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Abstract

Algorithms for Complementarity Problems and Generalized Equations
Stephen C. Billups
Under the Supervision of Associate Professor Michael C. Ferris
at the University of Wisconsin—-Madison

Recent improvements in the capabilities of complementarity solvers have led to
an increased interest in using the complementarity problem framework to address
practical problems arising in mathematical programming, economics, engineering,
and the sciences. As a result, increasingly more difficult problems are being pro-
posed that exceed the capabilities of even the best algorithms currently available.
There is, therefore, an immediate need to improve the capabilities of comple-
mentarity solvers. This thesis addresses this need in two significant ways. First,
the thesis proposes and develops a proximal perturbation strategy that enhances
the robustness of Newton-based complementarity solvers. This strategy enables
algorithms to reliably find solutions even for problems whose natural merit func-
tions have strict local minima that are not solutions. Based upon this strategy,
three new algorithms are proposed for solving nonlinear mixed complementarity
problems that represent a significant improvement in robustness over previous
algorithms. These algorithms have local Q-quadratic convergence behavior, yet
depend only on a pseudo-monotonicity assumption to achieve global convergence
from arbitrary starting points. Using the MCPLIB and GAMSLIB test libraries,
we perform extensive computational tests that demonstrate the effectiveness of
these algorithms on realistic problems.

Second, the thesis extends some previously existing algorithms to solve more
general problem classes. Specifically, the NE/SQP method of Pang & Gabriel
(1993), the semismooth equations approach of De Luca, Facchinei & Kanzow
(1995), and the infeasible-interior point method of Wright (1994) are all general-
ized to the mixed complementarity problem framework. In addition, the pivotal
method of Cao & Ferris (1995b), which solves affine variational inequalities, is
extended to solve affine generalized equations. To develop this extension, the



i

piecewise-linear homotopy framework of Eaves (1976) is used to generate an al-
gorithm for finding zeros of piecewise affine maps. We show that the resulting
algorithm finds a solution in a finite number of iterations under the assumption
that the piecewise affine map is coherently oriented.
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Chapter 1

Introduction

Over the last thirty years, the class of problems known as complementarity prob-
lems has become increasingly popular as a tool for addressing practical prob-
lems arising in mathematical programming, economics, engineering, and the sci-
ences (Ferris & Pang 1995, Dirkse & Ferris 1995a). It is not surprising then
that the mathematical programming community has devoted considerable ener-
gies toward developing robust and efficient algorithms for solving these problems.
Conversely, it is the considerable success of some of these algorithms (Dirkse
& Ferris 19956, Rutherford 1993, Chen & Mangasarian 1995a, Pang & Gabriel
1993, Harker & Xiao 1990) that has generated much of the recent enthusiasm for
applying the complementarity framework to new applications.

Although the effectiveness of complementarity algorithms has improved sub-
stantially in recent years, the fact remains that increasingly more difficult prob-
lems are being proposed that are exceeding the capabilities of these algorithms.
As a result, there is an immediate need to improve the capabilities of comple-
mentarity solvers. This thesis addresses this need in two significant ways. First,
the thesis proposes and develops a proximal perturbation strategy that enhances
the robustness of Newton-based complementarity solvers. This strategy enables
algorithms to reliably find solutions even for problems whose natural merit func-
tions have strict local minima that are not solutions. Based upon this strategy,
three new algorithms are proposed for solving nonlinear mixed complementarity
problems that represent a significant improvement in robustness over previous
algorithms. These algorithms have local Q-quadratic convergence behavior, yet
depend only on a pseudo-monotonicity assumption to achieve global convergence
from arbitrary starting points.

Second, the thesis extends some previously existing algorithms to solve more
general problem classes. Specifically, the NE/SQP method of Pang & Gabriel
(1993), the semismooth equations approach of De Luca et al. (1995), and the



infeasible-interior point method of Wright (1994) are all generalized to the mixed
complementarity problem framework. In addition, the pivotal method of Cao &
Ferris (1995b), which solves affine variational inequalities, is extended to solve
affine generalized equations. To develop this extension, the piecewise-linear ho-
motopy framework of Eaves (1976) is used to generate an algorithm for finding
zeros of piecewise affine maps. We show that the resulting algorithm finds a so-
lution in a finite number of iterations under the assumption that the piecewise
affine map is coherently oriented.

1.1 Notation and Definitions

When discussing matrices, vectors and vector-valued functions, subscripts are used
to indicate components, whereas superscripts are used to indicate the iteration
number or some other label. For example A;., A, A;; refer to the ¢th row, jth
column, and (i, 7)th entry of A, respectively, whereas x* typically represents the
kth iterate generated by an algorithm. In contrast to the above, for scalars or
scalar-valued functions, we use subscripts to refer to labels so that superscripts
can be reserved for exponentiation. Index sets can also be used to refer to subsets
of the components. For example if J and K are subsets of {1,...,n}, then Mk
denotes the |.J| x | K| submatrix of M consisting of the elements M, 5 € J, k € K.
In concatenating matrices and vectors, we use the MATLAB notation of a comma
to separate columns and a semicolon to separate rows. For example, if we have
the expressions A = (x,y) and w = (x;y), then A is a matrix with columns z and
y, whereas w is the vector formed by concatenating  and y. The vector of all
ones is represented by e and the jth unit vector is represented by ¢’.

Unless otherwise specified, ||-|| denotes the Euclidean norm. Inner products
are denoted by (-,-). We use the notation (-), (-)-, and |- | to represent the plus,
minus, and absolute value operators, respectively, for vectors. That is, z;, =
(max(x1,0);...;max(x,,0)), 2 := (max(—x1,0);...;max(—x,,0)), and |z| :=
(als- s o))

The symbols Ry and Ry refer to the nonnegative real numbers and the
positive real numbers, respectively. The extended real numbers are denoted by
R := RU{—o00, +oo}. The vectors [ and u € R", specify a set of lower and upper
bounds. Throughout this thesis we assume that [ < u. The symbol B represents
the box defined by B :=[l,u] :={z | <2 <wu}.

For a function f : C C R® — R™, we define V, f;(z) := df;(x)/0x;. Vf(x)
is the n x m matrix whose i7th element is V,f;(x). Thus, if f is a scalar valued
function, then V f(x) is a column vector. Finally, we define f'(z) = V f(x)".

The directional derivative of f evaluated at the point = in the direction d is



denoted by

ooy (@A) — ()
f(z;d) =1lim ) :
provided the limit exists. Note that if = is a stationary point of f on C, then
f'(x;d) =0 for all d such that « 4+ d € C.

The notation ¢ is used to indicate a point to set mapping or multifunction.
Thus, 7' : R"XR™ indicates that 7" is a multifunction, which maps points in
R"™ to subsets of R™. In discussing multifunctions, we may refer either to a
point to set mapping, T(-), or to the graph of that mapping, which is the set
T := {(z,y) e R" x R |y € T(x)}. The expression T7'(-) is defined as a set
inverse; i.e., T™Yy) := {z|(z,y) € T'}. Further, T7! := {(y,x)|(x,y) € T}. The
effective domain of T', is defined by dom(7") := {z|T'(z) # 0}.

For a set C, aff(C'), co(C), int(C), ri(C), rec(C), dim(C'), and 4(-|C) refer to
the affine hull, convex hull, interior, relative interior, recession cone, dimension,
and indicator function of C, respectively (see Rockafellar (1970) for definitions of
these terms). The projection operator for the set C' is denoted by m¢(-). That is
me(x) represents the projection (with respect to the Euclidean norm) of @ onto
the set C.

In several convergence proofs, we use the notation O(-) and o(-) as follows:
given a sequence {u*}, we use the expression {O(u*)} to represent any sequence
{v*} satisfying

]

lim sup < o0

koo [t

Given a function h : R® — R™, we use the expression o(h(x)) to represent any
function ¢ : R" — R” satisfying

lg()ll _

11m =
lell=0 [|a()]]

In proving convergence results, we will refer to the following convergence rates. A
sequence {z*} is said to converge to x* Q-linearly if

‘ ka—l—l — ¥
0 <limsup +— < 1.
AN
The sequence converges Q)-superlinearly if
‘ ka—l—l — ¥
lim =0.

e



The sequence is said to converge Q-quadratically if

ka—l—l — ¥
5 <00

lim su
b 2k — 2|

The sequence converges ()-subquadratically if

ka—l—l — ¥

lim sup <oo Vpell,?2).

ALy P
Finally, several types of monotonicity need to be defined:
Definition 1.1.1 A function f: X C R" — R" is said to be

1. monotone if

(f(z) = fly),x —y) >0 Var,yeX,

2. strongly monotone with modulus o > 0 if

(f(x) = fly),e —y) > allz —y||> Ve,ye X,z #y

1.2 Problem Classes

Most of the literature about complementarity problems is concerned with the
standard forms given by the nonlinear complementarity problem (NCP) and the
linear complementarity problem (LCP): Given a function f : @ — R", where
R} C Q@ C R", the nonlinear complementarity problem is defined by

NCP(f): Find z € R7} such that
flz) >0 and (a, f(x)) =0.

