), p(7?), ... are tried, until a value of ¢ is found for which

e < (1 = at) |f(zx)]] -

In the smooth case, the path p consists of the line between z* and %, so that both storing
p and computing p(t) are trivial tasks. This is not the case when p is piecewise linear; in
this case, it is necessary to modify the standard linesearch techniques to accommodate the
special form of the path. In [34], Ralph suggests two approaches to pathsearching. The
first, called the forward pathsearch, checks that the descent condition (12) is satisfied as the
path is being constructed. Assuming that each pivot step in the path generation algorithm
results in an increase in the value of ¢ from 744 to t,ew, the forward pathsearch ensures that
new satisfies (12). The path generation / pathsearch routine terminates when the Newton
point is found, or when a pivot step results in an unacceptable value of #,.. In the latter
case, the line segment between p(toq) and p(fnew) is searched for an acceptable point, which
k1 The primary advantage of the forward pathsearch lies in its
simplicity; the path is searched as it is constructed, so that it does not need to be stored.

As reported in [34], the chief drawback of the forward pathsearch lies in the fact that the
search begins on the wrong end of the path. When the Newton point p(1) is acceptable, all
the function evaluations performed in checking that the descent condition is satisfied during
path construction are essentially wasted. Also, the forward pathsearch is too restrictive in
the sense that an acceptable Newton point may exist at the end of a path which has been
terminated due to a failure to satisfy (12) at an intermediate point on the path. Since we

becomes the next iterate x

wish to accept the Newton step as often as possible, it seems reasonable to check the Newton
point first. Recognizing this, Ralph [34] suggests a backward pathsearch, in which the path
is constructed without checking the descent condition. Instead, a list is made, with each
element in the list containing the values of the variables at a breakpoint in the path. When
the path has been fully constructed, the endpoint is checked. If this point satisfies (12), this
point is accepted as the next iterate; if not, a recursive bisection search is carried out on the
list. This bisection search checks (12) for a point near the center of the list; if this point is
acceptable, the second half of the list is searched; if not, the first half is searched. In this
way, the Newton point is checked first, when it is part of the path. Ralph demonstrates
that this leads to fewer function evaluations. Unfortunately, the backward pathsearch also

10

requires that the sequence of pivot steps be recorded. This may require a large amount of
space, which cannot be estimated before path construction. The amount of storage required
at each pivot step is O(n), while the number of pivot steps may be exponential in n. This
is a serious drawback for large-scale problems. Also, a bisection of the list may not lead to
a bisection of the current section of the path to be searched; the change in ¢ at each pivot
varies widely and non-uniformly.

Motivated by the success of the backwards pathsearch in reducing the number of necessary
function evaluations and in increasing the chance of accepting the Newton point, we have
implemented a backtracing pathsearch. As in the backwards pathsearch, we construct the
path without searching it; path generation is completed when the Newton point is found
or when ray termination occurs, but not when ¢ oscillates or when the descent criteria are
violated. However, instead of saving all of the variable values at each pivot, only information
about the entering variable is stored, on a stack which grows with the path. When path
generation terminates at a point p(7'), the only information about the path that exists is the
current basis and a record of the entering variables which led to this basis. At this point, the
backtracing pathsearch traces the path in the reverse direction from that of its construction,
using the information about the entering variables from the stack to “unpivot”, i.e., to
reconstruct the breakpoints of the path, along with their associated bases. Backtracing ends
when an acceptable point is found. Backtracing is essentially as expensive as is constructing
the path; however, this expense is only incurred when a backtrace is necessary. When the
point p(T') is acceptable, the information about the path (which can be saved quite cheaply)
can be thrown away, without any real backtracing taking place. Also, in this case, at most
one function evaluation will be performed.

The forward pathsearch requires little storage, at the cost of added computation (in the
form of function evaluations) and reduced robustness. The backward pathsearch requires
a minimal number of function evaluations and increases robustness, at the cost of a large
storage requirement. The backtracing pathsearch possesses the advantages of both of the
above methods, while its drawback (the computational cost of reconstructing parts of the
path) is evidenced only when p(7T') is unacceptable and a non-trivial pathsearch must be
performed. The non-monotone stabilization techniques discussed in the next section serve
to reduce the number of pathsearches performed and make the backtracing pathsearch an
even better choice.

2.4 Non-Monotone Stabilization

In a linesearch-damped Newton method, the line from z* to x%; is searched for a point

satisfying some descent condition, usually expressed in terms of a decrease in some merit
function. Implementations of these methods invariably require a monotonic decrease in this
merit function, although there is evidence which indicates that this requirement may impede
or block convergence to the solution of the equation [12, 13, 10]. Various non-monotone sta-
bilization (NMS) schemes for Newton’s method have been proposed, each seeking to improve
efficiency by relaxing the requirement of monotone descent. The PATH solver implements a

11

scheme of this type, modified to incorporate a pathsearch rather than a linesearch.

The NMS scheme implemented makes use of a watchdog technique to reduce the num-
ber of pathsearches performed, and allows a non-monotonic decrease in the merit function
associated with the points chosen as a result of these pathsearches. The number of path-
searches is reduced by taking a d-step in the majority of cases. A d-step is acceptable if
the point returned by the path generation procedure is suitably close to the current point.
The measure of closeness, A, decreases as the algorithm progresses. In order to monitor
these steps, the non-monotone descent criteria for the merit function are checked at least
once every n number of iterations. The current merit function value is compared with a
reference value R, which is computed from previous function values. Steps in which these
checks on the current merit function value occur are called m-steps. The points at which
these criteria are checked and satisfied are called check points. An m-step is also taken when
a d-step is unacceptable, that is, when it is too large. A watchdog step occurs when descent
criteria are violated; when this occurs, the algorithm returns to the most recent check point,
re-generates the path from the check point (if necessary), and backtraces the path until the
non-monotone descent criteria are satisfied.

For future reference we introduce a new index j which is set initially to ;5 = 0 and
incremented each time we define a new check point. If £(j) is the index of the jth check
point, then we indicate by {2‘U)} the sequence of check points (where the merit function
has been evaluated) and by {R;} the sequence of reference values associated with the check
points. Each check point 25+ := p¥(#,) is chosen so that the step length #; satisfies equation
(NmD) below, a generalization of a descent condition for the monotone linesearch: given a

reference value R > HfB(:L'k) , the step length ¢ satisfies

|0)] < 1= ot R. (NmD)

If T}, satisfies (NmD), then the pathsearch will choose the step length t; := Tj. If not, we
require that the step length be chosen to be large enough, in some sense. This is accomplished
by making the technical assumption that ¢; be at least 7 times as large as the largest interval
[0,7] on which (NmD) is satisfied, for some 7 € (0, 1). Thus, we require that the step length
1y, satisfy the following:

(NmD) holds for T} implies t), := Tj; otherwise,

(NmPs)
d7€(0,1)s.t. £ > 7sup{T | (NmD) holds V¢ € [0,71]}.

