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Abstract

We presertt a collection of optimization frameworks for radiation treatment plan-
ning problemsin this thesis. Firstly, an automated treatment planning framework
is deweloped for the Gamma Knife madine, a specializedunit for the radiation
treatment of brain tumors. Nonlinear programsand a mixed integer program are
preserted to obtain treatment plans. Sincenoncorvex nonlinear programsdo not
guarartee global optimality, two techniquesare deweloped to enhancethe perfor-
manceof the optimization models by generatinginitial starting points. The rst
technique is a heuristic-basedapproad to nd an initial starting point for the
discrete variables of the nonlinear program (the isocerters of radiation dosesand
the collimator sizes.) This technique usesa variant of a spherepadking approad
combined with a Medial Axis Transformation, often usedin computer graphics. A
linear program is then solvedto nd the initial radiation exposuretime by xing
the valuesof the discretevariablesgeneratedby the above heuristic.

Sincethe amournt of data usedin the optimization is very large, an iterative
solution scheme for the nonlinear program is presered to speedup the solution
process. The optimization problem is rst solwed using uniformly sampleddata
points. The resulting solution becomesa starting point for the next optimization
processthat includesdata points previously ignored. The ertire treatment plan-
ning optimization processfor GammaKanife is fully automated by the conmbination
of thesesolution processesThis tool is currently in useat the Radiation Oncology

Departmert at the University of Maryland Scool of Medicine.



Secondly we presen an optimization framework for three-dimensionalcon-
formal radiation treatment planning problemsthat are commonly usedto treat
patients with cancerof the prostate, lung, and pancreas. Various optimization
models are deweloped for radiation treatment planning. We formulate an opti-
mization problem that simultaneously optimizes beam con gurations and beam
weights as a mixed integer program. Another optimization model includeswedge
Iters, which are often placedin front of the beamto produce a gradiert in the
beamintensity acrossthe aperture. We presern seeral techniquesto signi cantly
improve solution time of the model without degradingthe solution quality. We
alsodemonstratethat the quality of the dosedistribution can be signi cantly im-
proved by incorporating wedge Iters into the optimization. Using our algorithms,
both the use(or non-use)of a wedgeand the wedgeorientation are optimized. We
presen methods to cortrol the dosevolume histogram on organsimplicitly using
hot and cold spot cortrol parametersin the optimization model.

Finally, MATLAB routines are dewelopedto aid the designof treatment plans.
Theseinclude: (1) aMATLAB routine to generateappropriate dosematricesbased
on the beam's-ey-view approad, (2) a variety of GAMS optimization models to
solve problemshby selectingbeamangles,determining wedgeorientations, and the
beam intensities, and (3) a MATLAB routine to examine the quality of treat-
mert plans. We also provide a MATLAB program that enablesthe userto create

simulated organ structures.
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Chapter 1

Intro duction

The National Cancer Institute estimatesthat approximately 8.9 million Ameri-
canswith a history of cancerwere alive in 1997. Someof theseindividuals were
consideredcured, while others still had evidenceof cancerand many have been
undergoingtreatment. About 1,284,900hew cancercasesare expectedto be diag-
nosedin 2002. Since1990,about 16 million new cancercaseshave beendiagnosed.
This year about 555,500Americansare expectedto die of cancer,morethan 1,500
peoplea day. Canceris the secondeading causeof death in the US, exceedednly
by heart disease.In the US, one of ewvery four deathsis from cancer.

Treatmert options are determined by the type and stage of the cancerand
include surgery radiation therapy, chemotherapy, immunotherapy, etc. Often a
combination of thosetreatments is usedto obtain the best result.

Radiation is a special kind of energycarried by wavesor a stream of particles.
High doseradiation canbe usedto treat cancerand other illnesses.It canbe deliv-
eredfrom outside of the patient using special machines (teletherapy) or deposited
from radioactive substanceswithin the patient (brachytherapy). The useof high-
energyrays or particlesto treat diseasds called radiation therapy. Relatedterms
are radiotherapy, x-ray therapy, or irradiation. In teletherapy, special equipmert

is usedto aim the radiation at tumors or areasof the body wherethere is disease.



The radiation damagesthe DNA of the cellsin the areabeing treated, interfering
with their ability to divide and grow. Cancerouscells are unable to repair this
damageas quickly, sotheir growth is curtailed and the tumor shrinks. Although
somenormal cells are a ected by radiation, most normal cells appear to recover
more fully from the e ects of radiation than do cancercells. Radiation therapy
is usedto treat solid tumors, sud as cancersof the skin, brain, breast, prostate,
etc. It can attack cancercells both on the surfaceof the body or deep within.
It can be usedas the soleform of treatment, or in conjunction with surgery (to
shrink the tumor beforesurgery or to kill remaining cancercells after surgery) or
chemotheraypy.

This thesiswill considertechniquesto improve the delivery of radiation to pa-
tients using various forms of technology. The work descriked will concertrate on
using optimization approadesto improve the treatment planning process.Treat-
mert plansare dewelopedto limit the intensity and the areabeingtreated sothat
the cancerwill be a ected more than normal tissue. The objective of treatment
planning problemsis to cortrol the local tumor (target) volume by delivering a
uniform (homogeneous)ose of radiation while sparing the surrounding normal
and healthy tissue. A major challengein treatment planning is the presenceof
organs-at-risk (OARs). An OAR is a critical structure located very closeto the
target for which the doseof radiation must be sewerely constrained. This is be-
causeoverdosingwith radiation within the critical structure may lead to medical
complications. OAR is alsotermed as\sensitive structure™ or \critical structure"
in the literature.

There are two typesof radiation treatment planning process:forward planning



and inverseplanning. In forward planning, treatment plans are typically gener-
ated by a trial and error approad. An improved treatment plan is producedby a
sequenceof experimerts with di erent radiation beam con gurations in telether-
apy. Due to the complexity of the treatment planning problem, this process,in
general, is very tedious and time-consuming, and does not necessarilyproduce
\high-quality" treatment plans. Better strategiesfor obtaining treatment plans
are therefore desired. Due to signi cant advancesin modern technologiessud as
imaging technologiesand computer cortrol to aid the delivery of radiation, there
has been a signi cant move toward inversetreatment planning (it is also called
computer basedtreatment planning). In inversetreatment planning, an objective
function is de ned to measurethe goodness(quality) of a treatment plan. Two
typesof objective functions are often used: dose-basednodelsand radiobiological
models. The biological model arguesthat optimization should be basedon the
biological e ects resulting from the underlying dosedistributions. The treatment
objective is usually to maximize the tumor cortrol probability (TCP) while main-
taining the normal tissue complication probability (NTCP) to within acceptable
levels. Unfortunately, this type of objective function is not rigorously descriked in
the literature and henceit is currently not well suited to optimization approades.
The type of objective function we use throughout the thesis is basedsolely on
dose,in which adieving accurate dosedistributions are the main concern. The
biological aspect is implicitly givenin the physician's prescription.

The inverse treatment planning proceduresextend the scope of complexity
allowed in treatment planning problems from brachytherapy to external beam

therapy. Examplesof these more complex plans include conformal radiotherapy,



intensity modulated radiotherapy, and tomotherapy. Although many techniques
are available to produce treatment plans for ead type of radiation therapy, it
is important to note that all these problems share some commonalities. These
commonalitieslead to a notion of a \unied and automated treatment planning
process”. Potertial bene ts of the automated treatment planning processcan in-
cludethe reductionin planning time and improved uniformity of dosedistributions
of treatment plans. Another aspect is that, unlike the corvertional trial and er-
ror approad, the treatment quality obtained basedon the automated treatment
planning procedureshould depend lesson the experienceof the treatment planner.
Howewer, it shouldbe notedthat the treatment goalsmay vary from oneplannerto
another, from onepatient to the next. Thereforean automatedtreatment planning
proceduremust be able to self-adjustto thesechangesand accommalate di erent
treatment goals.

Typical requiremerts (goals) of radiation treatment planning include homo-
geneity, conformity, avoidane, and simplicity. A homogeneiy requiremern is to
irradiate tumor volume within the speci ed doselevels. It isimportant for a treat-
mert plan to have uniform dosedistributions on the target sothat cold spots can
be minimized. A cold spot is a portion of an organthat receivesunder its required
doselevel. On the other hand, the term hot spot is usedto denote a portion of
an organthat receivesmore than the desireddoselevel. This requiremen can be
enforcedusing lower and upper boundson the dose,or approximated using penal-
ization. A conformity requiremen is usedto achieve the target dosecortrol while
minimizing the damageto OARs or healthy normal structure. It can be stated as

total radiation dosedeposited on the target must be at least a speci ed fraction



of the overall doseusedfor the treatment. As we mertioned earlier, a great di -
culty of producing radiation treatment plans is the proximity betweenthe target
and OARs. Often acceptabledoselevels of theserequiremerts are establishedby
various professionaland advisory groups. An avoidancerequiremer can be used
to limit the dosedeliveredto OARs. Finally, simplicity requiremerts state that a
treatment plan should be as simple as possible. Simple treatment plans typically
reducethe treatment time aswell asimplemertation error.

Optimization technigues have becomepopular in designing these treatment
plans automatically. Various treatment goalscan be formulated in optimization
models. Useful optimization methods are linear programming [78, 55, nonlinear
programming [50], mixed integer programming [57], and dynamic programming
[3].

In optimization, the three-dimensionalolumeis represeied by a grid of voxels.
Thereareseeral inputs requiredin optimization approadesin radiation treatment
planning. The rst input describesthe madinethat deliversradiation. The second
and troublesomeinput is the dosedistribution of a particular treatment problem.
A dosedistribution consistsof dosecortribution to ead voxel of the region of
interest from a radiation source.It canbe expresseds a functional form or a set
of data. Howeer, di culties of usingsud distributions include high nonlinearity of
the functional form or the largeamourt of data that speci es the dosedistribution
This problem needsto be overcomein a desirableautomated treatment planning
tool. The third commoninput is the setof organgeometrieshat are of interest to
the physician. Further commoninputs are the desireddoselevels for ead organ

of interest. These are typically provided by physicians. Other types of inputs



can also be speci ed depending on the treatment planning problems. Howewer,
a desirable automated treatment planning tool should be able to generatehigh
quality treatment plans with minimum additional inputs and human guidance.

Therefore, the goal of this thesis is to provide practitioners with a uni ed
and fully automated radiation treatment planning framework in the cortext of
optimization. In this framework, we provide robust optimization modelsfor vari-
oustreatment planning problemsthat can be easily incorporated into automated
treatment planning tools. The secondcomponert of the framework is the ability
to quickly produce high quality treatment plansfrom the resulting large-scaleop-
timization problems. The third componert is its reliability in obtaining clinically
acceptabletreatment plansfor various goalsand typesof treatment problems. Fi-
nally, we dewelop software that can be usedto experiemen with various models
and algorithms for radiation treatment planning.

Howewer, optimization in radiation therapy is too wide to addresscompletely
Hence, we have selectedse\eral problems that have practical relevance and for
which a worthwhile cortribution to the existing literature seemgpossible. Most of
the work presened in the next chaptersis basedon working papers by the author
and collaborators that have appearedor will appearin the literature [27, 28, 48].
We considertwo types of radiation delivery medanism in this thesis. The rst
systemis Gamma Knife madine that is designedfor treating brain tumors. We
give a general problem description of the Gamma Knife radiosurgery planning
problemin Sectionl.1. The secondradiation delivery systemis an X-ray therapy
madine that is designedfor treating tumors located anywhere in the body. An

introduction to conformal radiation treatment planning problem is discussedin



Figure 1. A collimator: A shot of radiation is formed at the intersection of 201
beams

Sectionl1.2.

1.1 Gamma Knife Radiosurgery Treatmen t Plan-

ning Problem

The GammaKnife is a highly specializedtreatment unit that providesan advanced
stereotacticapproad to the treatment of tumor and vascularmalformationswithin

the head[32. The Gamma Knife delivers a single, high doseof gammaray em-
anating from 201 Cobalt-60 unit sources(Figure 1). Inside a shieldedtreatment
unit, beamsfrom 201 cobalt-60 radioactive sourcesare focusedsothat they inter-
sectat a certain point in space,producing a ellipsoidal region of high radiation

dosereferredto asa shot



(a) Frame Fixation (b) MRI or CT Scan

(c) Treatment Planning (d) Radiation Delivery

Figure 2: GammaKnife Treatmert Procedure



A brief history: In 1968, ProfessorLars Leskell of the Karolinska Institute in
Stockholm, Swedenand ProfessorBorge Larsson of the Gustaf Werner Institute
at the University of Uppsala, Swedendeweloped the Gamma Knife. As far badk
asthe 1940's,Leslkell recognizedthe needfor an instrument to target deep-seated
intracranial structures without the risks of invasive open skull surgery Currently,

there are about 200 Gamma Knife madinesworldwide.

Treatmen t Pro cedure: GammakKnife Radiosurgerybeginsby nding the loca-
tion and the sizeof the tumor. After administering local anesthesiaa stereotactic
coordinate head frame is xed to the patient's head using adjustable posts and
xation screws(Figure 2(a)). This frame establishesa coordinate frame within
which the target location is known preciselyand senesto immobilize the patients
headwithin an attachedfocusinghelmetduring the treatment. An \magnetic reso-
nanceimaging” (MRI) or \computed tomography" (CT) scanis usedto determine
the position of the treatment volumein relation to the coordinates determined by
the head frame (Figure 2(b)). Once the location and the volume of the tumor
are iderti ed, the neurosurgeonthe radiation oncologist,and the physicist work
together in order to dewelop the patient's treatment plan (Figure 2(c)). Multiple
shots are often usedin a treatment usinga Gamma Knife due to the irregularity
and sizeof tumor shapesand the fact that the focusinghelmetsare only available
in four sizes(4, 8, 14 and 18mm). Figure 2(d) shaws a patient with a collimator
attached to the headfor the treatment.

The determination of plansvariessubstartially in di cult y. For example,some

tumors are small enoughto apply oneshot of radiation. On the other hand, when
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the tumor is large or has an irregular shape or is closeto a sensitive structure,
many shotsof di erent sizescould be neededo achieve appropriate coverageof the
tumor while sparing the surrounding tissue. The treatment planning processcan
be very tediousand time consumingand dueto the variety of con icting objectives,
the quality of treatment plan produced dependsheavily on the experienceof the
user. Therefore,a uni ed and fully automated GammaKnife treatment processis
desired. Further descriptionof the treatment processalongwith someexplanatory

gures can be found in [30].

Treatmen t Goal: The plan aimsto deliver a high doseof radiation to the in-
tracranial target volumewith minimum damageto the surrounding normal tissue.
The treatment goalscan vary from one neurosurgeonto the next, so a planning
tool must be able to accommalate se\eral di erent requiremerts. Among these
requiremerts, the following aretypical, although the level of treatment and impor-

tance of eath may vary.

1. A complete 50% isodose line coverage of the target volume. This means
that the complete target must be covered by a dosethat has intensity at
least 50% of the maximum delivered dosage. This can be thought of as a

\homogeneity" requiremen.

2. To minimize the nontarget volume that is covered by a shot or the series
of delivered shots. This requiremen is clear and can be thought of as a

\conformity" requiremen.

3. Tolimit the amourt of dosagehat is deliveredto certain sensitive structures
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closeto the target. Sud requiremens can be thought of as \avoidance"

requiremers.

In addition to theserequiremerts, it is also preferableto use a small number of
shotsto limit the treatment times and thus increasethe number of patients that

can be treated.

1.2 Conformal Radiation Treatment Planning

Radiation Types for Cancer treatmen t: Common radiation typesfor can-
cer treatment are X-rays and proton These particles all have somewhatdi erent
biological e ects on cells.

At presen, the most commonradiotherapy treatment useshigh-energyx rays.
Shaped beamsof x rays are directed toward the patient (Figure 3). The beams
passthrough the patient, undergoingnear-exmnertial attenuation asthey interact
with tissues,and deposit dosealong the way. (The strength or doseof radiation
is characterizedby the energyimparted per unit mass. The unit of doseis the
gray; 1 Gy = 1J/kg.) It isthe interactions of secondaryelectrons,setlooseby the
primary interactions of the x rays, that are the dominarnt causeof the molecular
disruptions that ewvertually leadto cell death.

Protons di er from high-energyx rays in that they can deliver radiation dose
up to an energy-de@nden depth, and virtually none beyond it, whereasx rays

cortinue to penetrate with near-exmnertially decreasingntensity.
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Figure 3. An X-ray therapy madine
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E ect of Radiation in Cancer Treatmen t: Radiation cancauseseriousdam-
ageto organ cells. Secondaryelectronscreate highly reactive radicalsin the intra-
cellular material. The radicals can chemically break bondsin the cellular DNA.
This damagecausesboth the malignart cells and the normal cellsto lose their
ability to reproduce. The higher the dose,the greater the probability of killing
cells.

There are two main strategiesfor normal tissuesand organsto cortinue to
function after atreatment with radiation. The rst relieson a subtle but favorable
di erence betweenthe radiation response of normal and malignart cells. That
di erence can be exploited to presene the normal cellsthat permeatethe tumor
and the nearly tissuesthat are included in the target volume (that is, the region
that includesdemonstrablediseasepossiblesub-clinical extensionof that disease,
delineation of which dependson the treatment plan; and a safety margin for organ
and patient motion and technical uncertairties).

To further the bene cial dierence, doseis usually delivered in small daily
fractions; this strategy, ascomparedwith single-doseadiation delivery, is generally
thought to improve the therapeutic advantage substartially. Consequetly, in
convertional radiotherapy, from 20 to 30 daily fractions of approximately 2 Gy
ead are delivered. Thesefractions are typically deliveredoncea day, with a two-
day weelend break, sothat a courseof radiotherapy will typically last from four
to six weeks. If a personis given 4 to 6 Gy at onetime for the treatment period,
it could be fatal.

The secondstrategy for minimizing morbidity is to reducethe dosedelivered

to normal tissuesthat are spatially well separatedfrom the tumor. This can be
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centimeters
centimeters

4 8 12 16 20 4 8 12 16 20
centimeters centimeters
(a) SingleBeam: Tissueon top receivessig- (b) Five Beams: a hot spot is formed by
nicant dose v e beams

Figure 4. E ect of Multiple Beams

doneby using multiple beamsfrom di erent angles.

E ect of Multiple Beams: A singleradiation beamleadsto a higher dosede-
liveredto the tissuesin front of the tumor than to the tumor itself. In consequence,
if onewereto give a dosesu cient to cortrol the tumor with a reasonablyhigh
probability, the doseto the upstream tissueswould likely lead to unacceptable
morbidity. A single beam would only be usedfor very super cial tumors, where
there is little upstream normal tissue to damageand the skin-sparing properties
of x rays help. For deeger tumors, one usesmultiple cross- ring beamsdelivered
within minutes of oneanother: All encompasshe tumor, but successig beamsare
directed toward the patient from di erent directions to traversedi erent tissues
outside the target volume. The delivery of cross- ring beamsis greatly facili-

tated by mounting the radiation-producing equipmer on a garry, as illustrated
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Figure 5: A multileaf collimator

in Figure 3.

Multiply directed beamsnoticeably changethe distribution of dose,as s il-
lustrated in Figure 4. As a result, doseoutside the target volume can often be
quite tolerable even when doselevelswithin the target volume are high enoughto

provide a substartial probability of tumor cortrol.

Beam Shape Generation and Collimator: Radiation treatments are typi-
cally delivered using a linear accelerator, Figure 3, with a multileaf collimator,
Figure 5, housedin the headof the treatment unit. The leavesof the multileaf col-
limator are computer cortrolled and can be movedto the appropriate positionsto
createthe desiredbeamshape. From ead beamangle,three-dimensionalanatom-
ical information is usedto shape the beam of radiation to match the shape of the
tumor. Given a gartry angle, the view on the tumor that the beam sourcecan

seethrough the multileaf collimator is called the beams-eye-viewof the target [34].
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This beams-eg-view (BEV) approad ensuresadequateirradiation of the tumor
while reducingthe doseto normal tissue. Other researt focuseson usingdi erent
con gurations of the collimator leaves. While this can be incorporated into our

system,we assumethroughout this thesisthat the beams-eg-viewis used.

Wedge Filters:  The quality of the dosedistribution can be improved by incor-
porating a wedge Iter into one or more of the treatment beams. This metallic
wedgevariesthe intensity of the radiation in a linear fashionfrom oneside of the
radiation eld to the other. Wedge Iters are particularly usefulin compensat-
ing for a curved patient surface, which is particularly commonin breast cancer

treatments.

Treatmen t pro cedure

1. The patient is immobilized in anindividual castsothat the location of treat-

mert regionremainsthe samefor the rest of treatment process.

2. A CT scanis performedwith the patient in the cast to identify the three-

dimensionalshapesof organsof interest.

3. Conformal treatment plans are generatedusing the organ geometries.

4. Treatmerts are performed5 times a weekfor 4 to 5 weeks.

Treatmen t Goal To beclinically useful,atool must be safeand e cient. Three
requiremers for the treatment plan are discussedin Section 1.1: homaeneity,

conformity, and avoidane.
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The goal in conformal radiation therapy is to provide a high probability of
tumor cortrol while minimizing the damageto the normal tissue. This is accom-
plished by cross- ring beamsof radiation from a number of beam directions. A
dosimetrist usesa trial-and-error approad to determine how many beamsof ra-
diation are needed,which beam anglesare optimal, and what weight should be
assignedto eat beam. The dosimetrist also needsto determine when a wedge
Iter is appropriate, the orientation of ead wedge,and the weights to be assigned
to the wedgedand non-wedgedbeams. Hence,an optimization model should in-
clude asvariables: a set of multiple beam angles,walgeorientations, and the beam
intensities correspnding to pairs of beam anglesand wedgeorientations.