When f is an affine function, i.e. f(x):= Mx+q, with M € R™" and g € R”,
NCP(f) reduces to the linear complementarity problem:

LCP(M, q): Find # € R} such that
Mz +q>0, and (x, Mz +q) = 0.

A generalization of the LCP is the horizontal linear complementarity problem
given by
HLCP(M,N,q): Find (x,y) € R} x RY such that
Mz + Ny =¢q, and (z,y) =0,



where M, N € R"*".
While the standard forms are convenient from a theoretical viewpoint, many
practical problems are more naturally formulated using the framework of the

mixed complementarity problem (MCP). The MCP is defined in terms of a box
B:=[l,u] C R", with [ < u, and a function f :Q — R”, where B C 2 C R™:

MCP(f,B): Find € B such that
(x =1, f(x)1) =0 and (u—x, f(x)-) = 0.

Note that the assumption that [ < wu represents no loss of generality, since if
[; = w; then the corresponding variable x; must be fixed and can therefore be
removed from the problem. In the special case where f is the affine function
flz) := Mx + g, we get the linear mixed complementarity problem given by

LMCP(M,q,B): Find € B such that
(x —=1,(Mx+q)4) =0and (u—a,(Max+q)-) =0.

In the above definitions, note that components of the bounds [ and v may be infi-
nite. We therefore adopt the convention that £o00 x 0 = 0. Using this convention,
it is easily seen that the NCP is the special case of the MCP given by letting
[ =0, and u = oco. Stated another way, NCP(f) is equivalent to MCP(f, R} ).

Conversely, the MCP can be reformulated as an NCP (Ferris & Pang 1995).
Thus, one way of solving a mixed complementarity problem is simply to reformu-
late it and solve it as an NCP. However, this is often a tedious and error prone task.
Moreover, even if the reformulation is performed automatically, efficiency may be
lost because the resulting NCP usually involves a larger number of variables, and
although a great deal of structure will exist in the reformulated problem, the NCP
solver will be unable to exploit this structure. We therefore contend that algo-
rithms for solving complementarity problems should be aimed at solving problems
in the MCP format rather than the standard NCP or LCP format.

Note that by setting 2 = B, the definition of MCP requires only that f is
defined on B. However, for theoretical purposes, we shall assume throughout this
thesis that €2 is an open set and that f is continuous on ).

The NCP and MCP are special cases of the variational inequality problem,
which is defined in terms of a set ' C R" and a function f : Q@ — R", where
CCcQCR™

VI(f,C): Find « € C' such that
(fx),y—2) 20 VyeC

It is easily shown that NCP(f) is equivalent to VI( f,R% ) and MCP(f, B) is equiv-
alent to VI(f,B) (Dirkse 1994, Theorem 2).



Another way of writing the variational inequality makes use of the concept of
a normal cone.

Definition 1.2.1 Given a closed convex set C C R", the normal cone N¢(x) to
C' at a point v € R" is defined by

_J {wl(w,y—2) <0, YyelC} 2eC

No(a) = { 0 r g C

By comparing the definitions, it is easily seen that a solves VI(f, () if and
only if —f(z) € Ne(a). Thus, the variational inequality can be restated as the
problem of finding = € C, such that

(1) 0 € f(z) + No(z).

This equation is a special case of the generalized equation (Robinson 19795), which
is defined in terms of maximal monotone multifunctions (Rockafellar 1970).

Definition 1.2.2 A multifunction T : R"XR" is said to be monotone if for each
(', "), (x%,y?) in the graph of T,

<:1;1—:1;2,y1—y2> > 0.

T is maximal if its graph is not properly contained in that of any other monotone
multifunction. T is polyhedral if its graph is the union of finitely many polyhedral
conver Sets.

Given a maximal monotone multifunction 7', a set @ O dom(7') and a function

f:Q — R", the generalized equation GE(f,T) is to

GE(f,T): find « € dom(T') such that
0€ flx)+T(x).

If f is an affine function, and if 7" is polyhedral, then we get the affine generalized
equation.

It is well-known (Rockafellar 1970) that the normal cone is a maximal mono-
tone multifunction. Thus, in light of (1), the variational inequality VI(f,C) is
equivalent to the generalized equation GE(f, N¢).



1.3 Solution Methods for Nonlinear Problems

This section describes several techniques for solving nonlinear complementarity
problems that will serve as background for the algorithms presented in Chapters
2 and 3 of this thesis. Later, in Section 1.4, we will discuss solution methods for
linear complementarity problems.

There is currently a wide variety of techniques for solving nonlinear comple-
mentarity problems. Some of the older approaches include classical pivotal meth-
ods (Cottle 1966, Habetler & Kostreva 1978) and fixed-point homotopy methods
(Garcia & Zangwill 1981, Todd 1976). More recent approaches include differen-
tiable optimization based methods (Fukushima 1992, Kanzow 1994, Mangasarian
1976, Mangasarian & Solodov 1993, Tseng, Yamashita & Fukushima 1994), pro-
jection and proximal methods (Auslander 1993, Auslander & Haddou 1994, Ferris
& Ralph 1995, Moré 1994, Solodov & Tseng 1994), and interior point methods,
(Chen & Harker 1995, Giiler 1993, Kojima, Megiddo & Noma 1991, Kojima,
Mizuno & Noma 1989, Monteiro, Pang & Wang 1995, Wang, Monteiro & Pang
1994, Wright & Ralph 1993). In addition to these, Ferris & Pang (1995) list sev-
eral other classes of algorithms, which we shall discuss in detail in the context of
Newton-based methods.

1.3.1 Newton-Based Methods

While many different approaches are available, the fastest algorithms for solving
nonlinear complementarity problems are all based upon Newton’s method. New-
ton’s method is an iterative technique for solving the system f(z) = 0, where
f:R" — R" is continuously differentiable. The iterates {z*} are generated by
solving a sequence of linear approximations to f given by a first order Taylor
series approximation. Specifically, at the kth iteration, the Newton direction d* is
computed by solving the following linear subproblem for the vector d:

(2) F() + V() Td = 0.

The next iterate z*t! is then set equal to 2% + d*. This method is known to be
Q-quadratically convergent in a neighborhood of a solution a* if V f(2*) is non-
singular and if V f is Lipschitzian in a neighborhood of 2* (Ortega & Rheinboldt
1970).

This fast local convergence rate is an attractive feature of Newton’s method;
however, to ensure convergence starting far away from a solution, a globalizing
strategy needs to be performed. There are two main techniques for doing this,
which are based upon linesearch strategies and trust-region strategies. Our inter-
est here is in linesearch techniques, which give us the damped Newton methods;



for information on the trust-region methods, see Fletcher (1987, Chapter 5).

The linesearch strategy is based upon forcing decrease of a merit function
6 : R" — Ry, which in some way measures how close a point is to a solution.
Normally, the merit function is nonnegative, and is equal to zero only at solutions
to the problem. For example, we might choose 8 := ||f(-)||* /2. The linesearch
strategy is then to use this merit function to choose a step length ay € (0,1] so
that the new iterate 2*t' := 2% 4+ a,d* produces an acceptable decrease in the
merit function.

A popular linesearch technique is the backtracking scheme based on the work
of Armijo (1966) and Goldstein (1967). Given a parameter p € (0, 1), the strategy
is to evaluate the merit function at the sequence of points {z*+p/d* : j = 0,1,...},
until a steplength p™ is found such that z* + p™d* produces “sufficient” decrease
in the merit function. Under appropriate criteria for what constitutes “sufficient”
decrease, global convergence results can be established, which guarantee that the
iterates will either be unbounded, or will converge to a local minimum of the merit
function 8. Note that these global convergence results do not guarantee that a
solution will be found from arbitrary starting points. For example, a “globally
convergent” algorithm might converge to a local minimum that is not a global
minimum.

Newton’s method has the limitation that the direction finding subproblem (2)
may not always be solvable. In particular, if V f(z*) is singular, then the Newton
direction cannot be calculated unless f(z*) € ker(Vf(2*)T). This difficulty is
avoided by the Gauss-Newton method. In this method, the Gauss-Newton direc-
tion is chosen by solving the least squares problem given by

) win 37 + V]
subject to 2 4+ d € dom(f).

This problem always has a solution, although not necessarily a unique one. More-
over, if V f is non-singular, then the Newton direction will be the unique solution
to the least squares problem.