Note that the backtracing pathsearch described in Section 2.3 yields a value ¢; which satisfies
(NmPs). To see this, note that, given a linear segment of the path from p(fo1a) to p(tnew)
for which (NmD) holds at t51q but not at t,ey, the segment can be searched using an Armijo
technique for a point at which (NmPs) is satisfied, where 7 depends on the pathsearch
parameters used.

In order to complete the description of the algorithm we must specify the rule employed
for updating R, the reference value for the merit function. This is initially set to || f5(x?)]|.

12

Whenever a point #°) is generated such that HfB))H < R;, the reference value is updated
by taking into account the memory (that is, a fixed number m(j) < m of previous values)
of the merit function. To be precise, we require the updating rule for R;4; to satisfy the
following condition.

Reference Updating Rule: Given m > 0, let m(j + 1) be such that

m(j+1) <min[m(7) +1,m],

let
A 2j+1—d
Minn = o e [0 13
and choose the value R;4; to satisfy
HfB]+1 H < 7z]-l-l < MJ-I—I (14)

These conditions on the reference values include several ways of determining the sequence
{R;} in an implementation of the algorithm. For example, any of the following updating
rules can be used:

Rjp1 =M,y = max HB Ha+1=19)
7+ J+ 0< i <m{j+1) f)

) (15)

Rﬁrdmxhh f“”vaafﬁiﬁ,_ |5t HIZM (16)
Rj-l-l = min [M]‘_H, — (R + HfB 1) H)] (17)

We note that (15) is the easiest to satisfy and is used in the PATH solver, while (16) and
(17) define conditions which guarantee “mean descent”.

We should stress at this point that the stabilization technique differs from standard
linesearch techniques in two ways. Firstly, the acceptance criteria for the pathsearch are
relaxed significantly by replacing the current merit function value by a reference value,
typically taken to be the maximum over a fixed number of previous merit function values.
Secondly, the pathsearch is skipped entirely when the Newton point is close to the current
point (within the d-step tolerance A) and an m-step is not required.

The algorithm can be outlined as follows:

13

Algorithm PATH
1) [Initialization] Let 2% 7 >=1, A=A >0, 3¢€ (0,1) be given:
set k=0, checkpoint =0, j =0, Ag=A, Ro=|fs(2°)]
2) If fp(z*) =0, stop.
3) Using the approximation Ay, generate a path p* : [0,T}] — R", T}, € (0, 1], satisfying (8).
4) If (k < check point + n) then

d-step:
if (Hpk(Tk) — pk(O)H < A), the step is small enough; accept it:
set 2% = p*(Ty);

set A = Ax[;
else the step is too large; go to m-step:
else
m-step:

if (HfB(pk(Tk))H < (1 = 0oTy)R;), accept the step:

set 2% = p*(Ty);
else perform a watchdog step:

set k& = check_point, A =A;;

if necessary, generate the path p* from z* to p*(T});

backtrace p* to find #; € (0, Ty] satisfying (NmPs); set x*1 := p¥(t,);
increment j; update R;; set A; = A; set check_point =k + 1.

5) Increment k, and go to Step 2.

In Step 3 above, it is assumed that T} is as large as possible, i.e., that if T, < 1, Ay is not
continuously invertible near p*(T}). For practical reasons and robustness, the PATH solver
checks whether the function fp is defined at a given point before accepting that point. This
check, not described in the algorithm above, yields a function value at each point. When this
function value is computed after a d-step and found to be lower than the reference value, the
reference value and check point are updated. If the function at the prospective new iterate is
undefined, a watchdog step is performed in the same manner as that performed for a failing
m-step.

14

3 A Global Convergence Result

In this section, we present a global convergence result for the PATH solver. This result
generalizes the work of Ralph [34] through the addition of the watchdog technique described
earlier. Before doing so, we include, without proof, a path lifting result from Ralph [34]
which guarantees the existence of the paths used in our algorithm.

Lemma?7 Let ® : X — Y, x € X and ®(z) # 0. Suppose the restricted mapping ® :=
¢ | y: U~V is continuously invertible, where U and V' are neighborhoods of x and ®(x),
respectively. If U is open, and € > 0 is such that ®(z) + B C V, then, for 0 < T <
min{m, 1}, the unique path p of domain [0,T] such that

O(pt)) =1 —-t)P(x) Vtel0,T]

is given by

p(t) = ®7Y((1 —)®(x)) Vi€ [0,T].

We now present our main result, which gives the convergence properties of the PATH
algorithm. Note that (A3), the third assumption below, is a technical one which states that
the domains of the paths used by the algorithm can be closed.

Theorem 8 Let f: IR" +— IR" be continuous, ag > 0 and Xy := {z € R" | ||fe(2)|] < ao}.
Let 0,3 € (0, 17), A >0, and m,n € IN be the parameters governing the pathsearch, and let
Xan = Xo+ An1IB. Suppose

(A1) A is a uniform first-order approximation of f on Xy, i.e., (3) holds.

(A2) A(x) is uniformly Lipschitzianly invertible near each ¥ € Xz, i.e., for some 0, €,
and L > 0 and for each x € Xx;, there exist sets U, and V, containing x + 6 B and
fe(2) + €B respectively, such that A(x) | v, : Uy — V. is Lipschitzianly invertible of
modulus L.

(A3) For each x € Xz, and T € (0,1], if p : [0,T) — IR" is such that p(0) = x and, for
each t € [0,T), A(p(t)) = (1 —t)fe(x) and A(z) is continuously invertible near p(t),
then there exists p(T) := limyp p(t) with A(x)(p(T)) = (1 = T)fs(x).

Then for any z° € Xy, Algorithm PATH produces a sequence {x*} such that either

f5(z¥) = 0 for some k > 0 or the sequence {z*} converges to a zero =™ of fg at a Q-
superlinear rate.

Furthermore, the residuals fg(z¥) converge to zero, and the sequence of reference values
{R;} converges to zero at an R-linear rate. If for some ¢ > 0 the approxzimation A salisfies
|A(z)(z*) — fa(z®)|| < ¢||lz — || on some neighborhood of x*, the sequence {x*} converges
to x* at a Q-quadratic rate.

