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abstract

Technological and economic trends point towards a continuing and sig-
nificant increase in our nation’s reliance on the power grid. Meanwhile,
the landscape of today’s power industry is rapidly changing, especially
with the recent evolution of renewable generation, electricity storage and
electric vehicles. These issues not only challenge our ability to provide
accurate demand and supply forecasts, but they also raise questions on
how best to operate the power grid in a reliable, fair and cost-efficient
manner. Arising from the need to address these changes, interest in us-
ing mathematical models to answer these increasingly complex questions
has grown. This thesis discusses the analytical tools we have developed,
and our contribution of solution methods, modeling frameworks and
approaches in power systems research.

Chapter 1 provides an overview of some of the challenges faced by the
power industry and presents a collaborative and unified toolbox for power
systems researchers. The usefulness of this toolbox is underscored by
the examples of structured analysis comparing different models, solvers,
starting points and formulations. Chapter 2 expands on the curation
process of large datasets within the Toolbox’s data archive and continues to
explore solution methodologies for solving large and realistic datasets. We
also discuss the need for quality assurance in solutions involving realistic
datasets and provide suggestions on how to ensure solution integrity
within our GAMS models.

In Chapter 3, we propose a hierarchical framework to investigate the
complexities of long-term power planning decisions which is designed
to capture, in a flexible and tractable manner, the richness of the model
using transparent interactions between multiple agents making decisions
at different timescales. We also investigate an iterative process to solve the
shorter-scale Nash equilibrium problem.



xiii

Chapter 4 presents a fast and effective iterative Benders algorithm to
solve an “N-1” Security Constrained Economic Dispatch (SCED) Model in
realistic settings. In addition to solution speed, this section contributes
to existing literature by directly applying security constraints to a co-
optimized dispatch model. In Chapter 5, we present a stochastic model and
solution method for solving a day-ahead planning model with renewable
energy scenarios. By using a moving-window 2-stage stochastic process
with look-ahead information, we can maintain a reasonable model size
for tractability purposes. Furthermore, we provide versions of the SCED
and stochastic models in the Chapter 1 Toolbox, along with data definition
enhancements for contingency and scenario planning. These additions are
made in order to adapt the application of the toolbox to a wider and richer
set of research topics, thus improving the collaborative process within
Power Systems planning and operations.
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1 a toolbox for exploring optimal power flow
models

Well-accepted estimates cite a 35% growth in electricity demand over the
next 20 years, based on technological and economic trends which point
towards a continuing and significant increase in our nation’s reliance on
the power grid [27]. The landscape of today’s power industry is rapidly
changing, especially with the recent evolution of renewable generation,
storage and electric vehicles [44] which has had a detrimental effect on
our ability to provide accurate demand and supply forecasts. As a result
of the sector addressing these changes, interest in using mathematical
models to answer these increasingly complex questions has grown. The
Federal Energy Regulatory Commission (FERC) in their 2009-2014 strategic
plan, states their objective to “promote operational efficiency in wholesale
market through the exploration and encouragement of the use of software
and hardware that will optimize market operations” [31, p. 12]. At the heart
of power systems operations lies the AC Optimal Power Flow (ACOPF)
model which describes the physical properties of the network and thus
helps guarantee network stability during operation.

System reliability and generator commitment is typically overseen by
regional Independent System Operators (ISO) that operate as a go-between
and system regulator for generators and wholesale consumers. In its most
general form, the optimal power flow (OPF) problem is a cost minimization
problem with equality constraints enforcing Kirchhoff’s current law (i.e.
power balance at each bus in the network) and inequality constraints en-
forcing physical and stability limits on power generation and flow. While
the constraints describe the physical relationships involved in equipment
and electricity flow, the objective minimizes cost of dispatch to fulfill the
consumer demand. The OPF problem is well-researched and the standard
models have gone through little change in the last 50 years [17]. While
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significant progress has been made in algorithms, decomposition and
stochastic methods, there lacks a cohesiveness in comparative literature
due to the different models, file formats, software and solvers. Addition-
ally, software to solve complex simulations of power system models are
typically either highly specialized to answer a specific type of problem
or proprietary and lack transparency. Two of the most commonly used
softwares for solving OPF models is Matpower which is an open-source
Matlab power system simulation package provided by Zimmerman et.al.
[78], and PSS/E which is a widely used power system dynamics simulation
software package that is sold by the Siemens Corporation. The OPF Tool-
box introduced in this chapter is an an open source toolbox implemented
in GAMS, and is comprised of the following three components:

1. A model archive with multiple OPF formulations.
2. A data library that includes well-researched IEEE datasets as com-

monly used in literature.
3. A data utility archive for compiling, enhancing and converting datasets

between 3 popular formats used in power systems analysis (GAMS,
Matpower, PSS/E-31).

While the transparent objective of this toolbox is to provide a standard-
ized environment in which to test and compare different OPF formulations
and algorithms, the more subtle aim is to facilitate the modeling of com-
plex power systems models, many of which rely on the OPF model. By
providing core models, established datasets and import/export tools to
interface with popular formats, we encourage the user not just to use the
toolbox as provided, but also to take advantage of the robust modeling
capabilities in the GAMS environment, such as the ability to easily switch
between multiple powerful solvers, as well as the ease of testing different
model reformulations with the convenience of its high level modeling lan-
guage. The models presented in following sections serve a dual purpose.
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In addition to introducing the core of toolbox, they also provide the reader
an overview of many OPF formulations that exist in literature.

1.1 Nomenclature

The following notation will be used in describing the different OPF for-
mulations. Note that not all parameters and variables will appear in every
model, and set T is typically only used in unit commitment models. Thus,
index t ∈ T which is used to describe time periods, is not used in all the
formulations although it is described and indexed within these tables.
Another point of note is that every line ijc ∈ E , occurs at most once in this
set, that is to say that if ijc ∈ E , then jic 6∈ E . The convention as used in
our models is that a positive flow on a line represents a withdrawal at its
source end and an injection at its terminating end. This usage is further
clarified in the introductory passage of Section 1.2.2.

Set Description
N Set of buses in the transmission network
G Set of generators in the transmission network
I Set of interfaces in the transmission network

c ∈ C Set of transmission connections in network
t ∈ T Set of time periods

E ⊆ N ×N × C Set of lines in the transmission network
Ei ⊆ E Subset of lines E belonging to interface i ∈ I
Gi ∈ G Subset of generators G at bus i ∈ N

Table 1.1: Description of Sets

Parameters Description

c̃i(·) Cost function for generation at bus i ∈ N
dPit , d

Q
it Real and reactive power demand at bus i in time

t ∈ T
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rijc, xijc Resistance and reactance on line ijc ∈ E
gsi , b

s
i Shunt conductance and susceptance at bus i ∈ N

gEijc, b
E
ijc Conductance and susceptance on line ijc ∈ E

bCijc Branch charging susceptance of line ijc ∈ E
τijc, φijc Transformer tap ratio and angle on line ijc ∈ E
Y P
ij , Y

Q
ij Real & imaginary component of Y-bus admittance

matrix for line ij ⊆ N ×N
uit Generator i’s on/off status at time t ∈ T
F
P
ijc Real power limit on line ijc ∈ E
F
I
i Real power limit on interface i ∈ I

I ijc Current magnitude limit on line ijc ∈ E
P i, P i Lower and upper active power injection limits of

generator i ∈ G
Q
i
, Qi Lower and upper reactive power injection limits of

generator i ∈ G
U run
i , U

run
i Minimum up and downtime of generator i ∈ G

U
ramp
i , U

ramp
i Rampup and rampdown rate of generator i ∈ G

V i, V i Voltage magnitude lower and upper limits at bus
i ∈ N

Table 1.2: Description of Parameters

Variables Description

F P
ijct, F

Q
ijct Real and reactive power flowing on line ijc ∈ E in

time t ∈ T
IPijct, I

Q
ijct Real and reactive current flowing on line ijc ∈ E in

time t ∈ T
Pit, Qit Real and reactive power generated at bus i ∈ N in

time t ∈ T
Vit, θit Voltage magnitude and angle at bus i ∈ N in time

t ∈ T
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V P
it , V

Q
it Real & imaginary rectangular voltage components

at bus i ∈ N in time t ∈ T
Uon
it , U

off
it , U

run
it Start, stop and run status of generator i ∈ G at time

t ∈ T

Table 1.3: Description of Variables

1.2 Model archive

The model archive currently consists of a collection of 12 OPF models,
and various model options (called using the command line) allow the
user to experiment with different features and relaxations. The user may,
for example, specify specific time intervals to solve, choose between 4
objective functions (feasibility, linear, quadratic, piecewise linear), select
from multiple starting point options, relax generator or line operating
limits, and enforce D-curve or demand bidding constraints. A complete
list of GAMS models and corresponding model options can be found in
Appendix A.

Several different formulations exist for the power flow equations, the
most popular of which are the polar power-voltage formulation (P), the
rectangular power-voltage formulation (R), the rectangular current-voltage
(IV), and the DC approximation (DC) which is a popular linear approx-
imation of the problem. Cost functions (1.1) can be given as quadratic
coefficients or as a list of points specifying a piecewise linear function.
Piecewise linear functions must be convex at this time.

min
∑
i

c̃i(Pi) (1.1)

The following sections provide detail on the mathematical formulations
of the models provided in the archive.
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1.2.1 DC approximations

The DCOPF approximation stems from a simplification of the physics of
the transmission network. It linearizes the problem by treating resistance
and line losses as negligible, assuming that the per unit voltage magnitude
at each bus is 1, and uses small angle approximation for sine and cosine.
Small angle approximation assumes that the phase angle difference be-
tween the buses, (θi − θj)∀i ∈ N , is small enough and approximates the
cosine and sine functions with cos(i) = 1 and sin(i) = i respectively.

With these assumptions, reactive power in the network becomes zero
and can be ignored. Since losses are also zero in this model, the power for
each ijc line, Fijc, is only computed once (1.2) as the flow in the opposite
direction Fjic is the same. The resulting formulation is a linear model
that solves for variables P, θ, F P subject to node balance constraints (1.3),
interface flow limits (1.4), limits on the angle difference between connected
buses (1.5), and bound constraints on P and F P (1.6). Note that generator
statuses are provided and this is a single time-period model, therefore the
index t ∈ T is not used.

min
P,FP ,θ

∑
i

c̃i(Pi)

s.t. F P
ijc = −1

τijcxijc
(θj − θi + φijc) ∀ijc ∈ E (1.2)∑

k∈Gi

Pk −
∑

(jc):ijc∈E
F P
ijc +

∑
(jc):jic∈E

F P
jic

− dPi − gsi = 0 ∀i ∈ N (1.3)∑
ijc,jic∈Ek

F P
ijc ≤ F

I
k ∀k ∈ I (1.4)
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−π
3 ≤ θi − θj ≤

π

3 ∀(ij) : ijc ∈ E (1.5)

uiP i ≤ Pi ≤ uiP i ∀i ∈ G

− F P
ijc ≤ F P

ijc ≤ F
P
ijc ∀ijc ∈ E (1.6)

DC using Shift Factor Matrices

The DC power flow model can also be used to compute the sensitivities of
branch flows to changes in nodal real power injections, sometimes called
injection shift factors [78]. These matrices are typically large and dense,
|E| × |N |, and each element describes the expected change in real power
flow on a line, E , as it reacts to a 1 unit increase in the power injection at
bus N , under the strict assumption that the additional unit of power is
based on some slack distribution. Additional detail about shift matrices
can be found in [78].

Through use of the shift matrix, we can eliminate bus voltage angles, θ,
as an intermediate variable, and the shift matrix model is reduced to (1.7-
1.10), where H is the shift matrix. Due to the matrix density however, this
formulation is not recommended over the standard DCOPF formulation,
especially in large models.

min
P,FP

∑
i

c̃i(Pi)

s.t. F P
ijc =

∑
k∈N

Hijck

∑
l∈Gk

(
Pl − dPk − gsi

)
∀ijc ∈ E (1.7)

∑
k∈Gi

Pk − dPi − gsi = 0 ∀i ∈ N (1.8)

∑
ijc,jic∈Ek

F P
ijc ≤ F

I
k ∀k ∈ I (1.9)

uiP i ≤ Pi ≤ uiP i ∀i ∈ G

− F P
ijc ≤ F P

ijc ≤ F
P
ijc ∀ijc ∈ E (1.10)
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Unit commitment DC model

Unit commitment models allow the modeler to choose the set of dispatched
generators for each time period, and is typically useful when the OPF
model needs to be solved over a continuous block of time. When solved
over multiple time periods, t ∈ T , the model includes additional generator
operational constraints such as generator ramping, minimum up-time and
minimum down-time. Equations (1.11 - 1.14) are equivalent to (1.2 - 1.5)
with index t ∈ T , and unit commitment variables U = {Uon, Uoff, U run}
are factored into generator power limits in (1.15). Binary variable relation-
ships are modeled in (1.16), minimum up and down time in (1.17-1.18),
and generator ramping conditions in (1.19-1.20), while (1.21) defines the
remaining variable bounds. The constraints in (1.16-1.18) for the generator
unit commitment problem is based on the work done by Hedman, O’Neill
and Oren in [39].

min
P,FP ,θ,U

∑
t

c̃i(Pit)

s.t. F P
ijct = −1

τijcxijc
(θjt − θit + φijc) ∀ijc ∈ E , t ∈ T (1.11)∑

k∈Gi

Pkt −
∑

(jc):ijc∈E
F P
ijct

+
∑

(jc):jic∈E
F P
jict − dPit − gsit = 0 ∀i ∈ N , t ∈ T (1.12)

∑
ijc,jic∈Ek

F P
ijct ≤ F

I
k ∀k ∈ I, t ∈ T (1.13)

−π
3 ≤ θit − θjt ≤

π

3 ∀(ij) : ijc ∈ E , t ∈ T (1.14)

U run
it ∗ P i ≤ Pit ≤ U run

it ∗ P i ∀i ∈ G, t ∈ T (1.15)
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Uon
it − Uoff

it = U run
it − U run

i,t−1 ∀i ∈ G, t ∈ T (1.16)
t∑

t0=t−U run
i +1

Uon
i,t0 ≤ U run

it ∀i ∈ G, t ∈ T (1.17)

U run
it ≤ 1−

t∑
t0=t−U run

i +1
Uoff
i,t0 ∀i ∈ G, t ∈ T (1.18)

Pit ≤ Pi,t−1 + U run
it U

ramp
i

+ Uon
it (P i − U

ramp
i ) ∀i ∈ G, t ∈ T (1.19)

Pi,t−1 ≤ Pi,t + U run
it U

ramp
i

+ Uoff
it (P i − U ramp

i ) ∀i ∈ G, t ∈ T (1.20)

− F P
ijc ≤ F P

ijct ≤ F
P
ijc ∀ijc ∈ E , t ∈ T

Uon
it , U

off
it , U

run
it ∈ {0, 1} ∀i ∈ G, t ∈ T (1.21)

1.2.2 AC formulations

In the true physics of an AC power flow model, power transmitted through
lines ijc ∈ E may experience loss, and this is reflected in the calculations
of active and reactive power. That is to say that the power leaving bus
i ∈ N on line ijc ∈ E may not necessarily equal the power entering
the bus j ∈ N on the other end, i.e. Fijc may not equal −Fjic. Recall
that the convention used in these models is that a positive flow on a line,
Fijc represents a withdrawal at the source i ∈ N and an injection at its
terminating end j ∈ N . In this section, we provide three formulations of
the AC power flow model, namely polar power-voltage in Section 1.2.2,
rectangular power-voltage in 1.2.2 and rectangular current-voltage in 1.2.2.

Polar Power-Voltage Formulation (P)

The polar power-voltage formulation uses the polar form of complex quan-
tities and explicitly uses sines and cosines in the power flow constraints.
Variables Qi and Vi model the reactive power support provided by genera-
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tors and the bus voltage at bus i ∈ N respectively, while reactive power
on a line is modeled by FQ

ijc.
Due to possible line losses, real power flow on lines ijc ∈ E , which

are approximated in the DCOPF by (1.2), is modeled here by (1.22 - 1.23),
and reactive power flow on lines is computed through (1.24 - 1.25). Node
balance equations are updated in (1.26 - 1.27), limits on line interface flows
and bus angle differences are provided in (1.28 - 1.29), and (1.30) defines
bounds on the remaining variables.

min
P,Q,FP ,FQ,θ,V

∑
i

c̃i(Pi)

s.t. F P
ijc = 1

τ 2
ijc

gEijcV
2
i

− 1
τijc

ViVj
(
gEijc cos(θi − θj − φijc)

+ bEijc sin(θi − θj − φijc)
)

∀ijc ∈ E (1.22)

F P
jic = gEijcV

2
j

− 1
τijc

ViVj
(
gEijc cos(θj − θi + φijc)

+ bEijc sin(θj − θi + φijc)
)

∀ijc ∈ E (1.23)

FQ
ijc = − 1

τ 2
ijc

(
bEijc +

bCijc
2

)
V 2
i

− 1
τijc

ViVj
(
gEijc cos(θi − θj − φijc)

− bEijc sin(θi − θj − φijc)
)

∀ijc ∈ E (1.24)

FQ
jic = −

(
bijc +

bCijc
2

)
V 2
j

− 1
τijc

ViVj
(
gEijc cos(θj − θi + φijc)

− bEijc sin(θj − θi + φijc)
)

∀ijc ∈ E (1.25)
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∑
k∈Gi

Pk −
∑

(jc):ijc∈E
F P
ijc −

∑
(jc):jic∈E

F P
ijc

− dPi − (Vi)2gsi = 0 ∀i ∈ N (1.26)∑
k∈Gi

Qk −
∑

(jc):ijc∈N
FQ
ijc −

∑
(jc):jic∈E

FQ
ijc

− dQi + (Vi)2bsi = 0 ∀i ∈ N (1.27)∑
ijc,jic∈Ek

F P
ijc ≤ F

I
k ∀k ∈ I (1.28)

−π
3 ≤ θi − θj ≤

π

3 ∀(ij) : ijc ∈ E (1.29)

uiP i ≤ Pi ≤ uiP i , uiQi
≤ Qi ≤ uiQi ∀i ∈ G

V i ≤ Vi ≤ V i ∀i ∈ E

− F P

ijc ≤ F P
ijc ≤ F

P

ijc ∀ijc ∈ E (1.30)

Rectangular Power-Voltage Formulation (R)

The second AC formulation we provide uses the rectangular form of com-
plex quantities, resulting in quadratic power flow constraints with respect
to these quantities. Unlike the polar formulation, the sines and cosines
are of constant parameters and the bus voltage is separated into real and
imaginary parts, that is Vi =

(
(V P

i )2 + (V Q
i )2

)
∀i ∈ N . Therefore, equa-

tions (1.22 - 1.27) from the polar model which define real and reactive
power on lines and node balance equations are rewritten in the retangular
fomulation as (1.31-1.36). Additionally, the voltage magnitude limit is no
longer a simple bound contraint but is enforced by the quadratic inequality
in (1.37). Similar to (1.28-1.30) in the polar formulation, interface limits
are imposed in (1.38) and variable bounds are defined in (1.39), while bus
angle limits are not explicitly imposed in this formulation.
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min
P,Q,FP ,FQ,V

∑
i

c̃i (Pi)

s.t. F P
ijc = 1

τ 2
ijc

gEijc
(
(V P

i )2 + (V Q
i )2

)
− 1
τijc

(
gijc cos(φijc)− bEijc sin(φijc)

) (
V P
i V

P
j + V Q

i V
Q
j

)
− 1
τijc

(
bEijc cos(φijc) + gEijc sin(φijc)

) (
V P
j V

Q
i − V P

i V
Q
j

)
∀ijc ∈ E

(1.31)

F P
jic = gijc

(
(V P

j )2 + (V Q
j )2

)
− 1
τijc

(
gijc cos(φijc) + bEijc sin(φijc)

) (
V P
j V

P
i + V Q

j V
Q
i

)
− 1
τijc

(
bEijc cos(φijc)− gEijc sin(φijc)

) (
V P
i V

Q
j − V P

j V
Q
i

)
∀ijc ∈ E

(1.32)

FQ
ijc = − 1

τ 2
ijc

(
bEijc +

bCijc
2

)(
(V P

i )2 + (V Q
i )2

)
− 1
τijc

(
gEijc cos(φijc)− bEijc sin(φijc)

) (
V P
j V

Q
i − V P

i V
Q
j

)
− 1
τijc

(
bEijc cos(φijc) + gEijc sin(φijc)

) (
V P
i V

P
j + V Q

i V
Q
j

)
∀ijc ∈ E

(1.33)

FQ
jic = −

(
bEijc +

bCijc
2

)(
(V P

i )2 + (V Q
i )2

)
− 1
τijc

(
gEijc cos(φijc) + bEijc sin(φijc)

) (
V P
i V

Q
j − V P

j V
Q
i

)
− 1
τijc

(
bEijc cos(φijc)− gEijc sin(φijc)

) (
V P
j V

P
i + V Q

j V
Q
i

)
∀ijc ∈ E

(1.34)
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∑
k∈Gi

Pk −
∑

(jc):ijc∈E
F P
ijc −

∑
(jc):jic∈E

F P
ijc − dPi

−
(
(V P

i )2 + (V Q
i )2

)
gsi = 0 ∀i ∈ N

(1.35)∑
k∈Gi

Qk −
∑

(jc):ijc∈E
FQ
ijc −

∑
(jc):jic∈E

FQ
ijc − d

Q
i

+
(
(V P

i )2 + (V Q
i )2

)
bsi , = 0 ∀i ∈ N

(1.36)

V 2
i ≤ (V P

i )2 + (V Q
i )2 ≤ V

2
i ∀i ∈ N

(1.37)∑
ijc,jic∈Ek

F P
ijc ≤ F

I
k ∀k ∈ I

(1.38)

uiP i ≤ Pi ≤ uiP i , uiQi
≤ Qi ≤ uiQi ∀i ∈ G

− F P

ijc ≤ F P
ijc ≤ F

P

ijc ijc ∈ E
(1.39)

Rectangular Current-Voltage Formulation (IV)

The third AC model presented here is the rectangular current-voltage
formulation which considers the flow of current instead of power on a
line. Therefore, the model computes real and reactive current on a line,
{IPijc, I

Q
ijc} ∀ijc ∈ E , instead of {F P

ijc, F
Q
ijc} ∀ijc ∈ E which is the real and

reactive power on a line. Similar to the rectangular power-voltage model
in Section 1.2.2, the IV formulation uses the rectangular form of complex
quantities, Vi =

(
(V P

i )2 + (V Q
i )2

)
∀i ∈ N . Therefore, line flow constraints

are once again quadratic in nature with constant sine and cosine quantities.
Equations (1.40-1.43) define real and reactive current flow on a line, and

(1.44-1.45) define the node balance constraints. Equations (1.46-1.47) im-
pose bounds on the voltage magnitude and current magnitude respectively,
and (1.48) defines other variable bound constraints. Note that the current
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formulation does not contain interface flow constraints because convert-
ing current to power is counter-intuitive in a current-based formulation.
In addition, interface constraints were historically used to control LMP
prices while current based formulations were used to consider network
stability. The IV formualtion also imposes limits on current magnitude in
(1.47) instead of using simple variable bounds on the real such as in the
rectangular model ((1.39) as we find this data is more easily available.

min
P,Q,IP ,IQ,V

∑
i

c̃i(Pi)

s.t. IPijc = 1
τ 2
ijc

(
gEijcV

P
i −

(
bEijc +

bCijc
2

)
V Q
i

)

− 1
τijc

(
gEijcV

P
j − bEijcV

Q
j

)
cos (φijc)

+ 1
τijc

(
gEijcV

Q
j + bEijcV

P
j

)
sin(φijc) ∀ijc ∈ E (1.40)

IPjic =
(
gEijcV

P
j −

(
bEijc +

bCijc
2

)
V Q
j

)

− 1
τijc

(
gEijcV

P
i − bEijcV

Q
i

)
cos(−φijc)

+ 1
τijc

(
gEijcV

Q
i + bEijcV

P
i

)
sin(−φijc) ∀ijc ∈ E (1.41)

IQijc = 1
τ 2
ijc

(
gEijcV

Q
i +

(
bEijc +

bCijc
2

)
V P
i

)

− 1
τijc

(
gEijcV

Q
j + bEijcV

P
j

)
cos (φijc)

− 1
τijc

(
gEijcV

P
j − bEijcV

Q
j

)
sin (φijc) ∀ijc ∈ E (1.42)
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IQjic = 1
τ 2
ijc

(
gEijcV

Q
i +

(
bEijc +

bCijc
2

)
V P
i

)

− 1
τijc

(
gEijcV

Q
i + bEijcV

P
i

)
cos(−φijc)

− 1
τijc

(
gEijcV

P
i − bEijcV

Q
i

)
sin(−φijc) ∀ijc ∈ E (1.43)

∑
k∈Gi

Pk − dPi − V P
i

 ∑
(jc):ijc∈E

IPijc +
∑

(jc):jic∈E
IPijc


− V Q

i

 ∑
(jc):ijc∈E

IQijc +
∑

(jc):jic∈E
IQijc


−
(
(V P

i )2 + (V Q
i )2

)
gsi = 0 ∀i ∈ N (1.44)

∑
k∈Gi

Qk − dQi + V P
i

 ∑
(jc):ijc∈E

IQijc +
∑

(jc):jic∈E
IQijc


− V Q

i

 ∑
(jc):ijc∈E

IPijc +
∑

(jc):jic∈E
IPijc


+
(
(V P

i )2 + (V Q
i )2

)
bsi = 0 ∀i ∈ N (1.45)

V 2
i ≤ (V P

i )2 + (V Q
i )2 ≤ V

2
i ∀i ∈ N (1.46)((

IPijc
)2

+
(
IQijc

)2
)
≤ I

2
ijc ∀k ∈ I (1.47)

uiP i ≤ Pi ≤ uiP i , uiQi
≤ Qi ≤ uiQi ∀i ∈ G (1.48)

Note that the current flow equations (1.40-1.43) are linear and that
(1.44-1.46) involve quadratic and linear terms. This would lead us to hope
that since the Hessian of the current-voltage constraints is constant, we
might see some benefit in solution time, though in practice, this has not
been found to be the case in general. Additionally, because this model
limits apparent current rather than apparent power on lines, the solutions
tend to be slightly different than the other ACOPF models.
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Y-bus formulations

The Y-bus formulations of the above AC models use the Y-bus admittance
matrix to calculate in the node balance equations, instead of explicit line
flow variables F P

i jc, F
Q
i jc for example and further discussion on comput-

ing the Y-bus admittance matrix can be found in [10, p. 325-6].
Although the Y-bus matrix formulation benefits by eliminating line

flow parameters in node balance constraints, it loses this benefit in the
case where line flow variables still need to be defined in order to maintain
line flow limits. For this reason, we find that the standard line power (SLP)
models (polar, rectangular, IV) typically outperform the Y-bus models due
to the additional computation required. This document only provides
the mathematical formulation for the Y-bus polar model as the other two
formulations are very similar in implementation and can be inferenced
from here.

min
P,Q,FP ,FQ,θ,V

∑
i

c̃i(Pi)

s.t.(1.22)− (1.25) (1.49)∑
k∈Gi

Pk − dPi − (Vi)2gsi

− Vi
∑
j∈N

(
VjY

P
ij cos (θi − θj)

− Y Q
ij sin (θi − θj)

)
= 0 ∀i ∈ N (1.50)∑

k∈Gi

Qk − dQi + (Vi)2bsi

− Vi
∑
j∈N

(
VjY

P
ij sin (θi − θj)

− Y Q
ij cos (θi − θj)

)
= 0 ∀i ∈ N (1.51)∑

ijc,jic∈Ek

F P
ijc ≤ F

I
k ∀k ∈ I (1.52)
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−π
3 ≤ θi − θj ≤

π

3 ∀(ij) : ijc ∈ E (1.53)

uiP i ≤ Pi ≤ uiP i , uiQi
≤ Qi ≤ uiQi ∀i ∈ G

V i ≤ Vi ≤ V i ∀i ∈ E

− F P
ijc ≤ F P

ijc ≤ F
P
ijc ∀ijc ∈ E (1.54)

1.3 Data Archive

The data archive currently consists of many IEEE power systems datasets
which are commonly used in many publications, and range from 14 buses
in the simple cases to 3375 buses in the Polish cases. The majority of
this data is extracted from Matpower’s data library, and were converted
from Matpower formatted .m files to .gdx files using conversion utilities
provided in the toolbox. 1 In addition to the single period IEEE cases, we
also compiled six 24-hour datasets based on the the 1996 Reliability Test
System [75]. These 6 datasets represent weekday and weekend peak load
for the Winter, Summer and Spring/Fall seasons and their inclusion in the
data library provides the modeler with a set of well-researched datasets
that can be used to test multi-period models.