1.3.2 Reformulations of Complementarity Problems

Since the publication of Mangasarian (1976), numerous algorithms have been pro-
posed based upon reformulating nonlinear complementarity problems as systems
of nonlinear equations H(x) = 0. Many of these proposals have involved smooth
reformulations, that is, where the function H is continuously differentiable. A
simple example comes from Mangasarian (1976)

Hi) = (file) = 2. = (@)l () — il



Other examples are given in Watson (1979), Ferris & Lucidi (1991), Fukushima
(1992), Mangasarian & Solodov (1993), and Subramanian (1993). The chief ad-
vantage of smooth reformulations is that the Newton-type methods can be em-
ployed without modification.

However, smooth reformulations suffer from a fundamental flaw: fast local
convergence is achieved only if the problem is nondegenerate, that is, if at a
solution «*, f;(x*) = 0 = 27 is not at a bound. The reason for this is that, at a
degenerate solution x*, V H(x*) is singular, so the fast local convergence rates of
Newton’s method are lost.

In contrast, a considerable number of algorithms have been proposed which
instead use a nonsmooth reformulation. See for example, De Luca et al. (1995),
Dirkse & Ferris (1995b), Facchinei & Soares (1994), Facchinei & Soares (1995),
Ferris & Ralph (1995), Fischer & Kanzow (1994), Geiger & Kanzow (1994), Han,
Pang & Rangaraj (1992), Harker & Xiao (1990), Moré (1994), Pang (1990), Pang
(1991), Pang & Gabriel (1993), Ralph (1994), Robinson (1992), Xiao & Harker
(1994a), and Xiao & Harker (19946). These nonsmooth reformulations do not
force the Jacobian of H to be singular at degenerate solutions. Thus, fast local
convergence can be achieved even to degenerate solutions. However, because the
function H is nonsmooth, the classical Newton type methods cannot be used
directly; instead, modifications must be made to handle the nonsmoothness.

There are three nonsmooth reformulations for NCP(f) that we will be inter-
ested in. The first, called the minimum map is defined as follows:

(4) H;(z) := min(z,, fi(x)).

This reformulation is the basis of algorithms presented in Chen (1995) Chen &
Mangasarian (1995a), Gabriel & Pang (1992), Han et al. (1992), Pang (1990),
Pang (1991), Pang, Han & Rangaraj (1991), and Pang & Gabriel (1993).

It is easily seen that H(x) = 0 if and only if « solves NCP(f). However, the
(Fréchet) derivative of the function is not defined whenever x; = f;(x) for some 1,
so classical Newton methods cannot be employed. Two different approaches have
been taken to handle this difficulty. In Chen & Mangasarian (1995a), a solution is
found by solving a sequence of smooth approximations to the equation H(x) = 0.
This technique was implemented in a computer code called SMOOTH. Compu-
tational tests on this software (see Chapter 3) demonstrate that this approach is
remarkably robust, as well as extremely efficient. We note that smoothing tech-
niques have also been studied by Chen & Harker (1993), Chen & Harker (1995),
Kanzow (1994), and Qi & Chen (1993).

Another technique incorporates the notion of a Bouligand derivative, or B-
derivative for short (Robinson 1987)
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Definition 1.3.1 A function H : X — R" is said to be B-differentiable at a point
x if H is Lipschitz continuous in a neighborhood of x and there exists a positively
homogeneous function BH(x): R" — R", such that

L H(e ) = H(z) = (BH(2))(0)

v0 o]

=0.

The function BH(x) is called the B-derivative of f at x. [ is said to be B-
differentiable in a set X if [ is B-differentiable at all points v € X.

Shapiro (1988) showed that if H is locally Lipschitz, then it is B-differentiable at
a point z if and only if it is directionally differentiable at . When it exists, the
B-derivative is unique (Pang 1990, Proposition 1). Thus, using the B-derivative,
Newton’s method can be generalized by replacing (2) by

(5) H(2") + (BH(2"))(d) = 0.

If this equation has a solution d*, it is shown in Pang (1990) that if H(z*) # 0,
then d* is a descent direction for 8 := ||H(-)||* /2.

Pang (1990) uses this approach, in conjunction with a linesearch strategy to
produce an algorithm that is globally convergent under certain relatively strong
regularity conditions. Local Q-quadratic convergence for this approach was proved
in Pang (1991), again under fairly strong regularity conditions.

It is also possible to use B-derivatives to form a generalization of the Gauss-
Newton method by replacing (3) with

(6) min % HH(J}k) —I—B[-[(:Jck)alH2

subject to 2k 4+ d > 0.

This generalization is the basis for the NE/SQP algorithm (Pang & Gabriel 1993,
Gabriel & Pang 1992). Pang and Gabriel proved global convergence and local Q-
quadratic convergence for this algorithm using weaker regularity conditions than
were needed for the Newton-based approach. A desirable feature of this algorithm
is that the Gauss-Newton subproblems are always solvable, thus contributing to
the robustness of the algorithm. However, as we shall show in Chapter 2, the
robustness of the NE/SQP algorithm is disappointing.

The minimum map reformulation is the basis for the algorithms QPCOMP and
PROXI, which will be presented in Chapters Chapter 2 and Chapter 3. In Chap-
ter 2, we define a generalization of the minimum map whose zeros are solutions to
the MCP. Using this reformulation, we develop the QPCOMP algorithm, which
is based largely on NE/SQP. This algorithm improves on NE/SQP in two ways.
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First, it generalizes the NE/SQP method to the MCP framework, and second, it
is considerably more robust than NE/SQP. In Chapter 3, we present an algorithm
called PROXI, which is similar to QPCOMP, however, it used a Newton method
rather than a Gauss-Newton method to solve the generalized minimum map.
The second reformulation we shall consider is based on the semismooth func-

tion ¢ : R? = R defined by
ola,b) = vVa? +b>— (a+ D).

This function was first introduced by Fischer (1992), and has been further studied
by Facchinei & Soares (1994), Facchinei & Soares (1995), Geiger & Kanzow (1994),
Kanzow (1994), Kanzow (1995), Pang & Qi (1993), Qi (1993), Qi & Sun (1993),
Qi & Jiang (1994), and Tseng (1994). An up to date review of the uses of this
function is given by Fischer (1995).

This function has the property that

(7) dla,b) =0 <= a>0,b>0,ab=0.

Note also that ¢ is continuously differentiable everywhere except at the origin.

Several algorithms for solving NCP(f) have been proposed based on the ¢
function (Facchinei & Soares 1994, Facchinei & Soares 1995, Geiger & Kanzow
1994, Kanzow 1994). These algorithms assume that f is continuously differen-
tiable on all of R”. The NCP is then reformulated as the zero finding problem
¢(x) =0, where ® : R — R" is defined by

(8) () == P, fi(x)).

Based upon (7), it is easily seen that @ solves NCP(f) if and only if ®(x) = 0.

This semismooth reformulation has two advantages over the minimum map.
First, it always incorporates both the boundary and the function information at
every iteration. This is in marked contrast to the minimum map, which uses
information only from one or the other. Second, the natural merit function
O(z) == ||H(x)||* /2 is continuously differentiable. De Luca et al. (1995) use this
reformulation to propose an algorithm that is proven to be globally convergent
and locally Q-quadratically convergent based on considerably weaker regularity
conditions than those required by the NE/SQP method.

In Chapter 3 we shall generalize the function ® to the MCP framework. We
will then use this generalization to develop a a Newton-based algorithm for the
MCP, which is considerably more robust than the original algorithm of De Luca
et al. (1995)

The third reformulation we consider is of interest not as a basis for a nonlinear
MCP algorithm, but rather as motivation for the algorithms presented in Chapters
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4 and 5, which solve the LMCP and the affine generalized equation, respectively.
This reformulation is based upon the normal map (Eaves 1971, Minty 1962, Robin-
son 1992). Given a closed convex set C' C R" and a function f : C — R", the
normal map Fe : R" — R" is defined by

(9) Fo(z) = f(me(2)) + 2 = mo(),

In the case where ' := B, finding a zero of this equation is equivalent to solv-
ing MCP(f,B) in the following sense: if Fg(z) = 0, then z := mg(z) solves
MCP(f,B). Conversely, if z is a solution to MCP(f, B), then = := z — f(z) is a
zero of I'p.

Several algorithms have been developed based on this normal map formulation.
Harker & Xiao (1990) present a B-differentiable equation approach to finding a
zero of the normal map. However, the convergence theory for this algorithm is
somewhat restrictive.

A more successful approach has been based upon the well-established theory of
generalized equations (Robinson 1980). The basic idea is to generalize Newton’s
method by solving a sequence of piecewise-linear approximations to Fyg, which
are formed by replacing f with its first order Taylor approximation at the current
iterate. Specifically, at the kth iteration, the Newton point z is calculated by
solving the piecewise affine equation M]’]%(:z;) = 0, where

Mp(e) = f(rg(a")) + V(") (rg(e) — mR(e")) + = — 7 (2).
But this is equivalent to solving LMCP(M*. ¢*, B), where
MF =V ()T and ¢ := f(Tf']B(l‘k)) — Vf(:z;k)TWB(xk).