Dose-wlumecortrol on organsbecomessery important for treatment planners.
The goal of dose-wlume cortrol is to keepthe integrated dose(by active beams)
of a voxel as closeto the prescribed doselevel as possible. Often, an acceptable
treatment plan requiresthat nearly all voxels of the target volume are covered
with dosagesbetween typical values of 95% and 107% of the prescribed dose,
and majority of the organs-at-risk(OAR) should receiwe lessthan oar % of the
prescribed dose,where oar is suggesteddy the physician. The valueof oar can
be di erent depending on the type of organ. At the sametime, the integral dose

on the normal tissue should be as small as possible.
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1.3 Outline of the Thesis

We give an overview of the cortents of this thesis. The key theme of this thesis
is optimization in radiation treatment planning. In Chapter 2 we discussopti-
mization models for the Gamma Knife radiosurgerytreatment planning problem.
A new dosedistribution is presened to approximate the e ect of radiation dose
as a function of distancefrom the isocerter (certers of shot locations). Nonlinear
programsare preserted to obtain treatment plans. Due to the fact that the dose
delivery madchine does not accept cortinuous coordinates of isocerters, a mixed
integer linear programis usedto nd the treatment plan after rounding/ xing the
cortinuouscoordinatesto their nearestdiscreteisocerters. The nonlinearprograms
not only require initial starting points, but do not guarartee global optimality. In
fact, they may have many local solutions, some of which are closeto a global
optimal solution, and others may be far o from it. Two techniques are dewel-
oped in Chapter 3 to enhancethe optimization model dewloped in Chapter 2.
First, a three-dimensionalskeleton-basedheuristic approad is deweloped to gen-
erate an initial starting solution for the isocerters and their correspnding shot
sizes. A linear program is solved to nd the initial radiation exposuretime by
xing the valuesof the discrete variables given by the heuristic. Secondly an it-
erative solution schemefor nonlinear program is presetted. Sincethe amount of
data usedin the optimization is solarge, the optimization problemis rst solved
using uniformly sampleddata points to speedup the solution process.In general,
the amount of data usedin the rst optimization processconsistsof about 13% of

the original data. The resulting solution becomesa starting solution for the next
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optimization processwith data points previously ignored. The ertire treatment
planning optimization processfor Gamma Knife madine is fully automated.

In Chapter 4, we presett optimization modelsfor conformalradiotherapy prob-
lem using linear, quadratic, and mixed integer programming. We simultaneously
optimize three key optimization parameters(beamangles,wedgeorientations, and
beam weights). Sincethe optimization models are large-scale se\eral techniques
are addressedto nd solutions quickly. We rst shav how to reducethe solu-
tion spaceby adding a constrairnt using an input parameter. Secondly a uniform
sampling approad is usedto reducedata points on the normal tissue. Finally,
an iterative sthemeis usedto further improve the solution time. In addition,
the optimization models implicitly enforce dose-wlume constrairnts discussedin
Section1.2.

To complete the thesis, we dewelop optimization tools and ervironmernts for
radiation treatment planning in Chapter 5. Various GAMS models for optimiz-
ing radiation treatment are deweloped. Basedon MATLAB ervironmert, a rou-
tine is provided to generatenecessarydata for the optimization models using the
MATLAB/C interface. MATLAB routines are deweloped to plot the dose-wlume
histogram, and to draw di erent shapes of structures for experiems. Finally, we

concludethis thesiswith a summaryin Chapter 6.
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Chapter 2

Optimization Mo dels for Gamma
Knife Radiosurgery Treatmen t

Planning

2.1 Intro duction

We considertreatment planning for a specialized device known as the Gamma
Knife descrited in Section 1.1 (seeFigure 6.) The approad for treatment plan-
ning that will be usedhereis basedon an optimization model of the physical sys-
tem. Three characteristicsareimportant in the optimization techniquefor Gamma
Knife treatment planning: speed, exibility , and robustness A fast treatment plan
is desiredprimarily for patient comfort. The systemmust be exible becausethe
treatment goalsvary from patient to patient and neurosurgeonto neurosurgeon.
The systemalsomust be robust sothat it producesa high quality solution regard-
lessof the sizeand the shape of the target volume. The solution producedby the
optimization must also be practical and implemertable.

We assumethroughout this chapter that the number of shots that will be

deliveredis speci ed to the optimization tool. While other approadhesmay try to
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Figure 6: Gamma Knife treatment unit: The patient lies on the coud and is
moved badk into the shieldedtreatment area

minimize this number, it is typically straightforward to estimate this number and
then dewelopa plan to optimize other important featuresfor the treatment. In the

model we propose,there are three typesof decisionvariables:

1. A setof coordinates(Xs;Ys; Zs): for ead shot the position of the shot certers

iSs a continuous variable to be chosen.

2. A discrete set of collimator sizesw 2 W: currently four di erent sizesof fo-

cusinghelmetsare available (4mm, 8mm, 14mm, 18mm), W 2 f4;8; 14; 18g.

3. Radiation expsure time: the dosedeliveredis a linear function of the expo-

suretime.

The remainder of this chapter is organizedas follows. A new dosemodel is
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descriled that allows the shots to be modeled as ellipsoids, along with a new
conformity estimation problem and a cortinuation approad to solve the nonlinear
program. Section2.3 reviewsexisting optimization approadesfor solving Gamma
Knife radiosurgerytreatment planning. We introduce an optimization approad

using nonlinear programmingin Section2.4.

2.2 Dose Distribution Mo dels

2.2.1 Existing dose distribution models

The rst stepin building a treatment planning tool is to model the dosedelivered
to the patient by a given shot that is certered at a given location. One approac
assumeghat a shot is approximately spherical [9, 20, 79, 80, 86, 87, 8§]. This
assumption makes the problem easierto solve. Howewer, more realistic model
of dosedelivered to a location emanating from a certer of a shot has ellipsoidal
contours. Monte Carlo simulation techniquesfor the nonlinear dose model have
beencommonly usedin practice [18, 90].

Cho et al [20] presen the following sphericaldosemodel. Let x be the distance
from the isocerter of a dosesphere,r be a measureof the radius of the sphere,
( z) be a step function where ( z) = 1;if jzj 1=2, zerootherwise,and h(x) be
a dosespreadcorvolution kernel. Then, the radial dosedistribution for x can be

expresseds

90x) = oo h: (21)
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The asteriskin (2.1) denotesconvolution sud that, assuminga Gaussian t,

1 x?2
2.2)
g(x) = 1 erf X*T erf X" :

wherethe notation erf () represets the integral of the standard normal distribu-

tion from 1 to Xx..

2.2.2 A new dose distribution model

The complete dosedistribution can be calculated as a sum of cortributions from
eadt shotdelivered,oncethe location of the certer of that shot (Xs; Ys; Zs) is known,

and the length of time of delivery tq., is known. In practice this meansthat for all

(i; J; k) «
Dosd(i; j; k) = tswDw(Xs; ¥s: Zs: 5 J; K); (2.3)

(s;w)2s W

where D, (Xs; Ys; Zs; I; J; K) is the dosedeliveredto the voxel (i; j; k) by the shot of
width w certered at (Xs;Vs; Zs)-

Our dosemodel is basedon [30]. They simulated the delivery of a shot of
width w 2 W, certered at the middle of the head of a previously scannedpatient
on the Gamma Knife. For ead shot width, they determined the dosedelivered
in the x, y and z directions at given distancesfrom the certer of the shot from
the simulation. The three valueswere then averagedto give a value of dose(for
ead width of shot) at a particular distancefrom the certer. Howeer, we obsened
that the actual dosedelivered was ellipsoidal in nature rather than spherical, so

we determinedthe principal axesand measuredthe valuesof doseD,, alongthem.
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In practice, the axis location dependedon whether the patient waslying prone or
supine,and thus we rotate the target soits coordinate axeslie alongthe ellipsoid's
principal axesin either case.

The problem is thus reducedto determining a functional form for the dose
delivered at a voxel (i; j; k) from the shot certered at (Xs;VYs; Zs). A sum of error
functions has beennoted in the literature to approximate this dosedistribution

[20, 41]. We therefore usedthe following functional form

DW(Xs;ys;és;i; i k)0=q

X2 i Xs)2+ Y(i D2+ 2(k z)?
@ i@ (i x)2+ o ys)*+ §( )

p=1 P

11
'p
AA (2.9)

and t the ten parameters ,, ¥, 7, pand ; to the data described above via

least-squareswith di erent valuesfor ead shot width. The resulting nonlinear

optimization problem

0 , D I 1,
2
DX (i) C1 e U X0 T
p:]_ p p ”
X2 V(i 2
min.., . DY(j) o 1 erf oY) T
I 09 Tp)z 11
)@ z Z r
DZ (k) @ erf@ " 7 "AA
p=1 P

was solved using CONOPT. Thesevalueswerethen xed in the nonlinear models

usedin the remainder of this thesis.
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2.3 Existing Optimization Approac hes

A number of researtiers have studied techniques for solving the Gamma Knife
treatment planning optimization [49, 87]. One approad incorporatesthe assump-
tion that ead shot of radiation can be modeledas a sphere. The problemis then
reducedto one of geometriccoverage,and a ball packing approad [74, 80, 87] can
be usedto determinethe shot locations and sizes. The useof a modi ed Powell's
method in conjunction with simulated annealinghas beenproposed[49, 93]. The
paper [71] presens a simulated annealingapproad incorporating a quasi-Newton
method. A mixed integer programming and a nonlinear programming approad
for the problem is presened in [30, 68. We briey review someof the existing

optimization approadesin this section.

Sphere Packing Under the assumptionthat a shot is a non-elastic, solid 3D
sphere,the paper [80] preserts an optimization of padking unequal spheresinto
a three-dimensionalbounded region in connection with radiosurgical treatment
planning. Given an input (R;V;S;L), where R is a 3D bounded region, V a
positive integer, S a multiset of spheres,and L a location constraint on spheres,
we want to nd a padking of R using the minimum number of spheresin S sud
that the coveredvolumeis at leastV, the location constrairt L is satis ed; and the
number of points on the boundary of R that are touched by spheress maximized.
Wang [80] shaws that not only nding an optimal solution to the problem is
computationally intractable, but also optimization of the related problemsis NP-

hard. Therefore,somesort of approximation is needed. The paper [80] proposes
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Figure 7: SpherePadking Example in 2D: three circles cover inside of the target
region assumingthat a shot of radiation forms a circle

an improved approad to [9, 88] under the assumptionthat spheresof arbitrary di-

ametersare available with unlimited supply, and there are no location constrairts.

Dynamic Programming  Dynamic Programming has beenusedto determine
the number of shots, shot certer locations and their sizesunder the assumption
that a shotis a sphere[9, 80, 87, 88]. Thereforethe dosecalculation is eliminated
by nding the geometricalcoverage. Supposewe apply a sequencef shotsto the
target area. It meansthat we determinethe rst shot location and its size,then
apply the shot to the target area. The secondshot location and and its sizeis
determinedon the remainingtarget area,then apply the secondshot to the target
area. This processcortinuesuntil ertire target areais coveredwithin a tolerance.
This is the main ideaof usingDynamic Programming method. Wereviewthe paper
[9]. By assuminga shot is approximately sphere,they nd geometriccoverageof a
region using sphereswithout overlapping. A skeleton-basedmethod is used. The

justi cation of using this method is that dosimetric coverageis normally wider
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than the geometricalcoverage. The dosedistribution of a shotis not a simple step
function with zerodoseoutside and positive doseinside of the coverage. There is
nite dosedeliveredto outsideof the geometricalcoverage.For anirregular shaped
target, the optimizer will prefer small shotsto match the external boundary. This
will result in an impractical solution to the treatment planning. Therefore, the
number of shots to use must be included in the optimization parameter. They

assumethat an optimal plan should:

1. cover the ertire target regionto within the tolerance
2. usethe least number of shots possibleand,

3. con ne all of the shotsinside the target and without overlap.

Simulated Annealing Simulated annealinghasbeenwidely usedbecauseof its
simplicity aswell asthe possibility of nding a global solution [4, 49, 54, 65, 71,
77, 94). We review an examplein the paper [71]. At rst, the dosedistribution
is calculated. The optimization technique comprisestwo steps. First, the cortinu-
ous parameters(position and weights of shots) are optimized using quasi-Newton
method. The result obtained at the end of this step senesas the initial con g-
uration for the next optimization step. Due to the fact that the quasi-Newton
method can only be applied to optimize the cortinuous variables, simulated an-
nealing method is usedto optimize the discretevariablessud as number of shots
and collimator sizes,aswell asthe cortinuousvariables.

After a set of parametersand a cost function are de ned according to the
meaningof a \good plan” in real clinical practice, a simulated annealingmethod

is applied as follows:
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1. The temperature T is decreasedslover than 1=In(n). This ensuresthat the

solution can cornvergeto the global minimum.

2. The isocerter location, shot sizeand the shot weights are randomly modi ed
with positive or negative step size. Di erent step sizesare usedfor di erent
parameters. Assumptionsare made sothat the collimator sizeand the shot
weights cannot be negative, and the isocerter location hasto be within the

target.

3. A shot location will be randomly added or removed. By doing this, if the
new cost value is reduced, the new con guration is accepted,or accepted
with the Metropolis rule. When there is only one shot location, removal
cannot occur. By the sametoken, if there are more shot locations than the

pre xed maximum number of shots, additions cannot occur.

4. The optimization processis stopped if the nal temperature is readed, or

the costvalue has not beenchangedfor three di erent temperatures.

Mixed Integer Programming  Mixed Integer Programming (MIP) technique
hasbeenpreserted in [30, 44]to solve the GammaKnife treatment planning prob-
lem. The paper [30] preserts an optimization model for solving Gamma Knife
radiosurgery treatment planning optimization problem using a large-scalemixed
integer programming. They restrict the shotlocationsto be within the target area.
Binary variablesare usedto indicate if a pair of (shot location, shot size)is used
or not. They alsoimposea constrairt to limit the number of shotsto usewithin

the given maximum number of shots.



29

Solving the optimization problem using MIP is very dicult becauseof its
enormoussolution space. They proposesomeheuristics to reducethe size of the
solution space. Howeer, becauseof the large amourt of data and many integer
variables,the resulting constrainedproblemis impractical for mediumto largesize

of problems.

Summary

Sometechniqueshave the capability of nding the global optimal solution to our
problem: spherepading (SP), simulated annealing(SA), and mixed integer pro-
gramming (MIP). Howewer, those methods are generally impractical becauseof
their running time to solve the problem.

The spherepadking method is provento be NP-hard. In addition, someprob-
lemsrelated to this technique are alsoprovento be NP-hard. A problemwith the
Dynamic Programming schemediscussedn the previoussectionis that it assumes
a fairly regular tumor shape. Another problem is that lots of small shotswill be
usedto Il up the gap betweenshots. Someother method should be incorporated
to optimize a generalshape of tumor. Tednically, Simulated annealing can nd
the global solution to our problem within sometolerance. Howeer, it is hard to
enforcethe uniformity constrairts. While MIP nds a global optimal solution, a
major drawbadk of using MIP is that it generatesenormousamourt of data for
the problem. As a result, it doesnot nd an optimal solution within the time

available.
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2.4 Optimization Mo dels

Nonlinear optimization techniqueshave beenproposedby seeralreseartiers: Non-
linear programmingapproad [30, 68|, Modi ed Powell's method [7(], and a Quasi-
Newton method [71].

NLP is a exible method to formulate the optimization problem. In general,
it nds solutions faster than other techniques. A drawbad is that the solution
to a nonlinear and noncorvex problem is not guararteed to be globally optimal.
In fact, there may be many local minima to our optimization problem. Howeer,
with robust modeling techniquesand good starting point generationtechniques,
NLP canbe a very powerful approad to our optimization problem. Theseare the

topics in the remainderof Chapters 2 and 3 respectively.

2.4.1 Original form ulation

We considera nonlinear programmingapproad for solvingthe treatment planning
problem. The input to the nonlinear program consistsof seweral piecesof informa-
tion, namely the number of shotsthat are to be used,the widths of shotsthat are
consideredappropriate for the target volume, the required isodoselevel and the
target volumeitself. The initial locations of the shotsare placedrandomly within
the target, and the initial levelsfor the exposuretime are xed appropriately.
Giventhe shot locationsand exposuretime, the dosedistribution for ead shot
at a given voxel (volume elemert) on a three dimensionalgrid is calculated based
on the ellipsoidal algebraicmodel outlined in Section2.2.2. It is assumedhat the

dosemodel doesnot changedue to movemernt of the shot certer.
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Once a description of the doseis determined, the optimization model can be
formulated. The basic optimization problem is to determine a set of coordinates
(Xs; ¥s; Zs) of shotcerter locations,a discrete setof collimator sizesw, and radiation
exmsure times ts.,. The basic variables of the optimization we considerinclude
the coordinates of the certer location of the shot (Xs; Ys; zs), the width of the shot
w, and the time t.,, that eat shotis exposed. In practice, we considera grid G of
voxels. There are two typesof voxels: T represets the subsetof voxels that are
within the target and N represeis the subsetof voxelsthat are out of the target.
Sincethe number of voxels out of the target is vast, we typically usejust a small

subsetof them, generatedcloseto the target volume or in a sensitive structure.

Isodose line coverage. Neurosurgeongommonlyuseisodosecurvesasa means
of judging the homogeneiy of a treatment plan. The 50%isodosecurve is a curve
that encompasseall of the voxelsthat receiwe at least50%of that maximum dose
that is deliveredto any voxel in the patient. A treatment plan is normally consid-
eredacceptableif a certain percertage isodosecurve (typically 50%) encompasses
the tumor. We model sud a constraint by imposingstrict lower and upper bounds

on the doseallowed in the target, namelyfor all (i;j; k) 2 T

Dosqi; j; k) 1 (2.5)
In this way, the 100 % isodosecurve is guararteed to cover the target. Other

isodosecurvescan be generatedby simply modifying the numerical value .

Choosing shot widths. The number of shotsto be usedis given to the op-

timization model, and the location of the shot certer is chosenby a cortinuous
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optimization process.Choosingthe particular shot width at ead shot location is

a discreteoptimization problemthat is treated by approximating the step function

8

E 1 ift>0
H(t) =

.E 0 ift=0

by a nonlinear function,

H(t) H (t) = 22can(t)

For increasingvaluesof ,H becomesa closerapproximation to the stepfunction
H. This processis typically called smoothing.

The set of shot widths for a given number of shotsn is chosenby imposingthe
constrairt:

X
n= H (tow): (2.6)

(s;w)2f 1;::5ng W

This statesthat the total number of shot/width combinations that are to be used
is n. In practice, we solve a sequenceof models, eat time increasingthe value
of to improve the approximation. Note that the optimization may place two
shotsof di erent widths at the samelocation, and hencenoneat another location.
Typically, we relax the requiremen for exactly n shot/widths, and insteadimpose
a range constraint forcing lower and upper bounds on the number of shot/width
combinations.

We have tested seweral optimization formulations. The most obvious model is

to minimize the doseoutside of the target subject to a constraint on the minimum
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isodoseline that must surround the target:

X
min Dos(i; j; k)
(isjsk )2N
X
subject to Dosd(i; j; k) = tewDw(Xs; Vs Zs; I} j; K)
(s;W)2S W
Dosei;j; k) 1 8(i;j;k)2T (2.7)
X
n= H (tS;W)
(s;w)2f 1;:5ng W
tsw O:

The most critical problem is that due to the large number of voxels that are
neededwhen dealing with large irregular tumors (both within and outside of the
target) the computational time to complete this treatment plan is too long. To
make the solution processfaster, we can remove a large number of the non-target
voxels from the model. While this improves computational time, this typically
weakensthe conformity of the doseto the target.

Beforewe introducea more practical optimization model we seekto solve (dis-
cussedin Section2.4.3), a conformity estimation model is presenied in the next

sectionto estimate an input parameterfor the optimization model.

2.4.2 Conformit y estimation model

As mertioned in Section 1.1, a conformal solution is one of the requiremerts of
treatment plans. The conformity of the plan is hard to deal with sinceit involves
voxels outside of the target, of which there may be many. Furthermore, a rea-

sonableconformity for a given patient plan is very hard to estimatea priori since
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it dependscritically on the number of shots allowed and how the volume of the
target interacts with the volumesof the allowable shots.

The conformity index P is an estimate of the ratio of the dosedelivered to
the target, divided by the total dosedeliveredto the patient. P can be formally

de ned asfollows: X
D(T)
Pi= X' (2.8)
D(T[ N):
TN
Ideally, we wish to have P to be one,which meansall the doseis depositedto the

tumor regiononly. Howewer, this is not possiblebecauseadiation is deliveredfrom
an external beamsource. The radiation passegshrough somenormal tissue before
it readiesthe tumor. Note that there are standard rules establishedby various
professionaland advisory groupsthat specify acceptableconformity requiremers.
We rst describe an approad to estimate the value of P. It is known how to
simulate the delivery of a shot of width w 2 W certered at the middle of the head
of a previously scannedpatient on the GammaKnife. For ead shot width we use
this to estimatethe total dosedelivered(at unit intensity) to the completevolume
and term this constart D,,. This is then usedto determinean estimate of the total

dosedeliveredto the completevolume by the collection of shotsas

X
Dutsw; (2.9)
(ssw)2S W

without having to calculate the doseat any voxel external to the target. This
expressiorcanbe usedasthe denominatorof the conformity of a givenplan without

evaluating doseat voxels outside of the target. The numerator would obviously

just be the total dosedeliveredto the target.
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To generatean estimatefor P for a particular patient case,We minimize (2.9),
subject to the standard constraints of maintaining an appropriate isodose line

around the target, and a limit on the number of shots of di erent widths and

locations:
_ X

min Duwtsw
(s;w)2S W

subject to Dosqi;j; k) 1, 8(i;; k2T

(2.10)
X
n= H (tsw)
(s;w)2s W

tsw O

Note that this model usesthe data D, instead of calculating the dose outside

the target and thus is a much smaller optimization model even if the number of

voxels in the complete volume is large. Somecare is taken to choosethe value

of appropriately. For large treatment volumeswe typically only evaluate the

bound constrairts in (2.10) on a small but represemativ e subsetof the voxelsin

the target. After we solvefor (2.10), P is calculatedusingthe following expression:
Dosd(i; j; k)

p = T : (2.11)
(s;w)2S W Dth§W . .