To allow for a more comprehensive modeling environment, these tra-
ditional datasets have been augmented with information that enable the
modeler to consider more complex features of power systems modeling.
The following sections discuss two key data augmentations that are avail-
able with the toolbox. Section 1.3.1 discusses generator capability curves
(D-curves) which provide a more accurate representation of a generator’s
production capabilities and section 1.3.2 discusses our implementation of
demand bidding which considers price elastic response from consumers.

1Model descriptions and usage details of the data utility archive are provided in
Appendix B
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1.3.1 D-curves

Simplistic generator models often use “rectangular constraints” for active
and reactive output limits, which imposes independent limits on active
and reactive power output. Although the rectangle constraints model pro-
vides a good first approximation, more detailed modeling is necessary to
accurately characterize generator capability curves, also called “D-curves”.
The reactive power output of a synchronous generator is constrained by
several factors: armature current limit, field current limit, and end region
heating limit [49]. Each of these limits are modeled as circles in the active-
reactive power output plane and the machine must operate within the
intersection of these circles in addition to their regular operating bounds.
Fig. 1 from reference [45] (reproduced as Fig. 1.1 in this document) shows
the capability curve for a typical synchronous generator. The upper por-
tion of the curve is the circle from the field current limit, the right portion
of the curve is the circle from the armature current limit, and the lower
portion of the curve is the circle from the end region heating limit.

Figure 1.1: Typical Generator Capability Curve (Figure 1 from [45])
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Dataset Time Objective
Standard D-curves Standard D-curves

case14 0.3548s 0.424s 8.08153e+03 8.09162e+03
case118 0.734s 0.704s 1.29661e+05 1.29913e+05
case300 1.2314s 0.871s 7.19725e+05 7.20176e+05

case2737sop 7.9692s 8.689 7.77629e+05 7.77649e+05
case3120sp 11.9338s 11.279s 2.14270e+06 2.15042e+06
case3375wp 16.9038s 23.046s 7.41203e+06 7.43363e+06

Table 1.4: Rectangular vs. D-curve constraints

By using the approximation method outlined in Appendix D, the tool-
box provides a D-curve such as that of Figure 1.2 whenever possible. As
the image clearly shows, the application of D-curve constraints reduces
the feasible region and will therefore affect the solution point. Table 1.4
provides initial numerical results using the D-curve approximations pro-
vided in this section, and the higher objective values echo the results above
showing a reduced feasibility region. As expected, the addition of these
constraints do impact the solution time and more research is needed to
understand the importance (or not) of considering these details within an
OPF model.
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Figure 1.2: Example of D-curve using the toolbox
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1.3.2 Demand bidding

Demand bidding is a demand-side decision that models a demand node’s
price-responsive behavior where consumers reduce their planned con-
sumption in exchange for a monetary compensation from the ISO. While
a common practice, this data is not generally available in IEEE datasets.
According to [51], time-varying prices obtained from Electric Reliability
Council of Texas(ERCOT) resulted in a peak price elasticity of -0.02 for 6%
of the ERCOT demand. That is, for the 6% of ERCOT’s load is considered
price responsive, doubling the price results in a short-term demand re-
duction of 2% of peak load. These results indicate that electric demand
is very price inelastic. The experiments surveyed in [28] show a substan-
tially larger elasticity than that estimated for ERCOT in the PSERC study.
This may be due to the fact that [28] only considers residential demand,
while the PSERC study is likely to include a large proportion of indus-
trial and commercial demand. It therefore may be appropriate to scale
the y-axis of the curve on [28, p.45] to obtain price-responsive demand
curves for other customer types if corresponding curves for industrial and
commercial customers are unavailable.

We have therefore chosen to approximate the price-responsive curve
using [51] as a baseline, with a little additional elasticity built in to account
for the results discussed in [28]. By applying procedure 1, this produces
the a 9 piece (10 breakpoints) piece-wise linear demandbid curve as shown
in 1.3.

Procedure 1: Demandbid curve approximation
// Solve ACOPF∗ to obtain LMPit ∀i ∈ N, t ∈ T
Initialization: qlenit← dPit , p̂it = 0, pb

it =qb
it = 0 for b = 1

1 Loop for b = 2..10
2 qb

it← qlenit ∗(b− 1)
3 pb

it← p̂it + qlenit ∗
(

LMPit ∗(11− b)/9
)

4 p̂it← pb
it
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Figure 1.3: Example of Demandbid curve using the toolbox

1.4 Numerical experiments and observations

1.4.1 Exploring different AC formulations

As discussed in 1.2.2, the toolbox focuses on 3 main OPF formulations:
polar (P), rectangular power-voltage (R) and rectangular current-voltage
(IV). The rectangular formulation is often favored due to the quadratic
structure of its constraints which can be exploited more easily over the
polar form of quantities that explicitly uses sines and cosines.

Dataset Polar Rect-PV Rect-IV
case118 0.702s 0.757s 0.843s
case300 1.2314s 1.339s 1.369s

case2737sop 7.9692s 9.483s 9.357s
case3120sp 11.9338s 14.411s 12.269s
case3375wp 16.9038s 15.553s 36.412s

rts96_winter_wend (UCAC) 15.931s 33.981s infeas

Table 1.5: Comparison of OPF formulations

Based on the results in Table 1.5, the polar formulation consistently
outperforms both the other two and the variance in solution time becomes
clearer as the size of dataset becomes larger. This result was consistent
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even in the unit commitment case of rts96_winter_wend which is mod-
els the winter weekend peak-load over 24 hours. While these results are
promising, it should not discount the possibility of exploiting model struc-
ture in both rectangular and IV formulations especially when considering
decomposition models. What the results do show is that current solvers
favor the polar formulation when solving a standard AC model.

Note that these results were consistent over initial conditions and solver
types which will be discussed in Sections 1.4.2 and 1.4.3. For the remainder
of the results, we will be focusing on the polar formulation for brevity.

1.4.2 Initial starting conditions

Due to the difficulty of solving AC models, we have provided multiple
starting point options for the SLP models where the variables are initialized
using different methods. This is determined by the GAMS model option
ic=#, and takes inputs 1, 2... 9. We explain some of these options below.

1. ic=0: [Midpoint]
Vi = V+V

2 , θi = 0 ∀i ∈ N
Pk = Pk+Pk

2 , Qk = Qk+Q
k

2 ∀k ∈ G

2. ic=1: [Random]
Vi = Uniform(V , V ), θi = Uniform(−π, π) ∀i ∈ N
Pk = Uniform(P k, P k), Qk = Uniform(Qk, Qk

) ∀k ∈ G

3. ic=2: [Flat]
Vi = 1, θi = 0 ∀i ∈ N
Pk = 0, Qk = 0 ∀k ∈ G

4. ic=3: [Random/AC]
Vi = Uniform(V , V ), θi = Uniform(−π, π) ∀i ∈ N
Pk, Qk derived from node balance constraints (model dependent)
with Vi, θi defined ∀i ∈ N , k ∈ G.
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5. ic=4: [DC/AC]
Vi = 1 ∀i ∈ N
θi, Pk initialized solving DCOPF (1.2-1.6) ∀i ∈ N , k ∈ G.
Qk derived from node balance constraints (model dependent) with
Vi, θi defined ∀i ∈ N , k ∈ G.

6. ic=5: [DC-/AC]
Vi = 1, θi initialized solving DCOPF (1.2-1.6) ∀i ∈ N , k ∈ G.
Pk, Qk derived from node balance constraints (model dependent)
with Vi, θi defined ∀i ∈ N , k ∈ G.

7. ic=6: [Decoupled]
Vi, θi, Pk, Qk initialized by solving the Decoupled AC model (refer to
Appendix C).

8. ic=7: [DCLoss]
Vi = 1 ∀i ∈ N
θi, Pk initialized solving DCOPF (1.2-1.6) with option --lineloss=1.055
∀i ∈ N , k ∈ G.
Qk derived from node balance constraints (model dependent) with
Vi, θi defined ∀i ∈ N , k ∈ G.

Table 1.6 compares the impact that the different initial conditions have
on the solution time of the polar ACOPF model on different datasets. Here,
INFES means that the solver terminated at a locally infeasible point, while
X indicates that the solver failed to reach its termination point or return
a solution within the time frame alloted (1000 seconds), and F indicates
that a feasible solution was returned but the sovler terminated at the 1000
second limit. The expectation here is that more intuitive starting points
such as ic=4-7 would outperform the simpler starting point options ic=
0-3, especially in the larger datasets where finding a feasible point can be
alot more challenging. While the results do show that the efficiency of DC
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starts (ic=4,5,7) improves as the size of network increases, these meth-
ods still fail to outperform the default “midpoint” option ic=0. Another
point of note is the badly performing ic=3 in comparison to ic=1. Initial
condition ic=3 is supposed to improve upon the random draw option
(ic=1) by only using random draws to initialize the minimal subset of
variables and deriving starting points of the remaining variables from
from node balance constraints, such as equations (1.26 - 1.27) in the case of
the polar formulation. This is not shown to be the case in table 1.6 as ic=3
consistently terminates at infeasible solutions which the random starting
point does not seem to suffer from.

Testcase case14 case118 case300 2383 3012 3120 3375

ic=0 0.06 0.44 0.81 10.46 11.63 12.26 14.43
ic=1 0.05 0.34 0.88 33.98 46.06 103.80 183.78
ic=2 0.05 0.56 1.72 18.82 33.72 34.28 INFES
ic=3 INFES X INFES X X X X
ic=4 0.05 0.27 0.76 7.69 11.41 9.75 15.71
ic=5 0.03 0.27 0.62 8.47 12.62 11.58 16.69
ic=6 0.05 0.23 X X X X X
ic=7 0.04 0.22 0.62 8.12 12.09 10.50 18.43

Table 1.6: Comparison of initial conditions, Polar ACOPF

Initial condition 6 (Decoupled ACOPF) does not seem to work very
well even in small cases, and more research needs to be carried out to look
into this issue. Notice also that in the case of flat start (ic=2), it works very
well in small sized cases, but is unable to manage the largest IEEE dataset
which is case3375wp. This merely illustrates a known fact, that algorithms
heuristics tested in small scale environments are not good indicators in
realistic sized models. Chapter 2 focuses on this further by providing
large-scale datasets with realistic information that can be used with the
toolbox.
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1.4.3 Solver performances

Numerical results from the previous sections were obtained using IPOPTH
but we also tested the performance of different solvers AC models such as
KNITRO, CONOPT, SNOPT and MINOS. A a condensed version of these
results are shown in Table 1.7.

KNITRO
Testcase case14 case118 case300 2383 3012 3120 3375

ic=1 0.12 0.36 1.03 INFES INFES X INFES
ic=2 0.1 0.50 2.60 190.77 957.89 558.73 455.41
ic=4 0.10 0.33 0.86 11.51 X 482.68 13.2
ic=5 0.10 0.35 0.83 621.94 20.15 61.37 19.95
ic=7 0.08 0.35 0.943 10.37 15.65 15.34 20.56

CONOPT
Testcase case14 case118 case300 2383 3012 3120 3375

ic=1 0.21 1.58 9.40 961.45 921.17 X 924.90
ic=2 0.04 2.55 23.16 145.95 400.43 435.92 X
ic=4 0.01 0.83 4.45 135.02 107.61 260.76 581.83
ic=5 0.01 1.02 14.00 156.45 200.29 140.28 781.27
ic=7 0.01 0.85 6.61 161.48 223.12 111.01 326.69

SNOPT
Testcase case14 case118 case300 2383 3012 3120 3375

ic=1 0.06 1.89 6.85 891.97 X X X
ic=2 0.05 2.28 6.05 439.59 469.18 782.32 X
ic=4 0.04 1.78 6.36 516.83 441.945 780.64 X
ic=5 0.04 1.76 5.75 200.50 81.11 536.38 X
ic=7 0.04 1.92 6.31 541.88 378.65 732.57 F

Table 1.7: Comparison of solver performance

The results clearly show that in addition to being fast, IPOPTH is also
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the most reliable in solving these types of problems. Consider for example,
the numerical results with KNITRO in ic=5 for testcase 2383. It takes
KNITRO over 5 minutes to solve that problem, but only takes a minute
to solve the next 3 larger datasets. CONOPT, while fairly reliable, takes
too long to solve these datasets, and was unable in fact to solve the large
datasets in Chapter 2 without extremely good or lucky starting points.

1.5 Sparse Tableau Formulation

The vast majority of texts formulate AC network constraints based on the
bus admittance matrix Ybus, which represents a choice of “strict” nodal
analysis (NA) from a circuit-theoretic perspective [60]. The Ybus matrix
encapsulates network information in a compact form by eliminating in-
termediate variables of branch element currents and voltages. In many
classes of circuit analysis, elimination of variables can have drawbacks[56]:

1. The Ybus lumps multiple network elements together, sometimes mask-
ing the individual role of network element parameters in defining
Ybus entry values.

2. Changes in circuit breaker status may require rebuilding the whole
Ybus,possibly with different dimension.

3. Standard Ybus construction algorithms often require that models
of individual grid components be represented as interconnections
of ideal two-terminal circuit elements, sacrificing the flexibility of
multi-port models

4. Ill-conditioning may be introduced via roundoff errors due to the
elimination of intermediate variables
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To overcome the limitations of the Ybus, recent work [60] has proposed
a very general modeling approach for electric grid representation using
Sparse Tableau Formulation (STF) [58].

Sparse Tableau Formulation is a very general node-breaker formula-
tion that provides the flexibility to capture atypical Network elements
which cannot represented by the Ybus construction. Additionally, we will
see that this formulation, when used within Optimal Power Flow (OPF)
models, does not sacrifice computational efficiency and is comparable in
solution time to the well-established Ybus formulations provided in the
toolbox. Given the growing need to capture intricacies in grid optimization
problems, we believe that including this formulation in the OPF Toolbox
can further advance future power systems research. As such, we have
added an extension to the toolbox that can compute and add the necessary
STF data components to the .gdx datafiles, and provided two STF based
Optimal Power Flow (OPF) models in the model archive.

The Sparse Tableau Formulation and models discussed in this Chapter
are a result of the work performed in [58, 60, 59], and heavily source their
material. Their descriptions of formulation and models are included for
reference purposes, and serve to clarify the STF formulation and its impact
on Power Systems research.

1.5.1 Overview on Constructing the STF Circuit

Here, we review the key steps in constructing STF circuit constraint equa-
tions [50]. As case of interest in power systems, we give special attention
to two-port circuit elements, and assume that the circuit analysis is con-
ducted with respect to complex phasor branch or port currents, denoted i,
complex phasor branch or port voltages, denoted v, and complex node volt-
ages, denoted V . With this complete set of circuit quantities maintained
as explicit variables, the first key advantage of STF follows: it provides a
very easy and clear separation of the three classes of equality constraints
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governing any circuit: (i) KCL, (ii) KVL, (iii) element constitutive equations.

Step 1. Write a complete set of linearly independent Kirchhoff’s current law
(KCL) equations at every bus, employing the node-to-element incidence
matrix A:

Ai = I (1.55)

Step 2. Write a complete set of linearly independent Kirchhoff’s voltage
law (KVL) equations:

v − ATV = 0 (1.56)

Step 3. Write the element constitutive equations. Consider the representa-
tive example of transmission lines and transformers in balanced operation,
in which case the resulting behavior of each element is well-captured in a
linear two-port model [9]. Presentation to follow will generalize to a wider
class for elements, but for now restricting to these linear transformer and
transmission line models, element constitutive relations may be written in
the simple form:

Fvv + Fii = 0 (1.57)

While additional “driving" sources must be subsequently be added as
non-zero terms on the right hand side of (1.55), (1.56), and (1.57), these
equations form the core of the tableau equations. For an element repre-
sented as two-port, v and i quantities appear in “port-pairs," as illustrated
in Fig. 1.4.

Two-port 

Network Element

k

+

_,k av
+

_ ,k bv

,k ai ,k bi

Figure 1.4: Two-port representation for network element k
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To further examine element constitutive relations, consider the trans-
mission line, perhaps the most common of power system circuit compo-
nents. In this context, port a quantities are typically “sending end" positive
sequence voltage and current, and port b quantities are “receiving end."
The two-port element’s constitutive relations place two independent alge-
braic constraints on the four variables (va, ia, vb, ib) to specify the element’s
behavior. If one wishes to allow for a general, nonlinear two-port element
k, in the case of complex, phasor-based analysis, these constraints take the
general implicit form

fk : C4 −→ C2 (1.58)

fk(vk,a, ik,a, vk,b, ik,b) =
0

0


Typical power system elements within the transmission network are

linear, passive, and time-invariant; however, the formulation retains its
structure even if one allows for more general nonlinear or active transmis-
sion components.

DEFINITION. (The Tableau Matrix) Consider (1.55), (1.56) and (1.57)
that constitute the tableau equations of a power system transmission net-
work; these may be conveniently summarized in the single matrix equation


0 0 A

−AT I 0
0 Fv Fi


︸ ︷︷ ︸

T


V

v

i


︸ ︷︷ ︸

x

=


I

0
0


︸︷︷︸

u

(1.59)

Consistent with the method’s name, the tableau matrix T in (1.59) is
extremely sparse (notably more sparse than Ybus).
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1.5.2 STF Network Elements Modeling

A key step to construct (1.59) for a power network requires consideration of
the standard power system network circuit elements. Again, we note that
many such elements are naturally considered as two-ports, as depicted
in Fig. 1.4. Yet in power flow modelling, transmission lines are instead
specified in terms of their π-equivalent circuit, with their data is provided
as the three real-value parameters R,X and B, with associated complex
series impedance Z = R + jX , and shunt Y = jB. Standard textbook
derivations (e.g. [9]) demonstrate that at the sending end and receiving end
ports, terminal behavior matching that of the [ABCD]-transmission matrix
is indeed captured by this π-equivalent, as shown in Fig. 1.5. However,
in the pedagogical approach being advocated here, one may simply ask:
“why bother with this conversion to the π-equivalent - why not just use
the two-port [ABCD] matrix directly?"

,k a
i

,k b
i

2

Y

2

Y

,k a
v

,k b
v

+

_

+

_

Z

Figure 1.5: π-equivalent circuit for transmission line

Accepting that the long-established conventions for specifying trans-
mission line data are unlikely to change, one may use the parameters R,X
and B to recover the two-port constitutive relation consistent with the
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[ABCD]-transmission matrix, and with (1.58), as follows:
vk,a
ik,a

 =
 1 + ZY

2 Z

Y (1 + ZY
4 ) 1 + ZY

2

 vk,b
−ik,b



=⇒
[cc|cc]1 0 −(1 + ZY

2 ) Z

0 1 −Y (1 + ZY
4 ) (1 + ZY

2 )


︸ ︷︷ ︸

Representative circuit element Fk ∈ C2×4


vk,a

ik,a

vk,b

ik,b

 =
0

0

 (1.60)

To formulate equation (1.60) in a manner consistent with STF (1.59),
one simply re-writes as

Linear Element Equation for transmission line:
1 −(1 + ZY

2 )
0 −Y (1 + ZY

4 )


︸ ︷︷ ︸

Fk,v

vk,a
vk,b

+
0 Z

1 (1 + ZY
2 )


︸ ︷︷ ︸

Fk,i

ik,a
ik,b

 =
0

0

 (1.61)

This yields the corresponding Fv and Fi matrices for the transmission
line. The other typical network element is a transformer. Here, voltage gain
of transformer is expressed as complex scalar n, allowing for the possibility
of phase shifting transformers. Then, the corresponding transmission
matrix representation is

vk,a
ik,a

 =
n 0

0 1
n∗

 vk,b
−ik,b

 (1.62)

This can be equivalently re-written as
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Linear Element Equation for transformer:
1 −n

0 0


︸ ︷︷ ︸

Fk,v

vk,a
vk,b

+
[c|c]0 0

1 1
n∗


︸ ︷︷ ︸

Fk,i

ik,a
ik,b

 =
0

0

 (1.63)

For each of these cases, it is straightforward to identify the correspond-
ing constant Fv and Fi matrices. Note that for these very typical network
elements, (1.61) and (1.63) contain only constant coefficients and have no
independent sources.

1.5.3 Construction of the incidence matrix A

Remaining constraints are simple linear expressions imposing KVL and
KCL interconnection constraints. Since a node-to-element incident matrix
A ∈ RN×2l is defined over all network elements where N and l are number
of network buses and elements, we need to organize all network element
variables (port voltages and port currents):

v ,



[c]v1,a

v1,b

:
:
vl,a

vl,b


, i ,



[c]i1,a
i1,b

:
:
il,a

il,b


Thus, v, i ∈ C2l. Goal of KCL is to efficiently assemble the right-hand

side of the general current balance equation. To this end, the incidence
matrix is composed entirely of values of 1 or -1 or 0. In keeping with
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standard textbook presentations, we define:

A(j, r) ,



1/− 1, if rth component of i corresponds to an

elements’ sending or receiving terminal

leaving/entering node j

0, otherwise

(1.64)

Therefore, the current conservation law of KCL is written simply as

Ai = I (1.65)

where I ∈ CN is the nodal complex current injection from generators or
loads; i ∈ C2l is the complex branch current carried away from node by
network elements. We can also useA to relate port voltages to bus voltages
in a manner that guarantees KVL is automatically satisfied. So the linear
constraints of KVL are written as

v − ATV = 0 (1.66)

where V ∈ CN is bus voltages. The equation (1.66) serves to assign the
correct bus voltage to any port voltage of a port connected to that bus. Now,
to construct the sparse tableau matrix (1.59), Fv ∈ C2l×2l and Fi ∈ C2l×2l

can be constructed in block diagonal form as

Fv =


F1,v 0 · · · 0

0 F2,v 0 :
: : . . . 0
0 · · · · · · Fl,v

, Fi =


F1,i 0 · · · 0
0 F2,i 0 :
: : . . . 0
0 · · · · · · Fl,i

 (1.67)

where Fv and Fi are block diagonal matrices composed of previously
described Fk,v, Fk,i. Finally, with matrices Fv, Fi, A and variables v, i, V , I
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as defined above, we have STF description of the power network consistent
with (1.59).

The remaining step to capture the power flow equations requires spec-
ification of the current source elements I . The approach here introduces
a special class of nonlinear one-port element, as shown in Fig. 1.6, to
accommodate standard generator and load models as represented in the
power flow.

j ji I= j jv V=

Figure 1.6: Nonlinear current source element as one port element

Then, nonlinear element equation as an equation (1.58) for current
source Ij for bus j can be defined by

Nonlinear Element Equations:

fj(vj, ij) = 0 , ij =(Sg,j − Sd,j)∗
v∗j

(1.68)

Notice that Sj = Sg,j − Sd,j , ij = Ij , and vj = Vj implying

=⇒Ij −
S∗j
V ∗j

= 0 (1.69)

where Sg,j and Sd,j are specified apparent power generation and load at
bus j.
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1.5.4 Optimal Power Flow Model with STF

Given a connected power system with N the set of all buses, G the set of
all generators and L set of all transmission line, a compact form of the OPF
Formulation is as following:

min
P,Q,v,i,V,I

∑
j∈G

c̃j (Pg,j) subject to (1.70a)

Linear Element: Fvv + Fii = 0 (1.70b)

KCL: I − Ai = 0 (1.70c)

KVL: v − ATV = 0 (1.70d)

Nonlinear Element: S − V � (I)∗ = 0 (1.70e)

Gen. Limit: Pmin
j ≤ Pg,j ≤ Pmax

j (1.70f)

Qmin
j ≤ Qg,j ≤ Qmax

j , ∀j ∈ G (1.70g)

Vol. Limit: V min
j ≤ |Vj| ≤ V max

j , ∀j ∈ N (1.70h)

Line Limit: |ik,a/b| ≤ imaxk , ∀k ∈ L (1.70i)

The GAMS model uses the rectangular form of complex variables for
bus voltage and current value as Vc = V d

c + jV q
c and Ic = Idc + jIqc . The

nonlinear element equations for power balance constraints are Sj = Vj(Ij)∗.
In rectangular coordinate, it is equivalent to Sj = Vj(Ij)∗ = V d

j I
d
j − jV d

j I
q
j +

jV q
j I

d
j + V q

j I
q
j .

The modeling of a transmission line with a transformer can be done
by combining the data from both elements. Doing so reduces the problem
size and can lead to faster solution times. Using transmission matrix rep-
resentation (TR), parameters for the line that has a transformer (TRtotal)
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can be expressed as

TRtotal =
 1 + ZY

2 Z

Y (1 + ZY
4 ) 1 + ZY

2


︸ ︷︷ ︸

TRline

n 0
0 1

n∗


︸ ︷︷ ︸

TRtransformer

=
α β

ζ τ



Through here, we can generate the necessary computational elements
α, β, τ , ζ using matrix algebra and thus, the GAMS formulation is as
follows.

Nomenclature

Set Description
B Set of circuit breakers between buses.
C Set of contingency cases
G Set of generators.

Gj ∈ G Subset of generators G at bus j.
K Set of network elements.
L Set of lines in the transmission network.
N Set of buses.

Ng ∈ N Subset of buses having generation attached.

Table 1.8: Description of Sets
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Parameters Description
c̃j(·) Cost function for generator j ∈ G.
gsj , b

s
j Shunt conductance and susceptance at bus j ∈ N .

A Node-to-element incidence matrix.
Fv, Fi Matrices for elements’ v − i behavior.
Imax
k Current flow limit on line k ∈ L.

Pd,j, Qd,j Real, reactive power demand at bus j ∈ N .
Pmin
j , Pmax

j Lower/upper active power generation limits for generator
j ∈ G.