15

Proof Assume that fg(z¥) # 0 for each k. We note first that given z* € X5, there exists
a unique path p* : I — IR" of largest domain I such that the following hold:

L. p(0) = ¥

2. I =[0,T] for some T € (0, 1];

3. Vte I, Ap(p(t)) = (1 —t) fa(x"); and

4. Vt < T, Ay, is continuously invertible near p*(t).

To see this, note that Ralph [34] has shown that the sets U, and V, in (A2) can be assumed
to be open. Let Ay be the Lipschitzianly invertible mapping obtained by restricting Ay to
the neighborhood U« around x*. (A2), Lemma 7, and (A3) imply the existence of the path
described above, where the technical assumption (A3) is used to close the domain of the
path.

Thus, the paths required by the algorithm are guaranteed to exist when {2*} C Xj,.
Note that the PATH algorithm will construct these paths, and that the backtracing path-
search described in Section 2.3 will yield a point which satisfies (NmPs). (See note following
definition of (NmPs)).

To see that the algorithm is well defined, we need only show that the sequence of iterates
remains in X 5, where the pathsearch is well defined. To do this, we show that the algorithm
can take only a limited number of bounded steps before the iterates are forced to return to
Xy. It will be convenient to define the index

(k) :=max[j | £(j) < K].

Thus ((3(k)) is the largest iteration index not exceeding k at which the merit function has
been evaluated. For example,

ko=012 .. 1011 ... 57
i =0 1 2
((j) = 0 10 57
gk = 0 0 1 o122

We use the notation
d* .= p*(Ty) — p*(0)
to denote the difference between the initial and terminal points of the path p*. The d* above

should not be confused with the notation for the search direction d used in the smooth case;
rather,

dkH is the size of a possible d-step.

If the point 2**! is a check point, then it has been generated as the result of an m-step,
so that

|76 < R < £
and "1 € X,.

16

If the point z**!' is not a check point, then it has been generated as the result of a
(bounded) d-step, so that z**! satisfies

where ||d'|| < A and k —((3(k)) < n. Since 2“0 is a check point, it must be in Xg, so that
LR Xan-

Thus, we have shown that the algorithm is well-defined and that every iterate 2% € Xj5,,.
We now demonstrate the global convergence of our method. We first show that fg converges
to 0 (i.e limg_ oo HfB H = 0). This result is used to show convergence of the iterates, and
to derive rates for their local convergence

To show convergence of {fg(z*)} to zero, the sequence {z*} can be split into two sub-
sequences: {z®}, the points at which a reference value has been defined, and {z"(®}, the
remainder of the points.

If the sequence {2} is finite, then the algorithm will eventually take only m-steps.
Once this point is reached, a pathsearch is performed at each iteration, and there can be
no further watchdog steps taken. Ralph [34] shows that in this case, the residual norms
HfB(:L'k)H converge linearly to zero.

Assume then that {z"®} is an infinite sequence. We show first that for large enough Fk,
") € Xy, Recall that 27 is the result of a d-step, so that 2"(¥) = ¢"*)=1 1 7)1 where
d"™=1 is bounded as follows:

s

dT(k)_lH = (. Choose K so that

Thus, limg_

drt H<§‘v’k>[&—n Wherefls

such that h(§) < % VE<E (Recall from Definition 4 that h(s) is o(s).) The Lipschitz
invertibility of A yields

Ip(t) = p(O)[| = | AZ* (1 = 1) f(a*)) = A (fu(a®))|| < Lt | fo(a"
so that for all £ < K — n, we have, by the uniformity of A,

)| (18)

| /5p(Tey))] < HA (T H + A=) by (3)
<(1- HfB H —I- _IH by (8b)

< (1= o) [Lol |+ Ty | f(am™ 1)
by (18)

< [satare].

Since the PATH algorithm takes at most n d-steps before taking an m-step, and we have
shown previously that all the points resulting from m-steps are in Xj, the above result
shows that 2" € X, for k > K.

17

We now show that the sequence {R;} converges linearly to 0. Recall from the algorithm
description that the number of consecutive d-steps is bounded above by n, after which an
m-step must occur. Let {z°("} be the sequence of iterates which have occurred as the result
of an m-step, but whose predecessors have occurred as the result of a d-step. The algorithm
requires that z*(*) := ps(k)_l(Ts(k)_l) satisfies

HfB(xS(k))H < (1 — UTs(k)—l)R](s(k)_l)- (19)

F=1 is the result of d-step,

Since ‘fB(s(k) _l)H < ap for large enough k, where ag is an

upper bound for || fp|| on the level set Xy. Since by (A2), Ayx)—; is continuously invertible
in an e-neighborhood of fg(z**~"), we can use Lemma 7 to show that

L€
Tyry—1 = mm{—a 1},
0

thus bounding (1 — O'Ts(k)_l) away from 1. We now need only show that a result similar to
(19) holds for z**) when z“*) is the result of consecutive m-steps. This is precisely what
Ralph ([34], Theorem 9) has shown in proving convergence for his algorithm; this and (19)
imply that for large enough £,

| (@) < (1 = o T)Ryty-1) (20)

holds for some 7' € (0,1). Applying (20) and our rule (15) for updating the reference values,
we have

Rty < (1 = 0T)R oy,

Su—t

. The

which gives us R-linear convergence of the reference values at the rate of (1 — UT)
entire sequence { fp(z*)} converges to 0 as well, since for large enough #,

o(k)) = HfB(SL‘

for 1 > ((k),

since all d-steps following iteration ((k) result in a decrease in ||fg]|, while all m-steps fol-
lowing ((k) result in iterates ' at which R(y > | fe(@).

Thus, we have established that {HfB H} converges to 0. We show now that, after a

certain point, the algorithm takes only Newton steps. Let v := min{e, %}, where ¢ is defined

N 1— N
in (A2) and ¢ is such that h(¢£) < % V¢ <& Let K be chosen so that HfB(:L'k)H <~

for £ > K. Then for £ > K, the following hold:

o] < o
sl < (1=) st

18

where (21) follows directly from the choice of . To see (22), note that (21) and Lemma 7

imply that the PATH algorithm finds the Newton point 2% := p*(1), so that by the uniformity
of A,

[5tas] < | atato] + afar]) = ncja])
< h(L | f5(z")]) by (18)
o il (Gl
< (1= o) s

Hence by (22), 2! = 2% for k > K.
We show now that the sequence {z*} is Cauchy. For & > K,

by choice of v

|25 = o = AR 0) = A7 (fs(2"))]
< L] a(eh)]

S L(l o O_)k—K fB(l'K)

the last equality following from (22). Choosing s > r > K implies that

Y

o0
lo* =27 < 3 [+ — o
k=r

< [\\fB(SL’K) .
S o U
B v L s s
(1®KU(1)y =0 .

This implies convergence of {z*}. Let 2* := limy_., z*. Since {HfB(:I;k)H} — 0, the continu-
ity of fg implies fg(z*) = 0.