Thus, at each iteration, the Newton point is calculated by solving an LMCP that
approximates the nonlinear problem near the current iterate. It is for this reason
that this approach is often referred to as a successive linear complementarity
problem (SLCP) method (Mathiesen 1987, Mathiesen 1985).

Josephy (1979) proved local quadratic convergence for an algorithm based on
the above ideas, assuming a strong regularity condition (Robinson 1980) at a
solution. However, global convergence results for Josephy’s algorithm were not
established. To achieve global convergence, a globalization strategy is needed.
Rutherford (1993) describes an algorithm called MILES that globalizes the Jose-
phy method by performing a simple linesearch between the current iterate and
the Newton point. This approach works well in practice, but is theoretically un-
justified since the linesearch direction is not necessarily a descent direction for the

natural merit function given by #(x) := HF]B(:JC)H2 /2.
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A theoretically sound approach was proposed by Ralph (1994). In this ap-
proach, a pathsearch is performed, seeking reduction of the merit function along
a piecewise linear path connecting the current iterate with the Newton point.
This path is exactly the search path that was constructed by the LMCP solver
in solving the linear subproblem. Following this path is guaranteed to produce
descent of the merit function as long as the current iterate is not a stationary
point of the merit function. Thus, Ralph was able to prove global convergence of
this algorithm.

A sophisticated version of Ralph’s pathsearch algorithm has been implemented
in a computer code called PATH (Dirkse 1994, Dirkse & Ferris 19956, Dirkse &
Ferris 1995¢). This algorithm is comparable to SMOOTH in terms of robustness
and efficiency, as will be shown in Chapter 3.

Due in large part to the success of PATH and MILES, the economics commu-
nity has been developing extremely large economic models in the mixed comple-
mentarity framework (Harrison, Rutherford & Tarr 1995). Because of this, it is
clear that techniques for improving the efficiency of these algorithms on very large
scale problems need to be explored. One possible avenue is to use interior-point
methods to solve the LCP subproblems. But for such a technique to be useful,
the interior-point method needs to be easily warm-started, since the solution to
one subproblem will often be near the solution to the next. This consideration is
what motivated Chapter 4 of this thesis, which presents an infeasible interior-point

method for solving the LMCP.

1.3.3 Robustness Issues

All of the algorithms discussed so far are examples of descent methods, which
work to minimize the merit function. As such, their global convergence behavior
is limited by a fundamental difficulty: the merit function may have local minima
that are not solutions of the complementarity problem. This difficulty manifests
itself in different ways for different algorithms. In PATH and MILES, it arises
as a rank-deficient basis or as a linear complementarity subproblem that is not
solvable. In SMOOTH, it appears as a singular Jacobian matrix. In NE/SQP it
arises as convergence to a point that fails some regularity condition.

Because of this difficulty, the best these algorithms can hope for, in terms
of global convergence behavior, is to guarantee finding a solution only when the
merit function has no strict local minimizers that are not global minimizers. In
general, this means that the function f must be monotonic in order to guarantee
convergence from arbitrary starting points.

Another class of algorithms is based on numerical continuation. Examples of



14

this class are given in Pang & Wang (1990), Reinoza (1985), Sellami (1994), Wat-
son (1979). Theoretically, these algorithms are extremely robust, depending only
on very weak assumptions. However, they do not have the fast local convergence
rates enjoyed by the Newton-based algorithms.

The challenge then, is to develop an algorithm that rivals the continuation
methods in terms of robustness, but which is still competitive with the descent
methods in terms of local convergence rates. This challenge is addressed in Chap-
ters 2 and 3, where a proximal perturbation strategy is proposed and implemented.
This strategy allows Newton-based methods to achieve global convergence depend-
ing only on a pseudo-monotonicity assumption at a solution. Under this pseudo-
monotonicity assumption, convergence from arbitrary starting points is achieved
even in the presence of strict local minima of the merit function.

1.4 Solution Methods for Linear Problems

This section describes two common techniques for solving linear complementarity
problems: interior point methods, and pivoting methods. These two techniques
serve as the basis for the algorithms presented in Chapters 4 and 5. In describing
these methods, it is convenient to state the LCP in an alternative form given by:

LCP(M, q): Find (z,y) € R} x RY such that
y=Mz+gq, and (z,y) =0.

1.4.1 Interior Point Methods

Since the landmark work of Karmarkar (1984), the mathematical programming
community has witnessed an explosion of research devoted to interior point meth-
ods. The reason for this enthusiasm is that interior point algorithms have been
demonstrated to have polynomial complexity, which means that the worst-case
execution times of these algorithms is a polynomial function of the problem size.
This contrasts sharply with the exponential complexity of pivoting schemes. But
this is not just a theoretical advantage; when put into practice, run times for
interior-point algorithms have been observed to grow relatively slowly as prob-
lem sizes are increased (Lustig, Marsten & Shanno 1994). Thus, interior point
methods are viewed by many as the method of choice for very large scale problems.

Most of the early work on interior-point methods was devoted to solving lin-
ear programming problems. However, more recently, these techniques have also
been shown to be effective for monotone linear complementarity problems. There
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are many variations of interior point methods. The algorithm we shall develop
in Chapter 4 is an example of a path-following method. The basic idea behind
path-following methods is to reformulate the LCP as a minimization problem aug-
mented with a barrier term to ensure that the iterates remain strictly feasible. For
example, LCP(f) may be approximated by the following minimization problem:

. min  (z,y) = p i, (logzi + log i)
MP(p): subject to y=Mzx+q.

For any positive value of p, the log terms force the solution (a(u),y(p)) of the
above minimization problem to be strictly positive. As p is decreased continuously
to 0, the corresponding solutions (x(u),y(r)) to MP(u) trace out a central path
that leads to the solution (z,y) of the LCP. The aim of the path-following method
is to follow this central path to the solution. The algorithm is started with a
positive value of p, and a strictly feasible point (2°4°) € R}, x R}, which
satisfies the equality constraint y® = Mz® + q. A sequence of strictly feasible
iterates is then generated, where at each iteration, a single constrained damped
Newton step is taken toward the solution of MP(yx), and then the value of y is
decreased.

Until recently, interior-point methods were not amenable to warm-starting.
This was unfortunate since our main interest in solving linear complementarity
problems is in the context of solving nonlinear problems. In particular, SLCP
schemes work by solving a sequence of LCP subproblems, whose solutions converge
to the solution of the nonlinear problem. In general, the solution to one LCP is
very near the solution to the next. Thus, we would like to warm-start the LCP
algorithm with this “good” starting point.

The reason interior point methods could not be easily warm-started was that
the starting point needed to be strictly feasible, meaning that it needed to strictly
satisfy the inequality constraints (x,y) > 0 as well as satisfying the equality
constraints y = Mx + ¢. Unfortunately, in an SLCP scheme, the solution to one
subproblem is not, in general, feasible for the next subproblem. Thus, it would
need to be modified to make it feasible, a process that would generally carry it
far away from the solution.

More recently, infeasible interior-point methods have been developed, which
differ from (feasible) interior-point methods by allowing the iterates to violate
the equality constraints while strictly satisfying the inequality constraints. Put
differently, the iterates are infeasible with respect to the equality constraints, but
are interior to the region defined by the inequality constraints. We call this region
the inequality-feasible region or more simply the i-feasible region.

A typical implementation of an infeasible interior-point method replaces the
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minimization problem MP(u) with the following unconstrained problem:

min (z,y) + |ly — Mz + ¢|| — Y _ (log z; + log y;)

=1

In this problem, there is no requirement that the equality constraints y =
Mz + ¢ be satisfied until the solution is found. The relaxation of the feasibility
requirements allows these infeasible interior-point methods to handle warm starts
quite effectively. Typically, the problems can be formulated in such a way that
the only difference between the current problem and the nearby problem is in the
equality constraints. Thus, with only a slight modification, the solution to the
nearby problem can be used as the starting point for the current problem. This
slight modification is needed simply to move the point from the boundary of the
i-feasible region to the interior of the i-feasible region, and can be arbitrarily small.

A significant amount of work has been devoted to the development of infeasi-
ble interior-point algorithms. This line of research first produced practical algo-
rithms along with numerical tests and comparisons, which demonstrated superior
practical performance of this class of algorithms. (Anstreicher 1991, Anstreicher
1989, Lustig, Marsten & Shanno 1991, Lustig, Marsten & Shanno 1992, McShane,
Monma & Shanno 1989, Mehrotra 1992, Kojima, Mizuno & Todd 1992, Mizuno
1993, Potra 19924, Potra 1992¢).