Qmin
j , Qmax

j Lower/upper reactive power generation limits for generator
j ∈ G.

V min
j , V max

j Lower/upper voltage magnitude limits at bus j ∈ N .
ηj Droop coefficient for generator j ∈ G.

Table 1.9: Description of Functions and Parameters

Decision Variables Description
Pg Active power generation dispatch.
Qg Reactive power generation.

Table 1.10: Description of Decision Variables

Rectangular Sparse Tableau Formulation Model

min
Pg ,Qg ,v,i,V,I,∆ω

∑
j∈G

c̃j(Pg,j) subject to (1.71a)

Transmission line status (TLS):1 −αk
0 −ζk

vk,a
vk,b

+
0 βk

1 τk

ik,a
ik,b

 =
0

0

, k ∈ L (1.71b)
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Kirchhoff’s voltage law (KVL):

real(v) = ATV d (1.71c)

imag(v) = ATV q (1.71d)

Active power balance:

V d
j I

d
j + V q

j I
q
j + gsj

(
(V d

j )2 + (V q
j )2

)
= (

∑
r∈Gj

Pg,r − ηr∆ω)− Pd,j j ∈ N (1.71e)

Reactive power balance:

− V d
j I

q
j + V q

j I
d
j − bsj

(
(V d

j )2 + (V q
j )2

)
=

∑
r∈Gj

Qg,r −Qd,j j ∈ N (1.71f)

Generator output limit:

Pmin
j ≤ Pg,j − ηj∆ω ≤ Pmax

j ∀j ∈ G (1.71g)

Qmin
j ≤ Qg,j ≤ Qmax

j ∀j ∈ G (1.71h)

Voltage magnitude limit:

V min
j ≤

√
(V d

j )2 + (V q
j )2 ≤ V max

j ∀j ∈ N (1.71i)

Line thermal limit:

(idk,a/b)2 + (iqk,a/b)
2 ≤ (Imax

k )2 ∀k ∈ L (1.71j)
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1.5.5 Sparse Tableau Formulation in the OPF Toolbox

In the data utility section of the OPF toolbox, we have provided a script
that takes a .gdx case file, generates the F-matrices (Fv and Fi 1.67) and
incidence matrix A 1.64. These, along with other necessary modeling
components, are then added into the .gdx case file, and can be extracted
for use with STF models. The F-matrix generated and stored in the casefiles
is the F-maxtrix for each individual element, as opposed to a combined
matrix as shown in 1.71a. The reason for this is to allow for flexibility in
how a user would like to utilize the STF data.

To highlight this, the OPF toolbox includes two STF models. First is
what we refer to as the "Separate STF model", where each element (line and
transformers) is modeled separately in its own constraint. The benefit of
this is a cleanly formulated model and data source (with a single F-matrix
to represent all elements). However, pre-computing a combined line +
transformer F-matrix in 1.71a reduces the dimensionality of the problem
and does lead to faster solve times as a result. Therefore, we refer to the
model which uses the combined line + transformer F-matrix as simply
the "Rectangular STF model" as we expect that to be the standard STF
model used within the toolbox. To go from the "general F-matrix" .gdx
data to the combined line + transformer data, the STF model simply has
a translation script to generate the combined F-matrix from the general
F-matrix.

1.5.6 Empirically Observed Computation Results

This section compares the solution time between the "STF model" to the
polar power-voltage formulation (P) and Rectangular Power-Voltage For-
mulation (R) discussed in Section 1.2.2 of Chapter 1. Computational time
is evaluated on standard IEEE instances available from MATPOWER in-
cluding one synthetic system produced under the ARPA-E GRID DATA
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project, the EPIGRIDS 1600-bus system [36]. Note that the Rectangular
STF formulation solve times is comparable in performance.

Table 1.11: Comparison of STF OPF to standard ACOPF solve times

POLAR-Ybus REC-IV-Ybus REC-STF
Obj ($/h) Time (sec) Obj ($/h) Time (sec) Obj ($/h) Time (sec)

case118 129660.68 0.3 129660.68 0.3 129660.68 0.3
case300 719725.07 0.6 719725.07 2 719725.07 0.6

case2383wp 1868511.82 5.6 1862367.02 5.2 1862367.02 6.3
case3012wp 2591706.57 5.8 2582670.47 5.9 2582670.47 6
case3120sp 2142703.76 5.8 2141532.10 6.3 2141532.10 6.5
case3375wp 7412030.67 54 7404635.99 11.7 7404635.99 11.4

EPIGRIDS 1600 212840.95 3.5 212882.35 2.4 212882.35 2.5

1.6 Conclusions

In conclusion, this toolbox is useful for carrying out rigorous testing in
a standardized fashion, and by providing interfaces with Matlab and
PSS/E, this allows the user to import existing research and work into this
environment. In addition, we believe this toolbox encourages power sys-
tems researchers to take advantage of the rich features within the GAMS
environment, which also provides the flexibility to experiment with pre-
existing and well-established solvers. What we have not illustrated here
but plan to add, are examples that extend the traditional OPF formula-
tion, such as stochastic unit commitment (SUC) or security constrained
unit commitment (SCED) models, which is easily implemented using the
EMP tool in GAMS. Additionally, including examples of planning models
such as the one discussed in Chapter 3 will provide the user with good
illustrations of this toolbox’s utility as an asset in complex power systems
modeling.
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2 large-scale datasets in power systems

While the primary structure of the ACOPF model has undergone little
change since its formulation in 1962, it remains a current research topic
as these models are difficult to solve in large-scale. In fact, these mod-
els are solved in industry every few minutes using approximations or
judgment as there is not yet a commercially viable full ACOPF model for
practical instances [17]. Despite the spotlight on solving these types of
models, realistic large-scale datasets are difficult to come by. In a survey
of ACOPF solution approaches [21, Table 2], test problems ranged from 14-
bus systems to 42000 buses. Of the 60 test problems recorded, the largest
publicly available data source was the single period 3120 IEEE Polish sys-
tem. The largest 3, and arguably, the only realistic-sized test problems
(> 10, 000 buses), do not have publicly sourced data and only appear in
2 of the publications surveyed. This reflects a lack of testing on realistic
sized datasets which can be attributed to lack of availability. Recently,
the EPIGRIDS project has been working on constructing synthetic power
grid datasets that mimic the characteristics of the actual grid, but do not
disclose sensitive information. The data utility scripts have been updated
to incorporate the content coming out of the EPIGRIDS project, and this is
further discussed in Section 2.6 of Chapter 5.

In this chapter, I discuss the compilation of 4 large-scale datasets that
represent realistic network and operational conditions, and that are com-
patible with the OPF toolbox from Chapter 1, difficulties in dealing with
missing and questionable data, and discuss numerical results and quality
assurance of solving ACOPF models in large datasets. The goal here is to
test the various model formulations and commercial solvers with truly
large-scale datasets and consider the complexities in finding solutions for
real life applications.

As an extension after the initial Toolbox publication, we have added
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new synthetic but realistic datasets from the EPIGRIDS [1] project into
the data archive, which we discuss in Section 2.6. We detail the specific
data utility tool updates that were made to accommodate this extension in
2.6.1, and briefly discuss the AC powerflow feasiblity issues we encounter
with this collection of datasets in 2.6.2.

2.1 Introduction

Four datasets were compiled using a mix of public and confidential data.
The underlying network information (i.e. transmission lines and connec-
tions) is provided under Critical Energy Information Infrastructure (CEII)
usage agreements as detailed by FERC. The remainder of the data was
based on publicly available information provided in the FERC e-Library,
but requires a bus-mapping to the network which was also covered under
the CEII agreement. Table 2.1 lists some basic statistics of the 4 datasets.
The regular and RTO versions, while relying on the same network and
generator information, differ only in the number of time periods provided
and their load-side demand data. More precisely, the regular versions
provide 24-hour demand data while the RTO versions provide a different
set of demand data but only for 6 discontinuous periods. One can view
the regular Winter and Summer Peak datasets (henceforth referred to as
Winter and Summer) as being day-ahead planning information, while the
RTO datasets (henceforth referred to as Winter/Summer RTO) provide a
snapshot of the actual operating constraints realized on a particular day.

Testcase Network Num. bus/gen/lines Time periods
Winter Peak Winter 13867/1043/18790 1 - 24
Winter Peak RTO Winter 13867/1043/18790 1,5,9,13,17,22
Summer Peak Summer 13981/1011/18626 1 - 24
Summer Peak RTO Summer 13981/1011/18626 1,5,9,13,17,22

Table 2.1: Large-scale Data: Statistics
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Similar to the IEEE data files referenced Chapter 1, these data files are
also augmented with information to implement D-curve constraints and
approximate demand side price elasticity. In the case of demand bidding,
the FERC e-Library does provide a single (p,q) point which is then used in
place of (0.07 ∗ LMP, qlen) in Procedure 1.

2.2 Missing reactive demand

Reactive power supports the voltages that must be controlled for system
reliability in order to prevent damage to equipment (e.g. overheating) and
voltage collapse, as well as maintain the ability of the system to withstand
disturbances [30]. Our data sources for these large-scale datasets did
not include reactive demand values (dQ) at load buses, and this data is
necessary to solve the ACOPF model. A key characteristic of reactive
power demand is the magnitude and speed at which it changes over times
[30], and for this reason we have found that even among industry experts,
it is unclear what a network’s reactive demand profile should look like.
The task of finding reasonable and feasible reactive demand values is
further complicated by the sheer size of the dataset and the difficulty of
solving the AC model at this scale, since the data would need to be AC
feasible for it to be any useful. Based on industry experts knowledge of
general stability and demand with regards to reactive power, we propose
the following necessary conditions for defining a realistic demand profile
across a network.

1. Good power factor values at each load bus.
2. “Reasonable” number of buses with reactive demand.
3. Larger ratio of withdrawals to injections in the overall network.
4. Feasibility of the ACOPF model.
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Conditions 1, 2 and 3 are further explained in Sections 2.2.1, 2.2.2 and
2.2.3 respectively while condition 4 is self-explanatory. For details on the
process of finding feasible solutions to satisfy condition 4, please refer to
Section 2.3.

2.2.1 Power factors

In an AC electrical power system, power factors (PF) are defined as the ratio
of real power to apparent power (2.2) where apparent power is defined by
(2.1). This leads to a dimensionless number between [−1, 1].

S =
√
P 2 +Q2 (2.1)

PF = P

S
= P√

P 2 +Q2 (2.2)

It is generally desirable to maintain a power factor value of close to
±1.0, but power factors as low as±0.9 are generally considered to be good
practice. Provided that we have a non-zero active power generation at a
load bus, it is possible to compute a bound for a bus’ reactive demand if
we limit the power factor to be no worse than 0.9, as in (2.3).

PF 2 = P 2

P 2 +Q2

For 0.9 ≤ |PF |,

0.81(P 2 +Q2) ≤ P 2

|Q| ≤ 0.484P

|Q| ≤ 0.484P (2.3)

For load buses with no active power, the power factor calculation does
not apply as it results in either a 0 or an undefined number. In these cases,
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the reactive demand at these buses is arbitrarily restricted to half a unit,
or ±0.5, as no additionally defining information is available.

2.2.2 Number of buses with non-zero reactive demand

In order to obtain a “reasonable” number of buses with non-zero reactive
demand, we found in practice that an weighted objective function combin-
ing the norm-1 and norm-2 of reactive demand dQi worked best. Individu-
ally, a norm-1 objective yielded too few values (less than 100 buses), while
the second norm provided too many small values (over 13000 buses) which
likely stems from numerical accuracy problems caused by the dataset and
model complexity. To balance both these extremes, we found a weighted
combination to be helpful. The third component of the objective works to
minimize the difference between the final generator’s active power out-
put (P ) to the solution of the DCOPF approximation (P̂ ). And finally, for
model feasibility, the underlying ACOPF system constraints are modeled
using the polar power-voltage formulation(2.4 - 2.7). Note that dQi in (2.4 -
2.7) is a variable instead of a parameter which is the convention for ACOPF
models.

min
dQ,dQ+,dQ−

∑
i

w1
i (d

Q+
i + dQ−i ) + w2

i (d
Q
i )2 + w3(Pi − P̂i) (2.4)

s.t. dQi = (dQ+
i + dQ−i ) (2.5)

(1.22)− (1.30) (2.6)

dQ+
i , dQ−i ≥ 0 ∀i ∈ N (2.7)

2.2.3 Ratio of withdrawals to injections

Reactive power can be positive or negative, and using similar convention
to dP in Chapter 1, a positive number represents consumption, meaning a
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negative number represents an injection back into the system. Load buses
are typically not expected to have equipment to provide reactive power
support which is why we believe it reasonable to require condition 3. Note
that condition 3 is not strictly imposed as a constraint in (2.4 - 2.7). Rather,
we require it to be a necessary byproduct of the model solution and will
reject any solution that does not satisfy these requirements. In general, we
found this to not be an issue, but believe that is important to maintain as
one of the conditions.

2.3 Solution methodology for large-scale
datasets

Our experiences when finding feasible solutions in these large-scale prob-
lems echoed a couple of our earlier results from Chapter 1, namely that the
solvers preferred the polar formulation (1.22-1.30), and the most robust
solver for these types of models is IPOPTH. Because the data sources do
not provide a feasible unit commitment profile across all time periods,
what is really needed is a 24 hour unit commitment solution that is AC fea-
sible for each t ∈ T . Solving a UC_AC at this magnitude is an intractable
problem, and we therefore propose Procedure 2 as a tractable solution.
Note that while this procedure provides AC feasible solutions for each
time period and adheres to ramping and minimum up/down time con-
straints needed for unit commitment in the DC sense, it falls just short of
a complete UC_AC solution which will be explored in future work.

Procedure 2: Finding AC solution for large datasets

// Find a commitment profile across 24 hours
1 (P̃ , θ̃, U)← Solve UC_DC --lineloss=1.055

// Solve ACOPF for each t using commitment from previous step
2 (Pt, Qt, θt, Vt)← Solve polar_acopf(P̃t, θ̃t, Ut) --ic=5 ∀t ∈ T
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Step 1 attempts to determine a unit commitment profile that is both
AC feasible and adheres to time sensitive constraints such as generator
ramping and minimum up and down time, while step 2 solves the ACOPF
model for each individual time period.

2.3.1 An AC feasible unit commitment profile

The U.S. Energy Information Administration estimates that electricity
transmission losses average about 6% [71]. Table 2.2 tests this theory by
comparing the amount of total active power generation in an AC OPF
model to the total demand for multiple IEEE test cases. Total lineloss is
computed dividing the amount of extra generation by the total demand.
The resulting line losses for the IEEE testcases however are much lower
than expected due to the lack of binding line limits of these datasets. To
arrive at a better estimate, we also run the comparison with the first time
period from the Winter dataset (for which a feasible unit commitment was
provided), and arrive at a line loss rate of 5.22%.

Testcase Total demand
(MWh)

Total genera-
tion(MWh)

Total lineloss

case118 4242 4319.4 1.28%
case300 23525.4 25118.1 1.29%
case2383wp 24558.4 25118.1 2.28%
case3120sp 21181.5 21604.4 2.00%
case3375wp 48363 49189 1.71%
Winter, t=1 78595 82699 5.22 %

Table 2.2: Line losses: Testcases

By utilizing the lineloss option in the GAMS toolbox and solving a
24-hour UCDC model for the Winter dataset with a lineloss rate of 5.5%,
we find that the unit commitment profile is AC feasible for all timeperiods,
t ∈ T . The line losses range between [5.06, 5.48]% and the average line loss
is computed to be 5.25%. We also find that while the lineloss rate of 5.5%
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also works to provide a AC feasible commitment profile in the Summer
dataset, the eventual line losses in this case range between [5.94%, 8.39%]
with the average line loss coming up as 7%. Further research needs to be
conducted to determine if solving the 24-hour UCDC model with a higher
line loss approximation rate would result in changes to these numbers,
and it if so, it would be interesting to experiment with this from a cost
perspective.

2.3.2 Initial starting point for ACOPF

While we have been able to determine that the datasets are AC feasible
for each time period through ad-hoc methods, tailored model options and
unconventional starting points, we would like to determine the usefulness
of the toolbox in solving realistic sized models such as this. Based on the
results of Section 1.4.2, we find that initial conditions 0,4,7 are the best
options moving forward with a large scale dataset. Initial testing as shown
in table 2.3 clearly shows that the midpoint initial condition (ic=0) is not
effective for large-scale datasets, despite being a solid choice in the IEEE
testcases.

Testcase ic=0 ic=4 ic=7
Winter, t=20 14m 28.69s 4m 27.31s 4m 35.52s

Summer, t=18 infeas 4m 34.74s 3m 50.66s

Table 2.3: Initial conditions: large-scale datasets

Table 2.4 provides a more in-depth comparison between the two selec-
tions and by running the solvers with a time limit of 3 hours. The ideal
situation here is to find an ACOPF solution in under 20 minutes/time
period. As the results indicate, there is no one-size-fits-all solution and
solution times vary significantly. Initial condition 4 seems to outperform
initial condition 7 which is surprising given that regular DC models do
not account for line losses. The Summer dataset seems to be easier, with
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20 models solving under 20 minutes compared to 14 in the Winter dataset.
There are 5 periods in the Winter dataset that did not find a solution,
whereas only 1 in the Summer. The asterisks in the Winter dataset indicate
that solutions could be obtained using ic=5, but performance results of
that initial condition are not provided here.

These results highlight the difficulty of solving real-life models and
point to the reason most or all of industry currently choose to solve ap-
proximations instead.

Time(t) Winter (solu time (s)) Summer (solu time (s))
ic=4 ic=7 ic=4 ic=7

1 1036 803.9 6112.3 682.7
2 * 344.2 938.2
3 1138.1 8932.8 409.8 416.2
4 1410.8 4852.5 600.4 630.8
5 781.5 3638.6 433.5 429.8
6 697.0 2940.4 459.5 327.0
7 360.8 517.4
8 544.7 407.8 589.7 539.4
9 441.1 687.8 442.5 1639.7

10 2443 973.4 287.2 609.9
11 447.7 380.2 348.8 602.9
12 523.7 889.2 543.1 659.4
13 301.8 548.4 288.3 7307.4
14 656.2 4077.7
15 * 7833.1 341.2 634.9
16 1301.4
17 * 800.1 733.2
18 680.5 620.1 562.5 680.2
19 1303.4 679.9 660.8 506.1
20 739.6 726.8 568 652.8
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21 495.9 496.8 442.6 601.7
22 1021.7 394.9 1570.7 1099.1
23 746 638.5 1439.9 450.3
24 5712.2 1186.8 298.2 878.9

STATISTICS
AVG time (s) 1145.6 1980.1 807.0 1111.4

Solves <20min 14 14 20 20

Table 2.4: Comparing Initial conditions: Winter & Summer

2.4 Numerical integrity and quality assurance

When it comes to the process of finding feasible solutions in large-scale
models, it is natural to accept a solver’s claim of solution feasibility and this
is especially true when dealing with commercial solvers. It is uncommon
to question solution integrity in large datasets when manual checks of
the returned data is cumbersome and not necessarily intuitive on such
a scale, and especially so when the solution is provided by commercial
and well-established solvers. Paradoxically, solution checking is probably
more important in situations with large data as numerical issues may be
magnified at this scale leading solvers to provide false claims of feasibility
and/or optimality. The two examples discussed in Sections 2.4.1 and 2.4.2
highlight these problems and Section 2.4.3 discusses a tool that can be
used to check feasibility.

2.4.1 Solution quality of UCDC models

In this section, we discuss the results of solving the UCDC model from
the GAMS toolbox in Chatper 1 using the Winter and Summer datasets.
When using the CPLEX solver to find commitment solutions for the UCDC
model (1.11-1.21) with 24 consecutive time periods, the returned solutions
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were not within the expected tolerance. Consider the example CPLEX
output log displayed below, and note that a gap of almost 200 between
the MIP solution and final solve. This gap points hints towards numerical
inaccuracies due to the data size and model complexity.

Fixed MIP status(1): optimal
Solution satisfies tolerances.
MIP Solution: 35535818.059876
Final Solve: 35536002.311811

To deal with this issue, we experimented with multiple built-in CPLEX
options and manual scaling of the data, and eventually found that a com-
bination of CPLEX options scaind and numericalemphasis which focus
on numerical precision and aggressive scaling, adequately dealt with min-
imizing the gap. In order to compare the different techniques, CPLEX
options MIPKappaStats and quality provide detailed printouts regarding
the conditioning of matrices and numerical integrity at the solution. An
example of what the MIP Kappa distribution report looks like is as follows:

MIP Kappa distribution Report:
Percentage of stable bases (kappa<1e+7): 0.00%
Percentage of suspicious bases (1e+7<kappa<1e+10): 35.08%
Percentage of unstable bases (1e+10<kappa<1e+14): 64.92%
Percentage of illposed bases (1e+14<kappa): 0.00%
Max condition number: 5.0089e+11
Attention index (if >0.03 caution is advised) 0.20

In this example, the high percentage of unstable bases and large at-
tention index indicate problems with the numerical integrity of the final
solution. Our aim is to provide an attention index of ≤0.03, which means
that most of the bases fall within the stable or suspicious range, with lit-
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tle (<2%) to none falling in the unstable range onwards. The following
printout is example output from using the afore-mentioned CPLEX op-
tions, and shows decent solution quality, especially considering the model
complexity.
MIP Kappa distribution Report:
Percentage of stable bases (kappa<1e+7): 19.23%
Percentage of suspicious bases (1e+7<kappa<1e+10): 80.77%
Percentage of unstable bases (1e+10<kappa<1e+14): 0%
Percentage of illposed bases (1e+14<kappa): 0.00%
Max condition number: 1.9341e+08
Attention index (if >0.03 caution is advised) 0.01

2.4.2 Solution quality of reactive power values

Returning to the problem of finding AC feasible solutions in the reactive
demand model (2.4-2.7), a closer look at the reactive demand values, dQ,
revealed that a very large majority of the load buses had a very small
solution value associated with it, typically in the range of [1e−8, 1e−16].
More specifically, this problem appeared to be linked to our use of interior
point solvers such as IPOPTH and Knitro. In cases when CONOPT was
able to find a solution to the model, it resulted in a “cleaner” solution
in which many of these tiny extraneous values eventually converged to
0. While the latter is considered to be a more realistic reactive demand
profile, CONOPT typically has immense difficulty with these models. In
this case, we propose Procedure 3 as an extension of Procedure 2 to find
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reactive demand values.
Procedure 3: Finding reactive values for large datasets

// Find a commitment profile across 24 hours
1 (P̃ , θ̃, U)← Solve UC_DC --lineloss=1.055

// Find a good starting point
2 (P̃ 2, Q̃2, θ̃2, Ṽ 2, d̃Q)← Solve polar_acopf(P̃ , θ̃, U) --ic=7

NLP=IPOPTH
// Solution polishing based on IPOPTH starting point

3 (P,Q, θ, V, dQ)← Solve polar_acopf(P̃ 2, Q̃2, θ̃2, Ṽ 2, d̃Q, U)
NLP=CONOPT

While this procedure worked reasonably well, there was no single pro-
cess that could reliably solve each time period, and a mixture of CONOPT
options that make specific algorithmic had to be tried in the more diffi-
cult situations. For example, option lsanrm uses a steepest edge method
instead of steepest descent and LMMXST uses a method based on bending
method to determine step length.

By combining the conditions laid out in Section 2.2 and the solution
finding process discussed here, we were able to obtain reactive demand
values for each of the timeperiods in Winter, Summer and their RTO cases,
which are also AC feasible. Note that in the RTO cases, the step of finding
a unit commitment profile using UCDC is done individually for each time
period as they are not consecutive periods and as such, do not need to
adhere to time specific constraints as a 24 hour planning model would.

2.4.3 Solution quality of AC OPF models

Based on our experiences in finding reactive demand values, it is prudent
to perform a feasibility check on solutions returned by IPOPTH and we
do so using Examiner, which is a GAMS tool for solution verification [22].

In Table 2.5, we run diagnostics on some solutions provided by IPOPTH
and compare them to Table 2.6 which are results from using CONOPT.
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Testcase Var bound(P) Var bound(D) Constraints(P) Constraints(D)
case14 OK OK OK OK

case118 OK OK OK OK
case300 OK OK OK OK

case2383wp OK OK OK Max viol:2.0e−6

case3120sp OK OK OK Max viol:−1.7e−6

case3375wp OK OK OK Max viol:1.5e−5

Table 2.5: Examiner results: IPOPTH

The first two columns check if variables are within their bounds for both
primal and dual problems, and the next two columns check for constraint
feasibility again both in primal and dual. Default tolerances for all four
checks are set at 1e−6, which are tight tolerances, meaning that the test
favors false negatives over false positives [25].

Testcase Var bound(P) Var bound(D) Constraints(P) Constraints(D)
case14 OK OK OK OK

case118 OK OK OK OK
case300 OK OK OK OK

case2383wp OK OK OK Max viol:1.1e−4

case3120sp OK OK OK Max viol:7.1e−3

case3375wp OK OK OK Max viol:7.8e−3

Table 2.6: Examiner results: CONOPT

While IPOPTH performed badly in Section 2.4.2 when searching for
feasible reactive demand values, it seems to outperform CONOPT not only
in solver running time, but also in solution quality. A point of note is that
both solvers return the same objective value and therefore these results
regarding solution quality may not be explicitly obvious without using the
Examiner tool. We therefore test the IPOPTH solution of the Winter and
Summer datasets in Table 2.7 and see that it produces similar results to the
IPOPTH tests on the larger IEEE testcases. Our conclusion therefore is that
the IPOPTH solution for the large-scale datasets is acceptable and feasible,
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specifically when considering the size and complexity of the model. It
is not unreasonable to relax certain tolerances in these conditions, and if
we relax the dual constraint tolerance to 1e−5, we see that they will easily
pass all 4 feasibility tests.

Testcase Var bound(P) Var bound(D) Constraints(P) DConstraints(D)
W, t=1 OK OK OK OK
W, t=5 OK OK OK Max viol:−3.0e−6

W, t=20 OK OK OK Max viol:2.4e−6

S, t=1 OK OK OK OK
S, t=18 OK OK OK Max viol:−6.70−6

Table 2.7: Examiner results: Winter/Summer

2.5 Additional Issues in Network Feasibility

While going through the exercise of finding AC feasible solutions for the
reactive demand model (2.4-2.7) using the Procedure 3, we came across
additional feasibility issues that either a)originated from erroneous data,
or b)stemmed from actual network infeasibility. In both cases, feasible AC
solutions were difficult to come by and we address those issues below.

2.5.1 Tap transformers

Tap transformers, when installed, may change the voltage ratio on a line
which which in turn enables stepped voltage regulation on that line. With
relation to the ACOPF, this shows up in two components, τijc, θijc which
are the transformer tap ration and angle on line ijc respectively, and affects
active and reactive power. Build and maintenance costs of these devices
limit the number of them in a network.