To see the Q-superlinear rate of convergence for the iterates, note that for some K > K|
k > K implies that 2* € 2% + § B (i.e., @* is in the range of the inverse of the linearization
121,;1), and the following applies:

Hwk—l—l . l’*

= Az (fa(a7)) = AL (Ax(2")|
<L | fa(x") = Ax(a™)]| (23)
<L h(ka — "), (24)

where the last inequality depends on the uniformity of A. Since h(s) is o(s), inequality (24)
shows convergence at a Q-superlinear rate.

19

If the approximation A also satisfies the inequality

2

| A @) = fo(a) (25)

< c\\xk T

for some ¢ > 0 and on some neighborhood of +*, then for large enough k, (23) and (25)

together yield
2

Hwk—l—l . l’* 7

< cLH:z;k T

so that a quadratic rate of convergence is achieved. 0

Note that although Theorem 8 deals with the normal map fg, the result holds for more
general nonsmooth mappings; the restriction to the normal map fp is made only for the sake
of consistency with the rest of the paper.

4 Implementation

The PATH solver was designed and implemented primarily to solve complementarity prob-
lems, using the pathsearch damped Newton method described above. The solver is written
in the C language, and is designed to operate on its own or as a GAMS subsystem; the
current implementation relies on GAMS/CPLIB (a software library developed in part by the
authors [9]) to formulate the problems under consideration and provide function and deriva-
tive information. This interface with GAMS grants the user a convenient and flexible means
of defining the problem to be solved, as well as ready access to a library of complementarity
problems already formulated in the GAMS language [8]. Since large, sparse problems are
frequently encountered, the PATH solver handles data in a sparse format. It also incorpo-
rates a DEVEX-type [20] scheme in the implementation of the ratio test, which increases
numerical stability. Furthermore, it is possible, by making the proper choice of basis and
basic values, to duplicate the sequence of pivots taken by Lemke’s method, without making
any changes to the parametric path generation code. This can be done automatically, by
setting an option, and makes comparisons with Lemke’s method a trivial task. These and
other options can be set in an options file. In this section, use of the GAMS interface and
options file are discussed further.

4.1 The GAMS Interface

GAMS [3] is an algebraic modeling system which allows models to be expressed in a clear,
concise, and easily modified way. Furthermore, it allows the model to be expressed indepen-
dently of any solution algorithm for it. By using GAMS/CPLIB, MCP’s can be formulated
and made available to solvers in a highly portable fashion, as described in [9] and illustrated
below.

The key elements of the MCP are the function f and the bounds [and u; these determine
the problem completely. Fortunately, specifying the bounds is a trivial task. In GAMS, each

20

variable consists of three parts; the level value and explicit lower and upper bounds, which
may be infinite. The bounds and initial level values can be assigned values in the GAMS
code. Thus, any variables in the model are included with their bounds. The initial level
values are also available to a solver, and may serve as an initial iterate, as is the case for the
PATH solver.

The way in which the function f is defined is a bit more complicated. Instead of explicitly
defining f, the GAMS user defines the complementarity relationship desired; the function f
is defined by CPLIB in a manner consistent with this complementarity relationship. This is
best illustrated by example. Consider the following quadratic program:

minimize %J}TQZ‘ +c'ax
! (QP)
subject to Ax < b

Assuming Q) is symmetric positive semi-definite, the KKT conditions

Qr+c+ATu=0, x free, 1

(KKT)
b— Ax >0, u >0, 1

for (QP) are necessary and sufficient, and can be expressed as a MCP, in GAMS form.

Example 9 KKT conditions in GAMS form:
sets J /1 8/ /* row indices for M /*
I /1+5/ /% constraints */

alias (JJ, J) ;
parameters Q(JJ,J),

c(I),

A(I,J),

b(I) ;
$include ’QP.dat’ /* matrix data, etc. */
variables x(J), /* primal variables */

u(l) ; /* duals x/

u.lo(I) = 0; /* non-negative var */
equations delx(J),

delu(I);
delx(J) .. sum (JJ, Q(J,J1*x(JJ)) + c(J) + sum(I, u(I)*A(I,J])) =g= O;
delu(I) .. b(I) =g= sum(J, A(I,D)*x(J)) ;

model qp / delx.x, delu.u / ;
option mcp = path ;
solve gp using mcp ;

The KKT conditions are expressed as a number of complementarity pairs; each pair
consists of a function and an associated variable, along with their respective constraints and

21

bounds. In the GAMS/CPLIB system, the functions are defined by the equation statement,
and the variables are associated with the functions in the model statement. It is important to
note that in the MCP model formulated by GAMS, constraints for each function are inferred
from the variable bounds and complementarity relationship; the inequality used to define
each function (the =g=in delx(J) and delu(I) above) is meaningful only as a consistency

check.

4.2 Features and Options

As is the case with most implementations of solution algorithms, the PATH solver has evolved
considerably during the course of its existence. The number of parameters over which the
user has control has been increased, and features have been added, as described in this
section. The PATH solver makes use of an options file to set parameter values, flags, and
switches.

In its basic mode, the PATH solver performs as indicated in Section 2, finding Newton
points of approximations via a path generation technique and choosing the successive iterates
by means of a backtracing pathsearch. Most of the computational effort is expended in
doing pivots during the path generation phase. A sparse basis updating routine is crucial
in minimizing the amount of work done in this phase. The PATH solver uses a sparse
matrix package to do the pivoting; the addition of a basis updating scheme is planned. It
also incorporates a DEVEX-type [20] scheme in the implementation of the ratio test, which
increases numerical stability.

Typically, the initial basis and the residual vector r in the path generation scheme are
chosen so as to ensure that the path p begins at 2*. However, as described in Section 2.2,
this first basis may be rank deficient; in that case, it may possible to start from a new point
corresponding to a full-rank basis, one containing as many slack columns as possible. For
the special case of an LCP this new point leads to a sequence of pivots which correspond
exactly to those taken by Lemke’s method. The user can specify whether to use Lemke’s
method for all subproblems, for none, or only for those in which the basis chosen initially is
rank deficient.

Parameters, flags, and switches are reset using the options file, or, in some cases, by using
GAMS option statements. The format of the PATH options file path.opt is similar to the
MINOS options file format described in [27]; it consists of keywords and values. Blank lines
are permitted. Any line starting with an asterisk (“*”) is ignored (i.e., it is a comment).
Each line can set at most one option. Keywords are uniquely determined by their first three
characters; the remaining characters are ignored. Boolean values are determined by the first
character in the value field; y/n/0/1 are acceptable. Relevant keywords and their meanings
are summarized in Tables 1 and 2.

The performance of the non-monotone stabilization technique can be sensitive to the
values of the parameters which control it; these parameters can be set via the options file.
The user can also exercise considerable control over the amount and type of output produced
by the PATH solver through the use of the verbosity flags (described in Table 2) and the

22

iterlog frequency option.