More recently, a number of theoretical papers have been written which analyze
convergence and complexity behavior of various algorithms (Anitescu, Lesaja &
Potra 1994, Kojima, Megiddo & Mizuno 1991, Kojima, Shindo & Hara 1994,
Mizuno, Jarre & Stoer 1994, Potra 1994, Potra & Bonnans 1994, Potra & Sheng
19946, Potra & Sheng 1994a, Shanno & Simantiraki 1995, Stoer 1994, Wright
1994, Wright 1993, Wright & Zhang 1994, Zhang 1994, Zhang & Zhang 1992).

Of particular importance is the paper by Zhang (1994). In it, Zhang demon-
strates global Q-linear convergence and polynomial complexity for a class of in-
feasible interior-point methods for a generalization of the linear complementar-
ity problem called the horizontal linear complementarity problem. This work is
particularly significant because the class of algorithms Zhang analyzes is closely
related to already existing algorithms with proven effectiveness. More recently
Wright (1994) and Wright (1993) extended Zhang’s algorithm to produce two
algorithms that achieve local -subquadratic convergence.

Unfortunately, both Zhang and Wright place a restriction on the starting point
that will pose problems when warm-starting the algorithms. Their restriction is
very easy to satisfy if we are allowed to vary the starting point. However, this
completely defeats the purpose of warm-starting, since changing the starting point
may take us farther away from the solution. Fortunately, this restriction on the
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starting points is unnecessary. The proof of this fact is one of the main results
of Chapter 4. After this restriction is removed, it will then be a straightforward
task to generalize Wright’s algorithm to solve the LMCP.

The issue of relaxing the restrictions on the starting points for infeasible
interior-point algorithms has been addressed in several other papers. For lin-
ear programming, global convergence from any positive starting point is proved
by Potra (1992b8). A similar result is given by Potra & Sheng (19945) for the linear
complementarity problem. Monteiro & Wright (1993) propose an algorithm for
the linear complementarity problem that achieves superlinear convergence from
any positive starting point. Their analysis is significant in that they prove su-
perlinear convergence without assuming the existence of a strictly feasible point.
Another algorithm by Wright (1993) achieves similar convergence results for the
mixed monotone linear complementarity problem.

Giiler (1995) proves that any interior-point algorithm for the linear comple-
mentarity problem can be extended to an interior-point algorithm for the hori-
zontal linear complementarity problem with identical convergence results. Thus,
in principle, any of the methods cited above could be extended to the horizontal
linear complementarity problem to provide an algorithm that converges from arbi-
trary starting point. However, because of the fundamental importance of Zhang’s
algorithm, a direct generalization of his analysis is appropriate.

1.4.2 Pivoting Methods

The final class of algorithms we are interested in is the pivoting methods. The
most famous of these approaches is Lemke’s method (Lemke & Howson 1964).
Numerous other pivoting strategies have been proposed, which are described in
detail by Cottle, Pang & Stone (1992). Perhaps the most important of these
methods are the principal pivoting algorithms, which were originally proposed
by Zoutendijk (1960) and Bard (1972), and are described in their general form
by Cottle (1966), Cottle (1968), Cottle & Dantzig (1968), and Dantzig & Cottle
(1967). However, Lemke’s method is still the preferred technique.

Lemke’s method is typically described in terms of generating a sequence of al-
most complementary vector pairs {(y*, %)} that are extreme points of the feasible
region {(y,x)|y >0,2 >0,y = Ma + q}. The iterates are updated by moving
within the kernel of a basis matrix B*¥ € R™*" until a new boundary of the feasi-
ble region is encountered. At each iteration a “pivot” is performed that updates
the basis matrix. A complete and elegant description is provided in Cottle &
Dantzig (1968).

For our purposes, a more geometric view of Lemke’s method is preferable. The
background for this was provided by Eaves” work on piecewise linear homotopies
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(Eaves 1976). To describe Lemke’s method in the homotopy framework, we first
reformulate LCP(M, q) as a zero-finding problem of the normal map Iz, where
B:=R}:

FB(:L') =Mxy +qg—ax_.

As was discussed in Section 1.3, if Fg(z) = 0, then (z,y) := (x4, Mzy + q)
is a solution of LCP(M,q), and conversely, if (z,y) is a solution to LCP(M, q),
then x := z — y is a zero of I'y. To find a zero of Iy, a homotopy mapping is
constructed in which an additional variable is added to produce a piecewise-linear
function ¢ : R" x Ry — R"™. This mapping is defined as follows:

oz, A) == Fg(x) + Ae.

(Recall that e is the vector of all ones). The strategy is then to track the zero
curve of ¢ starting from a trivial solution until a point (&, \) is reached with A = 0.
At this point 7 is a zero of I.

In the terminology of Eaves, the domain of ¢ can be subdivided into a finite
collection of (n + 1)-dimensional cells whose interiors are disjoint, such that the
restriction of ¢ to each cell is an affine function. These cells are characterized by
the signs of the components of x. For example, if n = 2, there are four cells given

by

or = {(x,A\) |21 >0,29 >20,A >0}
o) — {($,)\)|$1§0,$220,)\20}
o5 = {(x,A\) |21 >0,2 <0,A >0}
oy = {(x,A\) |21 <0, <0,A >0},
and
Doy (2, ) 1= Mz 4 Ae+gq
Ploy (2, A) 1= {[.1 M.g}:z:—l—)\e—l—q
Dlos (T, A) = {M.l [.g}x—l—)\e—l—q
Plog(2,A) = Trx+Ae+yq

In this example, the matrices multiplying = correspond to the basis matrices B*
in our first description of Lemke’s method.

FEaves (1976, Theorem 9.1) shows that if 0 is a regular value (Eaves 1976,
Section 8), then ¢~!(0) is a l-manifold whose endpoints lie on the boundary of
the domain of ¢. A 1-manifold is a disjoint union of routes and loops, where a
route is a curve homeomorphic to an interval, and a loop is a curve homeomorphic
to a circle.



19

It follows then that if 0 is a regular value, then tracking the zero curve from
a given starting point can have one of three possible outcomes: either 1) the zero
curve will loop back to the original point, 2) the zero curve will terminate in a
ray, or 3) the zero curve will terminate at a point on the boundary of dom(¢). In
this last case, a solution is found since any boundary point will necessarily have
A=0.

To eliminate the first possibility, a starting point is chosen that is the endpoint
of a ray. This is accomplished by choosing the starting point (2% A\g) such that
Ao > max;(—¢;), and 2° := —g— Age. Observe that by defining d° := (—e, 1), then
the ray {(2% Ao) + pd®| g« > 0} lies on the zero curve of ¢. Note further that this
ray is entirely contained within the cell characterized by a nonpositive. Thus, in
the example above, this ray is contained in the cell o4. 1t is clear then that the
starting point lies on a component of the zero curve that is not a loop. Thus,
tracking this zero curve will either result in ray termination, or in termination at
a solution.

To trace the zero curve we start by moving in the —d° direction until a bound-
ary of the starting cell is reached (i.e., until either A = 0 or a; = 0 for some 7).
If this boundary point is not a solution, then it must be shared by another cell.
Furthermore, under the regularity assumption, it is shared by only one other cell.
In this case, a new direction d! is chosen that lies in the kernel of this new cell. We
then move along this direction until a new boundary is encountered. The process
continues until it terminates at either a ray or a solution. When 0 is not a regular
value, then the above process can be enhanced by a lexicographic ordering.

One characteristic of the above process is that in moving between adjacent
cells, the ¢ function differs only by a rank-1 update. Thus, the matrix can be
stored in factored form, and the factors can be updated cheaply at each iteration.

The foundation laid by Eaves (1976) provided a far more powerful theory than
was required for Lemke’s method. Using this theory, it is possible to develop
similar algorithms for more complex problems. Such an algorithm was devised for
affine variational inequalities by Cao & Ferris (19955). In Chapter 5 we extend
this work to produce an algorithm for affine generalized equations.

1.5 Organization

So far, we have introduced several problem classes and provided an overview
of some of the relevant techniques for addressing these problems. The remain-
der of this thesis expands upon these ideas, presenting five new algorithms for
complementarity problems and generalized equations. In Chapter 2 a proximal
perturbation strategy is presented in detail and a global convergence result is
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proven that depends only on a pseudomonotonicity assumption. This strategy is
then applied to the NE/SQP algorithm of Pang & Gabriel (1993). To do this,
the NE/SQP algorithm is first extended to solve problems in the MCP frame-
work, and then modified to guarantee finite termination. Finally, the QPCOMP
algorithm is presented along with a formal proof of global convergence.