Based on network information, both Winter and Summer datasets
contain roughly 30 active tap transformers. Analyzing initial solutions
found that a number of lines at their active power limit were associated
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with unusually high tap angle values, θijc, at ±84.99◦. In fact, these values
seemed to be outliers, while the rest of the data varied between [−30◦, 30◦]
or 0.524 radians. Note also that in DC model, sin(i) = i. Therefore, sin(θi−
θj − φijc) in (1.2) may be misrepresented and provide bad initial starting
points when used in the ACOPF model. A simple test of replacing them
with 0 resulted in a marked improvement in our ability to find feasible
solutions. Based on likely physical limitations of these transformers, we
proceeded to solve the ACOPF feasibility model below (2.8-2.10), where
θ*
ijc refers to the outlier tap angle values.

min
∑
ijc∈E

θ*
ijc (2.8)

s.t. (1.22)− (1.30) (2.9)

θ*
ijc ∈ [−0.524, 0.524] (2.10)

Further testing and analysis of the feasibility model revealed very small
solution values for θijc, and tests indicated that replacing them with 0 did
not significantly impact the solution. Therefore, the erroneous tap angles
were replaced with 0 in all model runs.

2.5.2 Line limit relaxation

Given that the demand data is based on peak consumption for both Winter
and Summer seasons, it is not unusual to encounter an infeasible model
especially when demand bidding is turned off. What was unusual in
the Summer network however was that the models were DC infeasible
for 12 hours throughout the day. Our goal was to make the models AC
feasible, even with demand bidding turned off, which allows the user
more flexibility in running these datasets. With that in mind, we solved a
minimum AC feasibility model by adding slack variables to equations (1.22
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- 1.27) which relaxes line limits in (1.22-1.25) and generator operating limits
(generator buses) or consumer demand (load buses) in (1.26-1.27). The
resulting solution pointed to 3 lines as infeasiblity sources, summarized
in Table 2.8.

Line Infeasible periods(t) Max violation(%)
A 11-23 32%
B 13-22 14%
C 15-19 4%

Table 2.8: Summary of line infeasibility for Summer dataset

To maintain the integrity of the network information, we also experi-
mented with only adding slack variables to (1.22-1.25) but found that the
solutions to those problems were unwieldy (required many changes) and
distinctly different from period to period, such that no general insights
could be drawn. We also experimented with allowing slacks in the n+ 3
subgraph (starting from the infeasible lines listed in Table 2.8), but this
did not yield any actionable results. Therefore, we uniformly applied a
40% line limit increase to the 3 lines above, which allows the modeler
some flexibility when experimenting with different demand inputs.Finally,
timeperiod t = 17 in Summer RTO required small changes to the active
demand of 2 buses in order to retain feasibility. The alternative was to
increase the line limits of 3 additional lines but we felt this to be excessive.

2.6 Epigrids Data

The EPIGRIDS project [1] aims to construct realistic transmission system
models and scenarios that will serve as test cases to reduce barriers to the
development and adoption of new technologies in grid optimization and
control. The motivation for creating these datasets is because the research
community lacks high-fidelity and public power systems data that realis-
tically represent current and evolving grid characteristics. Typically, real
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world data needed to validate research advancements are restricted due to
grid security concerns. The CEII datasets discussed in 2.1 perfectly exem-
plify this problem as they fall under strict non-disclosure agreements and
can only be provided under the Critical Energy Information Infrastructure
(CEII)usage agreements as detailed by FERC. To help drive practical and
useful innovation in the electric power industry, there is a need for datasets
that more closely mimic the characteristics of the actual grid without dis-
closing sensitive information. The Grid Optimization (GO) Competition
conducted by the Advanced Research Projects Agency-Energy (ARPA-E)
(include citation and link to the GO website) already utilizes some of the
datasets generated by the EPIGRIDS project, to accelerate the develop-
ment of transformational and disruptive methods for solving problems
related to the electric power grid and to provide a transparent, fair, and
comprehensive evaluation of new solution methods.

2.6.1 Data Utility Tool Updates

To accommodate the data arising from the EPIGRIDS project, the data
conversion tools in the OPF Toolbox have been updated and tested to
ensure that the data utility models are able to incorporate the EPIGRIDS
.raw electricity grid files into our testing environment. Due to differing
assumptions about the contents of input files, the following updates had
to be made to the raw2gdx data utility tool that converts a .raw file to a
.gdx file, that is consistent with the Toolbox’s GAMS models.

1. Non-integer valued circuits are changed to integers before being
added to line data information. Integer valued circuits are required
in the data description.

2. Zone information from the LOAD DATA portion in the .raw file
are ignored and not checked against the AREA information from
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the BUS DATA. This is because the EPIGRIDS data does not always
maintain this fidelity.

3. Details of load buses with a non-active (0) status are ignored and
not included in the .gdx file because the current data descriptions
does not allow for this added dimension. Since the load buses are
inactive, they should not impact the demand profile description of
the network. This could be a possible extension in the future.

4. The control mode of the switched shunt data is no longer validated,
because the epigrids datasets do not use this field reliably. Previously,
only fixed (0) and continuous adjustment (2) modes were encoded
into the .gdx file. This issue will likely need to be revisited in the
future.

These updates allowed us to reliably convert the EPIGRIDS datasets
to the Toolbox’s .gdx formats, and thus utilize the provided models and
tools. The datasets published in the GO Competition were used for testing.

2.6.2 PowerFlow Feasibility of the datasets

Using the models in the OPF Toolbox, all the datasets were proven to be
DCOPF feasible, even when used with the --lineloss=1.055 option. This
option crudely simulates line loss in an ACOPF model by increasing the
demand profile across all loads in the network. Chapters1 and 2 provide
example usage cases of this.

Unfortunately, in the majority of the datasets, we were not able to obtain
feasible AC power flow solutions, regardless of starting points or OPF
formulation. In some of the cases, the datasets were PowerWorld feasible
in the AC model, but the PowerWorld solution was either infeasible in our
models or did not provide a good starting point. We believe that this is
due to the slacks in the PowerWorld solutions that the GAMS models do
not represent or account for. Thus, the addition of slacks to the ACOPF
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models will likely be needed to solve many of these datasets within the
framework of the Toolbox. In the testcases where we were able to solve the
ACOPF and find a feasible AC operational point, the starting condition
ic=7 where the real power and voltage angle values are initialized using
a DCOPF model with line loss approximation (--lineloss=1.055) was
instrumental in finding these solutions. These findings add another data
reference point to the starting point analysis conducted in Sections 2.3.2
and 1.4.2, showing that realistic datasets can be challenging to solve reliably,
and further highlighting the importance of the work coming out of the
EPIGRIDS project.

2.7 Conclusions

In conclusion, we produced 4 large-scale datasets with 13900 buses that
is sourced using realistic data, has AC feasible data solutions for each
time period, and that adhere to the unit commitment constraints of a
UCDC model that incorporates line loss by a simple increase in demand
of 5.5%. We are also able to provide exact ACOPF solutions (instead of
approximations) for these datasets using default options in 5 minutes,
and with further research, believe we can extend these results to all 24
periods.

These are difficult problems to solve, and even more so in “real-time”
for the purposes of day-ahead planning. The compilation of these large-
scale and realistic datasets however allow us to push the modeling bound-
aries for operation and planning models, for future implementation in
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industry settings.
Procedure 4: Finding AC solution for large datasets

// Find a commitment profile across 24 hours
1 (P̃ , θ̃, Ũ)← Solve UC_DC --lineloss=1.055

// Solve ACOPF using commitment profile from previous step
2 (Pt, Qt, θt, Vt)← Solve polar_acopf(P̃t, θ̃t, Ũt) --ic=4 ∀t ∈ T

// Find UCAC solution using provided starting points
3 (P,Q, θ, V, U)← Solve UC_AC(P̃ , Q̃, Ṽ , θ̃, Ũ)

As final note regarding the reactive demand profile as described in
Section 2.2, one limitation of the conditions is that they do not allow for
significant reactive support equipment such as synchronous condensers
to be installed in load buses with 0 demand. This may be a limiting factor
of AC feasibility, and should be looked into.

Lastly, in an effort to increase the accessibility to the high-fidelity power
systems datasets generated by the EPIGRIDS project, we updated to our
utilities to be able to bring those datasets in to the OPF Toolbox. We believe
this will greatly enrich the testing and model validation capabilities of the
research community.
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3 hierarchical framework for long term
planning models

Figure 3.1: Representative decision-making timescales in electric power
systems, courtesy of C. DeMarco

Planning and operating the Next Generation Electricity Grid is a com-
plex matter that involves decisions across varying timescales; from reacting
to changes within fractions of a second, to 5-minute and day ahead market
clearing models, as well as decisions like major grid enhancements which
are typically made on the scale of 10-15 years in advance. Figure 3.1 serves
to illustrate the complexity of the power system by highlighting some of
the many operations and decisions as controlled by multiple agents that
take place at hugely differing timescales. While it is clear that information
flow from decisions made in the long time scale models may affect out-
comes and behaviors in the shorter time scales, what makes this setting
particularly interesting is the less obvious constraints that operations at
very fast time scales (e.g. requirements for grid resilience against cascad-
ing failures) potentially impose on longer term decisions like maintenance
scheduling and electricity grid expansion. Due to the rapidly changing
landscape through the introduction of new technologies such as electric
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cars, renewable energy and storage, it is clear that better modeling and
solution techniques for power systems are required for continued reliable
operation.

The creation of regional transmission organizations (RTO) by the Fed-
eral Energy Regulatory Commission (FERC) in the last decade was one
of the responses to electricity market deregularization which opened the
doors to competition among generators. By FERC Order 2000A, one of
the organization’s responsibilities is planning necessary transmission line
enhancements to provide efficient, reliable and non-discriminatory service
[29]. Various approaches to this decision making process have been ex-
plored, including a model used to calculate a network’s congestion status
[52], the usage of a probabilistic reliability criteria [46], a MINLP based
on the minimization of construction cost and transmission congestion in
[76], as well a bilevel model in [47]. As a long time scale decision problem,
transmission line expansion is clearly confounded by uncertainties in es-
timates of electricity demand, fuel cost, and even of visible technologies
such as plug-in hybrid electric vehicles and renewable energy sources like
wind and solar power. Bottlenecks within the network further prevent per-
fect competition among market participants because firms may use their
market power to maintain prices above marginal cost [67, 14]. Adding to
the complexity is the structural makeup of the system whereby interaction,
and sometimes interdependence between issues like transmission line
planning, generator building and upgrading, as well as the operational
concerns of independent service operators (ISO) is difficult to capture;
a result of non-cooperative agents and often competing principles such
as economic revenue, policy and environmental influences and system
stability. These issues not only stress the importance of a framework that
is able to represent the different agents, timelines and uncertainties in a
cohesive manner, but also highlight a need for model flexibility which
enables easy adaptation to evolving information flow in the absence of
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validation data.
To that end, this paper presents a hierarchical framework designed to

capture the interactions between a long timescale model such as transmis-
sion line planning with shorter timescale decisions such as grid operation
and generator behavior, all the while maintaining a clear partition of time-
lines and agents. Beyond the advantage of transparent information flow,
the framework presented in Section 3.1 benefits from its ability to be broken
down into smaller and disparate pieces to facilitate the solution method
proposed in Section 3.2. Section 3.3 then provides illustrative numerical
examples while Section 3.4 concludes with some future points of debate.

3.1 Hierarchical Framework

By using a hierarchical framework, it is intuitive to maintain the integrity
of different timelines by keeping their respective decision models within
separate hierarchies. For this example, the problem is simply split into two
timelines, with the long timescale transmission expansion model occupy-
ing the upper hierarchy while the shorter timescale decision models reside
in the hierarchy below. Tables 3.1, 3.2 and 3.3 provide easily referenced
descriptions of the sets, variables and parameters used in the decision
models described in the rest of this section.

Table 3.1: Description of Sets

Set Description Indices Model
Ω Demand scenarios ω All
N Location nodes i, j All
X Transmission expansion set - RTO
F Firms f Firm

Jf ⊂ N Location of firm f ’s generators j Firm
A ⊂ (N,N) Transmission Lines (ij) ISO
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Table 3.2: Description of Variables

Decision Variable Description
RTO x Investment in transmission line expansion
Firm yj Investment in generator at j

ISO
zωij Real power flowing along ij in scenario ω
θωj Voltage phase angle at j in scenario ω
qωj Real power at j in scenario ω
oωj Dispatch of generator at j in scenario ω

Table 3.3: Description of Parameters

Parameter Description Model
Sij Susceptance of line ij ISO

[uj, ūj] Operating limits of generator at j ISO
bij Capacity of transmission line ij ISO
dωj Demand at j in scenario ω All

µc(x) Cost of line investment RTO
g(x) Budgetary/engineering limitations RTO
πω Probability of scenario ω RTO, Firm

Cj(qωj , yj) Cost function of generator at j Firm, ISO
ηr(y) Cost of generator investment Firm
hf (y) Budgetary constraints of firm f Firm

3.1.1 Transmission Planning Model

For the uppermost hierarchy, we start with a basic formulation which
balances investment cost with consumer welfare. The latter is defined
as the total expected payment collected by the ISO from it’s wholesale
customers and is calculated using locational marginal prices (LMP). The
node-to-node disparity of these prices point to the existence of congestion
within the network that restricts the ability of generation at low-priced
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locations to supply power to customers at high priced locations [67], thus
making it a useful social welfare measurement. It is possible and probably
desirable to consider a more inclusive or robust objective function but for
expository purposes, we use the formulation below.

Expansion Model (RTO)

min
x

investment cost︷ ︸︸ ︷
µc(x) +

consumer welfare︷ ︸︸ ︷∑
ω

πω
∑
i

dωi p
ω
i (x) (3.1)

s.t. gk(x) ≤ 0 ∀k (3.2)

Variable x represents expansion on specific lines and the objective bal-
ances expansion cost µc(x) with expected cost to the wholesale customer.
Demand scenarios dωi and their corresponding probabilities πω represent
aggregations of both forecast uncertainties and variations in consumption
patterns, such as seasonal or daily fluctuations and pωi (x) is the resulting
LMP which is a response variable from the lower hierarchy. This decision
may be subject to budgetary, physical and engineering constraints (3.2),
and the dimension of x is assumed to be small since we expect physi-
cal and infrastructural limitations as well as political and geographical
complexities to severely limit possible layouts. This formulation is very
general and can be expanded to include other constraints, or manipulated
to consider different objectives as necessary for accurate representation of
the system, without upsetting the lower hierarchy.

3.1.2 Price Response Function

The bulk of the detail in this model actually lies in the process of obtaining
the response variable, pωi (x), for the upper level objective in (3.1), thus
precipitating the introduction of the equilibrium model (3.3)-(3.10) which
is an enhanced version of the traditional DC optimal power flow model
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(OPF) commonly found in the power systems literature. The OPF is an
operational model solved by the ISO and is necessary for acquiring the
wholesale prices (LMP), pωi (x). Given that transmission expansion is a
long timescale decision however, we introduce the influence of firms’ short
term competitive behavior which represents the dynamic nature of the
network corresponding to the time lag between the decision to expand and
implementation processes. Thus in this augmented formulation, firms
may choose to upgrade generators, for example by changing fuel type,
increasing efficiency or output limits [8] [37], or alternatively allow finan-
cially unattractive power plants to be retired. Since upgrade requests may
be processed through expedited procedures [61], the decision time frame
is similar to that of generator retirements [63] [62]. Therefore, the above-
mentioned equilibrium is made up of the optimality conditions of an OPF
with unit commitment (3.3)-(3.8) solved by the ISO in each scenario, and
of an investment model (3.9)-(3.10) for each generator firm.

The OPFUC is a cost minimization operational model with unit com-
mitment decisions that is characterized by power balance constraints at
each node (3.4), Kirchoff’s law (3.5), and operating limits of the system
(3.6,3.7). The cost function Cj(qωj , yj) consists of a fixed cost component as
well as variable costs based on the quantity of energy generation, qωj . Unit
commitment is described by integer variables oωj . The OPF produces and
returns the feedback values pωj to the upper hierarchy in response to the
line capacity changes as a function of x (3.7).

The firm’s goal on the other hand is to balance the minimization of its
own operational cost Cj(qωj , yj) and investment cost ηr(yj). The interaction
between the firm’s investment decision variable(y) and the ISO’s OPF
implementation (q, o, x, θ) is facilitated through the cost function Cj(qωj , yj)
that appears in both objective functions (3.3,3.9). While qωj is a variable in
the OPF, it becomes a parameter to the firm’s model, while yj is conversely
a variable in the firm’s model but a parameter in the OPF. This clear
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separation of models for each individual agent provides a good macro
view of the driving forces within the electricity delivery system, while
clearly exposing their goals and relationships.

Equilibrium

OPFUC (∀ω ∈ Ω):

min
o,q,z,θ

∑
j

oωj Cj(qωj , yj) (3.3)

s.t. qωj − dωj =
∑
i∈N j

zωij ⊥ pωj ∀j ∈ N (3.4)

Sij(θωi − θωj ) = zωij ∀ij ∈ A (3.5)

oωj uj ≤ qωj ≤ oωj ūj ∀j ∈ N (3.6)

zωij ∈ [−bij(x), bij(x)] ∀ij ∈ A (3.7)

θ free, o ∈ {0, 1} (3.8)

Firm (∀f ∈ F ):

min
y≥0

∑
ω

πω
∑
j∈Jf

oωj Cj(qωj , yj) + ηr(yj) (3.9)

s.t. hf (y) ≤ 0 (3.10)

Now, if we were to approximate the integer formulation by using some
smooth function Ĉj(qωj , yj) in place of oωj Cj(qωj , yj), we are able to connect
these models as one set of complementarity constraints. The mixed com-
plementarity program (MCP∗) formed by the first order conditions of
the approximated model (3.11)-(3.17) circumvents the intractability of a
solution process caused by unit commitment in the ISO dispatch model
but replaces this with a nonconvexity in the MCP formulation. We present
one such approximation in the Appendix which enabled us to solve MCP∗
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given reasonable starting points. We will return to discuss this MCP again
in Section 3.2, where insights gained from our solution process enable
further exploitation of the structure presented here.

MCP∗ (1st order conditions of:)

OPF∗ (∀ω ∈ Ω):

min
z,θ,q

∑
f

∑
j∈Gf

Ĉj(qωj , yj) (3.11)

s.t. qωj − dωj =
∑
i∈N j

zωij ⊥ pωj ∀j ∈ N (3.12)

Sij(θωi − θωj ) = zωij ∀ij ∈ A (3.13)

qωj ∈ [0, ūj], θ free ∀j ∈ N (3.14)

zωij ∈ [−bij(x), bij(x)] ∀ij ∈ A (3.15)

Firm∗ (∀f ∈ F ):

min
y≥0

∑
ω

πω
∑
j∈Jf

Ĉj(qωj , yj) + ηr(yj) (3.16)

s.t. hf (y) ≤ 0 (3.17)

3.1.3 Model Assumptions

As noted at the start, generator bidding processes play a significant role
in consumer price determination and discussion regarding short term
bidding strategy have been explored in [23], [42] and [41]. Our formulation
however assumes that such market advantages will be inconsequential over
extended periods of time by reasoning that a generator’s true cost curve can
be inferred via the bidding process in the long run. Under this assumption,
the ISO may be viewed as a price setter because it controls the electricity
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dispatch process, although firms have control over the parametrization of
the cost curve through variable yj .

Note that as a result, the objective function listed in (3.18) which models
a firm’s maximum expected profit instead of minimum cost is mathemati-
cally no different from (3.16), because the above assumption results in pωj
becoming a parameter in the firm’s objective function.

max
y≥0

∑
ω

πω
∑
j∈Jf

pωj q
ω
j − Ĉj(qωj , yj)− ηr(yj) (3.18)

3.1.4 Generator upgrades

Based on standard power engineering literature and datasets, a quadratic
function (3.19) is used in calculating the total cost incurred by genera-
tor j when generating qj units of electricity, where γj defines the unit
commitment (fixed) cost while the rest of the equation defines a per unit
variable cost. In order to account for the time lag between the decision
and implementation processes of transmission line expansion, the intro-
duction of generator investment variable yj allows current generators to
compete with future technology by upgrading current power plants to
reduce operational costs. For our purposes, we define the relationship
between investment yj and cost function Cj(qj, yj) with a diminishing re-
wards function, meaning each additional unit of investment, yj , will have
a diminishing effect on the cost of generation as shown in (3.20).

C∗j (qωj ) = αj(qωj )2 + βjq
ω
j + γj (3.19)

Cj(qωj , yj) = α∗j (yj)q2
j + βjqj + γj,

where α∗j (yj) = αj + αj
4

max. benefit

( diminishing rewards fcn︷ ︸︸ ︷
exp{−λj

gen. size

yj} − 1
)

(3.20)

As illustrated in figure 3.2, positive values of investment shift the curve



71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
200

300

400

500

600

700

800

900

1000

Quantity Dispatch

T
ot

al
 C

os
t

 

 
Original cost curve, large plant
Cost curve after investment, large plant
Original cost curve, small plant
Cost curve after investment, small plant

Figure 3.2: Illustration of investment variable’s effect on cost curve

to the right, thereby making cost of dispatch cheaper. During testing, we
associate λj with generator size, meaning larger generators require bigger
investments to increase efficiency. This affords the modeler flexibility when
defining the investment requirements for different classes of generators,
according to elements such as size, location and type of fuel. The maximum
efficiency benefit is −α0,j

4 and in practice, we define λj as − log(0.001)ψj ,
based on the assumption that the first unit of yj uses ψj monetary units to
reduce α0,j

4 by 0.1%.
The advantage of this function is that it is simple in application by only

affecting the quadratic term, and it is also smooth, continuous and convex
in the (q, y) space. The modeler however is free to consider more complex
upgrade functions such as separating y into multiple components that
allow the firm to impact the generator operation with different upgrade
features, for example to alter a plant’s generation limits [u, ū], and/or to
alter its fuel source [8] [37].
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3.2 Solution Method

3.2.1 Optimization Model

The RTO decision problem, which at first glance appears to be a simple
model, suffers from the lack of derivative information and good theoretical
properties of the LMP values, pωi (x). Specifically, unit commitment in the
lower hierarchy affects the continuity of the function, and the possibility of
multiple equilibria may have an averse effect on it’s smoothness. Thus, we
are inclined to treat the objective (3.1) as a blackbox function, and contend
that the use of derivative-free optimization (DFO) is a reasonable approach
in which the solver allows an external process to solve the optimization
based solely on the availability of objective function values [64]. In order
to accommodate the limitation of including modeling constraints in DFO
solvers, model (3.1)-(3.2) is replaced with a penalty function, where x ∈ X
represent simple bound constraints:

Penalty Function:

min
x∈X

{
µc(x) +

∑
ω

πω
∑
i

dωi p
ω
i (x) + σ

∑
k

max
{
gk(x), 0

}}
(3.21)

The bulk of the solution process however lies in the methodology
behind obtaining a function evaluation of pωi (x) to provide to the opti-
mization model. This constitutes the focus of the remainder of Section 3.2,
whereby we solve the MCP in the lower level of the hierarchy, utilizing the
Extended Mathematical Programming Framework (EMP) in conjunction
with GAMS, as discussed in [32].
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3.2.2 MCP

Recall MCP∗ which is based upon the first order conditions of approxima-
tion model (3.11)-(3.17) where Ĉj(qωj , yj) is documented in the Appendix.
While smooth and continuous, the model still has non-convex objective
functions with respect to qωj . It is therefore necessary to provide the MCP
with good starting points in order to find an appropriate equilibrium solu-
tion, and we do so based on the solution of the OPF, solved independently
and to global optimality for each scenario. Selecting a good solution from
multiple equilibria is also a concern, and Procedure 1 addresses these
concerns in the following manner.

Procedure 5: MCP Solution Process
Initialization: qω

j = 0, yj = 0 ∀j ∈ N,∀ω ∈ Ω
1 Loop

// Obtain qω
j starting points with yj fixed, eqns.(3.11-3.15)

2 q̂ω
j ← OPF∗(yj) ∀ω ∈ Ω

3

4 if q̂ω
j = qω

j then // convergence
5 break;
6 else // Solve equilibrium with q̂ω

j starting points
7 (qω

j ,yj)← MCP∗ with q̂ω
j starting points

The method starts with OPF∗(yj) which solves the dispatch model OPF∗

with input parameters yj initialized to the current conditions, that is with
zero investment. This recognizes attractive sites for generator upgrades
and provides good starting points to MCP∗ in the next step. After solving
MCP∗, the whole process is repeated by using the investment solutions
yj obtained from the equilibrium as input parameters (feedback) into
OPF∗, until we arrive at a stable solution. This method makes the problem
tractable and our tests show it typically converging within 4 to 5 iterations,
and in no more than 10.

During numerical testing, we observed that prior to convergence when
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qωj 6= q̂ωj , the unit commitment decisions did not change because the
non-convexity in the approximation function Ĉj(qωj , yj) limited the space
searched by a Newtonian based solver. That is to say that the equilib-
rium solution did not alter the active set of generators (unit commitment
decisions) selected for dispatch and that this set only changed when the al-
gorithm looped back to solve OPF∗ with the updated investment values yj
provided by MCP∗. This brings us to the next section in which we exploit
this solution structure to replace the approximation function Ĉj(qωj , yj).

3.2.3 Restricted MCP

Based on the observations above, we introduce the following “Restricted
MCP” (RMCP) equilibrium where C̃j(yj, qωj , oωj ) = oωj Cj(yj, qωj ). This up-
dated version exploits the solution structure by replacing the approxima-
tion model MCP∗ with a restricted version of the original equilibrium
model (3.3)-(3.10).

The key idea here is to fix integer variables oωj , which leaves us with an
MCP based on the original equilibrium model (3.3)-(3.10), thus allowing
us to bypass the approximation function. The benefit of using RCMP is
that our ability to directly form an MCP independent of any non-convex
approximation function results in a more efficient solution process. In
addition, the function C̃j(qωj , yj, oωj |oωj ) is now convex with respect to both
q and y, and this eliminates the need to provide the MCP with starting
values q̂ωj . Thus, the updated algorithm based on the RMCP is presented
in Procedure 6.

RMCP (1st order conditions of:)
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ROPF (∀ω ∈ Ω):

min
q,z,θ

∑
j

C̃j(qωj , yj, oωj |oωj ) (3.22)

s.t. (3.4)− (3.8) (3.23)

RFirm (∀f ∈ F ):

min
y≥0

∑
ω

πω
∑
j∈Jf

C̃j(qωj , yj, oωj |oωj ) + ηr(yj) (3.24)

s.t. hf (y) ≤ 0 (3.25)

Procedure 6: Restricted MCP Solution Process
Initialization: qω

j = 0, yj = 0 ∀j ∈ N,∀ω ∈ Ω
1 Loop

// Obtain (q̂ω
j ,oω

j ) with yj fixed, eqns.(3.3-3.8)
2 (q̂ω

j , oω
j )← OPFUC(yj) ∀ω ∈ Ω

3

4 if q̂ω
j = qω

j then // convergence
5 break;
6 else // Solve RMCP with oω

j fixed
7 (qω

j ,yj)← RMCP(oω
j )

Like before, the methods starts by the optimal dispatch problem based
on the current state of the system, with yj = 0. In this revised procedure,
OPF∗ is replaced with the original OPFUC model (3.3)-(3.8), and we then
solve the RMCP which has input variables oωj fixed, and the process is
repeated until a stable solution is found.