In (2.10), we attempt to estimate P by minimizing the total doseto the tar-
get, subject to hard constrairnts on the amourt of dosedelivered at eat voxel in
the target. Howewer, instead of enforcing these hard constraints, we proposean
alternative optimization model as a medanismto determine P using a notion of

UnderDose. Underdosecan be de ned as follows:

UnderDosd(i; |; k) := maxf0; Dosqi; j; K)g: (2.12)
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More formally, a voxel is consideredto be underdosedif it receiveslessthan the
prescribed isodose, which for the example formulation is assumedto be . We
actually usethe optimization processto model UnderDose. UnderDoseis con-
strained to be greater than or equal to max(0; Dose at ewery voxel in the
target.
The new conformity estimation model is:
X

min Duwtsw
(s;w)2S W

X
subject to Dosd(i; j; k) = tewDw(Xs; Vs: Zs; I; ji; K)
(s;w)2S W

UnderDosdi; j; k) + Dosqi; j; k)

0 UnderDosdi; j; k) (2.13)

0 Dosdi;j; k) 1, 8(;;k)2T

P -
ik )21 UnderDosg(i; j; k) NPy
X
n= H (tsw)
(ssw)2f 1;::5ng W

The crucial constraint is the one involving both N, the number of voxelsin the
target, and Py a user supplied estimate of the \averageperceriage” underdose
allowable on the target. By increasingthe value of P, the useris ableto relax the
homogeneiy requiremen, thereby reducingthe total dosedeliveredto the patient.
Notice that reducingthe total dosedeliveredto the patient typically increasesP.

Thus, P is essetially a monotonefunction of Py. The upper bound on exposure



37

Table 1: Comparisonof conformity estimation models

Old Conformity Model New Conformity Model

Patient P obj.val. | time P obj.val. | time
Patient 5| 0.296 | 28.89 | 106.1|| 0.296 | 25.68 | 77.4
(0.007) | (13.93) | (32.9) || (0.005) | (12.93) | (17.3)
Patient 6 | 0.246 | 17.81 | 397.0|| 0.247 | 14.89 | 358.3
(0.011) | (14.54) | (90.5) || (0.009) | (13.21) | (56.2)
Patient 8 | 0.323 3.33 | 195.2| 0.323 2.86 | 167.6
(0.007)| (2.73) | (60.8) || (0.003) | (1.79) | (56.3)

time t is typically chosenas a large fraction of the maximum dosedeliveredto T
(here assumedto be 1) for the purposesof improving solver performance.

Table 1 indicates the motivation for this change. For a variety of patients,
the estimate of P is essetially the same,but it has smaller standard deviation
(indicated in parertheses)and smaller computing times. (For ead of the patients,
the starting point for the conformity problem was randomly perturbed by up to
two voxels in eat coordinate direction to generatethe sample. The varianceis
calculatedover a setof 30runs.) Furthermore, it seem<learthat the nal objective
valuesarising from the subsequehsolvesare better if thesesolvesare seededwith
the new conformity estimation model solutions.

Note that the value of P should be carefully chosensothat the value is fairly
insensitive to changesin the starting point given to the model. This is shaovn

below.
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The eect of the conformit y index value on the optimization objectiv e
function In Figure 8, we shov how the conformity parameter, P; a ects the
nal solution in a small tumor obtained from a clinician. This tumor cortains
4006 voxels in a three-dimensionalgrid represemtation. As we increaseP, the
solution becomegamore conformal (but at a costin homogeneiy) that we measure
via the objective function in (2.10). The conformity estimation problem generates
an averagevalue for P of 0.248,with a standard deviation of 0.012when we run
the previously outlined process50 times with slightly perturbed starting values.
Recall that the planner can specify a scale parameter increaseof this value to

achieve higher conformity if desired.

2.4.3 The optimization model - Underdose model

The imposition of rigid boundsin the basic model (2.7) leadsto plans that are
overly homogeneousand not conformalenough,that is, they provide too much dose
outside the target. To overcomethis, we update the basic model to force more
conformity at the expenseof relaxing homogeneiy. In essencewe interchangethe
homogeneiy constrairts and the conformity minimization for amodel that cortrols
the conformity of the plan using a constraint and then attempts to minimize the
violation of (2.5) in the target. The constrain speci es that at leasta portion (P)

of the total dosemust be depositedin the target:
X
Dosg(i; j; k)
=) (isj:k )6

Dwts;w
(s;w)2S W

Instead of enforcingthe strict lower bound of on the dosein the target, in
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the new optimization model, we calculate the amourt of doseunder this value at
ewvery voxel in the target, and sum the \underdose" (2.12) to form our objective.
Sincewe minimize UnderDose,it will take on the maximum of thesetwo valuesat
optimality. An upper bound is still placedon the dosein the target, and the lower
bound on doseis relaxed.

The model attempts to minimize the underdoseto the target subject to (2.6)

and a constrairnt that the conformity of the plan exceeds certain (speci ed) value:

X
min UnderDosd(i; j; k)
(ihjk )2G
X
subject to  Dosd(i; J; k) = tewDw(Xs; Vs: Zs; I; ji; K)
(s;w)2S W

UnderDos€(i; j; k) + DosH(; j; k)

0 UnderDosqi; j; k)

(2.14)

0 Dosdi;j; k) 1, 8(;);k)2G

X

DosH(i; j; k)
=) (isjsk )Q
DWtS;W
(s;w)2S W
X

n= H (tS;W)

The constrairts involving UnderD ose coupledwith the objective function enforce
the de nition givenin (2.12).
The solution of (2.14) includesnon-discretecoordinatesof isocerters. This may

not be implemertable on the GammaKhnife sincethe cortin uousvaluesof location
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coordinates cannot be keyed into the madhine. To overcomethis, we presen a
\Fixed Location Model" to translate the optimization output onto the Gamma

Knife in the following section.

2.4.4 Fixed location model - mixed integer linear program

We round the location valuesof the solution and x them at xs, Y5 and zs respec-
tively. The valuesof Dy, (Xs;VYs; Zs;I; J; K) canthen be calculated at ead location
(i; J; k) asdata. The nal optimization involvesthe following mixed integer linear

optimization problem:

X
min UnderD os€i; j; k)
(ik )2G
X
subject to  Dosd(i; j; k) = tewDw(Xs; Vs: Zs; I; ji; K)
(s;w)2S W

UnderDosd(i; j; k) + Dosqi; j; k)

0 UnderDosq(i; j; k)

0 Dosdi;j; k) 1; 8(i;j; k)2 G (215
X X
cNe Dutsw Dos(i; j; k)
(s;w)28 W (isjk )2G

(s;w)2S W S\wW n

sw 2 f0;1g

The key obsenation is the useof the binary variable ., to indicate whether
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a shot of sizew is usedat location s. The perultimate constrairt in the model
ensuresthat no more than n shots are used, while the upper bound on t ensures
that no exposuretime occursif the correspnding shot is not used.

It may of coursebe possibleto extendthis model to include morelocations, but
this was not deemednecessaryor our work. Furthermore, it could be arguedthat
the basic model should use integer variablesto enforcethe discrete size choices.
Our investigationsfound sud approatesto be impractical and not asrobust as

the schemewe outline in the next chapter.
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Chapter 3

Enhanced Solution Schemes for
Radiosurgery Treatmen t Planning

Optimization Mo dels

3.1 Intro duction

The nonlinear programming modelsdiscussedn Chapter 2 not only require initial
starting solutions, but do not guarartee global optimality. In fact, they may have
many local solutions, someof which are closeto a global optimal solution, and
others may be far o from it. Two techniquesare deweloped in this chapter to
enhancethe optimization model deweloped in Chapter 2.

Firstly, an iterativ e solution schemefor nonlinear program is presened. Since
the amourt of data usedin the optimization is solarge, the optimization problem
is rst solvedusinguniformly sampleddata points to speedup the solution process.
In general,the amourt of data usedin the rst optimization processconsistsof
about 13%of the original data. The resulting solution becomesa starting solution
for the next optimization processwith data points previously ignored.

Secondly three-dimensionalskeleton-basedheuristic approad is deweloped to
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generateinitial starting solution for the isocerters and their correspnding shot
sizes. A linear program is then solvedto nd the initial radiation exposuretime
by xing the valuesof the discretevariablesgiven by the heuristic. The approat
leadsto improved speedand quality of solutions (seeSection3.4).

The resulting tool is currertly in useat the University of Maryland Medical
Sdool. The work described herehasenabledthe simple prototype to be enhanced
to the state wherely it is usable without optimization expert intervertion as a

medanismto robustly improve the operation of a complex medical system.

3.2 A Solution Scheme of Radiosurgery Treat-
ment Planning Optimization Mo dels

The optimization models consideredhere are discussedn Chapter 2; namely the
\Conformit y estimation model" from Section2.4.2,the \Basic optimization model"
of Section2.4.3, and the \Fixed location model" of Section2.4.4. Sincewe solve
(2.12) three times, a total of v e optimization problems are solved sequetially
to determine the treatment plan. The reasonthe basic model (2.12) is solved
iterativ ely (steps2, 3, and 4 discussedelow) is an e ort to reducethe total time to
nd the solution. Our experienceshaws that combining three stepsinto onetakes

at leastthree times longerto corverge,which is often not clinically acceptable.

Solution Pro cess

1. Conformity estimation. In order to avoid calculating dose outside of the

target, we rst solve an optimization problem on the target to estimate an
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\ideal" conformity for the particular patient for a given number of shots;
details can be found in Section2.4.2. The conformity estimate C is passed

to the basicmodel asan input parameter.

. Coarsegrid estimate. Given the estimate of conformity C, we then specify
a seriesof optimization problems whose purposeis to minimize the total
underdoseon the target for the given conformity. In order to reducethe
computational time required to determine the plan, we rst solwe (2.14) on
a coarsegrid subsetof the target voxels. We have found it bene cial to use
oneor two more shot locations in the model than the number requestedby
the user,that is S := f1;::;;n + 2g, and allowing the optimization to choose

not only useful sizesbut alsoto discardthe extraneousshot locations.

. Re ned grid estimate. To keepthe number of voxelsin the optimization as
small as possible,we only add to the coarsegrid thosevoxelson a ner grid
for which the homogeneiy (bound) constraints are violated. This procedure
improves the quality of the plan without greatly increasingthe execution

time.

Note that it is possiblefor the solution from a previousoptimization in this
sequenceo suggestmultiple shotsto be certered at the samelocation (i.e.
for a given s there are seweral nonzerots.,). If, in addition, there are other
locationss®that are not usedat all in the solution at hand, we shift asmany
of the multiple shots as possibleto theseunusedlocations. This maintains
the objective value of the current solution while giving any subsequensolves

the ability to move the di erent sizeshotsindependerily. In our automatic
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procedurewe shift the largestvalue of ts., to the unusedlocation.

4. Shot reduction problem. In the solution stepsgiven above, we usea small
value of , typically 6 to imposethe constraint (2.6) in an approximate
manner. In the fourth solve, we increasethe value of to 100in an attempt
to force the planning systemto choosewhich size/location pairs to use. At
the end of this solve, there may still exist somesize/location pairs that have
very small exposuretimes t. Also note that our solution technique doesnot

guarartee that the shotsare certered at locations within the target.

5. Fixed location model. The computedsolution may have more shotsusedthan
the userrequestedand furthermore may not beimplemertable onthe Gamma
Knife sincethe coordinate locations cannot be keyed into the madine. Our
approad to re ne the optimization solution to generateimplemertable co-
ordinatesfor the shot locationsis to round the shot location valuesand then
X them. Oncetheselocations are xed, the problem becomedinear in the
intensity valuest. We reoptimize thesevaluesand force the userrequested
number of size/location pairs preciselyusing a mixed integer program. Fur-

ther details can be found in Section2.4.4.

Note that the starting point for eat of the modelsis the solution point of the
previousmodel. Details on how to generatean e ectiv e starting point for the rst
model are given in Section 3.3. All the optimization models are written in the

GAMS [13 modeling languageand solved using CONOPT [25 or CPLEX [38].
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3.3 Starting Point Generation

A good starting point is very important for nonlinear programs, esgecially if the
problemis not corvex. This sectionwill exploresometechniquesto nd an initial
starting solution for our solution process.The main focusis to nd a set of good
shot locations and their correspnding sizes. We propose a shot location and
sizedetermination (SLSD) processbasedon 3D medial axis transformation. Our
results shawv that it takes no more than six secondsto produce a good starting
solution for all the three-dimensionaldata consideredin our researt.

Our targets are collections of three-dimensionalvoxels. For the large scale
problems of interest, the data manipulation and optimization solution times are
much larger than allowable (typically 20-40minutes is allowed for planning) and
we must resort to data compression.One technique usedextensiwely in computer
vision and pattern recognition is the notion of a skeleton, a seriesof connected
lines providing a simple represemation of the object at hand [5, 33, 46, 87, 97].
Skeletons have been used by physicians and sciertists to explore virtual human
body organswith non-invasive techniques[37,96]. The term skeletonwasproposed
in [5] to descrike the axis of symmetry, basedon the physical analogy of grass re
propagation, namely, the locus of certers of maximal disks (balls) cortained in a
two- (three-) dimensionalshape.

Someapplicationsrequirethat the original object hasto be reconstructedfrom
the compactrepresemation, and hencethe normal measureof goodnessis the error
betweenthe original and reconstructedobject. Howewer, in our case,we will just

usethe skeletonto quickly generategood starting shot locations for the nonlinear
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program. Thus we adapt techniquesfrom the literature to adieve thesegoals.
Our processis in three stages. First we generatethe skeleton, then we place
shotsand choosetheir sizesalongthe skeletonto maximize a measureof our objec-
tive. After this, we choosethe initial exposuretimes usinga simplelinear program.
Finally, we apply the v e stageoptimization processoutlined in Section3.2to im-

prove upon the starting points found.

3.3.1 Skeleton generation

In this section, we introduce a 3D skeleton algorithm that follows similar proce-
duresto that of [96]. The rst stepin the skeleton generationis to compute the
corntour map cortaining distance information from the voxel to a nearesttarget
boundary. The ideal distance metric is Euclidean, but this is too time consuming
to implemen in a three-dimensionalenvironmert.

To descrike our simpler scheme,we rst introduce someterminology.

De nition 3.1 Considering a voxeli as a three-dimensional box, an adjacent
voxelj is called an F-neightor of i if | shamres a face with i, an E-neighlor of

i if ] sharesan edgewith i and a V-neighlor of i if | sharesa vertexwith i.
Our procedureis as follows:
1. AssignO to the non-target area,and let v = 0.

2. Assignv + 1 to any voxel that is unassignedand has an F-neighbor with

value v.

3. Incremert v by 1 and repeat until all voxelsin the target areaare assigned.
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Figure 9: A cortour map on a two-dimensionalexample

An exampleof a two-dimensionalcortour map generatedis shovn in Figure 9.
Note that if the maximum height in the cortour mapis lessthan 2, weterminate

the skeleton generationprocess.

Extracting an initial skeleton. Basedon the cortour map, there are se\eral
known skeleton extraction methods in the literature [96]: Boundary Peeling (also
calledthinning) [51], Distance Cading (distancetransformation) [58] and Polygon-
basel Voronoi Methads [10]. Becauseit is simple and fast, we use the distance
transformation method to generatea skeleton. In our terminology, this means
that we de ne a skeletonpoint asa voxel whosecortour map valueis greaterthan

or equalto thoseof its E-neighbors.

Re nemen t for connectivit y of a thin skeleton. We say that two skeleton
points are connected if they are V-neighbors. Unfortunately, not all the skeleton
points generatedwill be connected,and thus we usea two stageprocessto connect

the piecesof the skeletontogether.
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a. Before refinement b. After refinement

10 20 30 40 50

Figure 10: An exampleof skeletonre nement

For example,Figure 10(a) showvs a raw skeletonwith seeral disconnectedcom-
ponerts. We use two algorithms to join all the disconnectedcomponerts. The
rst algorithm is a directional search algorithm. The secondis the shortest path
algorithm. After thesere nements, we have a connectedskeleton as seenin Fig-
ure 10(b).

We rst usedepth rst seart to label ead skeleton point as belongingto a
particular componert of the skeleton. The rst connection phaseis a steepest
ascen technique. Considerthe corntour map as a function f. We calculate an
approximate gradiert r f using coordinate-wisecertral divided di erences. Thus,
for eadh voxel (i; j; k), we usethe valuesof f at ead of its F-neighborsto generate

a three-dimensionalvector
rf( k)= (sonf(i+ L5k f@  1jK),
sgnf (i;] + Lk) f(i;]  Lk));

sgnf (i; j; k+ 1) f(;j; k 1))
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and storethesein a divided di erence table. Giventhe voxel (i; j; k), we evaluate f
at the V-neighbor (i; j; K)+ r f (i; j; k), and acceptthe moveif f doesnot decrease.
We terminate the processif either f decrease®r we move to a voxel in a di erent
piece of the skeleton, thus connecting (i; j; k) to this piece. Including the paths
generatedin this fashionin the skeleton typically connectspiecesthat are close
but not currently connected.

The directional seard algorithm, while joining many of the disconnectecdpieces
of the skeletonalongridgesof the cortour map may fail in casesvherethe cortour
map decrease# the gap betweentwo disconnectedpieces. Therefore,the second
connectionphaseusesa shortest path algorithm to connectthe skeleton (instead
of using the sadde point methal discussedn [96]).

Let K bethe setof all skeletal points, divided into d disconnectedcomponerts.
In order to reducethe seart spacefor the shortest path algorithm, we generate
a cloud of voxels C in the target volume eat of which are local maxima among
their F-neighbors. Note that C contains K by de nition, and can be thought of
heuristically as a cloud of points encircling the skeleton. We will only join the
disconnectedcomponerts of K using points in C.

Let eath voxel in Cbeanode. An arc(i;j) 2 A  C Cisdened if voxelsi
andj are V-neighbors.

We choosean arbitrary voxel in an arbitrary componert asthe sourcenode s.
A represemativ e node is chosenfrom ead of the remaining componerts arbitrarily
and joined to a dummy node t that will be the destination. The distance c;
betweenvoxelsin a connectedcluster is setto 0, whereasother V-neighbors of a

given voxel are at distance1l. We attempt to sendd 1 units of ow from s to
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t. We alsoadd an arc from s to t directly with a high cost to allow for the fact
that it may not be possibleto join every componert through C. If this is the case,
it will be signi ed by ow alongthese nal arcs. The completeformulation of our

problem follows.

X
min Gij Xij

(i )2A 8

% d 1) if i=s
_ X X

subject to Xij Xji = d 1) if i=t

fjj(isi )2Ag fii(isi )2Ag %

0 otherwise

0 xj; 8(5]) 2 A:

Typically, this problem is solved very quickly by standard linear programming

algorithms, even though specializednetwork o w algorithms could be applied.

3.3.2 Shot placement

At this stage,we recall that our goalis to determinewhereto placeshotsand how
largeto make them initially . The skeletongenerationis a data reduction technique
to facilitate this goal. We restrict our attention to points on the skeleton. This
is reasonable sincethe dosedelivered (2.3) looks ellipsoidal in nature and hence
being certrally located within the target (that is, on the skeleton) is preferable.
Our approad movesalongthe skeleton evaluating whetherthe current point is

a good location to placea shot. There are two special typesof skeleton points, an
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(a) end points (b) end points (c) a cross point

Figure 11: Examplesof end-points and a cross-mint

end-point and a crosspoint, that help determining the shot sizeand the location,
seeFigure 11.

We de ne an end-point and a crosspoint as follows:

De nition 3.2 A voxelis an end-point if

1. It is in the skeleton.

2. It hasonly one V-neightor in the skeleton.
A voxelis a cross-int if

1. It is in the skeleton.

2. It hasat least three V-neighlors.

3. It is a local maximum in the contour map.

Thesepoints are respectively the start (end-point) and nish (cross-mint) points
for our heuristic.

Let K be a set of skeletal points in the target volume. The rst phase of
the methods determinesall end-points in the current skeleton. Given an end-point

(x;y;2) 2 K, we carry out the following stepsto generatea stad for the end-point.
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1. Calculate a merit value at the current location. Save the location informa-

tion, the best shot size,and the merit value on a stad.

2. Find all V-neighbors of the current point, in the skeleton, that are not in
the stadk. If there is exactly one neighbor, make the neighbor the current
location and repeat thesetwo steps. Otherwise,the neighbor is a cross-mint

or an end-point, and we terminate this process.

If the length of the stack is lessthan 3, then we discard these points from
the skeleton. Otherwise, we choosethe shot location and size determined by the
smallestmerit value on the stadk. This shot will cover a subsetof the voxels in
the target; thesevoxels are removed from the target at this stage.