Table 1: Options file algorithm parameters

‘ keywords ‘ value ‘ description
lemke first y/n The first linearization will be solved “Lemke-style”
lemke option required | All linearizations are solved “Lemke-style”
allowed | When the initial basis is rank-deficient, a “Lemke-
style” basis is tried.
banned | The algorithm will never switch over to a “Lemke-

style” basis.

major iterations | integer k£ | Maximum number of linearizations solved

minor iterations k Maximum number of pivots allowed per linearization

nms do y/n Use non-monotone stabilization techniques; if not, the
point returned by the pathsearch is always accepted.
Default: yes.

reference ifactor | real ¢ | The reference value is initialized to ¢ - || fg(2°)|]. De-
fault: 5

reference min c The reference value is constrained to be no less than
c. Default: 20

stepsize ifactor ¢ The initial step size A is set to ¢ [|2° — z%||. Default:
20

stepsize imin c The initial step size in constrained to be no less than
c. Default: 20

save best y/n Cycling may occur in the path generation code. When
save best is on, a point corresponding to the best
(highest) t-value is returned. Default: yes

tolerance factor c A tolerance (not necessarily a zero tolerance) supplied
to the factorization routines. Default: .01

tol slack c During the pivoting, the bounds are relaxed by ¢ in
order to choose a leaving variable.

tol convergence ¢ Convergence is declared when ||fg|| < ¢. Default:
l.e-9

The

The GAMS option statement is used to set the reslim and iterlim options.
iterlim option sets the limit on the cumulative total of pivots performed during problem

solution; the default is 1000. The reslim option sets the time limit (in seconds) for the
solver; the default is 1000.

23

Table 2: Options file verbosity parameters

‘ keywords ‘Value‘ description

iterlog freq k Information line logged for every k’th major iteration

vil backtrace | y/n | for each backtrace performed, log the steps taken

vil initpoint y/n | log z, and f(z)

vil leaves y/n | for each pivot, log leaving and entering variables

vil mcp y/n | for each major iteration, log the linear MCP to be solved

vl nms y/n | log actions of the non-monotone stabilization scheme

vil ratiotest y/n | for each pivot, the vectors involved in the ratio test are
logged

vil raybase y/n | when ray termination occurs, log the base of the ray

vil silent y/n | keeps some warning/error messages from being logged

vil solution y/n | final problem solution is logged

vil summary | y/n | at solution, summary solver statistics are logged

vil tprint y/n | at each pivot, the value of the parameter ¢ is logged

5 Computational Results

This section contains computational results obtained from several complementarity problems
considered in the literature. These problems, described in greater detail in [8], have been
formulated in GAMS and are available from the authors. The following algorithms are
compared:

PATH The PATH solver described in this paper.
Pat® The PATH solver set to solve the first approximation from the Lemke-type
basis described in Section 2.2.

J-N The classic Josephy-Newton’s method, as described in [21]. The results
shown were obtained by running the PATH solver with the options file set
to emulate Josephy-Newton’s method.

B-DIFF The B-differentiable equations approach of Harker and Xiao [19], in which
each major iteration involves a linesearch of a direction determined by solv-
ing a system of equations.

NE/SQP 1In [30], Pang and Gabriel describe a scheme in which the search direction
is determined by solving a quadratic program; this direction is linesearched
as well.

Unless otherwise noted, the results for the PATH solver were obtained using default values for
all parameters; in no case was the code modified to improve performance for any particular

problem. For B-DIFF and NE/SQP we include only results available in the literature [19, 30].

24

The results presented in this section indicate that the PATH solver improves on the clas-
sical Josephy-Newton’s method in both speed and robustness. When both algorithms work,
they will usually take the same number of major iterations; however, the PATH solver makes
use of the current basis to take a “warm start” on each major iteration, thus reducing the
number of pivots required. For the larger problems, this has a noticeable effect on the so-
lution times. The nonmonotone stabilization techniques employed are of crucial importance
in making the PATH solver robust (see Sections 5.1, 5.3, 5.4, 5.7 and 5.8). Without the
use of these techniques, the PATH solver would behave about as well as Josephy-Newton’s
method; with them, it solves the problems considered from a larger set of initial points,
as the theory behind the PATH algorithm would lead us to expect. Also, the PATH solver
makes use of the MCP formulation; this greater generality enables problems to be solved
more quickly and robustly as well (see Tables 8, 9, 11 and 12). The task of formulating the
models and performing the computational experiments was eased greatly by the use of the
GAMS environment, which made the formulations easier to write, read, and modify, as well
as freeing us from the task of writing gradient evaluation routines. Unfortunately, the PATH
solver, like the other algorithms considered in this section, is hampered by the presence of
rank deficiency at a solution point. This has been a challenging problem in the past, and is
the subject of current research in the area.

5.1 Walrasian Equilibrium Models

In [25], Mathiesen gives a simple example of a 4-variable Walrasian equilibrium model. In this
model market, there are three commodities (with their corresponding price variables) and
one production process or sector (with its corresponding level of activity). The consumers
sell their initial endowment of goods to the producer, and buy back the goods produced. An
equiltbrium is a set of prices and a level of production which satisfy a number of equilibrium
conditions on the supplies, demands, prices, and activity levels. The optimal prices are
determined only in a relative sense; if the price vector p* is optimal, then so is the price
vector Ap*, for A > 0. The price system can be normalized by fixing a numeraire price or
by fixing the sum of the prices; because of its greater generality, we have taken the latter
approach.

The parameters for Mathiesen’s model are the consumer’s initial commodity endowment
vector b and the budget share parameters (o, 1 — a,0) which determine which production
goods the consumer purchases. In all the numerical tests, the initial endowment b, is 0; the
values used for by, b3, and « are indicated below. Note that for the run with b5 set to 0.5,
the PATH solver finds a solution point different from that found by NE/SQP.

Two other examples of Walrasian equilibrium problems are due to Scarf [41]. In the first
model, there are six commodities and eight production sectors; thus, the NCP formulation
for this problem contains 14 variables. The second problem is one with 40 variables, 14
corresponding to commodity prices and 26 to production activity levels. The B-DIFF results
were obtained using a proximal point modification to that algorithm.