In Chapter 3 the proximal perturbation strategy is applied to two additional
Newton-based algorithms. The first is a very simple damped Newton scheme
that, like the NE/SQP algorithm, uses a generalization of the minimum map to
reformulate the MCP. The second algorithm is a semismooth equations approach
that uses the second reformulation described in Section 1.3. Extensive computa-
tional results are then given comparing the performance of these algorithms to the
current state-of-the-art algorithms PATH (Dirkse & Ferris 19956) and SMOOTH
(Chen & Mangasarian 1995a)

In Chapter 4, we present an infeasible interior-point algorithm for the linear
mixed complementarity problem. To do this we first extend some theoretical
results of two previous infeasible interior-point algorithms, proving global and local
QQ-subquadratic convergence from arbitrary starting points. We then use these
results to prove convergence of our algorithm for the linear mixed complementarity
problem.

Finally, in Chapter 5, we develop a path-following algorithm for the affine
generalized equation. This algorithm is an extension of an algorithm for affine
variational inequalities that was proposed by Cao & Ferris (19950). We prove that
under an assumption of coherent orientation, the algorithm will find a solution in
a finite number of iterations.
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Chapter 2

QPCOMP

In this chapter, we present QPCOMP: a Quadratic-Programming based solver for
mixed COMPlementarity solvers. This algorithm is the first of three algorithms
using a proximal perturbation strategy that will be presented in Section 2.1. This
strategy provides a means of enhancing any algorithm that reliably solves strongly
monotone MCPs so that it will solve a much broader class of problems. In partic-
ular, it will solve any problem that satisfies a pseudo-monotonocity condition at a
solution. This result will be proved in Theorem 2.1.3 based upon exact solutions
to a sequence of perturbed subproblems. Applying this strategy to the NE/SQP
algorithm of Pang & Gabriel (1993) results in the QPCOMP algorithm.

As mentioned in the introduction, the robustness of NE/SQP is disappointing
when compared to PATH and SMOOTH. In fact, we shall show in Section 2.2 that
NE/SQP cannot reliably solve even one-dimensional monotone linear complemen-
tarity problems! However, NE/SQP works well on strongly monotone problems,
which is all that is required for our strategy to work.

Before applying this strategy to NE/SQP, it is first necessary to extend the
NE/SQP algorithm to the MCP framework. We do this in Section 2.2, where we
present the algorithm and also duplicate all of the convergence results given in
Pang & Gabriel (1993). In addition, we extend these convergence results to prove
that the NE/SQP algorithm will solve any strongly-monotone MCP. Finally, we
introduce some modifications to the algorithm to ensure that it will terminate in
a finite number of iterations, even when it fails.

We will be referring to the analysis of Pang & Gabriel (1993) extensively. As
much as possible our notation is identical to the notation used by Pang & Gabriel.
The only difference is in the meaning of V f(x). If f is a function from R"” to R™,
V f(x) is always a n x m matrix, whereas, in Pang & Gabriel (1993), it is an m xn
matrix, except when m = 1.

In Section 2.3, we present the QPCOMP algorithm. The main convergence
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result for this algorithm is given in Theorem 2.3.1, which shows global conver-
gence under the assumption of pseudo-monotonicity at a solution, whenever f is
a Lipschitz continuous, continuously differentiable function. Finally, some test
results will be given in Section 2.4, which demonstrate that QPCOMP is signifi-
cantly more robust than NE/SQP. Throughout this chapter we assume that f is
continuously differentiable on an open set 0 O B.

2.1 The Proximal Perturbation Strategy

In this section we present a strategy for taking algorithms which work well on
strongly monotone MCPs and extending them to solve MCPs for which a consid-
erably weakened monotonicity condition is satisfied. To state this condition, we
first need to define the concept of pseudo-monotonicity:

Definition 2.1.1 Given a set B C R", the mapping f : Q@ — R" is said to be
pseudo-monotone at a point x* € B if Vy € B,

(1) (f@),y —2") 20 dmplies  (f(y),y —2") > 0.

f is said to be pseudo-monotone on B if it is pseudo-monotone at every point in

B.

It is known (Harker & Pang 1990) that if a function g : R" — R is pseudo-
convex (Mangasarian 1969, Definition 9.3.1), then Vg is a pseudo-monotone func-
tion. However, if ¢ is only pseudo-convex at a point z*, it does not necessarily
follow that Vg is pseudo-monotone at z*.

Pseudo-monotonicity is a weaker condition than monotonicity. In particular
every monotone function is pseudo-monotone. But the converse is not true. For
example, consider the function f(x) := x/2 + sin(x). This function is pseudo-
monotone, but is not monotone. Note further that the natural merit function
| £(x)]|* /2 has strict local minima that are not global minima. Thus, we see that
the natural merit function of a pseudomonotone function can have local minima
that are not global minima.

In order to guarantee global convergence of our algorithm we shall require that
the following assumption be satisfied:

Assumption 2.1.2 MCP(f, B) has a solution x* such that f is pseudomonotone
at x*.
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If MCP(f,B) satisfies Assumption 2.1.2, we say that MCP(f,B) is pseudo-
monotone at a solution. However, for simplicity, we will abuse terminology some-
what and say simply that MCP(f, B) is pseudo-monotone. This should not cause
any confusion since all of our discussions will refer to problems which satisfy As-
sumption 2.1.2.

The strategy we present for pseudo-monotone MCPs is based upon extending a
descent-based algorithm for strongly monotone MCPs. The idea behind a descent-
based algorithm is to minimize a nonnegative merit function § : B — R4. If f
is strongly monotone, it is easy to construct a merit function that has a global
minimum, but no other local minima. It is then a simple task to find the global
minimizer of , thereby giving a solution to the MCP. If however f is not monotone,
then the merit function chosen will, in all likelihood, contain local minima for
which § # 0. The algorithm may then terminate at such a local minimum, rather
than at the solution.

To overcome this difficulty, we would like to find some way to “escape” from
this local minimum. This can be accomplished by constructing an improved start-
ing point & where 0(%) is smaller than the value of § at the local minimum. Since
the descent-based algorithm never allows the value of 8 to increase, the algorithm
can be restarted from Z with the guarantee that it will never return to the local
minimum. Obviously, finding such an improved starting point is not a straightfor-
ward task. However, this can be achieved when the problem is pseudo-monotone.
The remainder of this section describes how to construct this improved starting
point.

We begin by defining a particular merit function for our algorithm: To do this,
we first introduce the mapping H : 2 — R" defined by

(2) H;(x) := min(z; — [;, max(x; — u;, fi(x))).

It is easily shown that H(x) = 0 if and only if & solves MCP(f,B). Using this

function, we define the merit function
(3) 0(x) := =H(x)" H(x).

Clearly, = is a solution to MCP(f,B) if and only if & is a minimizer of § with
f(x)=0.

In Section 2.2 we will present a basic algorithm for solving strongly monotone
MCPs, which is based on minimizing this particular choice of . However, for
now, we simply assume that such an algorithm exists. Moreover we assume that
the algorithm will fail in a finite number of iterations whenever it cannot solve the
problem.
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Now suppose the basic algorithm fails at a point z°. Our strategy will be to
solve a sequence of perturbed problems, generating a sequence of solutions {z*}
that leads to an improved starting point . The perturbed problems we solve are
based on the following perturbation of f: given a centering point * € B, and a
number A > 0, let

P(@) = f(x) + Al — @),

If f is Lipschitz continuous, then for X large enough, f*¥ is strongly mono-
tone. Thus, the basic algorithm will be able to solve the perturbed problem

MCP(fM B).
With a sufficiently large A we can then generate a sequence of iterates as
follows: given a point 2°, then for k& = 0,..., choose z**! as the solution to

MCP(fA’xk, B). Note that every subproblem in the sequence uses the same choice
of A, but a different choice of centering point. In particular the centering point
for one subproblem is the solution of the previous subproblem. This is very
reminiscent of the proximal point algorithm (Rockafellar 1978) and of Tikhonov
regularization (Tikhonov & Arsenin 1977).

The following lemma gives sufficient conditions for a subsequence of these
iterates to converge to a solution of MCP(f, B).

Theorem 2.1.3 Let A > 0 and let {z*},k =0,1,... be a sequence of points in B
such that for each k, "' is a solution to MCP(fA’xk, B). If MCP(f, B) satisfies
Assumption 2.1.2, then

1. {2*} has a subsequence that converges to a solution © of MCP(f, B).
2. Bvery accumulation point of {x*} is a solution of MCP(f, B).

3. If f is pseudomonotone at any accumulation point & of {x*}, then the iter-
ales converge lo x.

Proof Let 2* be the solution to MCP(f,B) given by Assumption 2.1.2. Since
2"*1 is a solution to MCP(fA’xk, B), then for each component 7, exactly one of the
following is true:

1. 2 = [; and fi(a" ) + )\(:Iif—l_l —xf) >0,
2. I; < aftt < g and fi(a*) 4 M@ — 2F) =0,

3. 2M! = u; and fi(zk ) + )\(:ch"'l —zk) <0,
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Let I;, Iy and I, be the sets of indices which satisfy the first, second, and third
conditions respectively.