We then move to the next end-point and repeat the above process. Once all
end-points have beenprocessedwe attempt to generatea new skeleton basedon
the remaining (uncovered) voxelsin the target. We then repeat the whole process
with the new skeleton.

The key to this approad is the merit function. ldeally, we would like to place
shots that cover the ertire region, without overdosingwithin (or outside) of the
target. Overdosingoccursoutsidethe target if we choosea shotsizethat istoolarge
for the current location, and hencethe shot protrudes from the target. Overdosing
also occurs within the target if we place two shots too closetogether for their
chosensizes.

Thus, if we label heightasthe approximate Euclideandistancefrom the current
point to the target boundary, spread asthe minimum distancebetweenthe current

location and the end-point at which we started, and w as the shot size,we would
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liketo ensurethat all three of thesemeasuresre ascloseaspossible. Therefore,we
choosean objective function that is a weighted sum of squareddi erences between

thesethree quartities.
1. (X y;2) := (spreadx;y;z) height(x;y;z))?

(spreadx;y;z) w)?

2. sw(X;y;z;w) :

3. (X y;z;w) := (height(x;y;z)  w)?

The rst function ensuresthat we pad the target volume aswell as possible,that

is the current spreadbetweenshots should be closeto the distanceto the closest
target boundary. The secondfunction is usedto choosea helmet sizethat ts the

skeleton best for the current location. The third function favors a location that is
the appropriate distancefrom the target boundary for the current shot size.

Our objective function is de ned as a linear conbination (with weighs )
of thesepenalty functions and a fourth (w  w)?, that is designedto favor large
shot sizes.Note that w is the maximum shot width at hand, typically 18mm. The
weights can be adjusted basedon a user's preference.In practice we use 1=3 for

the rst three objective weights, and 1=2 for the fourth.

3.3.3 Mo difying the number of shots used

Often, the application expert knows how many shots will be neededto treat a
speci ¢ tumor basedupon experience. The planning tool acceptsthis information
asinput. Howeer, the SLSD procedureonly usestarget information and it might

suggestusing fewer or more shots.
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If the number of shotsgeneratedby SLSDis too large, the rst n+ 2 shotsare
usedasthe starting point. We allow the nonlinear programto adjust the locations
further and remove the least useful shotsduring the solution process.

If the number of shot locations obtained from the SLSD procedureis lessthan
the requestednumber, we add extra shot locationsusingthe following (SemiRand)
heuristic. The key ideais to spreadout the shot certer locationswith appropriate
shot sizesover the target area.

We assumethat we are given , an estimate of the conformity that we require
from any shot. In practice, we choosethis valueas0:2. Wethen generatek di erent
shot/size combinations as follows. First, a random location s is generatedfrom
the target areathat is not coveredby the current setof shots. Secondly a random
shot sizew for the speci c location is generatedwithin the set of di erent shots
available W. For ead shot/size conbination we calculate the fraction f (s;w) of
the dosethat hits the target by taking the ratio of the number of voxels that it
hits in the target to the total number of voxelsin a shot of the given size.

We decidethe location and size (s;w) to useas follows. If maxf (s;w) ,
then we choosethe combination that maximizesf (s;w). Otherwise, amongstall
those combinations that are acceptable(i.e. f (s;w) ), we choosethe largest
one(i.e. the onethat maximizesw amongthese).

Note that the SemiRandschemecanbe usedin casesvherethe SLSDprocedure
fails (whena 3D volume of the target cannotbe de ned), and alsoasan alternative

schemefor locating starting points. In practice we usek = 5.
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3.3.4 A linear program to generate initial radiation expo-

sure time

We generategood initial shot certer locations and sizesby running SLSD. This is
a starting solution for the NLP model exceptfor radiation exposuretimes. These
times ts., are estimated using the following simple linear program.
X
min UnderD osHi; j; k)
(iik )2G

X
subjectto Dosd(i; j; k) = tswDw(Xs; Ys; Zs; i; J; K)
(s;w)2S W

UnderDosqi; j; k) + Dosqi; j; k) (3.1)

0 UnderDosq; j; k)
0 Dosdi;j; k) 1, 8(i;);k)2G

t tew ot
Note that we x the locations of the shots at the points suggestedby SLSD and
only update the exposuretimes. Furthermore, we ensurethat every sizeshot has
positive weight in an initial solution by enforcinga lower bound (typically 0.1) on

the exposurelengths.

3.4 Computational Results

In this section,we demonstratehow to usethe techniquesoutlined above on two-

dimensionaltesting problemsaswell asreal patient data.
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a. Target area: white b. A single line skeleton of an image
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c. 8 Initial shots are identified d. An optimal solution: 8 shots
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Figure 12: Computational results on a two-dimensionalexample

3.4.1 Examples on two-dimensional problems

We start with somesimple two-dimensionalexamplesthat shav the typesof skele-
tons that are producedand portray the resulting optimization solutions.

Figure 12(a) depicts a particular target (tumor) areafor our problem aswhite
space. This tumor is approximately 3 inchessquare. The shape is not corvex.
It has a indentation that makesit dicult for a normal optimization model to

obtain an acceptableplan. Figure 12(b) shows a thin line skeleton generatedfrom
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the image. The skeleton generationprocesstakeslessthan 1 secondon Pertium
Il 800MHz workstation. We then apply the SLSD processto obtain the starting
solution for the NLP model as shovn in Figure 12(c). Eight shots of radiation
are usedfor this example;one 4 mm, two 8 mm and v e 14 mm shots. We use
0.9 as the initial exposuretimes. The solution covers the target areawell. We
solve the conformity estimation optimization model using CONOPT2 interface
with the starting solution, nding an optimal solution of 8 shotsin 61 seconds
of executiontime. Figure 12(d) shaws the resulting plot using MATLAB image
toolbox. The circlesarethe starting solution and the starsare the optimal solution
from CONOPT. They are almost identical in shot certer locations. The SLSD
processoutperforms a random starting solution. Given 8 shotsto use, the NLP
model using a random starting solution nds an optimal solution in 1122seconds.
We shawv two more results on other examplesin Figure 13. Figure 13(a) is a
rectangular shaped target for which three shotsare used. The optimization model
nds the solution of two 4mm and one 14mm shotsdepictedin Figure 13(b). The
total time to producethe solution is about 15 seconds.Another exampleis given
in Figure 13(c,d). This is a small tumor (lessthan 1 in?) for which three shotsare
again used. The SLSD model takes 1.5 secondso generatethe starting solution.
The NLP model nds an optimal solution of two 4mm and one 8mm shotsin 6

seconds.
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a. A single line skeleton b. Optimal Solution
2
15
1
0.5

5 10 15 20 25 5 10 15 20
24mm and 1 14mm

c. A single line skeleton d. An optimal solution: 3 shots

1.5

5 10 15 20
2 4mm,1 8mm

Figure 13: Two-dimensionalexamples:a rectangular target(a,b) and a small tar-
get(c,d)
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Table 2: Shot number prediction using SLSD

Helmet Size Number of Shotssuggested
18mmand 14mm 7
18mmand 8mm 7
18mmand 4mm 7
14mmand 8mm 9
14mmand 4mm 10
8mm and 4mm 25

3.4.2 Predicting the number of shots of radiation

We useSLSDto guidethe usersin selectingthe total number of shotsof radiation
for treatment. Since SLSD producesinitial shot locations and their widths based
only on the shape of the target, it has a capability of predicting a reasonable
number of shotsto cover the tumor volume.

First, a userspeci es an input on how many di erent helmet sizesare allowed
in the optimization. Using this number, SLSD generatesan estimated number
of shots for eat possiblehelmet combination. Table 2 shavs sud an example.
The numbers of shotsfor all possiblehelmet combinations are displayed using two
di erent helmetsizesareallowed. Sincewe have four possiblehelmetsizesavailable
on hand, it generated6 = ‘2‘ possiblecombinations. This is just a suggestion(not

the only option) for the userto choose. If the userwants to specify his/her own

predicted number, the tool providesan option to do so.
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3.4.3 Application to real patient data

We have tested our techniqueson ten targets arising from real patient cases.The
ten targets areradically di erent in sizeand complexity. The tumor volumesrange
from 28 voxels to 36088voxels. Sinceour problemsare not corvex, the choice of
parametersin their solution can also have dramatic e ects. In this section, we
demonstratehow to choosegood parametersfor the NLP models. Somefurther
description of the medical implications of theseresults are givenin [6§].

The procedurefor varying (controlling the enforcemen of the discretechoices)
can have dramatic impact on solution quality and times. We generatedsolutions
for a variety of patients under a number of di erent choicesof . Thesesolutions
were analyzedby an application expert. Basedon his feedba&, we suggestusing
initial valuesof between4 and 8.

Table 3 shavs averageobjective valuesof three di erent starting solution gener-
ation techniques: Random, SemiRand,and SLSD. The objective value represeis
the total averageunderdoseof the target whenthe solution is applied. The num-
bersin the parerthesesare the standard deviations from a batch of 50 perturbed
runs. (In ead run, the setofinitial solution locations(x;y; z) wereperturbedvoxel
by voxel by a distance of no more than two voxels.) We comparethe techniques
basedon the nal objective valueandthe run time. By xing = 6,50 perturbed
runs were made for ead patient-method pair. In ead run, we generatedinitial
locations randomly within the target for the random scheme, while location per-
turbation was usedfor SemiRandand SLSD. The tumor was so small for Patient

1 that SLSD failed to generatea skeleton (maximum height in the cortour map
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was lessthan 2).

Using standard statistical tests, the pairwise p-value [95 between Random
and SemiRandwas 0.013, between Random and SLSD was 0.0006,and between
SemiRandand SLSD was 0.078. This leadsto the conclusionthat theseresults
are signi cantly di erent at the 90% con dence level.

Table 3 alsoshaws averagerun time of the ertire model for the sewven di erent
patients. Although a gain of speedusing SLSD dependson the shape and size
of the tumor, the table shaws that the model executiontime can be substartially
reducedusing SLSD over the other two techniquesregardlessof the sizeof tumor.
Again, theseresults are signi cantly dierent at the 90% con dence level. The
pair-wise p-value between Random and SemiRandwas 0.017, between Random
and SLSD was 0.0006,and betweenSemiRandand SLSD was 0.063.

Figure 14 shows two pictures of the large tumor solutionsthat are usedby the
plannersto understandthe quality of the solutions. While these gures show the
SLSD solution is much more conformal in this slice, and seemsmuch better in
quality, it is hard to make a de nitiv e judgmert from these gures.

To concludethis section,we shav a dosevolume histogram (Figure 15) relating
various plansthat weregeneratedfor patient 6. The histogramdepictsthe fraction
of the volume that receives a particular dosefor both the skull, and the target
volumes. The curveson the right depict information related to the target, while
on the left they refer to the skull. On the target, the curvesthat extend furthest
to the right receive more dose. Sincethis can be e ected by just delivering more
doseto the patients skull, the lines to the left show that the fraction of the skull

receiving a particular dosageis essetially unchanged. The gure comparesthe
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Table 3: Averageoptimal objective value and solution timesin seconddor di erent
tumors

Patient Objective Time
(#v oxels) | Random SemiRand SLSD | Random SemiRand SLSD
1 2.17 0.88 NA 0.3 0.3 NA
(28) (0.86) (0.29) NA (0.05) (0.03) NA
2 14.70 8.21 6.64 32 30 26
(2144) (6.90) (4.68) (2.61) (6) 9) 9
3 27.53 19.22 14.43 89 67 52
(3279) (19.07) (8.87) (14.99)| (25) (16) 9)
4 16.55 12.89 9.85 97 94 84
(3229) (4.45) (6.70) (4.88) (18) (22) (19)
5 34.87 34.53 23.85 153 128 77
(4006) (16.36) (17.26) (13.84)| (40) (30) (a7)
6 33.32 28.49 15.00 556 513 355
(6940) (17.25)  (13.09) (13.22)| (103) (100) (52)
7 35.45 29.97 31.03 590 460 343
(10061) | (12.63) (11.16) (13.65)| (228) (100) (75)
8 9.31 3.22 2.78 887 240 168
(22124) | (2.73) (2.80) (1.72) | (157) (68) (56)
9 45.05 35.18 31.05 874 629 498
(24839) | (18.10) (7.11)  (10.25)| (425) (166) (99)
10 18.55 11.57 8.59 3568 937 695
(36088) | (11.20) (11.83) (6.71) | (589) (108) (79)
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(a) Random starting point solution. Note (b) SLSD starting point solution. Note
that the target and the 50% isodosecurve that the target and the 50% isodosecurve
do not match closely match closely

Figure 14: Large patient example. Three contours drawn represen target, 50%
and 30%isodosecurvesrespectively in decreasinggreyscale
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Figure 15: A dosevolume histogram for patient 6

three techniques outlined here, along with the actual plan used on the patient
example. Clearly, all of the automatic plans are better than the neurosurgeons
plan, while the SLSD approat appears preferableto the other two automatic

plansin quality.

3.5 Summary

We have used a variety of optimization techniquesin this work to dewelop an
approad for solving a planning problem for medical treatment. While our ap-

proach has beentailored to the speci ¢ application, we believe the methods and
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approadhesusedherecan be e ectively adaptedto many other problem classes.
The work descriked in this chapter was motivated by feedba& received from
aninitial prototype useof our planning tool at the University of Maryland Medical
Sdool. The key featuresthat neededimprovemert werethe speedand robustness
of the process.This chapter hasaddressedoth issuesby using a variety of di er-
ernt optimization models and computational techniques. In particular, the speed
of solving the sequenceof nonlinear programming models has been substartially
reducedby using the skeleton basedstarting point generationtechnique. Statis-
tically, we have shovn that SLSD outperformstwo other heuristics for generating
starting points. Furthermore, the useof animproved conformity estimation model,
coupledwith a\clean-up" mixed integerprogrammingmodel, ensureghe solutions
generatedare clinically acceptableand conform to the input speci cations of the
user. The modi ed tool is now in use at the hospital without intervertion from

any of the authors.
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Chapter 4

Optimization Mo dels for
Conformal Radiation Treatment

Planning

We introduce a collection of optimization modelsfor three-dimensionalconformal
radiation therapy. We formulate an optimization problem that simultaneouslyop-
timizes the beamcon guration and the beamweights asa mixed integer program.
Another optimization model includeswedge Iters, which are often placedin front
of the beamto produce a gradiert in the beamintensity acrossthe aperture. We
presern se\eral techniquesto signi cantly improve solution time of the model with-
out degradingthe solution quality. We also demonstratethat the quality of the
dosedistribution can be improved signi cantly by incorporating wedge lters into
the optimization. Using our algorithms, both the use(or non-use)of a wedgeand
the wedgeorientation are optimized. We present methodsto cortrol the dosevol-
ume histogram on organsimplicitly using hot and cold spot cortrol parametersin

the optimization model.
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Figure 16: A Linear Accelerator

4.1 Intro duction

Radiation treatments are typically delivered using a linear accelerator(see Fig-
ure 16) with a multileaf collimator (see Figure 17) housedin the head of the
treatment unit. The shape of the aperture through which the beam passesan be
varied by moving the computer-corrolled leaves of the collimator. In conformal
radiation therapy, the subject of this chapter, three-dimensionalanatomical infor-
mation is usedto shape the beamof radiation at ead angleto match the shape of
the tumor, asviewed from that angle. We refer to this approad to selectingthe
beamshape asthe beam's-eyeview (BEV) technique.

The goalin conformal radiation therapy is to provide a high probability of tu-
mor cortrol while minimizing radiation damageto surroundingnormal tissue. This

goal canaccomplishedby cross- ring beamsfrom a number of beamdirections. In
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Figure 17: Beam's-eye-view can be producedusing a multileaf collimator

practice, a dosimetrist usually usesa trial-and-error approad to determine how
many beamsof radiation should be used, which beam anglesare most e ective,
and what weight should be assignedio eat beam.

Often, additional exibilit y is available to the dosimetrist, in the form of wedge
Iters that canbe placedin front of the aperture to inducea gradiert in the radia-
tion eld from oneside of the aperture to the other. Wedge lters are particularly
usefulin treating cancersthat lie near a curved patient surface,asis commonin
breastcancer. In addition to selectingbeamdirectionsand weiglts, the dosimetrist
must decidewhether it is appropriate to usea wedge,and if so, which orientation
to choosefor the wedge. It may be appropriate to use a conbination of wedged
and non-wedgedbeamsfrom a single direction.

As we shaw in this thesis, optimization techniquescan be usedto designthese
treatment plansautomatically. Although the conformaltechniquesdescribedabove

are the current standard of carein radiation therapy, usedin the treatment of the
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vast majorit y of patients today, the bene ts of automatedtreatment planning have
gonelargely unrealized. We focus on the conformal approat becauseit requires
little alteration to currernt clinical practices, and therefore has a good chance of
rapid adoption. A more sophisticated treatment planning approad known as
intensity modulated radiation therapy (IMRT), which is currertly receivinga good
deal of attention from optimization experts, allows a number of di erently shaped
beamsto be delivered from ead direction, thereby allowing a higher degreeof
exibilit y in modulating the intensity of the radiation delivered from eat beam
angle. Although this approad is undoubtedly interesting, often its nonintuitiv e
choice of aperture shapesrepresets a signi cant departure from current clinical
practice, and thereforewill require more time to be adopted widely.

In Section4.3, we presett seweral formulations of the treatment planning prob-
lem using linear programming (LP), quadratic programming (QP), and mixed-
integer programming (MIP) approadies. In these optimizations, ead \v oxel"
within the target volume typically requiresat leasta speci ed minimum amourt
of radiation to be delivered(a lower bound), while an upper bound is usedfor vox-
elsin the sensitive structures and in the normal tissue. Sincesensitive structures
often are located closeto target volumes,it is sometimesdi cult or impossibleto
determine a treatment plan that satis es the required bounds at every voxel. In-
stead, penalty terms can be included in the objective of the optimization problem
that penalizeviolations of thesebounds, with more signi cant violations incurring
larger penalties.

Section4.3.1describkesthe problemin which the gartry anglesfor the treatment

plan are xed, and the task is merely to determine the beam weights for eat
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angle. Seeral problem LP and QP formulations are preserted; we explore the
characteristicsof ead. In Section4.3.2, we discussthe \angle selection” problem,
in which the most e ectiv e angles(and their beamweights) are determined from
amonga set of candidateangles.A MIP model is usedhere,with binary variables
indicating whether or not a particular angle usedin the treatment. Treatmerts
with fewer beamscan be deliveredmorerapidly, and henceare generallypreferred.
We considertreatment plans using wedgesin Section4.3.3, using an extensionof
the MIP formulation from the angleselectionproblem. In Section4.4, we descrike
seeral techniquesfor improving the formulation and reducing the solution time
without degradingthe solution quality for this model.

The quality of a treatment plan is typically speci ed and evaluated using a
dose-wlume histogram (DVH). Using the DVH as a guide, a planner may choose
to allow a certain portion of voxelsin ead sensitive structure to exceeda speci ed
dose,or require a large fraction of the volume to receiw at least a certain dose.
Due to the needto incorporate many binary variablesinto the optimization [29],
formulation of a constraint of this type is not easyto handle using conventional
optimization techniques. In Section4.5, we shav how the MIP formulations canbe
modi ed to accoun for the DVH constraints by using seeral cortrol parameters.

In Section4.6, we presert computational resultsfor the modelsdescrilked above
on clinical data. We demonstratein particular the usefulnesof wedgesn devising
good treatment plans, and the e ectivenessof our techniquesfor enforcing DVH

constrains.
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Central Ray

(&) A wedge lter (b) An external wedge

Figure 18: Wedges

4.2 Use of Wedges

Wedges(also called wedge Iters) are a very usefultool in radiation therapy. As
showvn in Figure 18, a wedgeis a tapered metallic block with a thick side (the
heel) and a thin edge(the toe). Lessradiation is transmitted through the heel of
the wedgethan through the toe. Figure 18(b) shavs an external 45 wedge,so
namedbecauseat producesisodoselinesthat are oriented at approximately 45 , as
illustrated in Figure 19. Figure 19(a) shavs the doseattenuation pattern produced
when no wedgeis used,while Figure 19(b) is the dosecortour map resulting from
the useof a wedge. (In this example,the wedgeis oriented with its heel on the
right sideof the gure.) As well astilting the isodoselines, the wedgeproducesa
generalattenuation of the doseas comparedwith the open beam.
We include a wedgetransmissionfactor in the model to accourt for the e ect

of the wedgeon the dosedeliveredto the voxelsin the treatment region. Wedges

are characterizedby two constarts o and ;, with O o< 1 1that indicate
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(a) Open Beam (b} East - wedge

Figure 19: Dosecorntour maps: wedgee ect on the dosedistribution
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the smallestand largesttransmissionfactors for the wedgeamongall pencil beams
in the eld. Specically, ¢ indicatesthe factor by which the doseis decreasedor
the pencil beamsalongthe edgeof the aperture with which the heelof the wedgeis
aligned. Correspondingly, ; indicatesthe transmissionfactor along the opposite
(thin) edge. When the heellies along the west edge,the transmissionfactor for

beamlet (i; j) is calculated asfollows:

- j 05
i}/\leS - 0+ N

(1 o) i=L2::0M; J=1L2::N: (4.1)
When the wedgeis oriented with its heelat the top, or \north," of the eld, the

weight applied to the (i; j) beamletis

i 05
ij - M

noth =+ (1 o) i=212::M; j=1,2:::;N: (4.2)

The shift of 0:5 is introducedin both formulae to capture the transmissionfactor
at the center of ead beamlet.