25

Table 3: Mathiesen’s Walrasian Problem

o= 75,.6=1(0,1,5)
algorithm | start point | major (minor) | func / grad | time
Patn | (L1, L, 1) 5 (11) 276 | .09
J-N neon failed ()
NE/SQP | v v 1
a=750=(0,1,2)
algorithm | start point | major (minor) | func / grad | time
PATH (1, 1,1, 1) 5 (5) 6 /6 .06
J-N "o 5 (20) 6/6 | .09
NE/SQP | v v 3
a=9.b=1(0,53)
algorithm start point major (minor) | func / grad | time
PATH | (2.5, 5.5, 1.5, 4.5) 6 (6) W 07
JN no 4 (16) 6/2¢ | .06
B-DIFF "o 3
PATH | (3.5, 4.5, 0.5, £.0) 103 575 | 04
J-N "o 4 (16) 5/5 | .05
B-DIFF non 4
PATH | (2.5, L5, 1.5, 3.5) 10(24) | 25/11 | .19
J-N neon failed ()
B-DIFF "o 6
PATH | (3.5, 6.5, 0.5, 5.5) 5 (5) 6/6 | .05
J-N "o 5 (20) 6/6 | .05
B-DIFF "o 3

26

Table 4: Scarf’s Walrasian Problems

algorithm | start point | major (minor) | func / grad | time
PATH (p1,y1) 4 (9) 5/5 .29
J-N " 4 (71) 5/5 | A48
B-DIFF "o 3
NE/SQP | v v 6
Patn (p2,y2) 3 (8) 4/4 24
JN "o 3 (52) 474 | .36
B-DIFF "o 3
PaTH (p3,y3) 4 (10) 5/5 31
J-N e 4(77) 5/5 AT
NE/SQP | v v 28 /
= (222 1,.1,2), y = (5.0,4,0,0,0, 4,0)
p2=(1,.1,.1,.1,.1,.2), ya =
po = (1,1,1,1,1,1), ys = (4,1,0,3,0,0,1,0)
algorithm | start point | major (minor) | func / grad | time
Patn (p1,91) 3 (36) 4/4 1.47
JN "o 3(102) | 4/4 | 341
NE/SQP | (p1,777) 3
pm=,....0), n=_(~1,...,1)

27

5.2 A Nash Equilibrium

In [26], a 10-variable Nash equilibrium problem is described; solution techniques for this
problem are discussed in [17]. All the methods performed well on this problem; however,
since all variables are positive at the solution, the warm start taken by the PATH solver
makes it particularly effective.

Table 5: A Nash Problem

‘ algorithm ‘ start point ‘ major (minor) ‘ func / grad ‘ time ‘
PATH (L, 1,...,1) 6 (6) T/ .52
J-N "o 6 (66) /7| 52
B-DIFF fton 13
PATH (10, 10, ..., 10) 6 (6) T/ .52
J-N "o 6 (66) /7| 52
B-DIFF fton 10

5.3 Small Quadratic NCP’s (Kojima-Shindo)

The PATH solver has been tested on two very similar 4-variable NCP’s, due to Kojima [22]
and Kojima and Shindo [23], whose functions are quadratic. The problem from [22] was also
used in numerical tests done by Josephy in [21], and is referred to as the Josephy problem
here and in [19].

When previous versions of the PATH solver which utilized a forward pathsearch and did
not include the watchdog techniques of the current version were tested on these problems,
they tended to perform poorly from some of the start points considered. The stabilization
techniques have yielded the PATH solver results shown in Tables 6 and 7. These results were
achieved without the heuristic used in [19]: this heuristic has the effect of moving to a basis

for which both B-DIFF and the PATH solver have little difficulty.

5.4 A Non-Linear Program from Powell

In [33], Powell gives a nonlinear program containing 5 variables and three equality con-
straints. This problem can be expressed using inequalities by rewriting the 3 equality con-
straints as 6 inequalities. If the unbounded variables for this problem are split into their
positive and negative parts, then the KKT conditions for this modified problem can be
expressed as an NCP in 16 variables. However, if the MCP formulation is used, it is un-
necessary to modify the constraints or the variables; the MCP contains only 8 variables,
all of which are free, so that we have the special case of a system of non-linear equations.

28

Table 6: Josephy’s Problem

‘ algorithm ‘ start point ‘ major (minor) ‘ func / grad ‘ time ‘
PATH 0, 0,0, 0) 6 (7) T/ 7 08
PATH’ "o 6 (7) /7 .08
J-N non failed ()

B-DIFF fton 7

PATH L LD S (14) /9 | 12
PATH’ "o 4 (6) 5/5 .05
J-N T 4 (12) 5/5 | .06

B-DIFF fton 10

PATH (100, 100, 100, 100) 21 (30) 22 /22 .24
PATH" "o 10(12) | 11/11 | .10
JN "o 10(30) | 11/11 | .11

B-DIFF fton 15

PATH (1,0, 1, 0) 21 (19) | 25725 | 27
PATH’ "o 3(5) 4/ 4 .05
JN T 3 (9) 44|06

B-DIFF fton 7

PATH (1,0, 0, 0) 3 (4) 174 04
PATH’ "o 3(5) 4/ 4 04
JN T 3 (9) 4/ |05

B-DIFF fton 7

PATH 0,1, 1,0 17 (44) | 24/18 | 21
PATH’ "o 4 (6) 5/5 .06
J-N T 4 (12) 5/5 | .05

B-DIFF fton 9

29

Table 7: Kojima / Shindo’s Problem

| algorithm | start point | major (minor) | func / grad | time |

PatH | (0,0, 0, 0) 5 (6) 6/6 06

PATH’ "o 5 (6) 6/6 07

J-N non failed ()
NE/SQP "o 7

Patu | (1,1,1,1) 4 (6) 5/5 .04

PATH’ "o 4 (6) 5/5 .06

J-N "o 1 (12) 5/5 06
NE/SQP "o 7

More importantly, the smaller problem is not as sensitive to the choice of starting point, as
evidenced by the data in Table 8. The starting points given in Table 8 and 9 are the initial
values for the free variable x in the original minimization problem; all constraint multipliers
were initialized to zero.

Table 8: Powell’s NLP, NCP Formulation

| algorithm | start point | major (minor) | func / grad | time |
PATH | (2, 2,2, 1, 1) 9 (16) 0/10 | .62
JN $(122) | 9/9 84
PATH (%) | (3, 3, 3, 1, -1) 21 (101) | 35 /22 | 220
J-N (%) 5 (29) 6/6 | .26
PATH | (5,5, 5, 1, 1) 0(17) | 11/11 | .68
J-N (%) 6 (34) /7 .30

Table 9: Powell’s NLP, MCP Formulation

| algorithm | start point [major (minor) | func / grad | time |
PATH (-2,2,2,-1,-1) 8 (8) 9/9 19
PATH | (3, 3,3, 1, 1) () | 12/12 | 27
PATH | (-5, 5, 5, -1, 1) 9 (9) 0/10 | 22

30

In Table 8, the “(*)” indicates where an algorithm terminated in a solution to the NCP

which is known to be non-optimal for the source NLP. While the PATH solver did find a
false optimum when running on the NCP, the objective value was better than that found
by Josephy-Newton’s method when used with the same starting point. Note also that the
PATH solver terminated at the global optimum when run on the MCP model. While Harker
and Xiao [19] report computational experience using this problem, we have not included
their results here. We believe that the complementarity formulation they employed does not
accurately reflect Powell’s constraints, and that it is unlikely that their solutions correspond
to feasible points for the original problem.