For i € I, it follows that 0 < z¥ — P < fi(@® ) /X, Also, ahrl xf =
l; —ar <0, s0
(4) (2 — ) (e — et > fie® ) (@ —af) /A

K3 K3 K3

By similar reasoning, this inequality holds for : € [,. Finally, for ¢+ € Iy,
f?’wk(xk"'l) = 0, so of — 2% = fi(«*1)/), whereupon it follows that (4) is
satisfied as an equahty.

Thus in all cases, inequality (4) is satisfied, which gives us the following.

(2 —21)? = (2F — oy 42k — ohth)?
= (@M a2 gt — 2l 4 (o — k)2

K3 K3 K3 K3

> (@i = ap)?  2fi(@) (@ = D) A+ (af = 2T by (4).
Summing over all components, we obtain

2
ka _x*

2 i 2<f(xk+1)7xk+1 _ :1;*> I+ ka _ kaHz'

Under Assumption 2.1.2, the inner product term above is nonnegative. Thus,

2 2 2
k * + ka . xk-H‘

" =2

Y

ko :L'k"'lH — 0. It follows that

{z*} has an accumulation point. Let z be any accumulation point of {z*}. Then
- :L'k"'lH — 0,

we also see that %+ — Z. Finally, since 2%+ solves MCP(fA’lf, B), we have

SO {ka —a*

there is a subsequence {2% : 7 = 0,1,...} converging to z. Since

min (xfﬁl — [;, max (xfﬁl — g, fi(2T) 4 M Rt xfj))) =0, Vi

By continuity, min (z; — {;, max (#; — u;, f;(2))) =0, Vi; that is, & solves
MCP(f,B). This proves items 1 and 2

To prove item 3, note that if f is pseudomonotone at an accumulation point
Z, then by item 2, ¥ is a solution, so the above analys1s can be repeated with z*
replaced by z. We can then Conclude that {H — :L'H} is a decreasing sequence.

But since 7 is an accumulation point of {z*}, it follows that H — :L'H — 0. 0
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Table 1: Iterates produced by solving sequence of perturbed problems, with (A =
1.1)

| fe) | )

0 -.01 .00005
9110 | -1.0021 | .5021
1.5521 | -.7052 2487
1.8356 | -.3118 0486
1.9439 | -.1191 .0071
1.9832 | -.0433 | .00094
1.9973 | -.0155 | .00012
2.0023 | -.0055 | .00002

=1 O Ot = W N~ O

Note that Theorem 2.1.3 did not make any assumptions on the choice of A.
Thus, even if A is too small to ensure that % is strongly monotone, the strategy
will still work so long as each subproblem is solvable.

To illustrate the technique, it is useful to look at a simple example. Let

B:= R, and let f : R — R be defined by
f(z) = (z—1)* — 1.0L.

This deceptively simple problem proved intractable for all of the descent-based
methods we tested. In particular, we tried to solve this problem using PATH,
MILES, NE/SQP, and SMOOTH. All four algorithms failed from a starting point
of + = 0. But this should not be surprising since f is not monotone. However, f
is pseudo-monotone on B. Thus, it is easily solved by our technique. For example,
using A = 1.1 and a starting point 2 = 0, the strategy generates the sequence of
iterates shown in Table 2.1.

Note that at the 7th iteration, an improved starting point is found, (i.e, #(z7) <
6(z%)). At this point, a basic algorithm (e.g., Newton’s method) can be used to
obtain the final solution.

In this section, we have introduced a basic strategy for taking descent-based
algorithms that solve strongly monotone MCPs, and extending them to solve
pseudo-monotone MCPs. This is, in fact, the main idea presented in this chapter.
However, to turn this strategy into a working algorithm, a number of details must

be addressed:

1. We must ensure that the basic algorithm (for solving the strongly mono-
tone MCPs) terminates in a finite number of iterations. This issue will be
addressed in detail in Section 2.2.
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2. Since we require finite termination of the basic algorithm, we must allow
inexact solutions of the perturbed subproblems. We shall therefore need to
incorporate control parameters into our strategy which govern the accuracy
demanded by each subproblem. In the our actual implementation of the
algorithm we demand very little accuracy for each subproblem. In fact, ex-
cept in extreme circumstances, we allow only one step of the basic algorithm
before updating the perturbed problem. To guarantee convergence of this
approach requires more laborious analysis which we defer until Section 2.3.

3. Since we have no a priori information regarding the Lipschitz continuity of
f, we shall have to incorporate some adaptive strategy for choosing A in
order to ensure that, eventually, the subproblems all become solvable.

The remainder of this chapter addresses these details.

2.2 Subproblem Solution

In this section, we present an algorithm for solving strongly monotone MCPs,
which is based on the NE/SQP algorithm of Pang & Gabriel (1993). NE/SQP
was originally developed as a method for solving the nonlinear complementarity
problem. When it was first introduced, NE/SQP offered a significant advance
in the robustness of NCP solvers because the subproblems it needs to solve at
each iteration are convex quadratic programs, which are always solvable. Today,
its robustness has been greatly surpassed by PATH, MILES, and SMOOTH (see
Chapter 3). However, NE/SQP is still a viable technique for solving strongly
monotone MCPs. Moreover, NE/SQP has the very desirable feature of evaluating
the function f only on B. This is in marked contrast to the SMOOTH algorithm
which requires f to be defined on all of R".

In this section, we first present the NE/SQP algorithm extended to the MCP
framework, and prove global and local convergence results for it, which parallel
the results given in Pang & Gabriel (1993). We then extend these results to show
that the algorithm solves all strongly monotone MCPs. Finally, we modify the
algorithm to ensure finite termination.

Before we begin, we note that in his Ph.D. dissertation, Gabriel extended
NE/SQP to address the upper bound nonlinear complementarity problem (UB-
NCP) (Gabriel 1992). The UBNCP is the special case of MCP where [ = 0 and
u > 0 is finite. Gabriel’s algorithm used a slightly different merit function than
the one we defined in (3). In particular, Gabriel’s merit function is given by

é(:z;) = [:[(:zj)T]:](x)/Z, where ]:]Z(:z;) = min(xz; — {;, file)4) + min(u; — 2, fi(z)-).
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2.2.1 Extension of NE/SQP to the MCP Framework

Recall that a vector x solves MCP( f, B) if and only if (x) = 0, where 6 is defined
by (2) and (3). The NE/SQP algorithm attempts to solve this problem by solving
the minimization problem

min O(x),
subject to x € B.

We will use 6 as a merit function for the MCP. To describe the algorithm in
detail we need to partition the indices {1,...,n} into five sets as follows:

{t:2;, = l; < fi(2)}
{Z Y lZ = fz(l')}
{t 12, —u; < fi(x)
{i 12, —u; = fi(2)}
(2)

= {oia;—w > fi(z)}.

Py
RN N S

It will at times be convenient to refer also to the index sets Ji(x) := [j(x) U la(x)
and J,(x) := L,(x)Ulu(x). As in the original description of NE/SQP, the sub-
scripts of these sets are chosen to reflect their meaning. For example, the sub-
scripts [, f, and u correspond to the indices where H;(x) = (x; — [;), fi(x), and
(x; — u;) respectively. The subscripts el and eu correspond to the indices where
fi(z) is equal to [; and wu;, respectively.

These index sets are used to define an iteration function ¢ : B x R" — R as

follows: ¢(z,d) := ||h(z,d)||* /2, where

(l‘i —lz—l-dz) 1€ ]l(l‘)U[el(l')
(5)  hi(z,d) =< (v; —w; + d;) i € L(x)U Leu(2) 1=1,...,n.
(fix) + Vfilx)Td) i€ lf(x)
To be consistent with the notation used by Pang and Gabriel, we also define
éi(x,d) := (hi(x,d))*/2. Given a point € B, the algorithm chooses a descent

direction d by solving the convex quadratic programming problem (QP.) given

by

minimize  ¢(x,d)

P
subject to x4+ d € B. (QP%)

When discussing particular iterates of the algorithm, we shall also use the abbre-

viation (QPy) := (QP ).
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We note that in the original NE/SQP algorithm, an additional constraint was
added to this quadratic program, namely,

d; =0 if fz(:zjk) =0 and :L'f =1/; or :L'f = u;.

However, this constraint is unnecessary for the convergence results, so we omit it
from our algorithm.

To ensure descent of the merit function 6, we will need to perform a linesearch
along the direction d*. To describe this linesearch, we introduce a forcing function

z: B x R" — Ry, defined by z(z,d) := Hb(:}(;,al)H2 /2, where

sz(x)-rd 1 € [f(l‘)

=1 n.