With each successive iteration, note that the RMCP produces a new
equilibrium, each of which is arrived at via different active sets of oωj .
The criteria for convergence however is a globally optimal dispatch and
OPF solution given the investment decisions yj for each generator. Since
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C̃j(qωj , yj, oωj |oωj ) is strongly convex with respect to y at a fixed solution q,
the firm’s investment model is likewise globally optimal given the ISO’s op-
erational decision variables qωj , provided that ηr(yj) is also convex. Hence,
the solution at convergence is a Nash equilibrium, from which we obtain
the price response function, pi(x).

3.2.4 Comparison and Stability Analysis

A numerical comparison reveals that procedure 5 gives the same struc-
tural solutions as procedure 6, meaning that given initial starting points
q̂ωj , both methods produce the same active set when solving MCP∗ and
RMCP respectively. Slight perturbations are observed in the (qωj , yj) values
returned by both algorithms, due to the approximation function C∗j (qωj , yj)
that is used in procedure 5, which could have cascading effects when the
optimization problems do not have unique solutions. Procedure 6 was
also found to converge slightly quicker, typically within 3-4 iterations,
and in no more than 6. Therefore, we posit the use of procedure 6 over
5 because the elimination of approximation error makes the algorithm
computationally more efficient.

A stability analysis using the 14 bus test case [70] introduced in Section
3.3 also revealed the need to regularize the lower level in order to manage
issues with non-uniqueness of solution. The original IEEE dataset is
comprised of 3 identical generators (3,6,8) which in certain situations
can lead to multiple Nash equilibria and non-unique pωi (x), as illustrated
below.

Solution A: OPFUC(yj = 0):
Scen q1 q2 q3 q6 q8

ω1 2.17 0.42
ω2 3.09 0.53
ω3 2.52 0.43 0.85 0.85
ω4 2.71 0.47 1.00 1.00
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ω5 2.53 0.44 0.91 0.91 0.91

Nash Equilibrium A:
Firm y1 y2 y3 y6 y8

f1 253.95 46.05
f2 167.03 32.97

Scen q1 q2 q3 q6 q8
∑

i dω
i pω

i

ω1 2.17 0.42 8811.06
ω2 3.09 0.53 14500.07
ω3 3.29 0.57 0.81 19234.14
ω4 3.32 0.86 1.00 27020.60
ω5 3.26 0.57 0.97 0.89 23637.04

Solution B: OPFUC(yj = 0):
Scen q1 q2 q3 q6 q8

ω1 2.17 0.42
ω2 3.09 0.53
ω3 2.52 0.43 0.85 0.85
ω4 2.71 0.47 1.00 1.00
ω5 2.53 0.44 0.91 0.91 0.91

Nash Equilibrium B:
Firm y1 y2 y3 y6 y8

f1 243.25 40.42 16.33
f2 167.24

Scen q1 q2 q3 q6 q8
∑

i dω
i pω

i

ω1 2.17 0.42 8812.03
ω2 3.09 0.53 14501.72
ω3 3.29 0.57 0.81 19239.83
ω4 3.32 0.86 1.00 27020.43
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ω5 3.30 0.57 0.96 0.86 23650.07

As a direct result of identical generator units, solutions A and B which
have different dispatch decisions are both global solutions to the model
OPFUC(yj=0) of the same system. Consequently, they yield different Nash
equilibriums with different pωi (x) values. Implicitly, DFO algorithms re-
quire pωi (x) to be a continuous function of x, and while this topic requires
further study, we leave it to be explored in future work. Instead, Section 3.3
addresses this by adding slight perturbations to the dataset, thus ensuring
a unique global solution to each system OPFUC(yj).

3.3 Numerical Examples

The proposed methodology was applied on an adapted version of the 14
bus test case obtained from the University of Washington’s Power Systems
Test Case Archive [70]. Figure 3.3 provides a graphical depiction of this
example, with generators located at buses 1, 2, 3, 6 and 8. In adapting this
dataset for our purposes, we have defined active upper bounds on the
transmission line arcs bij and divided the 5 available generators between
the portfolio of two firms; Firm F1 controls the generators at buses 1, 3
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Figure 3.3: Graphical depiction of 14 bus example
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and 8 while firm F2 operates the generators at buses 2 and 6, each firm
with its own budget. Since we are considering unit commitment, each
generator has also been assigned a non-zero minimum generating capacity
as a fraction of the given maximum generating capacity, as well as a non-
zero fixed cost parameter γj as a fraction of the unit’s minimum operating
expense (that is operation cost at its minimum generating capacity). Given
the original dataset, it seems natural to extract information regarding
generator size (large, medium, small) and based on this, appropriate
investment parameters ψj have been assigned. The small generators 3, 6
and 8 have also slight perturbations added to their cost data in order to
maintain uniqueness of OPF solution, as we had discussed in Section 3.2.
Table 3.5 details the data enhancements that have been kept standard for
all following numerical examples.

Table 3.5: Equilibrium Model Parameters

Description Parameter Value
Coefficient for uj as a fraction of ūj 0.3
Coefficient for γj as a fraction of Cj(qj = uj, yj = 0) 0.2
Firm investment budget
($ units)

Firm F1 (Gens 1, 3, 8) 300
Firm F2 (Gens 2, 6) 200

Generator upgrade
parameter, ψ
($ units)

Large generator (Gen 1) 200
Medium generator (Gen 2) 150
Small generator (Gens 3, 6, 8) 100

Table 3.6: Example 1: Scenario information

Scenario ω1 ω2 ω3 ω4 ω5

πω probability 0.3 0.3 0.2 0.1 0.1
dωj coefficient 1 1.4 1.8 2 2.2

In addition, five distinct scenarios have been added to the dataset, and
these are listed in Table 3.6. Since the existing data set provides us with
only a single set of demand values for each node, each scenario ω is some
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multiple of the original demand data, based on the coefficients provided in
Table 3.6. These coefficients can be considered representative aggregations
for seasonal fluctuations in electricity usage.

3.3.1 A function evaluation of pω
j (x) for fixed x

To illustrate the solution process of Procedure 6 which solves the equilib-
rium in the lower level hierarchy (3.3)-(3.8), we solve the model with a
generous line limit of 2.0, or mathematically speaking bij(x) = 2.0 for all
ij arcs in constraint (3.7) of the OPFUC and ROPF models.

At iteration 1, the “OPF_UC” table contains the global solution to the
OPFUC model for the system’s current state (firm investment y = 0) in
each scenario ω. The solutions are obtained using Baron [65] and from
here, the active set oωj is passed to the RMCP. Based on the resulting KKT
conditions, an equilibrium (qωj , yj) is then returned by the PATH solver
[26] [33] in conjunction with the GAMS EMP framework as discussed in
[32]. This equilibrium is listed in “Table RMCP, iteration 1”. Following the
algorithm outlined in Procedure 6, the steps are repeated, beginning with
a new OPFUC evaluation based on the updated firm response yj , and if this
results in a different active set oωj , a new set of KKT conditions is generated
for the RMCP. This iterative process continues until convergence is met,
which in this case is at the third iteration.

Notice that in the first iteration, generator 3 is only dispatched in sce-
nario ω5 which has a low probability (0.1) of occurring. Firm f1’s reluctance
to invest in generator 3, combined with investment in all other generators,
leads to a correction in the unit commitment dispatch in the next iteration.
At this point, generator 3 is removed from the dispatch lineup, retired, as
a result of its inability to compete in terms of cost efficiency.

Variation in the LMP values at different nodes (not provided) indicates
that congestion occurs in scenarios ω2 to ω5 on line 1-2. This is determined
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OPF_UC, iteration 1:
Scenario q1 q2 q3 q6 q8

ω1 2.17 0.42
ω2 2.21 0.42 1.00
ω3 2.50 0.43 0.74 1.00
ω4 2.71 0.47 1.00 1.00
ω5 2.84 0.50 0.37 1.00 1.00

RMCP, iteration 1:
Scenario q1 q2 q3 q6 q8

ω1 2.17 0.42
ω2 2.61 0.45 0.57
ω3 2.87 0.50 0.30 1.00
ω4 2.86 0.59 0.73 1.00
ω5 2.86 0.60 0.30 0.94 1.00

Firm y1 y2 y3 y6 y8

f1 248.87 51.13
f2 153.55 33.14

by the non-zero multiplier of zω12, which is real power flowing along line
(1-2) in scenario ω.

Finally, the Nash Equilibrium at convergence provides us with LMP
function evaluations pωj that can be returned to the upper hierarchy. Evalu-
ating the expected total consumer cost at this solution, that is∑ω πω

∑
i d

ω
i p

ω
i (x),

yields 16414.

3.3.2 Transmission Line Expansion

With the understanding of what a pωi function evaluation consists of, we
now return to the problem of transmission line expansion in the long
timescale hierarchy. Based on equations (3.1)-(3.2), we present the follow-
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OPF_UC, iteration 2 and 3 (convergence):
Scenario q1 q2 q3 q6 q8

ω1 2.17 0.42
ω2 3.01 0.62
ω3 2.96 0.70 1.00
ω4 2.86 0.59 0.73 1.00
ω5 2.88 0.82 1.00 1.00

RMCP, iteration 2 and 3 (convergence):
Scenario q1 q2 q3 q6 q8

ω1 2.17 0.42
ω2 3.01 0.62
ω3 2.96 0.70 1.00
ω4 2.86 0.59 0.73 1.00
ω5 2.88 0.82 1.00 1.00

Firm y1 y2 y3 y6 y8

f1 253.57 46.43
f2 168.03 31.97

Equilibrium:
Scenario ω1 ω2 ω3 ω4 ω5

OPF objective 7773 11658 16071 18403 20552
Wholesaler cost 8810 18207 19347 21354 23779

ing optimization model:
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Transmission Expansion Model

min
0≤x≤δ

investment︷ ︸︸ ︷
‖x‖1 +

consumer welfare︷ ︸︸ ︷∑
ω

πω
∑
i

dωi p
ω
i (x) (3.26)

s.t. ‖x‖1 − κ ≤ 0 (3.27)

Variable x describes the amount of line expansion on a specific line
with bound constraints δ (physical limitations) optimized over a small
dimensional set X , and is subject to a budget of κ (3.27) where investment
cost µc(x) is simply the 1st norm of x with multiplier µ = 1. Equation
(3.28) is a result of applying the penalty function (3.21) to this model.

min
0≤x≤δ
x∈X

{
‖x‖1 +

∑
ω

πω
∑
i

dωi p
ω
i (x)

+ σmax
(
‖x‖1 − κ, 0

)}
(3.28)

Based on its reported superior performance [64], we have selected the
multi-coordinate search (MCS) algorithm [43] as our DFO solver for the
optimization model, using equation (3.28) as the objective function and
the parameter settings outlined in Table 3.7.

Table 3.7: Optimization Model Parameters

Description/Parameter Value

Physical bound, δ 1.5
Investment budget, κ 2
Line limits, bij(0) 1.0
Penalty value, σ 1500
Set of decision variables, X {x12, x15, x23, x78, x79}
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Here, the starting transmission line limits, bij(0) have been lowered
from the previous example to 1.0 for all lines, and the algorithm was run
on a 5 dimensional problem defined by set X with a suitable penalty
value of σ = 1500 that results in the satisfaction of constraint (3.27). When
evaluating response variable pωi (x), variable x is passed to the equilibrium
model (3.3)-(3.10) where the transmission line limits in the OPF and RMCP
(3.7) are updated by setting bij(xij) = bij(0) + xij . On its default settings,
the MCS algorithm yields the solution X∗ listed below.

X∗ =



x∗12

x∗15

x∗23

x∗78

x∗79


=



1.04
9.9e−6

0
0

1.4e−5


f(x∗) = 14944.63
Num. iterations = 5
Num. evaluations = 1298

For practicality purposes however, the solution we would implement
in reality is X∗∗ and although it yields a slightly worse objective value, the
difference between f(x∗) and f(x∗∗) is negligible.

X∗∗ =
{

1.04, for x12

0 otherwise
f(x∗∗) = 14944.75

Both objective values are clearly an improvement over the consumer
cost evaluated in example A. An analysis of the OPF model indicates the
existence of line congestion at the solution x∗∗, even though the budget
constraint (3.27) is non-active. This seems counter-intuitive since network
congestion restricts the ability of generation at low-priced locations to
supply power to customers at high priced locations. This is further inves-
tigated below.

3.3.3 Benchmark Comparison

If we expect an unrestricted system (a network with inactive line limits) to
allow for energy dispatch at its highest efficiency, it seems reasonable to
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use the equilibrium solution of this unrestricted system as a benchmark
comparison against the optimization solution. That is to say we take an
evaluation of pωj while disregarding the bounds of the bij line limits, and
use it to calculate expected total consumer cost ∑ω πω

∑
i d

ω
i p

ω
i (x). This

evaluates to 15803.82, which is inferior to the solution X∗∗.
This result reinforces the notion that easing congestion in transmission

lines does not always benefit the monetary interests of the wholesale con-
sumer, pointing towards a non-alignment of goals in the OPF operations
with respect to consumer welfare. An analysis of the solution space reveals
that the reason behind this non-intuitive behavior in the LMP prices pωj ,
can be traced to a combination of the unit commitment variables and the
cost function used in the dataset. Recall that the IEEE dataset provides
quadratic functions C∗j (q) which describe a generator’s total operational
cost in producing q units of power. This translates to a linear function of
increasing marginal cost as q increases. Thus, when an increase in trans-
mission limits allow a generator to be dropped from the active dispatch
set oωj , the generators which increase production to pick up the slack will
have an increased marginal cost. This directly impacts the LMP prices,
as they are a reflection of the marginal cost of the marginal generator at
that location. Therefore when line limits are sufficiently relaxed to affect
a change in the active dispatch set oωj , it is possible for the LMP prices pωj
to either increase or decrease based on the updated marginal cost of the
updated marginal generator at that location.

With this understanding, we can conclude that when considering the
monetary interests of the wholesale consumer, the MCS solution X∗∗,
is superior to the solution provided by the unrestricted system. If we
maintain this assumption of quadratic cost curves in a much larger system,
it is possible that the non-alignment effect will be diminished due to an
increase in the number of possible dispatch options. That is to say that
any potential downside in altering the active set (i.e. dropping a generator
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from the dispatch solution) can now be averaged over a larger number of
generators. This specifically translates to a lesser increase in the marginal
operating cost of any generator, when compared to the impact of a similar
change in a smaller system.

3.4 Conclusion

In conclusion, this paper introduces a hierarchical and scenario based
framework for informing long-term power planning decisions, and is
designed to capture the richness of the model through transparent inter-
actions between multiple agents who are making decisions on different
timescales. By maintaining a clear partition of these timelines, and defining
the interactions between the different agents and their decision processes
in a transparent manner, this model is not only able to capture the com-
plexity of the entire system, but is nimble enough to facilitate adaptation
as the real process evolves.

Thus, we have implemented this framework to inform the transmission
line planning process, and it incorporates grid operational constraints as
well as short term firm behavior in response to planned changes. The
long-term planning model was solved using a derivative-free solver [43],
and we have proposed an iterative procedure to solve the shorter-timescale
equilibrium which provides feedback to the long timescale optimization
problem. The iterative process allows us to make the equilibrium (3.3)-
(3.10) tractable, and provides us with a Nash equilibirum at convergence,
which is typically in 3-4 iterations. Numerical tests run on the 14 bus IEEE
dataset have provided a global solution to the expansion process, and
analysis of the results indicate a non-alignment in the objectives of grid
operation and consumer welfare, which we discuss in detail in subsection
3.3.3.

The general approach of this framework leaves open a number of
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promising directions for future enhancement as its multi-agent and hierar-
chical nature allows for adaptation to different objectives, levels of detail,
and to evolving systems. First of all, the objective of the planning model
could be enhanced to include other social welfare measurements, to study
their impact, if any, on the goal alignment of different agents. The growing
impact of renewable energy, energy storage and ISO demand response
policies are also other points of interest that may be studied further for
their long term effect on grid operation and layout as a whole.

Complex models such as this are tricky to solve in very large instances,
and a drawback of the current formulation is tractability in a realistic
setting when considering a much greater number of nodes, scenarios and
participants. Additionally, more accurate representations of the power
system process will not just require greater detail, but increased complexity.
Follow-up work could investigate ways to exploit the problem structure
for more efficient formulations and solution methods, working toward
a system that is able to demonstrate the benefits and drawbacks of a
particular transmission line siting decision at an aggregate level.

While alot of work from previous chapters focused on the accuracy of
daily operations and implementing those tools in a realistic setting which
is a known setting, this chapter attempts to address uncertainties far into
the future while considering operational impact. It would be interesting
to to broaden the scope of the toolbox in such a manner that bridges the
gap between these chapters by allowing the user to take their research
of operations and implement it into a planning setting such as this. This
may not necessarily mean augmenting the datasets with fabricated data,
but rather create a mechanism that helps the user include data addressing
specific uncertainties or situations that interest them.
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4 real-time co-optimization of energy and
reserve markets with security constraints

4.1 Introduction

Determining an efficient dispatch of generation resources is a complex
question which can necessitate balancing multiple goals depending on the
situation. Two most common themes of grid management are economic
efficiency and system reliability. Many grid reliability solutions fall un-
der the general umbrella of security constrained models, such as security
constrained optimal power flow (SCOPF) [19, 74], security constrained
economic dispatch (SCED) [53, 38] and security constrained unit com-
mitment (SCUC). Generally, the objective of such models is to minimize
operating cost while maintaining solution feasibility after the loss of a
major component, including failure of line, generator or transformer. An
“N-1” security criterion takes into account all major components and is
met when the dispatch solution allows the network to maintain system
stability in the event any one of those failures occur.

Security constraints can be preventive or corrective. Preventive con-
straints result in a conservatively operated system with a base-case dis-
patch that can survive the occurrence of the modeled contingencies. Alter-
natively, corrective constraints reconfigure the post-contingency system
with fast-acting equipment [18], by taking recourse action to return the
system to either a steady or a sustainable state. Therefore, security con-
strained models with corrective action are closely associated with some
ancillary services, namely the reserve market. In real-time dispatch mod-
els, the regulation market deals with real-time frequency control while
the real-time reserve market supports contingency recovery, especially
under loss of generation resources [77]. With reference to energy reserves,
co-optimization has been extensively discussed in the literature as a way
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of reducing grid costs and promoting economic efficiency. Although the
methods and motivations differ, co-optimization is well documented to
have a positive effect on system efficiency and pricing [4, 20], and has real
application purposes among Independent System Operators [54, 77, 54].

While co-optimization and security constrained models are clearly
both highly studied topics, both separately and in conjunction with one
another [5, 11], they are rarely combined in a single paper when dealing
with real-time applications. Most likely reasons for this are due to model
complexity and size. In these cases, we can assume that unit commitment
is not a factor and that the time limits for solving the model is very strict,
roughly a 5 minute window [54, 73]. Work exploring these themes for
real-time markets [6] tend to struggle with the dimensionality of the model
and rely on smaller datasets to test their theories. Recent papers by Street
et. al. [68] and Ding et. al. [24] circumvent the issue of tractability using
robust optimization which avoids explicitly modeling each contingency
by using the worst-case scenario as a solution guideline.

In this chapter, we focus on combining the concerns of reserve co-
optimization with grid reliability by solving an “N-1” security constrained
model designed for real-time energy dispatch. A key difference between
this and previously mentioned work is the explicit modeling of contin-
gencies, and the ability of our solution process to neatly deal with po-
tentially infeasible scenarios. This feature is particularly useful because
the topology of a real-time system may change throughout the day with
switching events and changing status of circuit breakers [48, 15, 35]. As
such, pre-processing of a contingency list may prove difficult unless it can
be implemented quickly when responding to topology changes. As our
algorithm is not based on any pre-conceived assumptions about network
topology, it is well suited for this environment.

Our model, which is based on Benders decomposition techniques, is
detailed in Section 4.2. Clearly, a traditional “N-1” SCED with correc-
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tive action is too large to solve using traditional means for realistic sized
datasets, and is difficult to solve even when using classical decomposition.
By using a modified Benders algorithm and harnessing the power of par-
allel processing as outlined in Section 4.3, we are able to solve realistic
sized datasets in real-time. Beyond the obvious computational advantage
of solving a large model in real-time, the model presented in Section 4.2
benefits from its clear outline of the relationship between energy reserves
and contingency management. Numerical examples in Section 4.4 show
that this setup results in a more efficient dispatch of reserves that only
targets locations necessary to handle network vulnerabilities. Section 4.6
concludes with some future points of debate.

4.2 Model Formulation
Set Description Indices
G Generators g

T Time (discrete timepoints) t

K Contingencies k

I Iteration (for Benders heuristic) i, j

(K, I)cut Cuts generated by violated subproblems ki, kj

KM Set of subproblems added to the Master model k

KL Set of line failure scenarios k

KG Set of generator failure scenarios k

Table 4.1: Description of Sets

4.2.1 Background

Referencing the model in [53], the general form of SCED with post-contingency
corrective action (or recourse) can be written as (4.1)-(4.7). Variables
(x0, u0) represent the state and control variables of the base case (i.e. pre-
contingency) dispatch solution to the optimal power flow (OPF) problem,
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Variables Description
x0 State variables for basecase solution (e.g. lineflow)
u0 Control variables for basecase solution (e.g. generation)
xkt State variables for contingency k at timepoint t
ukt Control variables for contingency k at timepoint t
vki Violation of cut at contingency k and iteration i
skt Constraint violation of subproblem k at timepoint t
Functions Description
c0, f0, h0 Objective and constraint functions for basecase
fk, hkt Constraint functions for contingency k at timepoint t
Parameters Description
λ̃ki Lagrangian multiplier of (4.31)
w̃ki Objective value of subproblem k at iteration i
ûi Solution of Master control variable at iteration i
δt Physical constraints on control variables at time t
M Penalty variable for constraint violations of vki

Table 4.2: Description of Parameters and Variables

Figure 4.1: Example of post-contingency line limit requirements
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which we base on DC powerflow equations (4.2)-(4.3), a reasonable as-
sumption when exploring a model for real-time dispatch. A minimum
cost objective function c0(x0, u0) using the base case dispatch is solved
(4.1). Equations (4.4)-(4.7) model the recourse solution after a contingency
solution where time plays an explicit role with discrete checkpoints, t ∈ T .
(4.4)-(4.5) describe the updated DCOPF equations after a contingency oc-
curs, while (4.6) provides physical limits on available corrective action.
Generators for example are constrained by their ramping capabilities, and
line limits may also be relaxed due to the exigent circumstances as shown
in 4.1. Linking both pre and post-contingency dispatch solutions is (4.7)
where t = t0 represents the immediate checkpoint post-contingency and
(4.7) indicates that control variables uk,t0 cannot abruptly change. Note
however that the state variables xk,t0 will instantaneously change according
to physical laws.

min
x,u

c0(x0, u0) (4.1)

s.t. f0(x0, u0) = 0 (4.2)

h0(x0, u0) ≤ 0 (4.3)

fk(xkt, ukt) = 0 ∀t ∈ T , k ∈ K (4.4)

hkt(xkt, ukt) ≤ 0 ∀t ∈ T , k ∈ K (4.5)

|ukt − uk,t−1| ≤ ∆t t = 1, . . . , T, k ∈ K (4.6)

uk,t0 − u0 = 0 ∀k ∈ K (4.7)

There is generally some flexibility in post-contingency states, and in
some cases, power flow along lines may temporarily exceed normal line
ratings, so long as they are returned to regular operating rules within
an allotted time. ISO New England uses four levels of thermal capacity
ratings for transmission facilities: Normal, Long Time Emergency (LTE),
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Short Time Emergency (STE) and Drastic Action Limit (DAL), with in-
creasing rating numbers [53]. An unexpected line failure for example will
inevitably result in instant line flow surges (a state variable) on other parts
of the network, until generation levels (a control variable) are adjusted
accordingly. In the example illustrated by Figure 4.1, it is safe for a line to
temporarily operate at the STE limit, as long as it is returned to the LTE
limit within 15 minutes. Eventually of course, all lines should return to
their normal operation level.

With an “N-1” security criterion, it is easy to see how the dimension of
this model can very quickly become intractable, especially in real-life ap-
plications. In addition, equations (4.4)-(4.7) assume that a feasible solution
exists for all contingencies k ∈ K. Based on that assumption, a generalized
Benders decomposition scheme reformulates (4.1)-(4.7) into (4.8)-(4.17).
Note that sk is an artificially added variable to model constraint violations
resulting from the base case solution (x0, u0), and it is easy to see that for
a solution to be feasible, all values for wk(u0) must equal 0.

Benders Master:

min
x0,u0

c0(x0, u0) (4.8)

s.t. f0(x0, u0) = 0 (4.9)

h0(x0, u0) ≤ 0 (4.10)

wk(u0) ≤ 0 ∀k ∈ {K} (4.11)

Benders Subproblem (∀k ∈ K):

wk(u0) = min
xkt,ukt,skt

||sk.|| (4.12)

s.t. gk(xkt, ukt) = 0 ∀t ∈ T (4.13)
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hkt(xkt, ukt) ≤ 0 ∀t ∈ T (4.14)

|ukt − uk,t−1| − skt ≤ ∆t t = 1, . . . , T (4.15)

uk,t0 − u0 = 0 ⊥ λ̃k (4.16)

skt ≥ 0 ∀t ∈ T (4.17)

Unfortunately, it may not be realistic to assume or impose feasibility for
all possible contingencies, especially when considering the “N-1” security
case. Figure 4.2 illustrates two types of infeasibilities - (a) intrinsically
infeasible contingencies which are unable to be satisfied with any base
case solution, and (b) conflicting cuts whereby two or more contingencies
may not be simultaneously feasible. The general Benders decomposition
method (4.8)-(4.17) is clearly unable to identify conflicting contingencies
(Figure 4.2b). As for intrinsically infeasible contingencies (Figure 4.2a),
we would expect the Benders subproblem to always be infeasible for any
solution of (x0, u0), were it not for slack variable sk in the subproblem.
While some intrinsically infeasible contingencies will still result in infeasi-
ble subproblems, the relaxed subproblem (4.12)-(4.17) does not guarantee
this.

It should also be noted that (4.11) is difficult to impose directly. How-
ever, based on LP duality, we can show that for any point ui0, we can provide
a linear function that underestimates wk(u0), where λ̃k is the Langrangian
multiplier of (4.16) at ui0.

w̃k(ui0) + λ̃k(u0 − ui0) ≤ wk(u0) (4.18)

Hence, the below statement is a necessary condition to satisfy (4.11) and
can be used in its place.

w̃ki + λ̃ki(u0 − ui0) ≤ 0 (4.19)
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Figure 4.2: (a) Contingency 2 is intrinsically infeasible as there is no overlap
in the feasible region of the base case with its corresponding subproblem.
(b) Both contingencies 1 and 2 are not simultaneously feasible with the
base case and create conflicting cuts.