5.5 The Hansen—Koopmans Problem

In [15], Hansen and Koopmans consider the problem of determining an invariant capital
stock. A capital stock is an investment of capital into various production processes for a
given period of time; this investment strategy determines what investments are possible
during the next time period and the utility earned during the current time period. The total
utility is a discounted sum of the utilities from each time period. An invariant capital stock
is an initial investment of capital which has the property that the discounted sum of the
utilities is maximumized when the initial capital stock remains unchanged during each of
the following time periods.

The PATH solver was tested on a 14-variable example taken from [15]; all the data in
Table 10 were obtained using a discount factor of & = 0.7 and the starting points indicated.
In addition, we have used a two-stage approach to test the PATH solver and the Josephy-
Newton method. First, the problem was solved with the lower bounds on six of the variables
set to e = le-05 instead of 0 to prevent function evaluation errors; the solution to this problem
was then used as an initial iterate for the original problem. This refinement step was done
at a cost of one major and one minor iteration; the solution to the modified problem was
close to that for the original.

Table 10: Hansen / Koopmans’ Problem

‘ algorithm ‘ start point ‘ major (minor) ‘ func / grad ‘ time ‘
PATH | (0.3,...,03,0,0,0,0) 16(35) | I18/18 | 54
J-N "o 16 (175) | 18 /18 | .79

NE/SQP "o 10
PATH | (05, ..., 05,0, 0,0, 0) 16(33) | 18/18 | 54
J-N "o 16 (175) | 18 /18 | .79
NE/SQP "o 1

31

5.6 A Traffic Assignment Model

In [2], Bertsekas and Gafni describe a traffic assignment problem and its formulation as a
NCP in 15 variables. However, this problem can be formulated more concisely as a MCP,
using only 5 variables. The problem is one of finding an equilibrium traffic flow between
five locations, subject to certain demand constraints. In Tables 11 and 12, we give results
comparing solver performance for both of these formulations. Notice that the results in
Table 12 are uniformly better than those of Table 11.

Table 11: Traffic Equilibrium, NCP Formulation

‘ algorithm ‘ start point ‘ major (minor) ‘ func / grad ‘ time ‘
PATH 0,0,....0) 1 (17) 5/5 | 21
JN "o 4 (55) 5/5 | .22

B-DIFF "on 4

PATH | (0.5, 05, ..., 0.5) 1(6) 575 | 21
J-N "o 4 (60) 5/5 | .21

B-DIFF fton)

PATH | (100, 100, ..., 100) 12(28) | 13/13 | 57
J-N "o 12 (150) | 13/13 | .68

Table 12: Traffic Equilibrium, MCP Formulation

| algorithm | start point | major (minor) | func / grad | time |
PATH 0,....0) 3 (6) 174 | 13
PATH demand / 0.5 3 (5) 4 /4 13
PATH demand 4 (11) 5/5 18
PATH | (100, 100, ..., 100) 1 (1) 5/5 13

5.7 Spatial Price Equilibriums

In [42], Tobin gives an example of a multi-commodity market modeled as a network. A type
of Nash equilibrium point for this market called a spatial price equilibrium (SPE) is sought.
At this equilibrium point, the market is in a steady state; no player will have a reason
to change prices or supply and demand levels. In this example, the prices are variables;
the supplies and demands are a function of the prices. The equilibrium conditions can be

32

formulated as an NCP in 42 variables. Interestingly, some of the linear subproblems which
arise when solving this model result in a cyclic pattern of bases. In dealing with this, the
stabilization techniques (particularly the savebest option) of the PATH solver are useful; the
minor iterations limit was set to 50 for these runs.

Table 13: Tobin’s SPE Problem

| algorithm | start point [major (minor) | func / grad | time |

PatH | (0, 0,...,0) 9 (13) 10/10 | .67
PATH’ "o 9 (43) 10 / 10 T
J-N o 9 (174) 10 / 10 1.50
B-DIFF o 16
NE/SQP "o 20
PaTH | (1, 1,..., 1) 17 (413) | 18/18 |13.14
PATH "o 9 (33) 10/10 | .56
J-N non 9 (170) | 10/10 | 1.41
B-DIFF o 15
NE/SQP "o 20

In another example of spatial competition, Harker [16] gives an example of an oligopolis-
tic market. In this market, the supplies and demands are the variables; these supplies and
demands determine the prices. As in the previous example, the conditions for a spatial price
equilibrium lead to an NCP, in 27 variables.

Table 14: Harker’s SPE Problem

| algorithm | start point | major (minor) | func / grad | time |

PATH | (0,0,...,0) 7 (34) 8/ 8 31
J-N "o 7 (185) 8 /8 1.28

B-DIFF non 10

PATH (L, 1,...,1) 5 (7) 6 /6 A7
J-N "o 5 (134) 6/6 97

B-DIFF non 10

5.8 A Cycling Example

In [34], Ralph gives an example of a NCP for which undamped Newton methods cycle; the
pathsearch damping does not suffer from this problem, however. The NCP is based on the

33

familiar example used to motivate linesearch damping for Newton methods for systems of
equations, where f(z) = tan~'(x). While Josephy-Newton’s method cycles between major
iterations for this problem, the PATH solver solves the problem in 33 major iterations. The
convergence in this case is achieved by setting the acceptable step length reduction factor
f = 0.99. The number of major iterations could be reduced by choosing parameter values
which result in more restrictive step length acceptance criteria, and an earlier application of
the pathsearch.

6 Conclusion

In this paper, we have introduced a novel nonmonotone stabilization technique for Newton’s
method as applied to nonsmooth equations and particularly to the normal map fg. Under
certain assumptions regarding the approximations to fg, we have shown in Section 3 that the
PaTH algorithm constructs a sequence of iterates which converges superlinearly or quadrat-
ically to a solution of the normal equation, thus demonstrating the theoretical effectiveness
of our method.

The computational results presented in Section 5 demonstrate the effectiveness of the
PATH solver in solving complementarity problems. In particular, the stabilization techniques
are shown to be effective in increasing the robustness of our method and eliminating the
divergence or cycling which might otherwise occur in some of the problems considered. Also,
the warm start makes use of the current solution estimate to decrease the number of pivot
steps necessary to solve the linear subproblems of the major iterations.