Two di erent wedgesystemsare usedin clinical practice. In the rst system,
four dierent wedgeswith angles15, 30, 45, and 60 are available, and the
therapist is responsible for selecting one of these wedgesand inserting it with
the correct orientation. In the secondsystem, a single 60 wedge (the universal
wedgd is permanerily locatedon a motorized mourt locatedwithin the headof the
treatment unit. This wedgecan be rotated to the desiredorientation or removed
altogether, asrequired by the treatment plan.

By devising appropriate combinations of wedgedand non-wedgedbeams, we
can achieve dosedistributions equivalert to thoseavailable with a full setof exter-

nal wedges:
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Theorem 4.1 All plansdeliverableby four-wedgesystemcan be produced by using

the universal walge.

Pro of Supposethat at someangleA and somewedgeat a given orientation with

parameters Jand 2 (with 0 2< 9 1) we have a treatment plan that calls
for delivering a weight WR;Open through the open beam, and Wg;west through the
wedge. (We have supposedwithout loss of generality that the wedgeis oriented
to the west, so the attenuation parameter j; for beamlet (i; j) is given by the
formula (4.1).) We now ask whether it is possibleto deliver an equivalent dose
through every beamlet using a di erent wedgewith the same(west) orientation,

and di erent parameters g and 3, with 0 o< ; 1.

Using (4.1), we nd that the total dosedeliveredthrough beamlet(i;j) is

0 0 0
Waopen® Wawest 0 T )

o (P 0.

— O 0 0 0 ' —
= Wxopent Wawest o (1 o *1 Whwest N

If we were to usethe alternative wedgewith parameters o and ;, and weights

Wy, open and W, west, Wewould nd that the total dosedeliveredthrough beamlet
(i) is

(1 o):

0:5 .
Wa;opent Wawest o W( 10 *] Wawest
By equating the constart terms and the coe cient of j in the last two formulae,
we nd that the plans are equivalert if

WA;WeSt( 1 0) = Wz;west( f (()})
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and

0.5 0.5
Waopent Wawest o (1 o = Wa.open* Wawest o W(f 0)

By rearrangingand substituting, we nd that the weights for the new beam must

be
TG0
W west = iWA;WeSt
and
0 0 0 ](.J (())
Wa;open= Wa.opent Wa.\west o . o 0 - (4.3)

Note that w,.\yestis always nonnegative wheneer Wg;west is nonnegatiwe, but that
Wp; open is not necessarilynonnegative, even when the weigtts for the original
wedgeare both nonnegative. However, a su cient condition for wa;open to be

nonnegatiwe for any nonnegative valuesof W gpen and wj -« is that

;Wes

0 0
1 0.

1 0

o |Oo

sincethis condition ensureghat the bracketedterm on the right-hand side of (4.3)
is nonnegative. This condition implies that given a solution using a particular
wedge,we can always identify an equivalert plan using an alternative wedgewith
the same(or smaller) value of o and a largervalueof ; ¢

Hence,in the remainder of this thesis, we consideronly approadhiesbasedon
the universal wedge. Design of treatment plans involving wedgesare discussed
in [24, 47, 69, 91, 92]. The papers [69, 91, 92 discussselectionof wedgeangles;
in particular, [69] descritesa mathematical basisfor selectionof wedgeangle and
orientation. Howewer, the authors of [92] concludethat the inclusion of wedgeangle

selectionin the model makesthe optimization problem much harder to sole.
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4.3 Formulating the Optimization Problems

4.3.1 Beam weight optimization

We start with the simplestmodel, in which we assumethat the anglesfrom which
beamsare to be delivered are selectedin advance,that wedgesare not used,and
that the apertures are chosento be the beam's-eg view from ead respective
angle. It remainsonly to determinethe intensities of the beams(that is, the beam
weights) to be usedfrom ead angle.

We now introduce notation that is usedbelowr and in later sections. The set of
beamanglesis denotedby A. We useT to denotethe set of all voxelsthat make
up the target structure, S to denotethe voxelsin the sensitive structure, and N to
be the voxelsin the normal tissue. We use to denotethe prescribed doselevel for
ead target voxel, while the hot spot cortrol parameter de nes a doselevel for
ead voxel in the critical structure that we would prefer not to exceed.The beam
weight deliveredfrom angleA is denotedby w,, and the dosecortribution to voxel
(i; J; k) from a beam of weight 1 from angle A is denotedby Da. (k). (It follows
that a beamof weight wa will producea doseof waDa(ijx ) in voxel (i; j; k).) We
obtain the total doseD ;) to voxel (i; j; k) by summing the cortributions from
all anglesA 2 A. WeuseD,. to denotethe submatrix consistingof the elemers
Da:ijk) for all (i;j; k) 2 . WeuseD to denotethe vector of dosesD ;) for
all voxels (i; j; k), while D is the vector consistingof Dy for all (i; j; k) 2 ,

where is a given set of voxels.
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The beamweights wa, A 2 A, which are of coursenonnegatiwe, are the un-

knownsin the optimization problem. The generalform of this problemis asfollows.

min f (D)
w
S.t.
X (4.4)
D = Wa Da: =T[ S[ N;
A2A
Wy 0; 8A 2 A:

The choiceof objective function f (D) in (4.4) dependson the speci ¢ goalthat
the treatment planner wants to achieve. Two common goalsare to cortrol the
integral doseto organsand to cortrol cold spots (underdoseto the target region)
and hot spots (overdose).In general,the objective function measuregshe mismatch
betweenthe prescription and the delivered dose. For voxelsin the target region
T, there are terms that penalizeany di erence betweenthe delivered doseand
the prescribed dose . For voxelsin the sensitive structure S'(i = 1;  ;jOAR)),
there are terms that penalize the amourt of dosein excessof ;, the desired
upper bound on the doseto sud voxels for a sensitive structure i. Howewer,
for simplicity of explanation, we only considera single sensitive structure in the
problem formulations in this chapter. For voxels in the normal region N, the
desireddoseis zero, so the objective usually includesterms that increaseas the
amournt of dosedeliveredto thesevoxelsincreases.There may be more than one
sensitive structure in a treatment planning problem.

Let parameters {, s, and , be nonnegative weighting factors applied to the

objective terms for the target, sensitive, and normal voxels, respectively. Two
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commonways to de ne the objective are to usethe L ;-norm (which penalizesthe
absolute value of deviation from the prescribed doseon ead voxel, weighted by
the factors just de ned) and the sum of squaresof the deviations, again weighted
according to the region in which ead voxel lies. Thesetechniqueslead to the

following two de nitions:

kD erki+ <k(Ds es)iki+ nkDyki; (4.5)

kD1 erk3+ k(Ds es).KE+ KDk (4.6)

The notation ( )+ := max( ;0) in the secondterm de nes the overdoseto voxels

in the sensitive region, while er is the vector whosecomponerts are all 1 and

whosedimensionis the sameasthe cardinality of T. (Similarly for es.) The terms

in (4.5) and (4.5) are approximations to the L; and squaredt , integrals of the
deviations from prescription over ead region of interest.

A planner canalsousean averagedosedeviation for ead structure by dividing

the integral doseover the number of voxelsin the structure:

kDT e'rkp + k(Ds eS)+ kp " kDN kp .
Y card(T) *  card(S) "card(N)’
wherecard(T), card(S), and card(N ) denotethe number of voxelsin the target

p=12

region, the sensitive structure, and the normal regions, respectively. The use of
thesefactors in the denominator facilitates easierchoiceof ; s; and .

An objective function basedon L, -norm terms (4.7) allows e ectiv e penaliza-
tion of \hot spots" in sensitive regionsand of cold spots in the target. We de ne

sud a function as follows:

k(D1 er)ki + k(Ds es)iki + kDyky: (4.7)
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Combinations of the objective functions above can alsobe usedto achieve speci ¢

treatment goals,aswe descrike later in this section.

Quadratic Programming Form ulation

If we usea weighted sum-of-square®bjective of the form (4.6), the 3D conformal

radiation treatment planning problem is a quadratic program (QP). We slightly

modify (4.6) by including the cardinality of the setsT, S, and N explicitly in the

weighting terms. We arrive at the following QP formulation (a particular caseof

(4.4)):

2 2 2
min tkDT erks N sk(DS es)+ K5 , KDy K5
w card(T) card(S) card(N)

sit.
(4.8)
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By introducing variables Vi, (i; J; k) 2 S to denote the excessdoseover the

upper bound in the sensitive region S, we can rewrite (4.8) asfollows:

mln t S + n
w card(T) card(S) card(N)
S.t.
b = a2a WaDa ;5 =T[ S[N;

(4.9)

Wy 0; 8A 2 A:

Least-Absolute-V alue Formulation: Linear Programming

The absolute-\alue terms in (4.5) do not penalizelarge violations as much asthe
squaredterms in (4.6). Howeer, they allow the problem to be formulated as a
linear program. By including the cardinalities of T, S, and N in the weighting

factors of (4.5), we obtain another special caseof (4.4):

kDt  erk; N kK(Ds es)+ks N kD k1

mo card(T) *  card(S) "card(N)
S.t.
(4.10)
P
D = az2a WaDa; =T[ S[ N;
Wy 0; 8A 2 A:

To recast this problem as a linear program, we introduce variables V;;x ) for

(i;J; k) 2 T [ S to represen violations from the desireddosesor doseintervals on
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the PTV and the OAR. We canthen write (4.10) equivalertly asfollows:

T J T
min t er Vit v €g Vs v, SN Dy
w card(T) card(S) card(N)

S.t.

O
|

az2a WaDa: =T[ S[ N;

Vy D+ er;
(4.12)

Vy er Dr;

Wy 0; 8A 2 A:

Note that sincethe elemens Da. i« ) of the dosematrix and wa of the weight
vector areall nonnegatiwe, the elemerts of the dosevector D arealsononnegatie.
Hence,in the last term of the objective, we arejusti ed in making the substitution

kDN k1: ep\] Dy.

Min-Max Form ulation: Linear Programming

Sometimesit is important in radiation treatment to minimize the maximum dose

violation on organs. Min-max formulations basedon (4.7) can be usedfor this
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purpose:

min tkDT kl + sk(DS )+k1 + nkDN kl
w
S.t.
(4.12)
P
D = aza WADa; =T[ S[N;

Wp 0; 8A 2 A:
An LP formulation for (4.12) can be generatedby introducing extra scalar vari-

ables,V;; Vs; and V, into the problem as follows.

min M+ Vs + oV,
w
s.t.

P
D = aoa WaDa 3 =T[ S[ N;

(4.13)

0 Vi; Vs; Va;

0 Wiy | 8A 2 A:
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Comp osite Form ulations

In the sectionsabove, we introduced three possibleproblem formulations for the
optimization problem (4.4) basedon speci ¢ treatment goals. Often, the planner's
goalsare quite speci c to the caseat hand. For example,the planner may wish
to keepthe maximum doseviolation on the target low, and also to cortrol the
integral doseviolation on the OAR and the normal tissue. Thesegoalscan be met
by de ning the objective to be a weighted sum of the relevant terms. For the given
example,we would obtain the following:

kK(Ds es)+ks N kDn ki1

i kD ki + —_—
M ePT et s T d(S) "card(N)
S.t.
(4.14)
P
D = aza WaDa; =T[ S[N;
Wp 0; 8A 2 A:

Practical objectiv e functions

In practice, voxels on the PTV that receive dosewithin speci ed limits may be
acceptableas a treatment plan. Furthermore, voxels receiwe below the lower dose
speci cation (cold spots) may get penalizedmore se\erely than hot spots on the
PTV. Therefore, we consider the following two de nitions of f (D) in (4.4) as

follows:

k(D uer)+ ki + k( Ler Dr)+ks
‘ card(T)
k(DS es)+ Ky + kD kq )
*  card(S) "card(N)’

f(D) = (4.15)
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f(D) = +«(k(Dr uer)«ke +k(Ler Dr)iks) (4.16)
k(Ds es):ki ~ kDnki
*  card(S) "card(N)’

In theseobjectives, | is the target cold-spot cortrol parameter. If the dosageof a
voxelin T falls below afraction | of (assumedo be 1 throughout this chapter),
a penalty term for the violation is addedto the objective. Likewise,a voxel on the
PTV incurs a penalty if the dosageat the voxel exceeds .

It should be understaod that, in all modelswe descrile in this chapter, sud a
separationof hot and cold spots is possible. Howewer, we simplify the exposition
throughout by using a conbined objective function.

Building on the beam-weight optimization formulations described above, we
now considerextendedmodelsin which beam anglesand wedgesare included in

the optimization problem.

4.3.2 Beam orientation optimization

In the previoussection,we shaved how to choosethe beamweights in an optimal
fashion, given a set A of speci ed beam orientations. We now considerthe prob-
lem of selectinga subsetof at most K beam anglesfrom a set A of candidates,
simultaneously choosingoptimal weights for the selectedbeams. A treatment plan
involving few beams(say, 3 to 5) generallyis preferableto one of similar quality
that usesmore beamsbecauseit requireslesstime and e ort to deliver in the
clinic.

We give a brief review of literature beforethe details of the problemformulation

are introduced. Sometheoretical considerationsof optimizing beam orientations
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arediscussedn [8]. In general,usingmore beamstypically producesbetter quality
of treatment plans. The down side, howewer, is that the time to treat the patients
is longer when more beamsare used. Furthermore, it has beenshavn that, when
many beamsare used,say ( 5), beamorientation becomedessimportant in the
overall optimization. [19, 22 72]. Therefore,the goal hereis to nd a minimum
number of beamsthat satisfy the treatment goals.

The beam anglesand the weights can be optimized either sequetially or si-
multaneously Most of the earlier work in the literature usessequetial schemes
[16, 35, 56, 63, 64], in which a certain number of beam anglesare xed rst, and
their weights are subsequetly determined. Rowbottom et al [62] optimize both
variables simultaneously To reducethe initial seart space,a heuristic approadh
to remove somebeam orientations a priori is used. They usethe simplex method
and simulated annealingto solve the overall optimization problem.

A dierent approad has beenproposedby Hasset al [36. They addressa
geometricalformulation of the coplanarbeam  orientation problem conmbined with
a hybrid multi-ob jective geneticalgorithm. The approad is demonstratedby op-
timizing the beamorientation in two dimensions,with the objectivesbeing formu-
lated using planar geometry Their algorithm attempts to replicate the approad
of a treatment planner whilst reducing the amourt of computation required. Hy-
brid geneticseard operators have beendeweloped to improve the performanceof
the geneticalgorithm by exploiting problem-speci ¢ features. When the approad
is applied without constraining the number of beams, the solution producesan

indication of the minimum number of beamsrequired.
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Problem Formulation Weintroducebinary variables A, A 2 A, that indicate
whether or not angle A is selectedto be one of the treatment beam orientations.
The value , = O indicatesthat angleA is not used,sothe weigh for this beam
must satisfy wa = 0. When , = 1, on the other hand, the beamfrom angle A
may have a positive weight. Both conditions are enforcedby adding the constrairt
wa M A to the model, whereM is a uniform upper bound on the beamweight
(discussedbelow in Section4.4.1). The resulting mixed programming formulation

(4.11) is asfollows:

rvrvyin f(D)

S.t.

X
D = Da. Wa; =fT[ S[ Ng
A2A (4.17)
0 Wa M 4; 8A 2 A;

P -
A2A A K

A 2 f0;1g; 8A 2 A:

4.3.3 Wedge orientation optimization

Wedgesmay be placedin front of abeamto deliver a nonuniform dosedistribution
acrossthe aperture. Se\eral researbershave studied treatment planning problem
with wedge lters [23, 24, 47, 69, 91, 92]. Xing et al [9]] demonstratethe use of
optimizing the beam weights for an open eld and two orthogonal wedged elds.

Li et al [47] presens an optimization algorithm for the wedgeorientation selection
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and the beam weights. Designof treatment plans involving wedgesare discussed
in [24, 47, 69, 91, 92]. The papers [69, 91, 92 discussselectionof wedgeangles;
in particular, Sherousg69 descritesa mathematical basisfor selectionof wedge
angle and orientation. Howewer, it has been noted that including wedge angle
selectionin the optimization makesfor excessie computation time [92].

We consider four possiblewedge orientations at ead beam angle: \north",
\south”, \east", and \west". At eat angleA, we calculate dosematrices for the
beams-eg view aperture and for ead of thesefour wedgesettings, alongwith the
dosematrix for the no-wedgesetting (the open beam), asusedin the formulations
above. We useF to denotethe set of wedgesettings; F cortains 5 elemerts in
our case.Extending our previous notation, the dosecortribution to voxel (i; j; k)
from a beamdeliveredfrom angleA with wedgesetting F is denotedby D a¢ ijx ).
and we useDp . to denotethe collection of dosesfor all (i; j; k) in someset .
The weight assignedto a beamfrom angle A with wedgesetting F is denotedby
Wa.r , While the binary variable A.r determineswhether or not we use a beam
from angle A with wedgesetting F in the treatment plan.

The optimization problem is to select beamsand optimizing weights when
wedgesare presert. The newformulation is obtained not by simply replacingA by
A F inthe discussiorabove, sincethere are someadditional considerations.First,
in selectingbeams,we do not wish to placea limit on the total number of beams
delivered, as in Section4.3.2, but rather on the total number of distinct angles

used. In other words, we are preparedto allow multiple beamsto be delivered
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from a given anglefor the same\cost" asa singlebeamfrom that angle;that is,

A ar; 8A2A;8F 2F:

This constraint models the clinical situation reasonablywell, since changing the
wedgeorientation takeslittle time relativeto the time requiredto move the gartry
and possibly shift the patient.

The secondconsiderationis that we do not wish to deliver two beamsfrom
the sameangle for two diametrically opposite wedge settings. We enforce this

restriction by adding the following constrains:

1 A;nor th + A;south ;

(4.18)

1 A;w est + A;east :

(4.18) limits the number of wedgeorientations to be lessthan three in ead angle

for the treatment. The resulting mixed integer programming model is now as
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follows:
min f(D)
w; o
s.t.
X
D = WA;FDA;F;; 2T[S[N,
A2A F2F
M aF WaF |
A A (4.19)
P .
K A2A  As
1 A;nor th + A;south ;
1 Awest T Aeast:
WaF 0; 8A2A; 8F 2F;
As aF 2 f0;1g; 8A2A; 8F2F:

In comparing (4.19) with (4.17), we seethat the amourt of data to be stored
increaseshy a factor of jFj. The number of binary variables also increasesby

a factor of jF j + 1, although the nature of the new variables ,r and the new
constrairts is sud that the complexity of the problem is increasedby lessthan

this factor would suggest. Still, the increasein sizeand complexity of the integer
programming model is nontrivial. As we show in Section 4.6, it is often crucial

to useproblem reduction to obtain a formulation that can be solved in reasonable
time without degradingthe solution quality.

The following theoremjusti es the useof (4.18):
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Theorem 4.2 A treatment plan calling for two nonzeo weightsfor two diamet-
rically opposite walge settings can be replaed by an equivalent plan requiring a
positive weight for an open beam along with a positive weight for one of the two

original beams.

Pro of Considerthe \west" and \east" wedgeorientations. For beamlet (i; j ),
i=12:::;M,j = 1,2;:::;N, the attenuation factor when the west wedgeis

preser is given by (4.1). For the eastwedge,it is asfollows.

N j+05
t —
e

(1 o) 1=L12::;M; j=12:::;N: (4.20)
Supposenow that we have a treatment plan in which, at someangleA, the weight
correspnding to the open beam (no wedge)is wa,open 0, while the weigtts
correspnding to the west and east beamsare Wy \est > 0 and w,.ggst > 0,

respectively. Supposefor the momert that w,.\west Wa.east The cortribution

of thesethree weights to the total intensity deliveredby beamlet(i; j) is then

N j+05 j 05
Wyeast of —— g (1 0 *Wawest ot — (1 0 *+Waopen

which is equalto

i 05 .
(Wawest Waeasd o* — (1 0o *(Waopen+ Wyeas( 1 o))

Hence,the samebeamletintensity could be deliveredat every (i; j) pair by using
weight wa.open+ Wp.eas( 1 o) for the openbeam, (W, west Wa. east) for the

westwedge,and O for the eastwedge. Similarly, for the caseof Wy \west Wa east
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we achieve idertical beamletintensitiesby usingweight wa.open+ Wa west( 1 0)
for the openbeam, 0 for the westwedge,and (W, egst Wa.west) for the eastwedge.

Thereforewhen there are positive beamweights for two diametrically opposed
wedge orientations, we can obtain an equivalernt treatment plan by zeroingthe
smaller of the two weights, and adjusting the weights on the open beam and on

the remaining wedgeorientation ;

4.3.4 Other solution approac hes in the literature

There are many other ways for solving radiation treatment planning optimization
problems. We give a brief review of a few approadesfrequertly appearingin the

literature.

Simulated Annealing Webb [81] appliessimulated annealingapproad on two
dimensional problem. First, ideal pro les and relative weights are computed for
8 to 128 beams. Each beam is subdivided into 64 beamlets. A desired dose
distribution is obtained by assigningto ead pixel within the patient a dosevalue
equalto the prescribed dosevalue for the organ cortaining that pixel. Then a cost
function to be minimized is de ned as the root mean squaredi erence between
the computeddosedistribution and the desireddosedistribution. The ideal beams
are grown by adding a grain of beam weight to a randomly selectedbeamlet at
ead iteration. Grain sizeis kept constart for about the rst onemillion iterations.
The sizethen is decreasedinearly until a presetnumber of iterations are readed.
Three-dimensionalproblemsare addressedn [62, 82, 83, 84].

The strength of this approad is that simulated annealing has no limit on
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the mathematical form of the cost function. The weaknesss that the treatment

planning time is rather long.