With this and potential contingency infeasibilities in mind, Liu and
Ferris [53] propose an iterative heuristic that solves the following modified
Benders decomposition model (4.20)-(4.32) which we discuss in the next
subsection.
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4.2.2 Iterative Modified Benders

At iteration j:

Modified Benders Master:

min
x0,u0

c0(x0, u0) +
∑
k∈K

Mvk (4.20)

s.t. f0(x0, u0) = 0 (4.21)

h0(x0, u0) ≤ 0 (4.22)

w̃ki + λ̃ki(u0 − ui0)− vk ≤ 0 ∀ki ∈ {K, I}cut (4.23)

fk(xkt, ukt) = 0 ∀t ∈ T , k ∈ KM (4.24)

hk(xkt, ukt)− vk ≤ 0 ∀t ∈ T , k ∈ KM (4.25)

vk ≥ 0 ∀k ∈ K (4.26)

Modified Benders Subproblem (∀k ∈ K):

w̃kj = min
xkt,ukt,skt

||sk.||∞ (4.27)

s.t. gk(xkt, ukt) = 0 ∀t ∈ T (4.28)

hkt(xkt, ukt) ≤ 0 ∀t ∈ T (4.29)

|ukt − uk,t−1| − skt ≤ ∆t t = 1, . . . , T (4.30)

uk0 − uj0 = 0 ⊥ λ̃kj (4.31)

skt ≥ 0 ∀t ∈ T (4.32)

In this iterative algorithm, solving the Master model (4.20)-(4.26) yields
a solution for state and control variables (x0, u0) in the base case at iteration
j ∈ I. Like (4.2)-(4.3) in the generalized SCED model, equations (4.21)-
(4.22) represent network DCOPF constraints, including variable bounds.
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The Master is solved, and the solution is passed to the set of subproblems
by setting uj0 = u0. The input uj0 is then used to solve the subproblems
k ∈ K at iteration j. If some subproblem returns a positive objective,
w̃kj > 0, this indicates that the basecase solution uj0 found in iteration j,
was not feasible for contingency k, leading to the feasibility cut in (4.23).

Based on Liu and Ferris’ numerical experiments [53], they found that
a simple iterative Benders algorithm in this case did not always converge
quickly, and attributed the problem to specific contingencies deemed “dif-
ficult to resolve”. More accurately, these contingencies required a higher
number of iterations and added cuts in order for the Master to converge,
if at all. Equations (4.24)-(4.25) directly add these contingencies k ∈ KM

to the master model. We leave the details regarding the identification of
these contingencies to Section 4.3.

Finally, the master objective function (4.20) also includes a penalty
term Mvk, where vk is a positive slack variable that allows the model to
identify and remove infeasible contingencies. Conflicting contingencies
are identified using (4.23) while the intrinsically infeasible contingencies
that fail to yield an infeasible subproblem, as discussed in Section 4.2.1, are
identified in (4.25). On the other hand, infeasible subproblems are easily
identified and removed in the first iteration of the heuristic. A solution is
found when the base case solution is able to satisfy the subproblems of all
remaining feasible contingencies.

4.2.3 Differentiating contingency events

As previously mentioned in Section 4.1, co-optimization and security
constrained models are rarely combined. To clarify the roll of ancillary
services in the case of equipment failure, it is important to distinguish
between the different contingencies. For the purposes of this chapter, we
will only consider two types of contingency events: line and generator
failure, and how they relate the the reserve market. Reserves are typically
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included in day-ahead planning in case of system failures, and the set-
aside capacity is used to handle recourse actions in case of equipment
failures. There are multiple types of reserves, and common examples
include spinning, non-spinning and backup reserves. Spinning reserves
are extra generation capacity from generators already connected to the
grid, while non-spinning reserves are extra generation capacity that are
not connected to the grid but can be brought online with slight delays (e.g.
5-15 minutes). Backup reserves require a longer startup time (e.g. 30-60
minutes), but can be brought online to alleviate other short-term reserves
when faced with longer system outages. In addition to different types of
reserves, ISOs may also impose zonal constraints, defining for example a
minimum reserve amount within a densely populated zone, in addition
to a network-wide minimum. These zonal and reserve type requirements
differ among ISOs and is necessary to maintaining a reliable grid.

The co-optimization of reserves goes hand in hand with considering
generator failure contingencies as in practice, both line and generator
failures are treated differently. At ISO New England, post-contingency
action for line failures provide higher flexibility in line limits, but continue
to reallocate reserves in the recourse action. This allows the system an extra
reliability fallback, where the solution is able to accommodate a second
failure (of a generator). Unexpected generator failures result in a sudden
system imbalance, where total system demand exceeds total system supply.
Therefore, these types of contingencies are allowed to tap into the pre-
allocated base-case reserves as part of their post-contingency action in
order to quickly make up the loss of power, but should return to a stable
operating point in a much quicker time period. Since reserve amounts
are generally used to accommodate generator failures, the combination of
those these elements is a natural extension. Based on this, we extend the
model in Section 4.2.2 by passing reserve information to generator related
subproblems, but not line related subproblems. The updated model that
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includes reserves and generator contingencies is shown in (4.33)-(4.46).
Here, the vector of control variables u0, uk also cover (where neces-

sary) allocation of reserves. The reserve solution from the basecase does
not affect the line contingency subproblem, but does affect the generator
contingency subproblem, as indicated by equation (4.43). Recall that (4.34)-
(4.35) are post-contingency DCOPF equations including variable bounds.
In order to ensure reserves are properly allocated where they are needed
(i.e. contingency recovery), the reserve solution in basecase becomes a
variable bound for corrective action in the subproblem. In other words,
post-contingency corrective action is limited as such: uGen

kt ≤ uGen
0 + uReserve

0 .
By adding this detail and updating the generator contingency cut in (4.37),
the model guarantees that reserves are well distributed for the sole purpose
of contingency handling.

At iteration j:

Modified Benders Master:
min
x0,u0

c0(x0, u0) +
∑
k∈K

Mvk (4.33)

s.t. f0(x0, u0) = 0 (4.34)

h0(x0, u0) ≤ 0 (4.35)

w̃ki + λ̃ki(u0 − ui0)− vk ≤ 0 ∀ki ∈ {KL, I}cut (4.36)

w̃ki + λ̃ki(u0 − ui0)

+
∑
t

γ̃kit(u0 − ui0)− vk ≤ 0 ∀ki ∈ {KG, I}cut (4.37)

fk(xkt, ukt) = 0 ∀t ∈ T , k ∈ KM (4.38)

hk(xkt, ukt)− vk ≤ 0 ∀t ∈ T , k ∈ KM (4.39)

vk ≥ 0 ∀k ∈ K (4.40)
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Line contingency Subproblem (∀k ∈ KL):
Solve (4.27)-(4.32)

Generator contingency Subproblem (∀k ∈ KG):
w̃kj = min

xkt,ukt,skt
||sk.||∞ (4.41)

s.t. gk(xkt, ukt) = 0 ∀t ∈ T (4.42)

hkt(xkt, ukt, uj0) ≤ 0 ∀t ∈ T

⊥ γ̃kjt (4.43)

|ukt − uk,t−1| − skt ≤ ∆t t = 1, . . . , T (4.44)

uk0 − uj0 = 0 ⊥ λ̃kj (4.45)

skt ≥ 0 ∀t ∈ T (4.46)

An observation of this model is that if the reserve information was
not communicated between master and subproblem in (4.37) and (4.43),
no reserve would be allocated based on the minimum objective function
(4.33), unless zonal reserve requirements were added. Without zonal re-
quirements, the minimum amount of reserve is distributed only as needed
to handle post-contingency action. This could lead to huge operational
savings. Another observation is that care must be taken in determining the
correct feasibility cut in the master because different contingencies have
different post-contingency rules. The cut applied by line contingency sub-
problems (4.36) only affects generation levels for the master model, while
the cut derived from generator contingency subproblems (4.37) affects
both generation level and reserve allocation.

The following section details our proposed heuristic for solving this
model, which despite the decomposition, can still be complex to solve in
real-time especially when applied to realistic sized datasets.
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4.3 Solution method

4.3.1 Algorithm Overview

Figure 4.3: Flowchart showing an overview of the Parallel Benders algo-
rithm

For our proposed iterative process, we introduce the notion of a fea-
sible contingency set k ∈ F (K), and an active contingency set k ∈ A(K),
where A(K) ⊆ F (K). The feasible contingency set only includes feasible
contingencies (see example of infeasible contingencies in Figure 4.2) while
the active contingency set refers to contingencies which are actively con-
sidered in iteration j. Also recall the master contingency set KM found in
(4.38)-(4.39), which is populated with “difficult to resolve” contingencies.

The flowchart in Figure 4.3 provides a birds eye illustration of our
proposed heuristic. It begins with finding a feasible Master solution. At
the first iteration, j = 1, both feasible and active sets are set to the entire
contingency list, A(K) = F (K) = K. In future iterations, j > 1, when the
master finds infeasible or conflicting contingencies (vk > 0), it proceeds
to remove them and resolve the master model in order to get a feasible
(x0, u0) solution. This master solution is then passed to the subproblems
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by setting uj0 = u0.
The contingency subproblems within the active set are then solved

using parallel processing and based on their outcome, are handled ac-
cordingly. It is obvious that infeasible subproblems should be removed
from the feasible set F (K), while subproblems with violated constraints,
w̃kj > 0, should result in cuts added to the master model. The notion of
an active set A(K) however, came from an observation in [53], where the
majority of subproblems found to be feasible at an iteration (w̃kj = 0) had
a tendency to remain feasible in subsequent iterations (e.g. w̃k,j+1 = 0).
Removing these subproblems from the active set in future iterations re-
sults in huge computational advantages as the algorithm does not have to
process all contingencies k ∈ F (K) for each iteration j. In the contingency
handling portion of the algorithm, the following is achieved:

1. Identify and deal with “difficult” contingencies.

2. Ensure that all valid contingencies k ∈ F (K) are feasible at the master
base case solution wk(u0) = 0.

Details on contingency handling of “difficult” contingencies is pro-
vided in the upcoming section, 4.3.2. As for the second item on that list, it
is satisfied by repopulating the active set A(K) = F (K) when the active
set is empty. By doing so, all of the subproblems that were temporarily
removed from the active set in earlier iterations in Step 2 are re-evaluated
to ensure feasibility at the final solution. The algorithm converges when
the master model and all valid subproblems are found to be feasible in the
final iteration, wk(u0) = 0,∀k ∈ F (K).

4.3.2 Contingency Handling

As mentioned earlier, the majority of subproblems found to be feasible at
an iteration tended to remain feasible in subsequent iterations. On the flip
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side, it was also observed that a small number of “difficult” contingencies
tended to stay in the active list for a long time, creating algorithmic ineffi-
ciencies. The obvious inefficiency is when a contingency needs to generate
multiple cuts in order to generate a feasible base case solution, which leads
to many extra iterations. In the case of line failure contingencies, “difficult”
contingencies were identified by looking at the size of the active set A(K).
Due to the iterative process, feasibility cuts resulted in a smaller active set
with each subsequent iteration. When the number of active elements was
small enough, these “difficult to resolve” contingencies are added directly
to the master model, using set KM in equations (4.38)-(4.39). Tests show
that this drastically improves computational time.

However, supplementary numerical testing found that our addition of
generator failures had a huge adverse effect on the existing process, not
just due to it being a larger model, but also because these subproblems
reacted differently compared to the original line failure contingencies. We
observed that feasibility cuts from generator failure subproblems were a
lot less effective at improving the base case solution when compared to
cuts from line failure subproblems, and each additional cut did very little
to improve the base case solution. As a result, iterations were beginning
to produce parallel cuts, and thus failing to converge. The results also
indicated another difference between line and generator failures. In most
of the testcases, it was possible to satisfy all, if not most of the generator
failure contingencies. This is in stark difference to solving for line failure
contingencies, where 16%-18% of those scenarios are found to either be
intrinsically infeasible or conflicting with one another in the final solution
(recall Figure 4.2).

The latter observation leads to the belief that given sufficient and well
allocated resources, generator failures as we have modeled them, have
greater flexibility when taking corrective actions. In other words, there is
a larger overlap between the feasible regions of the master model and a
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generator contingency subproblem. This also lends credence to our first
observation, where cuts added by generator contingency models were less
effective that line contingency models. Recall that due to decomposition
methods, the subproblems are relaxations of the original (4.4)-(4.7). This
leads to feasibility cuts that are not as tight as they could be, even when
the subproblem was only minimally relaxed.

By extending the same trick of including generator contingencies di-
rectly to the master model, it was observed that the addition of a single
generator contingency resulted in many other generator contingencies
becoming feasible. More careful analysis revealed that feasibility for all
generator subproblems could be found by adding a small subset of genera-
tor contingencies to KM. The challenge was to identify which subset would
be the most useful. Our solution was to select the contingency with the
highest violation at the end of each iteration, k : maxk w̃kj,∀k ∈ A(K) and
add that to the master model contingency list by updating set KM. This
essentially identifies the subproblem in the worst position with respect to
the basecase solution at the end of every iteration and denotes it to be a
“difficult contingency”, then adds it to the master model. The effect of this
policy is that a “spatially distributed subset” of generator subproblems
is added to the Master model, which significantly speeds up the solution
process. When a generator contingency k is added to the Master model at
the end of iteration j, the Master model at iteration j + 1 finds a solution
that is beneficial to the contingency analysis of other nearby generators.
This is because adding contingency k results in the reallocation of reserves
to where they are needed (close by to the failure defined by contingency k).
Thus in the iteration j + 1, we expect not only a reduction in the number
of active generator subproblems, but for contingency k : maxk w̃k,j+1 to
identify a different problem area based on the most current base case
solution.

Note that the subproblem with the largest violation is not guaranteed
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Contingency type Time(min) Line Limits Reserves
t0 t1 t0 t1

Line failure 0 15 STE LTE reallocated
Generator failure 0 10 LTE LTE used

Table 4.3: Differences in post-contingency corrective actions

GAMS runtime (s) JAVA runtime (s)

# Cont Num threads Num threads
4 8 16 4 8 16

400 146.76 117.33 110.1 97.88 65.23 46.40
1000 284.85 181.68 138.48 142.91 119.22 79.98
2896 755.86 386.25 238.41 419.00 233.01 161.20

Table 4.4: Comparing runtimes of JAVA and GUSS implementations, based
on size of contingency list and number of threads

to be a generator contingency, and while we do allow the algorithm to add
line failure scenarios to the Master model, as established ealier, numerical
testing indicates that cuts generated by line contingencies are more effec-
tive in improving basecase solutions. To manage the differences between
both types of contingencies, we also propose the two following changes:

1. Find the largest violated generator subproblem at the end of iteration
j = 1 to add to the Master.

2. Assigning a greater weight to generator violations when determining

the largest violation. For example, usingmw̃kj where

m > 1 if k ∈ KG

m = 1 o/w

4.3.3 Algorithmic enhancements

In addition to the changes discussed in Sections 4.2.3 and 4.3.2, we also
made the following alterations to the material in [53], with the express pur-
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pose of increasing algorithmic efficiency and applying the methodology
in real-time.

1. Emphasizing practical implementation: Our current model only con-
siders one future recourse timepoint t1 compared to the original
3 timepoints in [53]. As a result, our models do not consider the
Drastic Action Limit (DAL) which is higher than the short term
emergency (STE) limit. Our reasons for this is to better translate the
original SCED implementation for real-time use. Given constant sys-
tem changes and alternative avenues for corrective action, we believe
that in this (real-time) context, it is sufficient to find a solution that
helps return the system to stability. We define a stable solution as
one that is able to (a) meet demand and (b) operate at long term
emergency (LTE) line limits. Depending on the line, most LTE limits
can typically be sustained between 30 minutes to 4 hours. Once a
stable solution has been implemented, manual action can be taken
by the system operator to eventually return the system to its “steady
state” and the SCED cycle restarted.

Table 4.3 compares the differences in our assumptions and handling
of post-contingency actions for both line and generator failures. In
the case of line failures, line flows are allowed to reach STE limits
at the immediate occurrence of a contingency, to account for the
fact that state variables will instantly change according to physical
laws. By the next time checkpoint, t1 = 15 minutes, the line limit
allowances are reduced to long term limits (LTE), and reserves are
reallocated as needed. Generator failures on the other hand do not
incur drastic state variable changes that will exceed the default line
limits. Instead, the focus is on quickly restoring balance such that
total system supply is able to meet total system demand. Therefore,
we set the next time checkpoint to t1 = 5 minutes and allow line flow
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Testcase #(Line,Gen) Basecase Obj (N-1) Line Failure (N-1) Line & Gen Failure
Time(s) Objective #Feas(Lines) Iter Time(s) Objective #Feas(Line,Gen) Iter

2383wp 2896, 327 1794184.67 178.41 1817855.19 2359 6 332.87 1866367.92 2359, 327 5
2736sp 3269, 420 1276033.67 81.04 1288259.79 2749 3 259.368 1292701.45 2749, 420 4
2737sop 3269, 399 764008.59 89.76 764733.43 2755 3 252.91 768277.41 2755, 399 3
2746wop 3307, 514 1178163.98 115.53 1184835.63 2796 3 597.82 1188258.55 2796, 514 5
2746wp 3279, 520 1587849.30 179.12 1618225.95 2729 4 471.07 1621963.48 2729, 520 4

Table 4.5: Comparison of Numerical Results using 24 threads

to increase to LTE limits. As discussed earlier, reserves are utilized
instead of reallocated in this case.

2. Parallel processing improvements: In addition to implementing the Ben-
ders decomposition framework, the crux of the original algorithm
was the speed up gained by solving the large number of subproblems
in parallel batches by using the GUSS facility [16] within GAMS,
and harnessing the multi-core and multi-threading capability of
our systems. By exploiting our knowledge of GUSS’ background
processing, we were able to significantly reduce the time and hard-
ware requirements of the original algorithm by programming better
thread handling functions in GAMS.

However, in order to accommodate the increased complexity of the
added reserves and generator contingencies, we switched the imple-
mentation to using JAVA API for GAMS [2]. This change yielded time
saving benefits as high as 40% in some cases. A more thorough anal-
ysis of the time breakdown suggests that much of this is attributed
to better load balancing when solving the subproblems. The GUSS
facility requires that we pre-assign the batches of subproblems to
each thread. On the contrary, JAVA API for GAMS immediately allo-
cates remaining subproblems to the next available thread. Thus, long
running jobs do not unnecessarily hold up or blocks the remaining
jobs in queue. While the results in Table 4.4 clearly show a benefit
in using the new JAVA API implementation, the benefit of doing so
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is strongly correlated to the size of contingency list as well as the
number of threads. The JAVA speed up is less pronounced in small
instances or when there are a higher number of threads. In the latter
case, the load balancing is less likely to be badly unbalanced because
a higher number of available threads equates to smaller batches of
pre-assigned jobs.

3. Improved feasibility checks and handling: In the original work [53], a
feasibility checker was initiated on each contingency before it was
added to the master contingency setKM. This was an extra precaution
to ensure that a contingency was not intrinsically feasible before be-
ing added to the master model. In our more recent experiments, we
find that a more effective approach is to skip the feasibility checker,
and allow variable slack vk to directly identify any infeasible contin-
gencies (4.38)-(4.39). This action is initiated when the active list is
small, |A(K)| ≤ a. In our experiments, we find that a good choice
for parameter a is 3 ≤ a ≤ 4.

In the case of generator contingencies however, our methods necessi-
tate a slightly altered approach for feasibility checking. Recall from
Section 4.3.2, that the largest violated contingency was added to set
KM in the master model at the end of each iteration j. Typically, this
corresponds to a generator failure contingency. We also discussed
the difficulty that the relaxed generator subproblem had in gener-
ating efficient cuts, compared to the relaxed line subproblem. This
difficulty also extends to the subproblem identifying intrinsically in-
feasible contingencies. Therefore, a feasibility checker for generator
subproblems is launched only once, at the end of Step 2 of iteration
1, for all generator subproblems left in the active set.
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4.4 Numerical Results

4.4.1 14-bus IEEE Testcase

Figure 4.4: Graphical depiction of 14-bus testcase

To better understand the heuristic, we apply it to the 14-bus IEEE test-
case. It is common knowledge that the original Matpower datasource
lacks meaningful values for generator ramp rates and different line limits.
Therefore we make use of the augmented data from the testcases provided
through the GAMS OPF Toolbox suite [69]. Specifically, we used the “uw-
calc” computations of ‘RampUp’, ‘rateA’ and ‘rateB’ from the augmented
datasets to estimate the limits for ramping, STE and LTE in our tests. As
for reserve requirements, due to the variances of practice and without ac-
cess to reliable test data, we opted to forgo including zonal requirements.
Instead, we use the final solution to provide insight to the model. As
generator reserve bids and/or limits are not provided, we have assumed
that any available (committed) generator is able to provide both opera-
tional and reserve power generation, up to their regular generation limit.
Objective cost functions are piecewise linear approximations provided
in the aforementioned toolbox, and reserve cost is estimated at 10% of
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regular generation cost. Finally, the contingency list consists of all line and
generator failure scenarios. Additionally, we added minimum generator
limits as all those values were originally set at 0, as doing so provides us
with a more useful analysis.

Iter Objective Solution

1 7743.659

PG = [189.6, 39.4, 10, 10, 10]
PR = [0, 0, 0, 0, 0]
- Active subproblems: ALL
- Cont G1 found infeasible in subproblem.
- Cont G2 added to master (largest violated genSP).

2 7843.584

PG = [205.4, 23.6, 10, 10, 10]
PR = [15.8, 0, 5.7, 2.1, 0]
- Cont L7−8 found infeasible in master.
- Active subproblems: G3, G4, G5
- All active subproblems found feasible.

3 7843.584 - All subproblems rechecked and found feasible.
- CONVERGED.

Table 4.6: Iteration analysis of 14-bus testcase

As shown in Table 4.6, the initial basecase solution does not take into
account any of the failure scenarios, and allocates zero reserves. This is
fixed in iteration 2, where cuts and adding contingency G2 to the master
model result in a more expensive solution with reserve allocation. The
algorithm also identifies two scenarios which it cannot satisfy, specifically
equipment failure of line L7−8 and generator G1. A quick glance at Figure
4.4 clearly shows that a failure of line L7−8 will isolate generator G5 at
bus 8, which has an operating minimum of 10 MWh. This results in an
imbalanced system, and is hence identified as an infeasible contingency.
Regarding generator G1, it has the highest Rampup rate, and if it fails,
the system is unable to compensate appropriately within the 10-minute
corrective action timespan. This is identified in iteration 1. Note that the
final reserve solution adds up to 23.6MWh, which is the operating point of
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generator G2 which is the next largest generator after generator G1. This
is the minimum amount of reserve needed for corrective action.

4.4.2 IEEE Polish Cases

As the goal of this study is to make security constrained modeling more
accessible for real-time use, our study focused on testing 5 of the IEEE
Polish testcases (2383wp, 2736sp, 2737sop, 2746wop, 2746wp) as we find
the network size in these cases to be similar to that of ISO New England.
All numerical experiments were run on a Dell R810 server with two 256GB
memory, 4 2G E7-4850 Xeon chips and 40 cores, using 24 threads, and as
previously mentioned, is programmed using JAVA API for GAMS, and
uses the CPLEX solver.

Table 4.5 compares the results of running the security constrained
model with just “N-1” line contingencies versus “N-1” line and genera-
tor contingencies. As discussed in 4.2.3, adding generator failures to the
contingency list does increase model complexity and the added compu-
tational difficulty is obvious in the results, showing large time increases
of at least double in most cases. Interestingly, the results also show that
almost all generator contingencies can be made feasible (in contrast to
line contingencies). Time wise, we are able to solve 3 of the 5 models in
under 5 minutes, with the two largest datasets involving case2746 taking
between 7-10 minutes. Further observation reveals that a fair amount of
time is spent going through all the still active generator subproblems in
iteration 2, because the basecase solution at iteration 1 returns a solution
of 0 reserve. This is clearly exhibited in the 14-bus testcase (Table 4.6).
We find that by adding a simple system-wide reserve requirement where
|PR| > 1% demand, we are able to reduce the runtime in most cases.

Table 4.7 summarizes the differences in runtime. The second last col-
umn compares the runtime (in seconds) of the algorithm considering a
0% reserve requirement to the last column which shows the runtimes of
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Testcase Demand Reserve Soln Runtime (s)
(D) Total % of D 0% of D 1% of D

case2383wp 245.584 6.556 3.92% 322.87 246.27
case2736sp 180.75 3.7 2.10% 259.37 214.04
case2737sop 112.672 3.7 3.28% 252.91 278.44
case2746wop 189.21 3.6 1.95% 597.82 428.15
case2746wp 248.73 4.0 1.61% 471.07 451.88

Table 4.7: Reserve allocation results

same model, but using a simple 1% reserve requirement. This update
resulted in significant time savings in 4 of the 5 cases, and the only time it
did not in case2737sop, it was because an extra iteration was added to the
solution time. Given the size and complexity of the original model, we
believe this to be really good time, and with higher computing capabilities,
should be able to solve these reliably under 5 minutes. One nice feature
that assists in implementing this heuristic in a true real-time setting is
that a feasible base-cases solution is generated at the beginning of every
iteration. While these non-converged solutions may not cover all necessary
N-1 contingencies, it will cover most.

Table 4.7 also shows that depending on the testcase, we are able to
satisfy post-contingency action requirements by allocating a just a small
percentage of total system demand as system reserves, between 1.6% to
slightly under 4%. What these results reveal is the importance of linking
security constrained models to reserve allocation. In doing so, reserve
allocation is targeted and also done at cost and operational efficiency. In
fact, the amount of reserve needed is quite a small percentage of total
demand. Note that our 1% system-wide reserve requirement is lower
than this bare minimum, testing reveals that using a higher system-wide
reserve requirement does not yield any further runtime improvements,
and without knowing the minimum needed, a higher requirement factor
may result in over-allocation when it is not necessary.
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4.5 Contingency Modeling Extensions in the
OPF Toolbox

Tying this back into the OPF toolbox, a simpler GAMS-only version of the
above model has been added to the OPF Toolbox. To accommodate models
with contingency-handling features, the following data definitions have
also been added to the Toolbox’s .gdx data description process. These
definitions are optional, and are not required for regular operation of the
standard OPF models.
GDX Name Description
Set contingency Set of contingencies, ω ∈ Ω
Parameter cont_gen(ω, ‘type‘, g ∈ G) Describes if a generator goes on or offline

during a contingency ω
Parameter cont_line(ω, ‘type‘, ijc ∈ E) Describes if a line goes on or offline dur-

ing contingency ω

Table 4.8: Data Definitions for Contingency Analysis

This form of data definition allows the user to define multi-equipment
failures for a contingency, and is also flexible enough to accommodate
cases where a user may wish to specify if equipment comes online as
opposed to going offline.

4.6 Conclusion

In conclusion, this chapter introduces a model framework and algorithm to
solve security constrained models for co-optimized dispatch models in real-
time. The original model which is based on post-contingency action and
“N-1” security constraints is intractable for realistic datasets and cannot
be easily solved. Our proposed decomposition breaks the model up into
smaller pieces while our proposed heuristic uses parallel processing and
better contingency handling procedures to increase algorithmic efficiency.
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The program uses JAVA API for GAMS and makes use of its enhanced
thread handling abilities.