The GAMS model library we have formed has helped greatly in testing the PATH solver.
In the future, this library will be used to test solution techniques aiming to deal more
effectively with the rank-deficient case.

The authors wish to thank Danny Ralph for helptul comments regarding this paper.

References

[1] L. Armijo. Minimization of functions having Lipschitz-continuous first partial deriva-
tives. Pacific Journal on Mathematics, 16:1-3, 1966.

[2] D. P. Bertsekas and E. M. Gafni. Projection methods for variational inequalities with ap-
plication to the traffic assignment problem. Mathematical Programming Study, 17:139—
159, 1982.

[3] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The Scientific Press,
South San Francisco, CA, 1988.

[4] M. Cao and M. C. Ferris. A pivotal method for affine variational inequalities. Tech-
nical Report 1114, Computer Sciences Department, University of Wisconsin, Madison

Wisconsin 53706, October 1992.

34

[5] V. Chvatal. Linear Programming. W. H. Freeman and Company, New York, 1983.

[6] R. W. Cottle and G. B. Dantzig. Complementary pivot theory of mathematical pro-
gramming. Linear Algebra and its Applications, 1:103-125, 1968.

[7] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear FEquations. Prentice-Hall Series in Computational Mathematics.

Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1983.

[8] S. P. Dirkse and M. C. Ferris. Solving complementarity problems via GAMS: A model
library. Manuscript, 1993.

[9] S. P. Dirkse, M. C. Ferris, P. V. Preckel, and T. Rutherford. The GAMS callable

program library for variational and complementarity solvers. Manuscript.

[10] M. C. Ferris and S. Lucidi. Globally convergent methods for nonlinear equations. Tech-
nical Report 1030, Computer Sciences Department, University of Wisconsin, 1991.

[11] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.

[12] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for

Newton’s method. SIAM Journal of Numerical Analysis, 23:707-716, 1986.

[13] L. Grippo, F. Lampariello, and S. Lucidi. A class of nonmonotone stabilization methods
in unconstrained optimization. Numerische Mathematik, 59:779-805, 1991.

[14] S.-P. Han, J.-S. Pang, and N. Rangaraj. Globally convergent Newton methods for non-
smooth equations. Mathematics of Operations Research, 17(3):586-607, August 1992.

[15] T. Hansen and T. C. Koopmans. On the definition and computation of a capital stock
invariant under optimization. Journal of Economic Theory, 5:487-523, 1972.

[16] P. T. Harker. Alternative models of spatial competition. Operations Research, 34:410-
425, 1986.

[17] P. T. Harker. Accelerating the convergence of the diagonalization and projection al-
gorithms for finite-dimensional variational inequalities. Mathematical Programming,

41:29-59, 1988.

[18] P. T. Harker and J.-S. Pang. Finite-dimensional variational inequality and nonlinear
complementarity problems: A survey of theory, algorithms, and applications. Mathe-
matical Programming, 48(2):161-220, September 1990.

[19] P.T. Harker and B. Xiao. Newton’s method for the nonlinear complementarity problem:
A B-differentiable equation approach. Mathematical Programming, 48:339-357, October
1990.

35

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

30]

31]

32]

33]

[34]

P. M. J. Harris. Pivot selection methods of the Devex LP code. Mathematical Program-
ming, 5:1-28, 1973.

N. H. Josephy. Newton’s method for generalized equations. Technical Summary Re-
port 1965, Mathematics Research Center, University of Wisconsin—-Madison, Madison,
Wisconsin, 1979.

M. Kojima. Computational methods for solving the nonlinear complementarity problem.
Keio Engineering Reports, 27:1-41, 1974.

M. Kojima and S. Shindo. Extensions of Newton and quasi-Newton methods to systems
of PC! equations. Journal of Operations Research Sociely of Japan, 29:352-374, 1986.

C. E. Lemke. Bimatrix equilibrium points and mathematical programming. Manage-

ment Science, 11:681-689, 1965.

L. Mathiesen. An algorithm based on a sequence of linear complementarity problems
applied to a Walrasian equilibrium model: An example. Mathematical Programming,

37:1-18, 1987.

F. H. Murphy, H. D. Sherali, and A. L. Soyster. A mathematical programming approach
for determining oligopolistic market equilibrium. Mathematical Programming, 24:92—

106, 1982.

B. A. Murtagh and M. A. Saunders. MINOS 5.0 user’s guide. Technical Report SOL
83-20, Department of Operations Research, Stanford University, CA, 1983.

J. M. Ortega and W. C. Rheinbolt. [terative Solution of Nonlinear Equations in Several
Variables. Academic Press, 1970.

J.-S. Pang. Newton’s method for B—differentiable equations. Mathematics of Operations
Research, 15(2):311-341, May 1990.

J.-S. Pang and S. A. Gabriel. NE/SQP: A robust algorithm for the nonlinear comple-
mentarity problem. Mathematical Programming, 1993. to appear.

J.-S. Pang, S.-P. Han, and N. Rangaraj. Minimization of locally lipschitzian functions.
SIAM Journal on Optimization, 1(1):57-82, February 1991.

J.-5. Pang and L. Qi. Nonsmooth equations: Motivation and algorithms. SIAM Journal
on Optimization, 3(3):443-465, August 1993.

M. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher,
editor, Optimization, pages 283-298. Academic Press, London, 1969.

D. Ralph. Global convergence of damped Newton’s method for nonsmooth equations,
via the path search. Mathematics of Operations Research, 1993. to appear.

36

[35]

[36]

37]

38]

[39]

[40]

[41]

[42]

[43]

N. Rangaraj. Nonsmooth Optimization: Algorithms and Applications. PhD thesis,
Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD,
1990.

S. M. Robinson. Generalized equations and their solution: Part I: Basic theory. Math-
ematical Programming Study, 10:128-141, 1979.

S. M. Robinson. Strongly regular generalized equations. Mathematics of Operations
Research, 5(1):43-62, 1980.

S. M. Robinson. Local structure of feasible sets in nonlinear programming, Part III:
Stability and sensitivity. Mathematical Programming Study, 30:45—66, 1987.

S. M. Robinson. Newton’s method for a class of nonsmooth equations. Manuscript,
Department of Industrial Engineering, University of Wisconsin—-Madison, August 1988.

S. M. Robinson. Normal maps induced by linear transformations. Mathematics of

Operations Research, 17(3):691-714, August 1992.

H. E. Scarf. The Computation of Economic Equilibria. Yale University Press, New
Haven, Conneticut, 1973.

R. L. Tobin. A variable dimension solution approach for the general spatial equilibrium
problem. Mathematical Programming, 40:33-51, 1988.

R. B. Wilson. A Simplicial Algorithm for Concave Programming. PhD thesis, Graduate
School of Business Administration, Harvard University, Boston, MA, 1963.

37