Gradien t Pro jection Metho d Gradiert projection [21,49] is aniterativ etech-
nigue for improving a previously de ned solution. At ead iteration, valuesof the
decisionvariables are adjusted basedon the derivatives of the objective function
with respect to those variables. Derivatives may be obtained numerically or an-
alytically. The strength of this method is that optimization function can be any
form if numerical derivativesare use. The weaknesss that it doesnot guarartee

a global optimization. The computation time can be very long also.

Score function approach Scorefunctions [59, 66| are typically nonlinear and
nonanalytic functions that assigna single numerical value to a treatment plan.
They can be usedto ewaluate and comparedi erent plans. Scorefunctions are
evaluatedfor all combinations of prede ned valuesof somesetof decisionvariables.
The setof valuesthat yields the best scorefunction is selectedto be the best plan.
The strength of this approad is the generality of the evaluation criteria. But the
weaknesss that the exhaustive seart technique becomesrery time consumingas

the number of discretevariablesincreases.

Alternativ e approac hes Alternativ e approades[2, 14, 15]to the mathemat-
ical techniques have been proposed: AMS (Agmon, Motzkin , Scoerber) and
Cimmino algorithms. Their preferencefor the alternative approad is due to the
di culties inherert in mathematically de ning the ideal treatment plan. A feasi-

ble solution is obtained rather than an optimum solution to treatment planning.
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With aninitial solution using 18 or more beams,the number of beamsare reduced
by eliminating oneswith small relative weights. This processis repeated until a
feasiblesolution is found. The Cimmino algorithm has the advantage in that it
allows priorities to be assignedto the tumor and normal structures to re ect the
relative importance assignedto eat by the physician. A strength of the feasible
solution seard algorithm is that whenno solutionsexist to the optimization prob-
lem, it nds an approximated solution. The weaknesgs that it ignoresan optimal

solution.

4.4 Reducing the Solution Time

The formulation (4.19) includesbeam angles,weights, and wedgesas variablesin
the formulation. It involvesa large amourt of datathe beam shapesand dose
matrices must be computed for eadn beam angle and wedge orientation|along

with many discrete variables, and so is time-consumingto set up and solve. In
this section, we descrike a number of techniquesfor reducing the solution time.
First, we shav how to choosea reasonablevalue of M in the formulations (4.19),
(4.17). (This choiceis important in practice, as an excessiely large value of M

canleadto a signi cant increasein run time.) Secondwe shov how normal-tissue
voxels in the treatment region some distance away from the target region can
be merged,thereby reducing the number of variableswithout sacri cing solution
quality. Third, we descrike a stheme for solving a lower-resolution problem to
identify the most promisingbeamangles,then consideronly theseanglesin solving

the full-resolution problem.
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4.4.1 Computing tight upper bounds on the beam weights

The formulation (4.19) requires an upper bound M on the beam weighs wa.r
which is not known a priori. If M is too small, the optimization problem can
be infeasible or produce a suboptimal result. On the other hand, if the value
is too large (usually the case),the algorithm can be considerablyslover. A key
preprocessingtechnique to overcomethis problem is to usetight boundson the
decisionvariables[57].
Let A bethe maximum dosedeliverableto the target by a beamangle A with
a unit beamintensity. Sincethe openbeamdeliversmoreradiation to a voxel (per
unit beamweigh) than any wedgedbeam, we have
. F2F m%ﬁ DA;F;(i;j;k) (4.21)
= (i;m?;(T Dagijxyy A=12 A,
where, as before, D, ik ) denotesthe dosedeliveredto voxel (i; j; k) from a unit
weight of the openbeamat angleA. In Section4.2,wede ned aconstart ; 2 [0; 1]
asthe largestradiation transmissionfactor by a wedge Iter. Usingthis de nition,
we have for a given angle A that the maximum dosedeliverableto a target voxel

using wedge lters is 0 1

X
A @WA;O o1 Wa:F A (4.22)

F 2F nfOg

where0 2 F denotesthe open beam.
Supposenow that we modify the model in (4.19) to include explicit control of

\hot spots” by introducing an upper bound u on the doseallowed in any target
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voxel. That is, we assumethat the constrain
Dt uer (4.23)

is addedto (4.19). (Such a constraint may also be addedto the other models of
Section4.3.) By combining (4.23) with (4.22), we deducethat

X u
Waot 1 Wa:F —: 8A 2 A:
F 2F nfOg A
We can therefore usethis constrairt to bound wa.z for F 2 F, provided the angle
A is selected.If the angle A is not selected,of course,we must enforcewar = 0
for all F 2 F. We canaccomplishthesegoalsby replacingthe somewhatarbitrary

boundin (4.19):

M AF  War

by
X u
Waot 1 Wa.F — A, BA2A; (424)
F2F nfOg A

where , isthe binary variablethat indicateswhetheror not the angleA is selected.

Our modi cation of (4.19) that includes\hot spot" cortrol and the bound (4.24)
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is therefore as follows:

min f(D)
w5
s.t.
X
D = WA;FDA;F;; 2T[S[N,
A2A F2F
A AF
X
LA A Waot 1 WaE
F2F no (4.25)
P .
K A2A A
1 Anorth T A:south
1 A;West+ A;east;
WaF 0; 8A2A;8F2F;

Note that if we alsoimposean upper bound on doselevel to normal-tissuevoxels,
we can derive additional boundson the beamweights using the sameapproad as
is usedfor the target voxels above.

Howewer, without a constraint on number of wedgesbeing used,we can further
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simplify (4.25) asfollows:

min f (D)
w;
s.t.
X
D = WA;FDA;F;; 2T[S[N,
A2A F2F
X
LA A Waot 1 WaF (4.26)
F2F no
P .
K A2A A
WaF 0; BA2A;8F 2F;
A 2 f0;1g; 8A2A;8F2F;

Post-processingcan be usedin the caseswhere
fWA;south > 0 and Wa;nor th >0 g or 1:WA;West > 0 and Waeast > 09;

to avoid a treatment plan that calls for two nonzeroweights for two diametrically

opposite wedgesettings as discussedn Theorem4.2.

4.4.2 Reducing resolution in the normal tissue

The main focusin solving the optimization problem is to deliver enoughdoseto
the target while avoiding organsat risk asmuch aspossible. Therefore,the dosage
to normal regionsthat are somedistanceaway from the PTV doesnot needto be
resohedto high precision. It su ces to computethe doseonly on a represetativ e
subsetof thesenormal-regionvoxels, and usethis subsetto enforceconstrairts and

to formulate their cortribution to the objective.
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Given someparameter , we de ne a neighborhood of the PTV asfollows:
R (T):=f(i;j; k) 2 N jdist ((i; j; k); T) )95

wheredist ((i; j; k); T) denotesthe Euclidean distance of the certer of the voxel
(i; J; k) to the target set. We alsode ne areducedversionN ; of the normal region,

consistingonly of the voxels (i; j; k) for which i, j, and k are all even;that is:
Ny:=f(i;j; k)2Nj mod(i;2)= mod (j; 2)= mod (k;2) = 0g:

Finally, we include in the optimization problem only those voxels that are close
to the target, or that lie in an OAR; or that lie in the reducednormal region.

Formally, we considervoxels (i; j; k) with
(k2T SR (T)[ Nu

Since eat of the voxels (i; j; K) 2 N; eectively represems sewen neighboring
voxels, the weights applied to the terms for the voxels (i; j; k) 2 N, in the L; and
sum-of-square®bjective functions ((4.5) and (4.6), respectively) are increased.In

KD Ky is smallerthan Dwr (ks If this

card(N) card(N.[ R( T))’
is an issue,it is possibleto replacethe latter by

e ect, the objective quartity

card(NnR ( T))
KDgr ( Tyki + kDn, K1 ~ card(N1)
card(N)

in the objective function.

4.4.3 A three-phase approach

We now discussan approad in which rather than attacking the full-scale opti-

mization problem directly, we \ramp up" to the solution via a sequencef models.
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Eadh model in the sequences easierto solve than the next model, and the solution
of ead providesa good starting point for the next model. The modelsdi er from
ead other in the selectionof voxelsincludedin the formulation, and in the number
of beamanglesallowed. The ideais to include only voxelsthat are signi cant, in
the sensethat they a ect the solution, and to identify interesting beam angles,
discardingthosethat are unlikely to appearin the solution of the full problem.

One simple approad for removing unpromising beamanglesis to remove from
considerationthosethat passdirectly through any sensitive structure [62]. A more
elaborate approad [59]introducesa scorefunction for eat candidateangle,based
on the ability of that angleto deliver a high doseto the target without exceeding
the prescribed dosetoleranceto OAR or to normal tissue located along its path.
Only beamangleswith the best scoresare included in the model.

These heuristics can reduce solution time appreciably but their e ect on the
quality of the nal solution cannot be determined a priori. We proposeinstead
the following incremenal modeling stheme, which obtains a near-optimal solu-
tion within a small fraction of the time required to solve the original formulation

directly. Our schemeproceedsby three phases.

Phase 1: Data Point Reduction. Our aim in this phaseis to construct a
subsetof voxelsthat are signi cant for the optimization problem (4.19). A similar
techniqueis applicableto (4.25)and (4.26). Let S; S be a small subsetof voxels
of organsat risk, N; N be the subsetof voxels of the normal tissue de ned in
Section4.4.2. Note that the way of constructing S; is similar to that of N;. We

solve (4.19) with theset ;= T [ S;[ N; replacing , anda valueK; replacing
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the limit K on the number of angles,where K; > K. The resulting model is
smaller than the original formulation (4.19) with many more feasible solutions
becausewe allow more beam anglesto be used. It can therefore be solved in a
considerablyshorter time sinceit is typically the feasibility enforcementhat takes

computational time.

Phase 2: Selection of Promising Beam Angles. In the next phase, we
augmen the set of signi cant voxelsin the OAR. Using the solution w of Phase
I, doseon the OAR is calculated as follows:

X

Ds = Wpr Dar:s:
A2A F2F

Voxelswhosedosein the subsequenmodelsis likely to be higherthan the hot-spot

cortrol parameter areincluded by setting
Sz = f(l, j; k) 2 S] D(i;j;k) g,

for someparameter 2 (0;1]. (The subsetN; of normal voxels is not updated
at this stage; our experienceshaved that the e ect of augmering this set was
negligible.) We de ne the set of voxelsfor Phase2as , = ;[ S;, and choose
the number of allowable anglesto be K,, whereK; K, K. We now replace

by ,andK by K, in (4.19) and re-sohe. We denoteby A, the set of optimal

beamangleschosenin the secondsolve (whereA, A).

Phase 3: Final Appro ximation. In the nal phase,wereplace by , and
A by A, in (4.19). We have assumedhat in replacingthe set A by the (typically

much smaller) set A,, we have not omitted any anglesthat would have appeared
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in the solution of the full-scale model. (If we are correct, we sacri ce nothing in
solution quality.) The nal appraoximation typically takesmuch lesstime to solve
than the full-scalemodel, both becauseof the smalleramourt of data (due to fewer
voxels and fewer beam angles)and fewer binary variables.

We have found that this three-phasesdhemereducesthe total time requiredto
computethe treatment plan considerably Although it will not in generalproduce
the samesolution asthe original full-scalemodel (4.19), we have found the quality
of its appraximate solution to be very closeto optimal. Computational experience

with this approad is givenin Section4.6.

4.5 Techniques for DVH control

Dose-wlume histograms(DVH) are a compactway of represeting dosedistribu-
tion information for subsetsof the treatment region. By placing simple constrairts
on the shape of the DVH for a particular region, radiation oncologistscan exercise
cortrol over fundamenal aspectsof the treatment plan. For instance,the oncolo-
gist often is willing to sacri ce somespeci ed portion of a sensitive structure (suc
asthe lung) in order to provide an adequateprobability of tumor cortrol, when
the sensitive structure lies near the tumor. This aim can be realizedby requiring
that at least a speci ed percenage of the sensitive structure must receiwe a dose
lessthan a speci ed level. DVH constrairts can alsobe usedto cortrol uniformity
of the doseto the target, and to avoid cold spots (regionsof underdose). For ex-
ample, the planner may require all voxelsin the target volume to receiwe dosesof

between95% and 107%of the prescribed dose( ).
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DVH constrairts that require somefraction of voxelsin a regionto receiwe less
than a given dose, without specifying which individual voxels must satisfy this
requiremer, cannot be implemerted in a straightforward way using traditional
optimization formulations. Howewer, by manipulating the objective function, we
cansetup and solvwe a sequencef problemsthat leadsto a satisfactoryapproximate
solution. We descrike thesetechniqueswith referenceto the formulation (4.17).
The results are equally valid for (4.19), but the computational requiremerts are of
coursehigher.

There arethree typical requiremerts for the radiation treatment: homayeneity;
conformity, and avoidane as discussedn Chapter 1. In our formulations, homo-
geneity is cortrolled by the DVH cortrol parameters | and  ( . 1 us
which specify the lower and upper bounds on the doseto target voxels. (If the
prescribed doseto the voxelsin T is , then we wish to deliver at least | and
at most , to ead voxel.) The conformity constrairts, which require that the
doseto the normal tissueis as small as possible,can be cortrolled by the penalty
parameteron the normal-tissuevoxelsin the objective function. As weincreasethe
valueof |, it typically reducesthe integral doseon the normal tissue. The avoid-
anceconstrairts, which require the doseto be below certain thresholdson at least
somefraction of the sensitive structure, can be implemerted by including termsin
the objective that involve the OAR voxels and a hot-spot cortrol parameter .

One might argue that the homogeneiy and avoidance requiremers can be
cortrolled by adding hard constrairts to the optimization model. Howeer, the
optimization problem might not be ableto nd a feasiblesolution with hard con-

straints. Even when it is possibleto obtain a solution with a hard-constrairt
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formulation, the solutions are typically too homogeneousand physicians prefer
the ability to relax or tighten the constraints using parametrizedterms in the ob-
jective to achieve a speci ¢ treatment goal. We describe ways of cortrolling DVH

on organs,and show results basedon a clinical casein the following subsections.

45.1 Eects of dieren t objectiv e functions

We introduceddi erent typesof objective functions in Section4.3.1;seein partic-
ular (4.5), (4.6), (4.7), (4.15), and (4.16). Onecanusein nit y-norm penalty terms
in the objective function to cortrol hot and cold spots in the treatment region,
while Li-norm penalty terms are useful for controlling the integral doseover a
region.

Herewe illustrate the e ectivenesof using both typesof termsin the objective,
by comparingresults obtained from an objective with only L, terms, with results
for an objective with both L; and in nit y-norm terms. We usethe typical values

L = 095 |, = 107, = 02, and K = 4 in this experimert. As can be
expected, Figure 20 shows that (4.16) hasbetter cortrol onthe PTV; the in nit y-
norm terms yielded a stricter enforcemen of the constrairts on the PTV. The two
objective functions can produce a similar solution if the valuesof 's are chosen
appropriately. Howewer, the choiceof sud valuesis not intuitiv e. We believe that
it is easierto choosethe valueof  for the L, penalty, and usethesevaluesin the
sequel.We note that on the normal and OAR regions,the di erence in quality of

the solutions obtained from thesetwo alternative objectiveswas insigni cant.
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452 DVH control on the PTV

Becauseof our experiencereported in Section4.5.1, we considerthe optimization
problem (4.17) with objective function f (D) de ned by (4.16).

Modelersusually are advisedto update the weights ( ¢; s; ) to achieve DVH
cortrol on the PTV. Howewer, basedon extensive numerical experimerts, we be-
lieve that this is a lesse ective way to provide DVH cortrol. We suggest xing
( +; s; n) at appropriate value, say 1, and updating them only for ne tuning of
a solution.

Our aim in cortrolling DVH on the PTV is to attain homogeneiy of the dose
on T without signi cant lossof quality in the dosepro le for the normal regionand
OAR (that is, without signi cant changeto the DVH plots for theseregions). As
discussedabove, the key parametersusedto achieve this goalin (4.16) are , and

L, Which de ne the desiredmaximum and minimum fractions of the prescribed
dosethat the planner wishesto deliver to the target voxels. In this experimen,
we X = 1:.07,andtry the values0:7, 0:8, 0:9, 0:94 for the lower-bound fraction

L. Figure 21 shows four DVH plots basedon the four di erent valuesof . For
eadt value, we obsene that in fact 100%of the target volume receives more that
the desiredlower bound . In other words, we manageto avoid completely cold
spots in the PTV in this example. We may expect that larger valuesof | (which
lead us to con ne the target doseto a tighter range) will result in a lessattractiv e
solution in the OAR and the normal tissue. Howeer, ascan be seenin Figure 21,
the loss of treatment quality is not signi cant. We concludethat this technique

for implemerting homogeneiy constrairts is e ectiv e.
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453 DVH control on the OAR

The objective (4.16) also cortains terms that penalize the integral of the dose
violation over the OAR and normal regions. Here, we shaw that the doseto the
OAR can be cortrolled by meansof the parameter , assumingthat the weights
t» s, and , havebeen xed appropriately. If our goalis for voxelsin the OAR to
receie a doseof at most , where 2 (0;1), weset = in (4.16). Figure 22(a)
illustrates the e ect of changing valuesof on DVH of the OAR. When s set
to 0:5, most of the OAR receivesdoselessthan 50% of the prescribed target dose.
Similar results hold for the values0:2 and 0:1, though constrairnt is not as\hard"
in thesecases.(For = 0:1, about 20% of the OAR receives more than 10% of
the prescribed dose,but only about 5% receivesmore than 20% of the prescribed
dose.) As expected,the costsof achieving better cortrol on the OAR is the lossof
treatment quality on the PTV and the normal tissue. Howeer, Figure 22 shavs

that there s little sacri ce in treatment quality.

45.4 Remarks
We concludethis sectionwith seweral remarks.

1. If our goalis to cortrol hot spots in the OAR rather than the integral dose,
we could replacethe term k(Ds es)+ky in the objective (4.16) by its

in nit y-norm analoguek(Ds es)+k; .

2. In applying the three-phaseapproad of Section4.4.3to the objective func-
tion (4.16), we canupdate on a per-organbasisand re-sole the optimiza-

tion problemif the DVH requiremert for the OAR is not satis ed at the end
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of Phase3.

3. There can be somecon ict betweenthe goalsof cortrolling DVH on target
and non-target regions. Ideally, all target voxels should receive the exact
prescription dose , while the non-target region should receive zerodose. In
practice, this is not possible,asthe target is always adjacen either to normal
tissue or sensitive structures. Therefore, we needto readh a compromise
basedon the the relative priorities of meetingthe prescription on the target
and avoiding excessie doseto the OAR and normal tissues. If the PTV dose
cortrol is most important, asis usually the case,the cortrol parameters |,

u» Shouldbechosenwith ( , ) smalland asafairly large(but smaller
than 1) fraction of . Howewer, if the OAR dosecortrol is most important,
a smallervalue of can be usedin conjunction with L;-norm penalties for
the OAR terms in the objective. In addition, a larger valueof ( , ) is

appropriate in this case.

4.6 Application to Clinical Data

In this section,we usetwo setsof clinical data to explain how to useour model to

adhieve treatment planning goals.
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4.6.1 Solution time reduction

The speci ¢ optimization model consideredin this sectionis asfollows:

min ¢ (k(Dr  wer)eke + k( Ler  Dr)iki)

k(Ds es)+k: N KD k1

*  card(S) "card(N)
s.t.
X
D = Da. Wa; =T[ S[ N;
A2A (4.27)
Dt u;
0 Wa M ,; 8A 2 A;
X
A K;
A2A
A 2 f0;1g; 8A 2 A:

Note that we have introducedhard upper bound constrairts on the target Dt
u (where u typically is somewhatlarger than ). We x someof the cortrol
parametersin the optimization model (4.27) throughout the experimerts: | =
095, , =107, =02,K=4 = = ,=1,u= 115, = 095, and
JA] = 36. In fact, the set of anglesA consistsof anglesequally spacedby 10 in a
full 360 circumference.

We attempt to solve (4.27) usingthe full setof voxels. Note that the optimality
criterion is set suc that the solution processterminates with the relative error of
the objective value being lessthan or equalto 1%. Figure 23 shaws changesof

upper and lower bounds of the objective valuesasthe iteration number increases.
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Table 4: Comparisonsamongdi erent solution schemes.

I [ [l v
Approach SingleSole | Single Solve | ReducedModel | Three-Phase
Bound (M) 2 u= A u= A U= a
Final Objective 0.0342 0.0342 0.0342 0.0348
Time (hours) 112.3 93.5 29.9 3.3
Time saved(%) - 16.8 73.3 97.0

We notice that alarge number of iterations are usedto slightly improve the feasible
solution found at iteration 2:2 1C°. We also notice that the lower bound of the
objective value increasesslonly. We addressedechniquesto overcometheseprob-
lemsin Section4.4. E ects of using the techniquesare discussedn the following
paragraph.

Table 4 summarizesresults of four di erent experimerts using a data set from
a patient with pancreatic cancer. Column | shows the results obtained by solving
(4.27) directly, with M setto 2. In column Il, we usethe tight bound (4.24) on
Wa, specializedto the casein which no wedgesare used. That is, we replacethe
constrait wa M A in (4.27) by wa (U= A) a. (This tighter bound is also
usedin columnslll and IV.) Column IIl shows the solution time for the reduced-
voxel version of the problem discussedn Section4.4.2. Finally, column IV shaws
results obtained with the three-phaseapproad of Section 4.4.3. Here we used
parametervaluesK; = 8 and K, = 6, allowing 8 anglesto be selectedin the rst

phaseand 6 in the secondphase. Note that the objective valueswere calculated

on the full set of voxels for the comparison.
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Table 4 shows that the nal objective values obtained from the rst three
sthemeswerethe same,to at leastthree signi cant digits, while the nal objective
attained by the three-phaseapproad was very slightly suboptimal (lessthan 2%
greater). The next rowsin Table4 shav the CPU timesrequired(in hours) for eat
of the four experimerts, and the savings in comparisonwith the time in column
|. By comparing columns| and Il, we seethat a modest reduction was obtained
by using the tighter bound. Column |11 shaws that more signi cant savings were
obtained, with essenhally no degradationin the quality of the solution plan, by
using a reducedmodel. The full problem cortains 1244voxelsin the PTV, 69270
voxels in the OAR, and 747667voxels in the normal region, while the reduced
model has 1244voxelsin the PTV, 14973voxelsin the OAR, and 96154voxelsin
the normal tissue. The reduction in computing time was over 73%. Column IV
shawsthat the useof the three-phaseschemeresultedin a savings of 97%over the
direct solution scheme,again with little e ect on the quality of the solution.