This work contributes to the existing security constrained literature by
directly applying a security constrained model to a co-optimized dispatch
model, complete with OPF constraints. This process also better aligns the
goals of security and economic efficiency by clearly detailing the relation-
ship between ancillary services and grid reliability, and is designed to
run on reasonably sized datasets in real-time. In addition, it provides an
elegant way of dealing with potential contingency infeasibilities which
does not require pre-processing. This means that no assumptions are
made about prior topology, and the algorithm easily adapts to changing
topologies in a true real-time system. Numerical experiments show that
in many cases, it is possible to solve such instances in under 5 minutes,
which we believe to be a good indicator of real-world applicability.

The general approach of this model and algorithm does leave open a
number of promising enhancements. Based on its results, ISOs may use
the results to reconsider existing zonal reserve requirements. While this
model does account for an “N-1” security system, using an “N-k” security
list may make this direct modeling approach less appealing. As such,
one may not want to completely get rid of zonal reserve requirements,
but rather use the analysis to reconsider their distribution to improve
economic efficiency. Follow-up work could also investigate the explicit
modeling of different reserve types, which may lead to an integer based
model. In this case however, it would require more careful thought as
to its intended purpose, because solving an integer model may not be
appropriate in a real-time solution process.
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5 toolbox and modeling extensions

Several emerging concerns, including the resiliency of the power grid
during extreme weather events, rapidly increasing renewable energy gen-
eration and growing changes to the consumption pattern of electricity
(with electric vehicles and working from home trends), are challenging
the way electricity will be delivered over the next several decades. To
keep up with these concerns, we explore, in this chapter, multiple exten-
sions to the OPF Toolbox first discussed in Chapter 1. These extensions
contribute to the richness of the Toolbox by increasing the number of
accessible datasets, introducing data augmentations to accommodate a
different type of ACOPF formulation, as well as defining data standards
for stochastic and contingency analysis.

5.1 Stochastic Modeling Extensions

With the many uncertainties currently faced by the Power Systems grid,
many models require support for stochastic data. One example of these
uncertainties comes from renewable energy. Alternative renewable elec-
tric generation, primarily wind and solar, is revolutionizing the power
industry. The EPA’s Clean Power Plan was one of many stimuli that began
driving the transition. The policy, which was first proposed by the En-
vironmental Protection Agency (EPA), required individual states to take
responsibility for reducing carbon dioxide emissions by a formula-driven
percentage. Overall, the Clean Power Plan aims to reduce carbon pollution
from the US power sector by 30 % (based on 2005 levels) by the year 2030
[12]. Recent political developments have seen the proposed legislation
defunded and placed under agency review, and this has dampened the
prospective growth of renewable energy in the United States. In response,
the United States Climate Alliance was formed, with 13 states and Puerto
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Rico signaling their intention to uphold the objectives of the 2015 Paris
Agreement on climate change by meeting their state targets of the Clean
Power Plan.

Despite setbacks, the general consensus for the future of renewable en-
ergy is positive as continuing research in the area contribute to improved
technology, forecasts and operational procedures. In Nevada, state legisla-
tion was recently passed to accelerate the retirement of its largest coal plant
[72], citing the increasing cost of aging plants as the driving force behind
the decision. Examples like this, when taken into consideration with the
rapidly declining cost of wind and solar installations, indicate that renew-
able energy will continue to see growth. For example, the global levelized
cost of electricity (LCOE) for solar photovoltaic (PV) generation has fallen
to $100/MWh in 2016, an almost 70% decline in just 7 years, while the
global LCOE of offshore wind has fallen at least 22% in just 1 year [57]. The
downward spiral of costs shows no signs of letting up as many countries,
with both developing and developed economies, are investing in both
wind and solar, which were considered “alternative energies” not so long
ago. Recently, India saw the construction of the Ramanathapuram solar
complex, billed as the world’s largest ever PV project [34], while funding
for solar-powered mini-grids to bring electricity to remote villages, has
become popular all over the world, especially across the African, Asian
and South American continents [66]. As a result, research into energy stor-
age has also been pushed to the forefront and is considered as a necessary
step to transition into a complete green energy portfolio.

Yet as wind and solar production increase, the variations in wind speed
and cloud cover lead to significant volatility in power supply. Disruptive
power outages are avoided by setting aside generation capacity, so called
reserves, to cover this volatility since electricity storage is currently too
expensive or too limited to handle them. Whichever recourse method is
used (reserves or storage), it is clear that datasets for these types of models
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require scenario data enhancement.
The following subsections present an example of a stochastic model

included in the OPF Toolbox, details the scenario based extensions made
to the GDX datafile definition, and discuss the data provenance we used
to define the scenarios used in testing the model.

5.1.1 24-hour Day-Ahead Operational Model with
Reserve Co-optimization

A fundamental Power Systems modeling concern is solving the intercon-
nected OPF model over multiple time periods (24 hours for example) with
stochastic elements. A simple multi-period stochastic DC model would
look something like this.

min
P,FP ,θ

c̃i(Pi) +
∑

i∈N ,t∈T ,s∈S
q(s)c̃i(Pits)

DC Modeling Constraints for base case

s.t. F P
ijc = −1

τijcxijc
(θj − θi + φijc) ∀ijc ∈ E (5.1)∑

k∈Gi

Pk −
∑

(jc):ijc∈E
F P
ijc

+
∑

(jc):jic∈E
F P
jic − dPi − gsi = 0 ∀i ∈ N (5.2)

−π
3 ≤ θi − θj ≤

π

3 ∀(ij) : ijc ∈ E (5.3)
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DC Modeling Constraints for scenarios

F P
ijcts = −1

τijcxijc
(θjts − θits + φijc) ∀ijc ∈ E , t ∈ T , s ∈ S (5.4)∑

k∈Gi

Pkts −
∑

(jc):ijc∈E
F P
ijcts

+
∑

(jc):jic∈E
F P
jicts − dPit − gsit = 0 ∀i ∈ N , t ∈ T , s ∈ S (5.5)

−π
3 ≤ θits − θjts ≤

π

3
∀(ij) : ijc ∈ E , t ∈ T , s ∈ S (5.6)

Generator Ramping Constraints for Base Case

Pit0,s ≤ Pi + U
ramp
i ∀i ∈ G, t ∈ T , s ∈ S (5.7)

Pi ≤ Pi,t0,s − U
ramp
i ) ∀i ∈ G, t ∈ T , s ∈ S (5.8)

Generator Ramping Constraints for Scenarios

Pits ≤ Pi,t−1,s + U
ramp
i ∀i ∈ G, t ∈ T , s ∈ S (5.9)

Pi,t−1,s ≤ Pits − U ramp
i ) ∀i ∈ G, t ∈ T , s ∈ S (5.10)

Generation Limits

ui ∗ P i ≤ Pi ≤ ui ∗ P i ∀i ∈ G, t ∈ T (5.11)

ui ∗ P i ≤ Pits ≤ ui ∗ P i ∀i ∈ G, t ∈ T (5.12)

− F P
ijc ≤ F P

ijc ≤ F
P
ijc ∀ijc ∈ E (5.13)

− F P
ijcts ≤ F P

ijcts ≤ F
P
ijcts ∀ijc ∈ E , t ∈ T , s ∈ S (5.14)

In the example stochastic model we have tested and included in the
OPF toolbox however, the scenario data is built off solar irradiance, which
we discuss in Section 5.1.3. While the scenarios represent physical manifes-
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tations of sun exposure onto the earth’s surface, the realization of a real life
scenario does not manifest along a single scenario line throughout time,
which is a common stochastic model assumption. As we move throughout
the day, the realization of solar insolation can change between the different
scenarios, or fall somewhere in between. If we were to attempt a traditional
stochastic model for this situation, we could end up with n24 scenarios.
Solving a reserves model with a time dimension and such a large number
of scenarios is of course intractable.

Based on discussions with area experts, we propose a moving window
solution process that continues to maintain the concept of a stochastic
model, but makes data based assumptions about future states which re-
sults in a much reduced number scenarios for our model.

Solution Heuristic

The proposed solution heuristic uses a rolling time horizon, by solving a
two stage stochastic model iteratively, beginning with time t0, and using
that solution to inform the solution in the next time-step. The solutions
for each time-step are linked by ramping constraints. If we approach this
problem naively and only solve the stochastic OPF for a single timeperiod
in each iteration, we are likely to eventually end up with an infeasible
solution midway through the day. This is because the solutions at the
initial time-steps do not "look-ahead" and the future demand profile needs,
and the current timeperiod solution will not take future needs into account.
These future model infeasibilities will result from not being able to satisfy
the ramping constraints within the operational bounds of the generators.

Since our collaborators at NOAA have indicated that they believe the
midpoint of the prediction models is a reasonable estimate of the final real-
ized product, we utilized this fact to calculate an expected demand profile
(which is static) for the remainder of the future time-steps beyond the
current one we are solving for. As such, we are only solving the stochastic
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model for n scenarios at each timestep. The n scenarios correspond to the
scenario information for the current timestep t being solved for, but each
scenario also includes (static) future demand information from t+ 1 until
t24.

Procedure 7: Solution methodology for a 24-hour Day-Ahead Opera-
tional Model with Reserve Co-optimization

1 Compute the expected value of scenarios for future timeperiods,
t2 − t24

2 Solve the stochastic model for the first timeperiod. This will provide
operating solutions for each future timeperiod, but we only save the
base case solution of the first timeperiod.

3 Using the solution from the first timeperiod, solve the stochastic
model for the following timeperiod with additional ramping
constraints linking the previous timeperiod’s solution (which is
fixed in this model) and the current one. Similarly, only the base case
solution of this timeperiod is saved and passed on.

4 Continue until all time-periods have been accounted for.

5.1.2 Scenario extension to GDX datafile definition

To accommodate the stochastic model data requirements, we add the
following definitions to the OPF Toolbox’s .gdx data description process.
These definitions are optional, and are not required for regular operation
of the standard OPF models.
GDX Name Description
Set scenario Set of Scenarios, ω ∈ Ω
Parameter sample (ω, bus i ∈ N , ‘datatype‘, t ∈ T ) Describes scenario ω using

changes in bus data.

Table 5.1: Data Definitions for Stochastic Modeling

In the sample parameter, ‘datatype‘ can be one of the following [’Pd’,



121

’pScen’], where Pd is the GAMS file notation for real demand at a bus,
and ’pScen’ represents the probability of scenario ω occurring. In this
format, the scenario data definition can be used to represent the following
instances for stochastic modeling.

1. Uncertainty in the demand profile.

2. A forecast of extra power injection into the network due to renewable
energy. The policy on how to treat the renewables (e.g. must take or
spilling) must be decided by the modeler.

5.1.3 Data sources for modeling exercise

New England Transmission System

The IEEE 39 bus system is a well-known 39-bus and 10-generator New-
England Power System, first published by T. Athay et. al. [7]. We have
chosen to focus on this dataset as our initial test case for multiple reasons.
First, knowledge of the network’s location lends itself well to estimating ac-
tual geographic locations for each of the nodes, and the East Coast interest
in renewable energy is not insignificant. Connecticut, Massachusetts and
Vermont are all members of the U.S. Climate Alliance, while the latter two
rank highly clean energy efforts [3]. In addition to the location information,
adapting a well-known testcase allows us to leverage previous work from
Chapter 1, namely the enhanced IEEE dataset library and accompanying
GAMS toolbox for Power Systems analysis. Based on that, we were able to
easily adapt the IEEE39 dataset with minor alterations, in order to carry
out an exploratory phase with model insights.

The first step was to attach geographical coordinates to each of the
buses in the dataset, which faciliates a direct link between the transmis-
sion network and solar insolation forecasts. By providing the latitude
and longitude to our collaborators at NOAA and SSEC, we were able to
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obtain solar insolation forecasts for each of those locations. Each of the
forecasts can then be used as a potential scenario dictating the solar energy
contribution present at each node. Details of these weather observations
and forecast streams is provided in the following subheading.

Note that the estimated geographic coordinates, while corresponding
to the transmission network, do not necessarily correspond to existing
solar installations. The underlying assumptions here are two-fold, and
both based on the flexibility of solar array installations. First, we assume
(possibly through installing multiple smaller arrays) that any bus within
the transmission network is able to contribute a reasonable amount of
solar and that geographical location is not a impediment. The second
assumption is that this flexibility allows the solar contribution to either
originate ‘at’ the node, or close enough that we can aggregate the new
power source with the closest node.

Finally, these tests utilize two of the enhanced data features from the
aforementioned IEEE data library, specifically “uwcalc” generator ramp
rates and the unit commitment solution.

CAPS Ensemble Surface Insolation Forecast

Surface, or solar, irradiance is the radiant flux (or power) received on the
surface per unit area, in our case, measured in watts per square meter
(W/m2). This is a result from the sun exposure onto the earth’s surface.
Irradiance over time is called insolation, and insolation is affected, among
other things, by the solar zenith angle, cloud optimal depth, single scatter
albedo and the asymmetry factor. Such technical details of computing sur-
face irradiance are beyond the scope of this writeup, but can be found out-
lined in [13] and [55]. Importantly, the papers state that surface irradiance
is equal to the clear sky irradiance multiplied by the cloud transmittance,
thereby requiring also a cloud cover forecast. It is easy to see that cloud
cover reduces surface irradiance, and thus the amount of solar power a
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plant can produce.
High spatial (4km) and temporal (hourly) ensemble cloud forecasts over

the continental US were used to provide 14 hour predictions of cloud cover,
cloud transmittance, and surface irradiance for potential New England
solar power plants locations during a May 15-24, 2012 case study period.
The case study period was conducted during the 2012 NOAA Hazardous
Weather Testbed (HWT) 1 and the cloud forecasts were obtained from the
Oklahoma University Center for Analysis and Prediction of Storms (CAPS)
2. During the case study period, we were able to obtain a 16 ensemble Cloud
Optical Thickness (COT) forecast, at a 4-km resolution (4-km Weather
Research and Forecasting). This process can provide the same data at
any location in the continental US, and is programmatically converted
to a form that can be processed directly by state-of-the-art optimization
software.

What this translates to for our model, is the ability to obtain 16 fore-
casted scenarios of solar insolation at any location in the continental US
over 8 days during the case study period, specifically May 15-18, and May
21-24 of 2012. Examples of the ensemble irradiance forecasts (m1 −m16),
measured inW/m2 that is used in the optimization are given below. Notice
the distinct differences in the day 3 and day 6 data in terms of the volatility
of the ensemble predictions. The conditions on Day 3 were mostly cloud-
free and much easier to forecast than the comparatively cloudy conditions
present on Day 6.

Given reasonable technical approximations of a solar installation, we
are able to estimate potential solar energy at that any of the locations in
our network.

1http://hwt.nssl.noaa.gov
2http://www.caps.ou.edu

http://hwt.nssl.noaa.gov
http://www.caps.ou.edu
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Hourly Demand Data

In order to provide a more realistic dataset to match the 14-hour forecasts,
the original 39-bus dataset was enhanced with historical data from ISO
New England. We extracted “hourly day-ahead cleared demand” data,
during 8 dates: May 15-18,2012 and May 21-24 2012. This data is publicly
available at the ISO New England archives 3. The data was then used to
build a (different) daily profile for each of the aforementioned dates.

5.1.4 Numerical Results
Run Numerical Results
TBD TBD

Table 5.2: Placeholder Numerical Results Table

5.2 Conclusion

This chapter introduces a number of useful extensions to the OPF Toolbox
first discussed in Chapter 1. The specific benefits of these extensions are
as follows:

1. The data utility upgrades to accommodate the EPIGRIDS project
provides researchers with a larger pool of realistic and reasonably
sized datasets that simulate real-world operations. This improves
our ability to test the efficacy of our models in real-world situations
and helps bridge the gap between academic efforts and industry
requirements.

2. The Sparse Tableau OPF Formulation provides users with an alter-
native modeling style that is more generalizable and able to capture

3https://www.iso-ne.com/isoexpress/web/reports/load-and-demand

https://www.iso-ne.com/isoexpress/web/reports/load-and-demand
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atypical Network elements, which is useful in real-world situations,
and with the growing complexity of power systems modeling needs.

3. The stochastic modeling extension provides the research community
with a standardized template with which to share scenario data and
modeling efforts, thus easing collaboration efforts.

4. The contingency modeling extension similarly provides the research
community with a standardized template with which to share con-
tingency data and modeling efforts.

We believe these enhancements are necessary to maintain the continued
utility of the Toolbox in power systems research efforts to impact industry
processes and policies.
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6 future work

The following list includes follow-up avenues that can be explored as
future extensions of the work presented in this thesis. This is currently a
stub to be fleshed out before thesis submission.

• Proposed future extensions of the OPF toolbox could look at im-
proving the ACOPF performance in these large models and explore
the feasibility of using Procedure 4 in a realistic setting (i.e. solving
the complete 24 hour UCAC in “real-time” for day-ahead planning).
This may involve using alternative starting point methods, different
linearized approximations of the AC model and more carefully ex-
ploring the relationship between unit commitment and ease of AC
solution finding.

• A follow-up to consider different starting points for the STF OPF
model should be pursued, as the default starting point does not
perform well in large scale settings.

• A possible extension to the data utility scripts in the OPF Toolbox
would be to define a standardized format for inputting scenario
information (for the stochastic modeling extension), which can then
be easily translated with the toolbox into the .gdx format. As an
example, the input format file could be in the form of a .csv file.
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a model options for toolbox model archive

A.1 Model descriptions

A.1.1 Power Flow Models

1. Optimal DC power flow models

a) dcopf.gms
Regular DC power flow model.

b) dcopf_shift.gms
DC power flow model with shift matrices.

2. Optimal AC power flow models

a) polar_acopf.gms
Polar-power voltage formulation.

b) rect_acopf.gms
Rectangular power-voltage formulation.

c) iv_acopf.gms
Rectangular current-voltage formulation.

3. Decoupled AC power flow models

a) polar_decoupled.gms
Polar-power voltage formulation.

b) ybus_polar_decoupled.gms
Ybus Polar-power voltage formulation.

4. Ybus AC power flow models

a) ybus_polar_acopf.gms
Polar-power voltage formulation.
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b) ybus_rect_acopf.gms
Rectangular power-voltage formulation.

c) ybus_iv_acopf.gms
Rectangular current-voltage formulation.

5. uc_dc.gms
Optimal DC power flow model with unit commitment.

6. uc_ac.gms
Optimal AC power flow model with unit commitment.

The GAMS models take as input a GDX file written by the to_gdx.gms
utility. Currently, this utility supports reading from a Matpower-formatted
‘.m’ structure file using an awk script and from a PSSE-formatted raw text
file using an awk script for comma delimited files or a C++ application for
comma or space delimited files. Additional information on data utilities
can be found in the Data Utilities section of this project.

A.2 Power Flow Model usage

The basic model can be run from the command line with a single option:
gams model.gms --case=/path/case.gdx

Note that running dcopf_shift.gms requires an additional dataset,
namely the shift matrices. Please refer to Section A.3 for more details.

Sections A.2.1 and A.2.2 provide general options based on whether
they are single period power flow or (up to) multi-period unit commitment
models. Additional options specific to the DC and AC formulation are
listed in Section A.2.3 and A.2.4 respectively.

http://neos-dev-web.neos-server.org/guide/?q=node/115
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A.2.1 OPF model options

These options apply to models that do not incorporate unit commitment,
such as dcopf.gms, polar_acopf.gms, iv_acopf.gms etc. These models
solve the power flow model for a single time period and rely on the dataset
to provide the on/off status of generators. Do not include square braces [
] in the options.

1. --timeperiod=[#]
Select which timeperiod to solve in a specific dataset. (Default = 1)

2. --obj=[objective]

• pwl: Piecewise linear objective

• quad: Quadratic objective (Default)

• linear: Simplified linear objective that uses only linear com-
ponents of the quadratic objective function. Useful for finding
feasibility.

• 0: 0 objective function. Useful for solving feasibility models.

3. --linelimits=[datatype]

• given: Uses original source data on line limits (Default)

• uwcalc: Inferred line limits calculated according to the System
Characteristic Inference section of this study

• inf: Removes all line limits, sets them to infinity

4. --genPmin=[datatype]

• 0: Removes lower bound on generator operating limits, i.e. set
to 0

• given: Uses original source data for minimum operating limit
of generators (Default)

http://neos-dev-web.neos-server.org/guide/?q=node/3
http://neos-dev-web.neos-server.org/guide/?q=node/3
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• uwcalc: Inferred line limits calculated according to the System
Characteristic Inference section of this study

5. --allon=[option]

• gens: All generators are on/active and abide by operating
bounds

• lines: All valid lines are on/active in the network

• both: All valid lines and generators are active

• (Default) This option is ignored

6. --savesol=[#]

• 0: Solution is not saved (Default)

• 1: Solution is saved into gdx file, in similar format as input file

* For more a thorough save of the environment, the GAMS command line
option gdx=out will save all data, variable and equation information at the
end of the run into outfile.gdx. See GAMS manual for further informa-
tion.

7. --verbose=[#]

• 0: Regular listing file (.lst) output (Default)

• 1: Listing file output is suppressed before model solve

A.2.2 Unit commitment model options

These options apply to models incorporating unit commitment, uc_dc.gms
and uc_ac.gms. They are able to solve the power flow model for single
or multiple time periods, and include ramping constraints which are not
considered in single period models. Note the difference in the default
objective function used here, compared to the regular powerflow models
in Section A.2.1. Do not include square braces [ ] in the options.

http://neos-dev-web.neos-server.org/guide/?q=node/3
http://neos-dev-web.neos-server.org/guide/?q=node/3
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1. --times=[timeframe]: Select which timeframe to solve the model.

• t: Solve a single time period, t.

• “t1*tn": Solve multiple time periods, from t1 to tn

• (Default) Time frame is read in from the input datafile

2. --obj=[objective]

• pwl: Piecewise linear objective (Default)

• quad: Quadratic objective

3. --demandbids=[#]

• 0: Demand is fixed (Default)

• 1: Incremental elastic demand bidding is allowed, if data avail-
able

4. --linelimits=[datatype]

• given: Uses original source data on line limits (Default)

• uwcalc: Inferred line limits calculated according to the System
Characteristic Inference section of this study

• inf: Removes all line limits, sets them to infinity

5. --genPmin=[datatype]

• 0: Removes lower bound on generator operating limits, i.e. set
to 0

• given: Uses original source data for minimum operating limit
of generators (Default)

• uwcalc: Inferred line limits calculated according to the System
Characteristic Inference section of this study

http://neos-dev-web.neos-server.org/guide/?q=node/3
http://neos-dev-web.neos-server.org/guide/?q=node/3
http://neos-dev-web.neos-server.org/guide/?q=node/3
http://neos-dev-web.neos-server.org/guide/?q=node/3
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6. --ramprates=[datatype]

• given: Uses original source data for ramp up and ramp down
rates (Default)

• uwcalc: Inferred ramping limits calculated according to the
System Characteristic Inference section of this study

7. --allon=[option]

• lines: All valid lines are on/active in the network

• (Default) This option is ignored

8. --savesol=[#]

• 0: Solution is not saved (Default)

• 1: Solution is saved into gdx file, in similar format as input file

9. --verbose=[#]

• 0: Regular listing file (.lst) output (Default)

• 1: Listing file output is suppressed before model solve

10. --relax=[#]

• 0: Model solved regularly (Default)

• 1: Relaxed integer models, e.g. solved with rmip/rmiqcp

A.2.3 DC specific model options

1. --lineloss=[#]: Approximates line loss by increasing demand.

• 0: No changes to provided demand profile. (Default)

• 1: Increase active demand values by 5.5%.

http://neos-dev-web.neos-server.org/guide/?q=node/3
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A.2.4 AC specific model options

1. --qlim=[#]: Whether to enforce reactive power limits as D-curve
circle constraints

• 0: Ignore D-curves, instead just use rectangle constraints. (De-
fault)

• 1: Include D-curve constraints.

** Does not apply to polar_decoupled

2. --slim=[#]: Whether to enforce apparent power limits instead of
simple bound active line power constraints

• 0: Use simple bounds on active line power. (Default)

• 1: Use apparent power limits.

** Does not apply to iv_acopf, polar_decoupled or ybus models

3. --ic=[#]: Choose method for generating initial conditions, i.e. NLP
starting point

• 0: [Midpoint] Begin with all voltage magnitudes, voltage an-
gles, real power, and reactive power variables at the midpoint of
their bounds, calculating line flow variables from these values.
(Default)

• 1: [Random] All variables initialized using random draws be-
tween variable bounds.

• 2: [Flat] Flat start, where all initial guesses for voltage magni-
tude and voltage angle are set to 1.0 and zero, respectively, and
power flow initial guesses are set to zero.

• 3: [Random/AC] Voltage magnitude and voltage angle vari-
ables are initialized using random draws between variable bounds.
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Real and reactive power variables are initialized using AC trans-
mission line model (applied to each line separately) and the
initialized voltage magnitude and voltage angle values.

• 4: [DC/AC] Real power and voltage angle values are initialized
using a DCOPF model. Voltage magnitudes are initialized at
1.0. Reactive power is initialized using relevant equations from
the AC transmission line model (applied to each line separately)
and the initialized voltage magnitude and voltage angle values.

• 5: [DC-/AC] Voltage angle values are initialized using a DCOPF
model (real power values are obtained in the DCOPF, but dis-
carded). Voltage magnitudes are initialized at 1.0. Real and re-
active power variables are initialized using the AC transmission
line model (applied to each line separately) and the initialized
voltage magnitude and voltage angle values.

• 6: [Decoupled] Voltage magnitude, voltage angle, real power
and reactive power variables are initialized using a decoupled
ACOPF model.

• 7: [DCLoss] Real power and voltage angle values are initialized
using a DCOPF model with line loss approximation (--lineloss=1.055).
Voltage magnitudes are initialized at 1.0. Reactive power is ini-
tialized using relevant equations from the AC transmission line
model (applied to each line separately) and the initialized volt-
age magnitude and voltage angle values.

• 8: [Matpower] Use voltage magnitude, voltage angle, real power,
and reactive power values given in Matpower solutions (if avail-
able).

• 9: [inputFile] Use voltage magnitude, voltage angle, real power,
and reactive power values given in the GDX file.

** Does not apply to polar_decoupled
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A.3 Additional Notes

1. Shift matrices
In order to use dcopf_shift.gms, a gdx file containing the shift
matrix needs to be at the same location as the input case file. In
other words, gams dcopf_shift.gms --case=/path/case.gdx will
search for /path/case_Shift_Matrix.gdx.
If the shift matrix does not already exist, use calc_S_matrix.gms in
the Data utilities section to generate the necessary file.
** Currently, the LMP is not computed for dcopf_shift.gms.
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b collection of data utilities

B.1 Model descriptions

B.1.1 Format conversion tools

1. to_gdx.gms
Converts matpower and psse files to gdx format.

2. to_matpower.gms
Converts a gdx file (of above format) to a Matpower-formatted .m
file.

3. to_psse.gms
Converts a gdx file (of above format) to a PSSE-formatted .raw file.