Note that, if the solution time is very important, we could relax the cold-
spot and hot-spot cortrol parametervalueson the PTV. Relaxingtheseparameter
valuestypically speedsup the the solution time.

We beliewe our iterativ e technique is equally e ective in the generalcasein
which wedgesareincludedin the formulation. Hence,our subsequehcomputations

usedthe iterative sdhemewith wedges.
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Figure 24. DoseVolume Histogram: e ect of wedgeswith 3 beamangles

4.6.2 The eect of using wedges on DVH

In general,the use of wedgesgivesmore exibilit y in achieving adequatecoverage
of the tumor volume while sparing normal tissues. To shov the e ect of wedges,
we test our optimization modelson a di erent set of data, from a prostate cancer
patient. Figure 24 shavs DVH graphsobtained for a treatment plan usingwedges
(4.25) and one using no wedges(4.27). Three beam angles,K = 3, are usedin
both cases.As can be seenin Figure 24(a), a signi cant improvemert on DVH on
the OAR is achieved by adding wedges.In Figure 24(b), we seethat there is also
a slight improvemert in the DVH for the PTV. The line is closerto the prescribed
doselevel of onewhenwedgesare used. The DVH on the normal tissue, howeer,

doesnot shov much di erence betweenthe wedgesand no-wedgescases.
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4.6.3 A Clinical case study - Pancreas

We now apply the full optimization approad (including DVH cortrols and wedges)
to a pancreatictumor. This caseis made particularly di cult by the closeprox-
imity to the PTV of seeral sensitive structures, including the spinal cord, liver,
left kidney, and right kidney. The set A cortains 36 equispacedcandidate beam
angles.Wedgesare alsousedfor the beamangles. The goalsof the treatment plan

are asfollows:

1. Choosefour beamanglesfor the treatmernt.
2. Asthe rst priority, the target volume shouldreceive dosebetween95%and

107%of the presribed dose.
3. 90% of ead organ-at-risk should receiwe lessthan 20% of the target pre-

scribed doselevel.
4. The integral dosedeliveredto the normal tissue should be minimized.

To achieve thesegoals,we set DVH cortrol parametersas follows:
=10 =095 ,=107K;=K,=8 K=4 =095 and

i = 0:2; i 2 fspinal cord, liver, left kidney, right kidneyg:

Figure 25shonvs DVH plots of this experimert. Note rst that the homogeneiy
constrairts are satis ed for the PTV: ewvery voxel in the target volumereceives95%
and 107%of the prescribed dose. It is also clear that approximately 90% of eat
sensitive structure receivesat most 20%of the target prescribed dose,as speci ed;
the DVH plot for eat sensitive structure passesvery closeto the point (0:2;0:1)

that correspndsto the aforemenioned treatment goal.
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(a) Axial (b) Sagittal

Figure 26: IsodosePlots: four lines represen 20%, 50%, 80%, and 95% isodose
lines; the 20%line is outermost.

Figure 26 shows isodoselines on the CT slices. The target (tumor) is outlined
within four isodoselines. The outermost line is 20% isodoseline, which encloses
a region in which the voxels receive a doseof 20% of the target prescribed dose
level. Moving inwards towards the target, we see50%,80%,and 95%isodoselines.
Figure 26(a) shavs an axial slice. The kidneys are outlined as two circles right
below the target. As can be seen,the target lies well inside the 95% isodoseline,
while the doseto the organsat risk remains reasonable. Figure 26(b) shavs a
sagittal view of the target with thosefour iso-dosdlines also.

All computationsin this chapter wereperformedon Pertium 4 1.8 GHz madine
running on Linux. All optimization problemsweremodeledin the GAMS modeling
language[12]. We useCPLEX 7.1asLP and MIP solver, and MINOS 5.5 for QP

soler.
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4.7 Summary

We have deweloped an optimization framework for 3D conformalradiotherapy. The

key featuresof our methodology are as follows:

1. Simultaneousoptimization of three key parameters(beamangles,wedgeori-

enation, and beamweigh);
2. Fast delivery of the treatment plan; and
3. Capability of cortrolling DVH on organsimplicitly dependingon the speci c

treatment goal of the planner.

The optimization problemswere formulated as mixed integer linear program-
ming and quadratic programmingproblems. We presered di erent objective func-
tion formulations for di erent treatment goals. Sincethe data set required by the
obvious optimization formulations was very large, techniqueswere introduced to
reducethe data requiremens and the complexity of the problem. Speci cally, we
introduced tighter a priori bounds on the beam weights, reduction of the num-
ber of voxels to be consideredin the optimization, and a three-phaseshemein
which a sequenceof progressiely more realistic optimization modelsis solved to
obtain an approximate solution. Using all thesetechniques, we demonstrateda
97%improvemert in computational time over direct solution of the full-resolution

problem on a clinical data set.
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Chapter 5

Optimization Tools and
Environmen ts for Radiation

Treatmen t Planning

The optimization of radiation treatment for cancerhasbecomean active researt
topic in recen years[6, 7, 8, 17, 39, 40, 75, 85, 89. Many typesof cancerare
treated by applying radiation from external sources, ring beamsinto a patient
from a number of dierent anglesin sud a way that the targeted tumor lies
at the intersection of these beams. The increasing sophistication of treatment
devices|the aperture through which the beams passcan take on a variety of
shapes, multiples apertures can be delivered for ead beam angle, and wedges
can be usedto vary the radiation intensity acrossthe beam|allo ws delivery of
complexand sophisticatedtreatment plans, achieving a speci ed doseto the target
areawhile sparing surrounding tissueand nearby critical structures. Optimization
techniquesare proving to be usefulin the designof sud plans.

This chapter descrikesautomated treatment planning tools and ernvironmernts
for radiation treatment. The original data for the problem contains the dosedis-

tribution information. It consistsof the radiation deposited by the beaminto eah
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of the small three-dimensionalregions (\v oxels") into which the treatment area
is divided. We divide the beam from ead direction into a rectangular array of
pencil beams or beamlets calculating the dosematrix independerly for ead, as
descrilted in Section5.1.2. The beamlet dose matrices are usedto identify the
BEV, and the aggregatedosematrix for the BEV aperture is obtained by simply
adding the cortributions from the does matrices for the beamletsthat make up
the BEV.

The secondimportant componert of the data is speci cation of the tumor
regionand critical structures. Three-dimensionalorgangeometriesare outlined by
a physicianon a setof CT or MRI images. The physicianlabels someof the voxels
as PTV (for \Planning Target Volume," the tumor region) and others as OAR
(for \Organ At Risk," alsoknown as\sensitive structure™ or \critical structure").
Finally, the desiredor required doseinformation for ead regionis speci ed by the
user.

Optimization software is deweloped to aid radiation treatment planning as fol-
lows. First, a MATLAB routine generatesappropriate dosematrices basedon the
beam's-eg-viewapproad. A variety of GAMS optimization modelsfor the beam
angles,beamweights, and wedgeorientations are provided to optimize the treat-
ment plans. Often optimal valuesof the radiation treatment planning optimization
modelsdo not provide su cien t information to judge whether the treatment plans
areclinically acceptableor not. Therefore,peoplein practicerely on other typesof
measuresud asdosevolumehistogram (DVH) aswell asvisual aids. A MATLAB
routine is provided to examinethe quality of treatment plans.

Some optimization modelers may have interest in creating unique shapes of
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organsto tune their models. But, it is often not easyto obtain sud organ struc-
tures. To meetthis need,we provide a MATLAB routine to createsimulated organ

structures.

5.1 Beam Ap erture Generation and Multileaf Col

limator Speci cation

5.1.1 A literature review on beam aperture generation

Beam's-e-view (BEV) has been widely usedin computerized radiation treat-
mert planning [11, 16, 19, 34, 52, 56]. Goitein [34] presens a three-dimensional
treatment planning program using BEV. The paper [52] integratesthe BEV into
computerized treatment planning. Their cortribution enablesbeam's-eg-view
graphics to be mixed with gray-scaleimagessud as simulator and veri cation
radiographs, and digital reconstructedradiographs. This is an early work where
BEV is usedto calculate three-dimensionaldosedistribution. To speedup the
generationof beam aperture, Brewster et al [11] presernt a method that generates
beam aperture for computer-aidedoptimization of radiation therapy. The notion
of target-eye-view (TEV) map is discussedn [19. In TEV, both the target and
the organs-at-riskare considered.This can visually help plannersto choosewhich

beam anglesshould be avoided a priori .
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5.1.2 Beam's-ey e-view and dose matrices

A multileaf collimator located inside the head of the linear acceleratoris used
to shape the beam of radiation generatedby the linear accelerator[34, 84]. To
calculate the radiation dosageghat can be delivered by a beam applied from a
givenangle,the rectangularaperture obtained by openingthe collimator aswidely
as possibleis divided into rectangular sub elds arrangedin a regular M N
rectangular pattern, as shown in Figure 27. Ead of the sub elds is called a
pencil beam or beamlet M represems the number of leaf pairs in the multileaf
collimator, while N represeits the number of possiblesettings we allow for eat
leaf. We idertify ead beamlet by the index pair (i; j), wherei = 1;2;:::;M and
] = 1;2;:::;N. In our work, the leavesof the multileaf collimator are 1 cm wide,
and a pencil beamis assigneda length of 0.5cm. Thus, for a10cmby 10cm eld,
we would useM = 10and N = 20, giving a total of 200 beamlets.

A separate three-dimensionaldose distribution is computed for eat pencil
beam. The dosedistribution matrix for ead pencil beam from ead angle is
calculatedusing a Monte Carlo technique, which simulatesthe track of individual
radiation particles, for a large number of particles. A unit-intensity, non-wedged
beamis assumedfor the purposesof thesecalculations.

In conformalradiotherapy, the shape of ead beamis setto match the beam's-
eye view (BEV) of the tumor volume, which is essetially the projection of the
three-dimensionalshape of the tumor onto the plane of the multileaf collimator.
Onetechnique for determining the BEV is to employ a ray-tracing algorithm from

the radiation sourceto the tumor volume, setting the beam's-e view to include
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all of the raysthat passthrough the tumor volume. We usean alternative approat

basedon the dosematrices of the pencil beams. We include in the BEV all pencil
beamswhose eld of signi cant doseintersectswith the target region. To be
speci ¢, givenathresholdvalue T, we include a pencil beamin the BEV if its dose
deliveredto at least one voxel within the target regionis at least T% of the dose
deliveredby that pencil beamto any voxel. Figure 28 shavs an exampleof a BEV.

Implemerntation of a BEV by a multileaf collimator is shown in Figure 28(b).

Oncethe BEV from a particular angle has beenchosen,we can construct the
dosematrix for the BEV aperture by simply summingthe dosematricesof all the
pencil beamsthat make up the BEV.

The choice of threshold parameter T is critical. If the value of T usedin the
determining the BEV is too small, the BEV overestimatesthe target, producing
an aperture that irradiates not only the target but alsonearby normal tissue and
organsat risk. On the other hand, if the value of T is too large, the BEV under-
estimatesthe target, and the optimizer might not be ableto nd a solution that
adequately delivers radiation dosewithin the required range to all parts of the
target. The bestvalue of T to usedependssomewhaton the shape of the tumor.
We chooseT asthe minimum value sud that the resulting BEVs provide a com-
plete 3D coverageof the target from all beam anglesconsideredin the problem.
Basedon our experimerts, a value of T of between 10% and 15% appearsto be

appropriate.
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5.2 Optimization Mo dels

A variety of optimization models are provided to users. Although they are de-
scribedmorefully in Chapter 4, we give a few examplesof optimization modelsthat
are available in GAMS les on our website http://www.cs.wisc.edu/ ferris/3dcrt/.

All de nitions of variablesare thereforegivenin Chapter 4.

5.2.1 Beam weight optimization

Linear Programming  Linear programming (LP) is a powerful mathematical
tool for radiation treatment planning optimization. It hasbeenusedto improve
convertional treatment planing techniques|1, 43, 53, 61, 67]. The strength of LP
is its ability to cortrol hot and cold spots or integral doseon the organs,and the
presenceof many state-of-the-art LP solvers. There are two weaknessesf LP in a
practical sense.The rst isthat LP fails to approximate a solution whena solution
doesnot exist. The secondweaknesss that clinically desirableobjective functions

sometimesmay not be well appraximated by linear functions.

An example of LP:

k(Ds es)+k: N kKDn k1

min kD k, + _ZNT
W veT ek *  card(S) "card(N)
P -
s.t. Djx) = aza WaDaijkys 8@ K)2T[ S[N; (5.1)
0 Wa LA A 8A 2 A:

Quadratic Programming  One di erence between linear programming (LP)

and quadratic programming (QP) is in the objective function formulation: LP
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usesa linear objective function, while QP usesa quadratic objective function.
Most of the works in the literature try to minimize the sum of the deviation of the

doseof voxelsto the prescribed dose[17, 60, 67, 73].

A QP example:

kDt  erk3 k(Ds es)iki ~ kDnkj

mno card(T) tos card(S) "card(N)

P
st D = aopn WaDa: 5 =T[ S[ N; (5.2)
0 Wa lA Al 8A 2 A:

5.2.2 Beam angle selection and weight optimization

Mixed Integer Programming (MIP) is a straight-forward technique for selecting
beamsanglesamong many candidates. The weaknesshowewer, is its long run-

time.

An example of MIP:

k(Ds es)+k: N kDn k1

min kD k, +

o dOT ek s card(S) "card(N)
X

S.t. D = DA; Wa , =fT [ S[ Ng
A2A
0 wa Lo BA2A; (5:3)

P .
A2A A K;

A 2 f10;1g; 8A 2 A:
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Note that (5.3) can also be usedto optimize only beam intensities by setting
K = JjAj.
5.2.3 Optimizing beam angles, wedge orien tations, and beam

weights

Finally, we descriked an optimization model that simultaneously optimizes beam

angles,wedgeorientations, and beamintensitiesin Chapter 4.

A MIP example:

k(Ds es)+k: N KD k1

min kD ki +
Wt tET e s (S) "card(N)
X
S.t. D = Wa.F DA;F; ; 2T [ S[ N ;
A2A F 2F
X
iA A Waot 1 Wa:r
F2F no (5.4)
P .
K A2A A
War 0; 8A 2 A;
A 2 f0;1g; 8A 2 A:

5.3 Optimization Software

5.3.1 Directory setup

Three directories are recommendedto store necessarydata and programs (see

Figure 29). The directory Beamdata stores the original data that cortains the
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|Ltils Structures

Eeamdata

Figure 29: Three directories are recommended

dosedistribution for beamletsfrom ead angle explainedearlier.

The directory Structures storesthree-dimensionalorgan geometriesof the tu-
mor region, organs-at-risk,and normal tissue. They are outlined by a physician
on a set of CT or MRI images. The physician labels someof the voxels as PTV
and others as OAR.

Utils directory cortains all programsthat utilize the information given above
two data directoriesfor the treatment planning optimization. This is the directory
wheretreatment plansaredesigned.The programsin this directory include GAMS
optimization models, a MATLAB routine to generateappropriate data for the
optimization models,a MATLAB routine to executeGAMS optimization models,
a MATLAB routine to make DVH plots, and a MATLAB program to generate

simulated organ structures.

5.3.2 Environmen t and system requiremen ts

The treatment planning processis carried out in MATLAB environment. We

descrike the following systemrequiremert to run the provided programsproperly.

1. A PC running on Linux (or Solaris,or Windows 98/ME/NT/2000/XP  op-

erating system).

2. At least 500 MB free hard drive space(1 GB free spaceis recommended).
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3. A licensedMATLAB asa working environmert.

4. A mathematical modeling languageGAMS with appropriate solversfor LP,

MIP, and NLP.

5.3.3 An overview of the optimization software
There are three stagesin generatinga treatment plan in our approad.

1. gendata(pobName): corverts/savesthe original data (stored in cortinuous
coordinates) into correspnding discrete coordinates for the optimization.
The input argumert is a MATLAB structure array that de nes the basic
problem con guration (seeSection5.4.1.) It alsogeneratesa le that de nes
basic GAMS setsand parameterson the y usinganinput le that species

madine con guration aswell asthe user'spreferencefor the treatment plan.

>> gendata(probName);

2. rungms: generatesa treatment plan. It cantake multiple input strings sud
as the name of a GAMS le, MATLAB structure arrays of organs,and a

MATLAB structure array of input parameters.

>> [Dose,PTV,0AR] = rungms(‘qp’,target,se  nsit iv e);

Note that outputs of target and sensitive are mapped internally to \PTV"
and \OAR" respectively. The correspnding sets are returned from the

\rungms" program.

3. dvh: makesdose-wlume histogram (DVH) plots for inputs speci ed.

>> dvh(Dose,PTV,0AR);
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definelnputs.inc
inputs.m 4{ gendata )7 ZAMS model
data. gdx

Figure 30: Generatingdata for GAMS optimization model

4. newogans: enablesusersto createsimulated organstructureswithin a cylin-

der. This type of structures can be useful for tuning optimization models.

5.4 Treatment Planning Pro cess

We demonstratethe entire treatment planning process(presered in Section5.3.3)
using a prostate cancerdata. There are two organsin this example,namely \tu-

mor" and \rectum". The tumor volume has5245voxels, while the rectum consists
of 1936 voxels. Supposewe are interested in optimizing beam intensities of 36
beam anglesfor a treatment plan. Using this basicinput data, we walk through

ead treatment planning processin the next few sections.

5.4.1 Data generation

All coordinatesstoredin both Beamdataand Structuresdirectoriesare cortinuous,
which are not usableasGAMS setindices. The rst stepisto generateappropriate
data for the GAMS optimization model. Figure 30 illustrates the data generation
process. gendata rst readsin a userinput (generatedusing a MATLAB func-
tion inputs.m) that species the total number of beam anglesconsideredin the

problem, the number of beam anglesfor the treatment, whereto nd the original
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Beamdata and Structures of interest, GAMS set namesfor the organ structures,
and the GAMS include le name that will store set and parameter de nitions,
organ geometries,and dosematrix.

inputs.m usesthe MATLAB's \struct” commandto collect necessaryinfor-
mation to generateappropriate data for the treatment planning. An example of
inputs.m looks asfollows:

function data = inputs(prob_name)

%******************** *k kk kk kk kk kkk kk kk kk kk kk kk kkk kk kk kk kk kk kk kkk kk kk kk kk kk kk %

%Input data required for conformal radiation treatment planning optimization:

Ok kA k ko Kk ok Ak Kk kk Kkk kk Kok Kk Kk kk ok ok ok Kk Kk kk ok Kk Ak Kk Kk Kk ok Kk Ak
% nAngle = number of beamangles

% beamcutoff = cutoff dose value to generate beams-eye-view (ex. 12%)

% margin = margin of voxels to generate inNormal(l,J,K)==rind of PTV
%use_wedge = whether a wedgefilter is considered in the optimization
%is_cylinder = if the full data for all angles are given, say 'no'

% baseDir = base directory where all the data is stored

% beamDir = Directory nameof the intial beamdata

% structDir

Directory nameof the intial  structures

% beamID beamdata identification, ex. 10x10 or 20x20 or imat

% rindSetName a set of voxels in rind of tumor

% oarSetName := a set that contains all voxels in orans-at-risk
% gdxDataName := a file that contains all GDXdata for GAMS
% structurefile:= input structure file namesin Structures directory

% setName set namesfor the structures in the GAMSile
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if strcmp(prob_name,'pr ostate’)
st = struct(‘files' {'ptv dat' rectumdat’} ,.. .
'sets',{'prostate’,'re ctuni );

elseif strcmp(prob_name,'pa ncreas')

st = struct(files' {GTV 08dat' ;) C®RA.dat' ,'L IVOO.dat’', ...
'LTTO3.dat','RTT04.da t' },. ..
'sets',{'Pancreas','sp Cad', 'Liver ,. .
'LKidney','RKidney'}) ;
else
st = [I;
end
data = struct(...
'nAngle’,36,...
'kBeams',10,...

'‘beamcutoff',11,...

'margin’,2,...

'use_wedge','no’,...

is_cylinder','yes’,.

'baseDir','/p/cure-ca ncer/workl/LIM/, .. .
'‘beamID’,'10x10',...

'‘beamDir','Beamdata_c yl inder' ,..
‘'structDir','Structur es, ...

rindSetName','inNorm al ', .. .

‘oarSetName','Sensiti  ve', .. .
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‘gdxDataName','data.g dx, .. .
‘gdxIncludeFile’,'def inelnputs', ...

'structures’,st);

We take two stepsto generatedata that is neededfor the rest of treatment
planning. The rst step is to collect appropriate input data for the MATLAB

command\gendata":
>> prob = inputs(‘prostate’);

This createsa MATLAB structure array \prob" with all default valuesand strings
of \inputs.m" for the treatment planning problem.

The secondstep is to producethe data usingthe inputs createdabove:
>> gendata(prob);

This generatesboth a GAMS include le (de nelnputs.inc) and a GDX (GAMS
Data Exchange) le [76], typically named data.gdx that are required for any of
the GAMS models.

The le de nelnputs.inc is a problem speci ¢ le that de nes setsand param-
etersthat are usedin the optimization model. It hassix componerts. First, basic
sets and their dimensionsare de ned for solving the optimization problems. A
large value of the maximum index is typically assignedto ead three-dimensional
coordinate becausehe dimensionof the coordinate is not known in advance. Since
ead setof the coordinate overestimatesits maximum index, this generatesunnec-
essarily large number of voxels in the problem; which can lead to a very slow

solution time. To overcomethis, sets of the three-dimensionalcoordinates and
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their dimensionsare de ned when the locations of the organ structures are iden-
tied. Onceorgan structures are constructed for the optimization, dimensionsof
setscan be de ned basedon the three-dimensionallocations of organsand normal

tissue surrounding the organs. An exampleis showvn below.

sets
I 10*127/
J 10%127/
K /0* 33/

nAngle /0*35/;

The next componert is to de ne GAMS global variablesusedin the GAMS

le. In our example,the following two lines

$setglobal target 'prostate’

$setglobal sensitive ‘rectum’

make the global variable target cortain \prostate" and \sensitive" for \rectum" in
the GAMS le.

The third componert is to de ne necessarysets for the GAMS le. Sets
\prostate" and \rectum" provide coordinates of organs,\PTV" and \O AR" are
auxiliary setde nitions for the target and the sensitive structuresrespectively. The
set\inNormal" (R (T)) wasde ned in Chapter 4 to denotethe normal tissuefrom
a rind around PTV, \outNormal" is for a set of voxels that does not belong to
the organsof interest (excluding voxelsin \inNormal”), \Normal" is de ned asa
union of \inNormal" and \outNormal”, and the name of the parameterto store

the dosedistribution is alsode ned:
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sets
prostate(l,J,K), rectum(l,J,K), PTV(1,J,K), OAR(l,J,K),
Normal(l,J,K), inNormal(l,J,K), outNormal(l,J,K);

parameter Dose(l,J,K,nAngle);

In the next componen, a set\allorgans” de nes a collection of sensitive struc-
tures of interest. The next line is a gateway betweenMATLAB and GAMS that
allows the userto update the valuesof global strings in the GAMS le. For exam-
ple, we may wish to update the global variable \sensitive" to cortain a subsetof

all sensitive structures.

set allorgans /%sensitive%l/,
$if exist matglobs.gms S$include matglobs.gms

set organs(allorgans) /%sensitive%o/,

All necessarylata for the optimization is stored (by \gendata™) in GAMS GDX
format. Therefore,the next componert is written to retrievethe data in the GAMS

le:

$GDXINdata.gdx
$LOAD PTV=%target¥prostate rectum inNormal
$LOAD Dose

$GDXIN

\$GD XIN data.gdx" opensthe GDX le \data.gdx" for reading. The secondline

is usedto load setsfrom \data.gdx". Note that a setcanbe renamedat this stage:
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set \target" is now named\PTV". The last line \$GD XIN" closesthe accesso
the le \data.gdx".

Finally, a set\Sensitive" of the sensitive structuresis de ned asa collection of
\allorgans" in the GAMS le. Eadch organ must be de ned explicitly asshown in

the secondline below:

set Sensitive(l,J,k,allor gans);

Sensitive(l,J,K,'rect um) = yes$rectum(l,J,K);

The GAMS include- le definel nputs:inc that cortains all of thesecomponerts

needsto be included at the very beginning of any GAMS les in our toolbox:

$include definelnputs.inc;

5.4.2 Constructing GAMS optimization models

We illustrate a GAMS optimization model for (5.2) belov. Most of the notation
usedin this GAMS le tries to imitate the mathematical symbols usedin (5.2)
with a few exceptions: PTV represes T, OAR is for S, Normal is usedfor N,

and sumDoserepresets D.

* gp.gms

* This program solves 3D conformal radiation treatment problem.
* The solution includes: optimal beamweights

option limrow=0, limcol=0, solprint=off;

OAR(I,J,K) = yes$Sensitive(l,J,k,a Il organs);

scalar theta '‘dose level prescribed for target /I 11
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scalar ubar ‘dose upper bound on the target voxels' /1.15/;
$include definelnputs.inc
parameter phi(allorgans) 'hot spot control parameter for OAR’;
phi(allorgans) = 0.3;
parameter Rho(nAngle) 'maximumdose level deposited to the target’;
Rho(nAngle) = smax(PTV,Dose(PTV,nArg)) ;
OAR(l,J,K) = yes$(not PTV(I,J,K) and sum(organs$Sensitive (I ,J ,K, organs), 1));
outNormal(l,J,K)=yes$ (not PTV(l,J,K) and not OAR(l,J,K) and
not inNormal(l,J,K) and
(mod(ord(l),2)=0 and mod(ord(J),2)=0 and mod(ord(K),2)=0));
Normal(l,J,K) = yes$(inNormal(l,J,K)  or outNormal(l,J,K));
positive variables  w(nAngle), dS(l,J,K,allorgans), sumbDose(l,J,K);
variable z;
equations Def4sens(l,J,K),Defdsu  mbDse(l, J, K,all organs), Obj;
DefdsumDose(l,J,K)$(P Tl ,J ,K) or OAR(I,J,K) or Normal(l,J,K))
sumDose(l,J,K) =e= sum(nAngle,Dose(l,J,K ,n Argle )* w(hAngle)) ;
Def4sens(OAR,allorgan s) ..
-sumDose(OAR)} dS(OAR,allorgans) =g= -phi;
Obj ..
z =e= sum(PTV,sumDose(PT¥§unbos(P1V))/ card (PTV)
+ sum(allorgans,sum(OAR,dSOAR,al lo rgans) *dS(OARall organs))
/card(allorgans))
+ sum(Normal,sumDose(br md)* sumbDse(Namal) )/ card (Nor md);

sumbDose.up(PTV)= ubar*theta,
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w.up(nAngle) = ubar/Rho(nAngle);
model conf / all/;

solve conf using nlp minimizing z;

For debugging purposes,this model can be executeddirectly at the command

prompt:
% gamsqgp

Note that any user-de ned GAMS les are not allowed to be named either \mat-

globs.gms"or \matdata.gms" becausethey already exist in the system.

5.4.3 Generating a treatmen t plan

The GAMS le can be run within MATLAB [26]. Someof the speci ed three-
dimensionalorgan geometriescan be returned bad into the MATLAB workspace
with the nal dosedistribution being the rst (required) output. The GAMS
library utilit y \matout” can be usedfor this. First, we calculate the nal dose
distribution right after the \solve" statemer in the GAMS le becausesomeof

the normal voxels were not consideredin the optimization:

Normal(l,J,K) = yes$(not PTV(I,J,K) and not OAR(l,J,K));
sumDose.l(1,J,K)$(PTV (I ,J,K) or OAR(l,J,K) or Normal(l,J,K))

= sum(nAngle,Dose(l,d, K,nAngle)*w.l (nArgle)) ;

We then add the following line to the GAMS le for returning the nal dose

distribution asfour-dimensionalmatrix into MATLAB.

$libinclude  matout sumbDose.l | J K
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All matrices of organ geometriesare three-dimensionalsets. In order to return
thesematricesbad into MATLAB, GAMS $libinclude matout commandmust be
usedfor eat organ of interest. Sincethe organswill be specied in MATLAB,
the line correspnding to ead organis written on the y whenrungmscommand
is triggered in MATLAB.

The routine \rungms" can take up to sewral inputs. It (rungmg can have
three di erent typesof inputs: a string cortaining the GAMS le name,MATLAB
structure arrays that de ne organs,and a MATLAB structure array that de nes
valuesof parametersusedin the GAMS le. A generalinput format for rungms

looks as follows:

rungms(GAMSfile  name[-options]’,organl,or gan2,organ3,. .. ,data);

The rst (and only required) input string must be the GAMS le namethat is
currently located at Utils directory. GAMS options can be added followed im-
mediately after the GAMS le name. We can run the GAMS le \gp.gms" in

MATLAB asfollows:

>> Dose = rungms('qp");

Howewer, it is typical that a userwill wish to visualizethe DVH plots of various
structures in the problem. To facilitate this, we use optional input and output
arguments to passthe coordinatesusedby the GAMS model badk to MATLAB.
The optional argumerts are MATLAB structures represeting organs. Eac
structure must have a name eld. The name eld must have the string value that

is idertical to the setnameusedin GAMS. For an example,we de ne a MATLAB
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structure array for the target, another for the sensitive structure, and the third for

the normal tissue as follows:

>> target = struct('name’{'prost ate'}) ;
>> sensitive = struct('name’,{'rectu m'}) ;
>> normal = struct('name',{'Norma I' });

For example,the following line

>> [Dose,PTV,0AR,Normdl = rungms('qp’,target,sen  siti ve,n ormal);

rst createsa le matoutDef.inc that instructs the GAMS model to return the

speci ed organ coordinates:

* matoutDef.inc
$libinclude  matout prostate | J K
$libinclude matout rectum | J K

$libinclude matout Normal | J K

Therefore,we must add the following line

$if exist matoutDef.inc  $include matoutDef.inc

at the end of the GAMS le asfollows:

GAM®rogram ....
$libinclude  matout sumbDose.l | J K

$if exist matoutDef.inc  $include matoutDef.inc
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The speci ed GAMS le is executedand returns the four-dimensionalmatrix of
the nal dosedistribution. In addition, it can alsoreturn as many setsas spec-
ied in matoutDef.inc. In our example,a set of three-dimensionalcoordinates of
the prostate and another for the rectum are returned along with the nal dose
matrix. Any structure coordinatesthat are returned to the MATLAB workspace
can be usedto ewaluate the treatment quality using DVH plots. The last line in
\matoutDef.inc" is to return either the solution vector (if wedgesare not used)or
the solution matrix (if wedgesare used)badk into MATLAB. For an exampleto

retrieve a solution w, just executethe following line:
>> [D,PTV,w] = rungms(‘qp'target,[] ) ;

Note that it is important to place w at the end of the output argumert. Fur-
thermore, in the \rungms" example above, the \gp" model will have an empty

sensitive structure.

5.4.4 Solution examination using DVH plot

The quality of a treatment plan is typically speci ed and ewaluated using the
DVH. To make a DVH plot of the current solution, nal dosedistribution and
three-dimensionalorgan coordinates are passedthrough a MATLAB routine dvh.

\Dose" must be the rst input argumen for \dvh". In MATLAB prompt,
>> dvh(Dose,PTV,0AR);

This invokesa MATLAB gure with dosevolume histogramsof the speci ed or-
gans. The usercan also specify (not required) the line property on the DVH plot

as follows:
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Figure 31: DoseVolume Histogram

>> dvh(Dose,PTV,'b-OA R,T ") ;

wherethe color blue ('b-") with a solid line is speci ed for the \PTV" andred ('r")
for the \O AR." More choicesof the line properties can be found in MATLAB by

typing:
>> help plot

An example of DVH is showvn in Figure 31. The X-axis is normalized so that
the target prescribed dose( ) is one. The Y-axis represets the fraction of the
volume. For example,the line of the normal tissue approximately passeghrough
the coordinate (0:2;0:2). This meansthat 80% of the normal tissue receives 20%
or lessof the target prescribed doselevel. Note that the labels of structures are

createdmanually after the DVH plot is madeusing MATLAB gure editor.
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5.5 Creating Simulated Organ Structures

5.5.1 Simulated organ structure generation pro cedure

We provide a MATLAB routine to createsimulated organ structures. This routine
allows usersto outline two-dimensionalslicesof a target and a sensitive structure
in order to generatethree-dimensionalorgan shapes. Once a user executesthe
MATLAB routine \neworgans”, MATLAB immediately asksthe user a seriesof

guestionsabout the organ structures to generate:

>> neworgans

Enter the target file name:=> ‘head'
Enter the OARfile name:=>'neck’

z slice index runs from 1 to 32.
Input first slice for target: 10
Input last slice for target: 15

Please contour the target at slice 10

At this point, a MATLAB gure window is invoked for the userto start outlining

organ shapes. The useris asked to cortinue for the following process:

Please contour the target at slice 10

Repeat (1=yes,0=n0):0

The \Repeat" givesthe useran option to redraw the most recert outline of the
sliceif necessary
An exampleof this is shavn in Figure 32(a). Next, the useris asked to outline

the shape of the sensitive structure on the sameslice shovn in Figure 32(a):
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Figure 32: Creating simulated organ structures

Please contour the region at risk at slice 10
Repeat (1=yes,0=n0):0

Please contour the target at slice 11

Figure 32(b) shavs such an example. This processcortinuesuntil the organshape
of the last sliceis outlined. Oncethe complete organ structures are de ned, the
coordinates are stored into Structuresdirectory with the lename speci ed by the

userwith .dat lename extension(for example,head.dat, ned.dat).

55,2 An example of treatmen t planning pro cedure with
the new organs

The following MATLAB stepsillustrate a treatment planning procedurewith the

organ structures producedin the previoussection.
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1. Generating model data: Sincewe have created new organ structures, we
needto update the problem structure. For example,to usethe \head" and \neck"

data just generated,we just execute:

>> prob = inputs(‘'organsl’);
>> prob.structures = struct(files',{'hea d.dat', ‘'neck.dat},...

'sets',{'head’,'neck'’ D
Then the model data can be generatedusing \gendata" command:

>> gendata(prob);

2. Treatment Planning: First, organ structures are de ned using MATLAB

\struct" command:

>> target = struct('name’,{'head' D
>> sensitive = struct('name’,{'neck’ D
>> normal = struct('name',{'Norma I' });

Wethen run GAMS le \gp.gms" usingtwo organstructures ("head" and \neck")

as follows:

>> [Dose,P,S,N]= rungms(‘gp’,target,se  nsit ive,normd) ;

3. Solution Examination:  The dose-wlume histogram can be madeto exam-

ine the treatment quality:

>> dvh(Dose,P,S,N);
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5.6 Techniques to impro ve solution time

5.6.1 Data sampling

The given data for radiation treatment optimization problem is typically very
large. The reasonis that the initial dosematrix for the optimization model stores
dose cortribution to ead voxel consideredin the optimization. Typical ( xed
default) dimensionsconsideredin the radiation treatment planning problemsare
150 150 100= 2:25 million. In our example,the correspnding dimensions
werereducedto 128 128 34 = 0:557 million, which is about 25% of the xed
dimension.

Vast amourt of voxels comprisethe normal tissue. Although voxels in the
normal tissueareimportant for the nal treatment plan, somevoxelsthat are away
from the target structure are lesssigni cant to the optimal treatment plan dose
distribution. A random sampling of voxels is usedto speedup the computation
in the literature [62). 10% of ead structure is randomly sampled. The sampling
sthemeis alsonoted elsewherd42. The sampling approad we usewas discussed
in Section4.4.3. This can be seenin se\eral of the example GAMS les available

at http://www.cs.wisc.edu/ +ferris/3dcrt/.

5.6.2 Robust modeling and iterativ e solution approach

We have used sometechniquesto enhancethe performanceof the optimization
models. If the optimization problemis nonlinearand noncorvex, generatinga good

starting solution becomesvery important to ensurethat the resulting solutionsare
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robust and reliable (an exampleis given in Section3.3.) When solving a mixed
integerprogrammingmodel, tightening the solution spacecansigni cantly improve
the solution performanceas discussedn Section4.4.1.

The secondand very powerful technique in solving a large-scaleoptimization
problem is the use of the \iterativ e solution scheme" discussedin Section 4.4.3.
In the iterativ e solution scheme,optimization model is typically solved using a set
of sampleddata points and relaxed constraints. Basedon the solution from the
previous solve, the next optimization processnarrows down the solution seart

spacefor the treatment goalsthe planner wants to achieve.

5.6.3 GAMS options

Sincethe amourt of data for radiation treatment planning problemsare typically
very large, dealing with beamdata in a text- le format may take a lot of storage
space.A drawbadk with largedatain GAMS is that often usershaveto sit and wait
for GAMS to load and unload the data. It canbe very time-consuming. Recerily,
GAMS published a cortributed utilit y GDX [76]. The GDX utilit y handlesdata
in a binary format, which can save a lot of storagespace.lt is alsomuch fasterto
work with the GDX data in GAMS ervironmert.

We give a brief description of a few useful GAMS options:

1. opt le canbe very usefulfor solvingLP and MIP models. GAMS [31] provide
a number of LP and MIP solversto choosefrom. Somealgorithms work bet-
ter than others depending on the problem of interest. For example, CPLEX

gives four options to solve an LP: 1 for the primal simplex, 2 for the dual
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simplex, 3 for the network simplex, and 4 for the barrier method. In gen-
eral, barrier method seemedo generatesolutionsfaster than other methods
in solving optimization problemswe have tried. For example, we usedthe
following schemesfor solving all of our MIP problems. The le \cplex.opt"

cortains the following lines:
Ipmethod 4

startalg 4
cuts no

covers -1

\Ipmetho d 4" speci es that the barrier method is usedto solve an LP. \star-
talg 4" is to usebarrier with cross@er for solving the initial relaxation of a
MIP. Other options for startalg are: 1 for the primal simplex, 2 for the dual
simplex, 3 for network followed by dual simplex, 4 for barrier with crosseer,
5 for the dual simplexto iteration limit, then barrier, 6 for the barrier with-
out crosseer.

\cuts no" isto turn o all CPLEX cut generationoptions. Default is \y es".
\covers(integer)" canbe usedto determineswhetheror not cover cuts should

be generatedduring optimization (default = 0).

-1 Do not generate cover cuts
0 Determined automatically
1 Generate cover cuts moderately

2 Generate cover cuts aggressively

To usethis CPLEX option le, aline

model_name.opt = 1;
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must be insertedright beforethe GAMS \solve" statemen.

2. pro le canbe usedto nd wherethe excessie time is being used. GAMS
generatesinformation on statemert executiontime and assaiated memory
usageby employing pro le. This option can be invoked either in the GAMS

le
option profile =3 (or 0,1,2)
or on the prompt
gamsexample profile = 3 (or 0,1,2)
3. prioropt: instructs CPLEX to usepriority branching information passedby
GAMS through the \V ariable.prior" parameters. The syntax is
VariableName.PriorOpt =1 (or 2,3,4,..);

A variable with a smaller number gets higher priority.

5.7 Summary

Optimization toolsare dewelopedin MATLAB and GAMS ernvironments. We have
generateda variety of GAMS optimization modelsthat implemert the modelsdis-

cussedn Chapter 4. Theseare available at http://www.cs.wisc.edu/ ferris/3dcrt/.
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Chapter 6

Conclusions

We have deweloped a collection of optimization frameworks for radiation treat-
mert planning. First, we preserted a unied and fully automated radiosurgery
treatment planning framework for the Gamma Knife madcine. The optimization
model is a nonlinear, non-corvex, and mixed integer program. We shoved how to
approximate the solution of this problem by a sequencef nonlinear programsand
a single linear mixed integer program. To obtain reliable solutions, we deweloped
a new and e cien t technique to generatea good starting point for the nonlinear
program. Basedon the fact that a shot of radiation (ellipsoid) forms approxi-
mately a sphere,we introduceda technique that usesa variant of a spherepading
approad combined with the Medial Axis Transformation (Skeleton), often used
in computer graphics. Using a good starting point, the nonlinear optimization
problem is solved using CONOPT (generalizedreducedgradiert method.) The
key optimization parameterswere the isocerters for radiation doses,the collima-
tor (helmet) sizes,and the intensity for ead shot of radiation. We shaved that
the optimization model was fast enoughto generatean optimal treatment plan
(within 20 minutes), exible enoughto apply to a variety of tumor types, and
robust enoughto obtain high quality (conformal and uniform) treatment plans for

any sizeand any shape of tumor. This tool is currertly in useat the Radiation
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Oncology Departmert at the University of Maryland Sdool of Medicine at the
University of Maryland.

Secondly we have deweloped a framework for three-dimensionalconformal ra-
diation treatment planning. In this framework, a variety of optimization models
were introduced for treatment planning problems. The optimization problems
wereformulated as mixed integer linear programming and quadratic programming
problems. We shoved that di erent objective function formulations could be used
for di erent treatment goals. We presened the optimization model that simulta-
neously optimizes three key parameters: beam weights, beam angles,and wedge
orientations. The framework o ers fast delivery of the treatment plan aswell asthe
capability for cortrol of dose-wlume constrairts on organsas typically descrited
by the planner. Sincethe data set required by the optimization formulations was
very large, we introduced techniques to reduce the data requiremens and the
complexity of the problem. Speci cally, we introduced tighter a priori bounds
on the beam weights, reduction of the number of voxels to be consideredin the
optimization, and a three-phaseschemein which a sequencef progressiely more
realistic optimization modelsis solved to obtain an approximate solution. Using
all thesetechniques,we demonstrateda 97% improvemert in computational time
over direct solution of the full-resolution problem on a clinical data set.

Finally, optimization software was deweloped for radiation treatment planning.
We demonstrated a treatment planning procedure with this software. First, a
MATLAB routine was usedto generateappropriate dose matrices basedon the
beam's-eg-view approat. Secondly a GAMS optimization model was executed

to nd a solution for the beam angles, beam weights, and wedge orientations.
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A MATLAB routine was usedto examinethe quality of the resulting treatment
plan. Sincesomeoptimization modelersmay alsobe interestedin creating unique
shapesof organsto tune their models, we provided a MATLAB routine to create

simulated organ structures.
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