4. gdx2xls.gms
Converts a gdx file (of above format) to an .xls or .xlsx output file,
depending on the version of Excel installed. Versions prior to 2007
use .xls while later versions use .xlsx. To write .xls files when
using later versions of Excel (2007 and after), the --out option must
be specified with an .xls file extension. The .xls extension is not
recommended due to sheet size limitations which were increased
beginning in Excel 2007.
All Excel files start with a “Table_of_Contents” sheet that lists all
set and parameter entries of the .gdx inputfile in the first column.
Each entry is a clickable link that guides the user to the appropriate
sheet with the stored data values. All other data sheets are named
after GAMS sets and parameters from the input file, and have a
clickable link, “TOC”, in the A1 cell that returns the user to the main
“Table_of_Contents” sheet.
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B.1.2 Other tools

1. calc_S_matrix.gms
Outputs a file containing the shift matrix, for use in dcopf_shift.gms

2. make_demand_curves
Adds demandbid information to a datafile

B.2 Model Options

B.2.1 Format conversion model options

These options apply to models that deal with format conversion as listed
in B.1.1. The basic model can be run from the command line with a single
option, gams model.gms --in=/path/inputfile, as explained below. Do
not include square braces [ ] in the options.

1. --in=[/path/to/inputfile] (Required)
Select the input file to be converted. With the exception of to_gdx.gms,
all input files refer to GAMS input files files with .gdx extensions.
For to_gdx.gms, the extension can either be a PSSE-formated .raw
or a Matpower-formatted .m file.

2. --out=[/path/to/outfile]
Specify a destination for the final GDX file output. If not given, this
is assumed to be the same as the input file but with the appropriate
extension, i.e. inputfile(.m,.raw,.xlsx,.gdx).

B.2.2 Model to_gdx.gms options

These options apply specifically to the data utility to_gdx.gms. Currently,
this utility supports reading from a Matpower-formatted ’.m’ structure
file using an awk script and from a PSSE-formatted raw text file using an
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awk script for comma delimited files or a C++ application for comma or
space delimited files. Do not include square braces [ ] in the options.

Note that if line symmetry is encountered in the input datafile (i.e. two
separate lines ijc and jic exist), this is replaced with lines ijc and ijc2 in
the .gdx file. This avoids issues with defining line losses in the ACOPF
models. More information on how lines are treated in the GAMS models
can be found in the Model Formulation document.

Note: Space delimited PSSE files cannot to our knowledge be parsed by awk,
as they allow quoted strings with spaces for some of the fields, which makes pars-
ing the rows using regular expressions potentially impossible.

1. --type=[datatype]: Specify the format of the input file.

• psse: Input is a PSSE-formatted file, inputfile.raw.

• matpower: Input is a Matpower-formatted file, inputfile.m
(Default).

2. --mode=[conversion_mode]: Specify the reader to be used

• awk: Awk script (Default)
Note: PSSE awk script does not currently support some features of
PSSE raw data.

• cpp: Compiled C++ executable (Only supported for --type=psse).
Note: C++ executable requires GAMS IDE and appropriate environ-
ment variables set to compile.

3. --Sbus=[#]

• 0: Do not calculate shift factor matrix (Default)

• 1: Calculate the matrix of linear shift factors for DCOPF using
GAMS model calc_S_matrix.gms.

4. --monitorall=[#]: (valid only if --Sbus=1)

http://neos-dev-web.neos-server.org/guide/?q=node/11
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• 0: Only calculate shift factor matrix rows for highest voltage
lines and transformers

• 1: Calculate shift factor matrix rows for all lines and transform-
ers (Default)

B.2.3 Model calc_S_matrix.gms options

The data utility calc_S_matrix.gms is called with a single option:
gams model.gms --case=/path/case.gdx

The resulting output file is /path/case_Shift_Matrix.gdx. Note that
this model may take a while as it currently produces a dense matrix which
requires |N | linear program solves, where |N | is the number of nodes in
the network.

B.2.4 Model make_demand_curves.gms options

The data utility make_demand_curves.gms is a utility for adding auxiliary
demandbid information to .gdx datafiles that does not have this infor-
mation. Note that this may not work accurately if a datafile already has
demandbid information. It requires two files, the original input file (with-
out demandbid information) and a solution file. The solution file should
be generated using the --savesol option from one of the opf models
in the model archive, and more specifically, it should provide LMP val-
ues as this is used to compute appropriate values for demand bidding.
The make_demand_curves.gms model has the following options. Do not
include square braces [ ] in the options.

1. --in=[/path/to/inputfile] (Required)
Select the (gdx) input file.

2. --lmp=[/path/to/solfile] (Required)
Specify a solution file with LMP values.
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3. --out=[/path/to/outfile]
Specify an output file name. If not required, this function will over-
write the inputfile. Note that the only difference between the two is
the addition of demandbid information in the output file.

B.3 Prime Mover Abbreviations

Prime mover information is contained in the geninfo parameter of the
GDX file structure, where geninfo(bus, ‘PrimeMover’, ‘PM_ABBR’)=1 if
it applies to a specific generator. Below is a list of available abbreviations
that are used in the data files.

Abbreviation Description

ST
Steam Turbine, including nuclear, geothermal and
solar steam (does not include Combined Cycle)

GT Combustion (Gas) Turbine
IC Internal Combustion (diesel, piston) Engine
CA Combined Cycle Steam Part

CC
Combined Cycle Total Unit (plants that are in planning
stage, specific generator details cannot be provided)

CS
Combined Cycle Single Shaft (combustion turbine and
steam turbine share a single generator)

CT
Combined Cycle Combustion Turbine Part (type of coal
must be reported as energy source for integrated coal)

HY
Hydraulic Turbine (includes turbines associated
with delivery of water by pipeline)

PS Hydraulic Turbine - Reversible (pumped storage)
PV Photovoltaic
WT Wind Turbine
CE Compressed Air Energy Storage
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FC Fuel Cell
OT Other

NA
Unknown at this time (plants that are in planning stage,
specific generator details cannot be provided)

Table B.1: Prime Mover Abbreviations

B.4 Fuel Info Abbreviations

Fuel information is contained in the geninfo parameter of the GDX file
structure, where geninfo(bus, ‘Fuel’, ‘FUEL_ABBR’)=1 if it applies to
a specific generator. Below is a list of available abbreviations that are used
in the data files.

Abbreviation Description

BIT Anthracite Coal, Bituminous Coal
LIG Lignite Coal
SUB Subbituminous Coal

WC
Waste/Other Coal (Anthracite Culm, Bituminous Gob,
Fine Coal, Lignite Waste, Waste Coal)

SC
Coal-based Synfuel and include briquettes, pellets, or
extrusions, which are formed by binding materials
and processes that recycle material

DFO
Distillate Fuel Oil (includes all Diesel and No. 1,
No. 2, and No. 4 Fuel Oils)

JF Jet Fuel
KER Kerosene

RTO
Residual Fuel Oil (includes No. 5 and No. 6
Fuel Oils and Bunker C Fuel Oil)

WO
Oil-Other and Waste Oil (Butane (Liquid), Crude Oil,
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Liquid Byproducts, Oil Waste, Propane (Liquid),
Re-Refined Motor Oil, Sludge Oil, Tar Oil)

PC Petroleum Coke
NG Natural Gas
BFG Blast-Furnace Gas

OG
Other Gas (Butane, Coal Processes, Coke-Oven,
Refinery, and other processes)

PG Propane
NUC Nuclear (Uranium, Plutonium, Thorium)
AB Agriculture Crop Byproducts/Straw/Energy Crops

BLQ Black Liquor
GEO Geothermal
LFG Landfill Gas

MSW Municipal Solid Waste

OBS
Other Biomass Solids (Animal Manure and Waste,
Solid Byproducts, and other solid biomass not specified)

OBL
Other Biomass Liquids (Ethanol, Fish Oil, Liquid
Acetonitrile Waste, Medical Waste, Tall Oil, Waste
Alcohol, and other biomass liquids not specified)

OBG
Other Biomass Gases (Digester Gas, Methane, and other
biomass gases)

OTH
Other (Batteries, Chemicals, Coke Breeze, Hydrogen,
Pitch, Sulfur, Tar Coal, and miscellaneous technologies)

PUR Purchased Steam
SLW Sludge Waste
SUN Solar (Photovoltaic, Thermal)
TDF Tires
WAT Water (Conventional, Pumped Storage)

WDS
Wood/Wood Waste Solids (Paper Pellets, Railroad
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Ties, Utility Poles, Wood Chips, and other wood solids)

WDL
Wood Waste Liquids (Red Liquor, Sludge Wood,
Spent Sulfite Liquor, and other wood related liquids
not specified)

WND Wind
NA Not Available

Table B.2: Fuel Abbreviations
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c decoupled ac model

Due to the nature of the non-convexity in the power flow equations, large
scale ACOPF models are challenging to solve, and research continues
to seek algorithms that can provide fast, scalable, and robust solution
techniques. Approximations, decompositions and engineering judgment
are commonly used to obtain practical solutions. Given that realistic
sized models depend on “good” initial conditions to satisfy reasonable
computational time and robust convergence, this suggests that if we have
a starting point that is fairly close to a feasible ACOPF solution, it may
be possible to improve solution time and convergence. The decoupled
ACOPF model (polar_decoupled.gms) may potentially serve this purpose
by providing an initial starting point for the full ACOPF. Note that the
model archive also contains ybus_polar_decoupled.gms which uses the
y-bus admittance matrix as disccused in Section 1.2.2.

C.1 The Power Flow Equations

The power flow equations decribe the power system network operating
point in steady state and hence are based on complex phasor representation
of voltage-current relationships at each bus. Using polar coordinates for
complex voltages and rectangular representation for complex power, the
active and reactive power flow node balance equations at bus i ∈ N are
formulated by (C.1 - C.2) respectively.
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Pi =Pi − dPi

=
n∑
k=1

(
|Vi||Vk|Gikcos(θi − θk)

+ |Vi||Vk|Biksin(θi − θk)
)

∀i ∈ N (C.1)

Qi =Qi − dQi

=
n∑
k=1

(
|Vi||Vk|Giksin(θi − θk)

− |Vi||Vk|Bikcos(θi − θk)
)

∀i ∈ N (C.2)

The most commonly used technique to solve the non-linear power flow
equations above is Newton-Raphson. This method requires derivatives of
the power flow equations with respect to voltage magnitudes and angles,
and is referred to as the power flow Jacobian matrix, The power flow
formulation using the Jacobian matrix using (C.3).

J11 J12
J21 J22

4θ
4V

 =
4P
4Q


Where

J11 = ∂P bus

∂θ
, J12 = ∂P bus

∂V
, J21 = ∂Qbus

∂θ
, J22 = ∂Qbus

∂V
(C.3)

In most real world applications, other assumptions can be made on
the range of both parameters and solution variables. Two inequalities that
commonly appear in many power flows applications are:

x

r
� 1 and also |θi − θk| < 20o



146

Both of these relationships prove to have small values in J12 and J21
submatrix, and these small values suggest a weak link between active
power and voltage magnitude, as well as reactive power and voltage angle.
Therefore, if J12 and J21 in (C.3) are neglected in the power flow calcula-
tion, one obtains the Fast Decoupled Load Flow, for which the linearized
relations are:

J11×4θ = 4P

J22×4V = 4Q (C.4)

We employ this idea to decompose the full AC optimal power flow into
two subproblems.

Since voltage magnitudes have weak impact on active power injections,
voltage magnitudes may be treated as constant values when solving the
active power subproblem. Similarly, voltage angles are assumed to weakly
impact reactive power injections. This suggests employing voltage angles
as constant values for reactive power subproblem. The constant values
(voltage magnitudes) for active power subproblem are needed to be speci-
fied to start P-Q decoupling. These starting points are a solution of power
flow problem having voltage phasors and apparent power injections of
each bus. The number of rows for bus, branch and generator vectors are
|N |,|E| and |G| respectively.

C.2 P − θ subproblem

For the P − θ subproblem, the voltage magnitude at each bus is fixed as a
constant value, denoted as V̂ , while reactive power balance equations are
neglected in the constraint set. The solution vector for the standard P − θ
OPF problem consists of an |N | × 1 vector of voltage angles θi , ∀i ∈ N ,
and a |G| × 1 vector of generator active injections Pi, i ∈ G. The decision
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variable xPθ has dimension
(
|N |+ |G|

)
× 1.

xPθ =
 θ
P


The objective function is to minimize a summation of each generator
quadratic or piecewise-linear cost function (C.5) subject to (C.6 - C.10).

min
Q,V

∑
i∈N

c̃i(Pi) (C.5)

s.t. g1(x) = Pi(θi, V̂i) + dPi + (Vi)2gsi − Pi = 0 ∀i ∈ N (C.6)

hf (x) = | Fijc(θij, V̂ij) | −lijc ≤ 0 ∀ijc ∈ E (C.7)

ht(x) = | Fjic(θij, V̂ij) | −ljic ≤ 0 ∀ijc ∈ E (C.8)
−π
3 ≤ θ(i)− θ(j) ≤ π

3 ∀(ij) : ijc ∈ E (C.9)

P i ≤ Pi ≤ P i ∀i ∈ G (C.10)

C.3 Q− V subproblem

For the Q − V subproblem, the voltage angles are fixed as a constant
value denoted θ̂. The equality power flow equations for the active power
are neglected in the constraint set. The optimization vector xQV for the
standard Q − V OPF problem consists of the |N | × 1 vector of voltage
magnitude Vi , i ∈ N and the |G|×1 vectors of generator reactive injections
Qi , i ∈ G. The dimension of the decision variable xQV is

(
|N |+ |G|

)
× 1.

xQV =
 V
Q





148

The objective function is to minimize a transmission line loss which is a
function of voltage phasors (C.11) subject to (C.12-C.15).

min
∑
i∈N

V 2
i g

s
i +

∑
(jc):ijc,jic∈E

Fijc

 (C.11)

s.t. g2(x) = Qi(θ̂i, Vi) + dQi − (Vi)2bsi −Qi = 0 ∀i ∈ N
(C.12)

hf (x) = | Fijc(θ̂ij, Vij) | −lijc ≤ 0 ∀ijc ∈ E
(C.13)

ht(x) = | Fjic(θ̂ij, Vij) | −ljic ≤ 0 ∀ijc ∈ E
(C.14)

Q
i
≤ Qi ≤ Qi ∀i ∈ G , V i ≤ Vi ≤ V i ∀i ∈ N (C.15)

Note that inequality constraints for line flow limit are included in both
problems to represent the security requirements on the system.



149

d generator capability curve approximation

Using machine rating standards and the rectangle constraints commonly
specified in power system data sets, we developed approximations of
the capability curves for typical generators using the provided rectangle
constraints and knowledge of typical intersection points from machine
rating standards. The rectangle constraints are denoted as Pmin and Pmax

for limits on active power output and Qmin and Qmax for limits on reactive
power output, and map to (P , P , Q, Q) respectively in the nomenclature.
These approximations rely on the rectangle constraints representing a
single round-rotor synchronous generator. This analysis is not applicable
to rectangle constraints that represent aggregations of generators and
related equipment (e.g., switched capacitors, load demand at the generator
bus, etc.).

D.1 Armature Current Limit

The armature current limit defines the right side of the capability curve.
This limit is defined using the rated MVA of the generator. The arma-
ture current limit is described by a circle with center at the origin and
radius equal to the rated MVA of the generator. Lacking more detailed
information, we define

Rmax = max (Pmax, Qmax) (D.1)

as theRmax, maximum radius of the circle. The constraint for the armature
current limit is

P 2 +Q2 ≤ (Rmax)2 (D.2)

where P and Q denote the active and reactive power outputs of the gener-
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ator.
A value of Rmax that is less than Pmax is interpreted as a maximum

mechanical input power limit that is below the maximum electrical power
generation limit of the synchronous generator. For such cases, a maximum
active power limit of Pmax must also be imposed on the capability curve.

D.2 Field Current Limit

The field current limit defines the top portion of the capability curve. An
equation for this limit in terms of generator parameters is derived in [49].
However, typical power flow data sets do not have sufficient information
for direct use of the equations from this derivation. Alternatively, we use
knowledge of standard machine ratings to approximate this limit.

A circle has two degrees of freedom in the location of the center(
P field

0 , Qfield
0

)
and one degree of freedom in the radius

(
rfield

)
. We there-

fore need three pieces of information to define the field current limit.
We first use the fact that the field current limit is a circle with center(

P field
0 , Qfield

0

)
on the Q-axis; that is, P field

0 = 0 [49]. We then assume that
the maximum reactive power outputQmax is achieved at zero active power
output, which indicates that the point (0, Qmax) is on the circle. Finally,
we use the fact that standard machine specifications use operation at rated
power factor as the intersection between the field current limit and the
armature current limit. Assuming a rated power factor of 0.80 lagging, this
gives a second point on the circle: (0.8Rmax, 0.6Rmax). The parameters for
the field current limit circle are then given by a solution to

(0.8Rmax)2 +
(
0.6Rmax −Qfield

0

)2
=
(
rfield

)2
(D.3a)(

Qmax −Qfield
0

)2
=
(
rfield

)2
(D.3b)



151

Solving (D.3) yields

Qfield
0 = (Qmax)2 − (Rmax)2

2 (Qmax − 0.6Rmax) (D.4a)

rfield = Qmax −Qfield
0 (D.4b)

The resulting field current limit is

P 2 +
(
Q−Qfield

0

)2
≤
(
rfield

)2
(D.5)

The relative values of Qmax and Pmax result in three cases of interest:

1. From (D.1), if Qmax ≥ Pmax, then Rmax = Qmax and Qfield
0 = 0.

For this case, the armature current and field current constraints are
identical. Recall that a maximum active power limit (i.e., P ≤ Pmax)
is specified. A typical curve for this case is shown in Fig. D.1.
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Figure D.1: Generator Capability Curve (Qmax ≥ Pmax)

2. If Qmax ≤ 0.6Pmax, then Qfield
0 is non-negative. Only negative values

ofQfield
0 are physically meaningful (see [49]). Accordingly, ifQfield

0 ≥
0, we will choose to represent the upper portion of the capability
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curve as a horizontal line (i.e., Q ≤ Qmax) and disregard the value of
Qfield

0 . A typical curve for this case is shown in Fig. D.2.
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Figure D.2: Generator Capability Curve (Qmax ≤ 0.6Pmax)

3. If Pmax ≥ Qmax > 0.6Pmax, which is expected to be the case for
typical generators, the armature and field current limits impose
distinct circle constraints. A typical curve is shown in Fig. D.3.
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Figure D.3: Generator Capability Curve (Pmax ≥ Qmax > 0.6Pmax)
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D.3 End Region Heating Limit

The lower limits of the capability curve are due to heating of the end
regions of the synchronous generator. There is not a detailed derivation
for these limits from the generator parameters as in the case of the field
current limits [49].

We use several assumptions to approximate these limits in the same
manner as the field current limits. Specifically, we assume:

1. The end region heating limit takes the form a circle with center(
P end

0 , Qend
0

)
on the Q-axis (i.e., P end

0 = 0) and radius rend.

2. The point (0, Qmin) is on this circle.

3. The intersection of this limit with the armature current limit occurs
at 0.95 power factor leading as in Fig. 1.1.

1) , 2) the point (0, Qmin) is on this circle, and 3) Using these assump-
tions to follow a similar development as for the field current limits, we
obtain

Qend
0 = (Qmin)2 − (Rmax)2

2 (Qmin + 0.31Rmax) (D.6a)

rend = Qend
0 −Qmin (D.6b)

The resulting end region heating limit is

P 2 +
(
Q−Qend

0

)2
≤
(
rend

)2
(D.7)

The relative values of Qmin and Rmax result in three cases of interest:

1. If |Qmin| < 0.31Rmax, then Qend
0 is non-positive. Only positive values

ofQend
0 are physically meaningful (see [49]). Accordingly, ifQend

0 ≤ 0,
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we will choose to represent the upper portion of the capability curve
as a horizontal line (i.e., Q ≥ Qmin) and disregard the value of Qend

0 .
A typical curve for this case is shown in Fig. D.4.
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Figure D.4: Generator Capability Curve (|Qmin| ≤ 0.31Rmax)

2. If Smax ≥ |Qmin| > 0.31Rmax, which is expected to be the case for
typical generators, the armature and field current limits impose
distinct circle constraints. A typical curve is shown in Fig. D.5.
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Figure D.5: Generator Capability Curve (Rmax > |Qmin| > 0.31Rmax)

3. The case |Qmin| > Rmax is atypical for synchronous generators. For
this case, the armature current limit is binding before the specified
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Qmin; that is, the synchronous generator cannot actually reach Qmin

due to the armature current limit. If this case does occur, use a
horizontal line as the lower limit (i.e, Q ≥ Qmin) and ignore the
armature current limit for negative values of Q. In other words, use
the original rectangle constraints for the lower half of the generator
capability curve. Warn the user that an atypical case has occurred.

D.4 Prime Mover Limits

Limits on the mechanical input power from the prime mover impose
constraints on the active power generation. The maximum and minimum
active power generation Pmax and Pmin are determined directly from the
rectangle constraints.

For typical coal, natural gas, oil, and wood fired generators, minimum
active power generations that are set to zero (i.e., Pmin = 0) likely indicate
missing or incorrect data. A statistical study of the minimum economic
operating point (“eco-min”) of these generators is presented in [40]. This
study uses the values of Pmin from a dataset containing generators in PJM.
To estimate Pmin, we use the results of [40] corresponding to the data that
is often available in power flow data sets.

Power flow data sets specify generators’ nameplate capacity (i.e., Pmax)
and often provide generators’ prime mover type (i.e., steam turbine, com-
bustion turbine, combined cycle combustion turbine, etc.). If both of these
data fields are available, we use the median eco-min data specified in
Figures 15, 23, and 25 of [40] to approximate Pmin. This data is reproduced
in Table D.1, which considers steam turbines and combined cycle prime
movers, and Table D.2, which considers combustion turbine prime movers
operated both independently and as part of a combined cycle plant. Values
of Pmin are specified as a percentage of Pmax. Note that [40] indicates the
possibility of substantial variance around these median data.
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Pmax Steam Turbine Combined Cycle
0-200 MW 38% 80%

200-400 MW 39% 46%
400-600 MW 49% 41%
600-800 MW 60% 48%
> 800 MW 64% 42%

Table D.1: Typical Pmin for Steam Turbines and Combined Cycle Prime
Movers (Figures 15 and 23 in [40])

Pmax Single CT CT in Combined Cycle Plant
0-50 MW 76% 80%

50-100 MW 66% 95%
100-150 MW 59% 63%
150-200 MW 81% 63%
200-250 MW 71% 58%
250-300 MW – 64%

Table D.2: Typical Pmin for Combustion Turbine Prime Movers (Figure 25
in [40])

If the power flow data does not include the prime mover type, we
use the averages among all prime mover types from Figure 10 of [40]
(reproduced as Table D.3) to specify Pmin based on the nameplate capacity
data only. Note that [40] indicates the possibility of substantial variance
around these median data.

Pmax Pmin

0-200 MW 69%
200-400 MW 42%
400-600 MW 45%
600-800 MW 48%
> 800 MW 69%

Table D.3: Typical Pmin Without Prime Mover Data (Figure 10 in [40])
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D.5 Limitation of the D-curve

A nonlinear generator D-curve constraint for use in AC models were im-
posed at all generator buses, but some polish cases produce infeasib-
lity since there are generators that contain no sufficient ratio of Pmax

Pmin
or

Qmax−Qmin

Qmax
. To cross off generators that are not suitable to impose the

D-curve constraint, heuristic criterions for the ratio Pmax

Pmin
and Qmax−Qmin

Qmax

are added and the D-curve constraint is not applied for generators that
have Pmax

Pmin
≤ 1.1 or Qmax−Qmin

Qmax
≤ 0.1. When this happens, it shows EPS

in the relevant fields to indicate that the D-curve constraint will not be
imposed on those generators. Figure D.6 below explains when to impose
the D-curve constraint. The fiqure (a) shows the example of generator that
as worst case produces a fixed output. So it is not applicable to impose the
D-curve, whereas the figure (b) describes the generator that has resonable
ratio of Pmax

Pmin
and Qmax−Qmin

Qmax
so that the D-curve constraint is implemented.

(a) Generator not suitable (b) Generator Suitable

Figure D.6: Example of when to impose the D-curve constraint

D.6 Nonphysical Data

Because these curves are computed from the given values of Pmax, Pmin,
Qmax, and Qmin, in the case of atypical or unrealistic generator profiles (for
example in the IEEE testcases) the computed constraints may be physically
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incorrect or meaningless. When this happens, the data reflects this by
showing NA in the relevant fields so the modeler will know not to impose
constraints based on improper values.

An additional “uwcalc” set of values are also provided that update the
information so the all the profiles include tighter D-curve constraints than
the original data generates.
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e unit commitment approximation

Looking at the original quadratic cost function, αjq2
j + βjqj + γj , the in-

tercept term, γj is split into two components for this unit commitment
approximation, as reflected in equation E.1. The first component is the
addition of a costly and prohibitive barrier to operating generator j within
the bounds (0, uj) and tends to zero as it approaches uj , while the second
component multiplies the original intercept value, now redefined as γ0,j ,
with the cumulative distribution function (cdf) from a Normal distribution,
φ. Figure E.1 provides an illustration of both components, the approxi-
mation function, and its comparison to a integer based unit commitment
function.

γj = qjMj exp{−(qj − µj)2

2σ2
j

}+ γ0,jφ(qj, µj, σj) (E.1)

In the first component, µj is viewed as controlling the mean of the
peak, Mj as controlling the height of the peak, and σj as controlling the
width of the curve. The multiplication with qj ensures a zero cost when
qj = 0. The second component in equation E.1 also helps achieve this while
retaining the original cost component of γj when qj ≥ uj . When applying
this to varied datasets with different parameter settings and possibly
different scalings, in practice, we select these parameters based upon a
combination of data and necessary premises for the approximation to be
effective. Specifically, it is ideal for the approximation function to approach
the true cost function slightly beyond the point qj = uj as depicted in
Figure E.1, which is simultaneously a conservative measure to discourage
solutions within the infeasible space of a true unit commitment model,
as well as an almost exact approximation when qj ≥ uj . Additionally,
selection of µj and Mj are important in ensuring a sufficiently steep slope
at qj = 0, and the height of the peak also ensures the cost of operating some
generator j within the [0, uj] bounds is prohibitive. Equations E.2 to E.4
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provide the formulations used for the above parameters in our numerical
test cases which adheres to the necessary conditions and makes use of the
provided data.

µj =uj/2.5; (E.2)

Mj =100(αjū2
j + βjū+ γj) (E.3)

σ2 =
−9u2

j

50[log(kj)− log(Mj)− log(uj)]
,

kj = (αju2
j + βju+ γj) ∗ 0.025 (E.4)

Thus the final cost function with unit commitment and investment
effect, C(yj, qj), is approximated as follows:

C(qj, yj) = αjq
2
j + βjqj + γj,

αj = α0,j(yj) + α0,j

4 (exp(−λjyj)− 1),

γj = qjMj exp{−(qj − µj)2

2σ2
j

}+ γ0,jφ(qj, µj, σj) (E.5)
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Figure E.1: Approximation of Unit Commitment
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