(6) bi(x,d) =

9o ey

This forcing function will be used to guarantee sufficient decrease in the merit
function at each iteration. Again to be consistent with the notation used by Pang
and Gabriel, we define z;(z, d) := (b;(x, d))?/2. Note that h(x,d) = H(z)+b(z,d).

The NE/SQP algorithm for mixed complementarity problems is stated in Fig-
ure 1.

Figure 1: Algorithm NE/SQP

Step 1 [Initialization] Select p,a € (0,1), and a starting vector 2° € B. Set
k=0.

Step 2 [Direction generation] Solve (QPy), giving the direction d*.
If ¢(z*,d*) = 0(2%), terminate the algorithm; otherwise, continue.

Step 3 [Steplength determination] Let my be the smallest nonnegative inte-
ger m such that

7 O(xF + pmd™) — 0(2") < —op™ (2", d¥);
p p
set zFtl = 2% + pmkdk.

Step 4 [Termination check] If 2*¥! satisfies a prescribed stopping rule, stop.
Otherwise, return to Step 2, with k replaced by k + 1.
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To present the convergence results for this algorithm, it is convenient to further
partition the index sets as follows:

(¢) == {i€lg:a;—1; >0}

() = {iejelil’i—li:()}

() = {Z'EIfil’Z’—li:O}

IHe) = {1elfra—u, <0<, —1;}
(¢) == {1€lf:2;,—u; =0}

() = {iE[euil’i—ui:O}

() = {1 € ly:a;—u; <0}

Note that for 2 € B, the sets I;(x), I} (x), I5(2), ]}(:1;), IH(x), If(x), 1D, I, (), and
I,(z) form a partition of the indices {1,...,n}.
The convergence results of this algorithm are based on two regularity condi-

tions: b-reqularity and s-reqularity.

Definition 2.2.1 A nonnegative vector x is said to be b-reqular if for every index

I7(x) C o C Iy(a) | J La(z) | Leu(2),

the principal submatriz

set « satisfying

Vo fa()

is nonsingular.

The term “b-regular” is chosen because the condition is used to prove bound-
edness of the search directions computed by the NE/SQP algorithm.

Definition 2.2.2 A nonnegative vector x is said to be s-reqular if the following
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linear inequality system has a solution in y:

l’i—li—l-yi:o ZE[[(J})

ri—u Yy =0 1€ L

file) +Vfi(x)Ty=0 i€ [}?(:1;

file)+ Vfi(:zj)Ty >0 1€ ]ch(:zj

(8) i —ui +y <0 @€ I¥(
file)+ Vfi(x)Ty <0 i€ [}‘(:1;

v, —lLi+y; <0 ielf(z)
L)+ Vfi(x)Ty <0 7€ ()
ri—ui+y, >0 eI ()
fi(@)+ Vfi(x)Ty >0 iel(x)

yi =0 i€ [(x)UI,(z).

Note that when [ = 0, u = oo the above definitions are identical to the concepts
of b-regularity and s-regularity defined by Pang and Gabriel. The term “s-regular”
is chosen to emphasize the relationship given by Pang & Gabriel (1993, Proposition
3), which relates s-regularity to the notion of an S-matrix (Cottle et al. 1992,
Definition 3.1.4).

The analysis that follows is nearly identical to the analysis in Pang & Gabriel
(1993) with the exception that we have to handle a more extensive collection of
index sets. Whenever possible, we refer to the original paper. However, occasion-
ally we are forced to recreate the proofs to be assured that the results hold for

the MCP.

Lemma 2.2.3 Suppose that {z*} C B converges to . Then for all k sufficiently
large, the following relations hold:

b
3
S
81
S—’
M
3
S
=
ol
S—’

C IF(x)U ("),
Ij(z) C Ip(x") U I7(2"),
6. I(x) C (") U L") U L ("),
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7. I5(7) C IF(a") U L(aF) U I, (%),
8. I%(2%) C I9(x),
9. ]gu(l'k) C [gu(i');

Proof Parts 1-7 are obvious consequences of the continuity of the function f.
To prove part 8, let Ty(x*) := I;(2*)U I(z*) U (2*), and observe that [9(z¥) is
the complement in Tj(2*) of [}?(:L'k) UL(="U [ch(:zjk) U I} (2%). Part 8 then follows
easily from parts 1,2,4, and 6. Similarly, part 9 follows from parts 1,3,5, and 7.

Proposition 2.2.4 Suppose that x is a stationary point of the problem

min 6(x)

subject to  x € B.
Then x solves MCP(f, B) if and only if « is s-regular.

Proof If z is a solution, then ]}(:1;), I¢(x), It (z), and I (z) are all empty. It is
then easily seen that y = 0 satisfies the s-regularity conditions (8). This establishes
the necessity.

To prove the sufficiency, let y be a solution of (8). It is easily seen that for

e > 0 small enough, = 4+ ey € B. Thus, since x is a stationary point of 8 over B,
(9) 0 < 0'(x;ey) which implies 0 < '(z;y).

But #'(x;y) = >0, Hi(x)H!(x;y). By examining each term of this sum, we can
show that 6'(x;y) < —20(x). For example if ¢ € [;(x), we see that H;(x) = 2, — [,
while by (8), Hi(z;y) = y; = —(x; — ;). Thus, Hi(z)H!(x;y) = —(x; — [;)* =
—H;(z)* = —2¢;(x,0). In similar fashion, we can easily show that H;(z)H!(z;y) <
—2¢;(x,0) for all i. Thus, #'(x;y) < —20(x) < 0. But by (9), 0 < 0'(z;y), so
f(x)=0. 0

Lemma 2.2.5 The following properties hold:
1. ¢(x,0) = 0(x) for all x € B.
2. d(x,d) — d(x,0) — z(x,d) > 0'(x;d) for all (x,d) € Bx R", and

3. for any sequence {(z*,d*)} C B x R" converging to (z,0) for some = € B,
limy oo @(2%, d¥) = &(2,0).
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Proof The proof of the first two parts comes simply by writing out the definition
for all the quantities involved as the sum of the componentwise terms, and then
comparing each of the summands individually. The proof of the last part requires
the use of Lemma 2.2.3. Let the sequence {(z*, d*)} be as given. In similar fashion
to the proof of Pang & Gabriel (1993, Lemma 2), we see that for ¢ € [¢(z), then
for all £ sufficiently large, by Lemma 2.2.3, i € I;(z*), so

$i(2,0) = %fi(w) = lim l(fz'(ac’“) +Vfi(a")Td") = Jim (2", d").
—+00
Similarly, for ¢ € I;(z),
$:(7,0) = 1(97;» —1;)? = lim l(x’? — L+ dF)? = lim ¢(z", d¥)
[ bl 2 7 7 2 7 7 7 s oo [ bl

and for ¢ € 1,(2),
bi(7,0) = Jim pi(z®, db),

For 1 € [61( ) hmk_mo( —l + dk) == i’i — lZ == fz(i') = hmk_mo(fz(l'k) +
Vfi(2¥)Td*). Thus, by a simple combinatorial argument, limy_., ¢;(2", d*) =
¢:i(%,0). A similar argument gives the result for ¢ € 1., (7). 0

Proposition 2.2.6 Let @ € B be arbitrary. Then the problem (QP,) has at least

one optimal solution. Let d, denote an arbitrary optimal solution. The following
statements hold:

1. z(:z;,cL,) < (),
2. qb(:z;,czx) < ¢(x,0), with equality holding if and only if Z(:L',czx) =0,

3. qub(x,czx) < @(x,0), then for any o € (0,1), there exists a scalar 7 > 0 such
that for all 7 € [0, 7],

O(x + Tczl,) —0(z) < —orz(2,d,),

4. if qb(:z;,czx) = ¢(x,0) and if x is s-reqular, then « solves the MCP(f, B).

Proof For simplicity, we drop the subscript z from the optimal solution d,. In

similar fashion to the proof of Pang & Gabriel (1993, Proposition 2), we can
establish the inequality

(10) > &4+ Y &+ S (Ve

i€n@)  iedue)  i€l(x)
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< — Z (xZ — ZZ)CZZ — Z ( — Uz d Z f )TJ)
ieJy(z) i€Ju(x) i€l (z)
1 ~2 1
< - Z(($¢—5¢)2+di)+§ Z((fl?_uz)‘|‘d)
i€Ji(x) i€Ju(x)
1 ~
+5 2 (@) + (Vile)Td)?).
i€ly(x)

Thus,

(11) 2z(x,d) = Zbi(x,d)Q

IA
|
NS
=
—~
=
~—
<~
PN
\'2%
QL
~—

< %i( (x,d)?)
_I_

= f(x

\_/

Part 1 easily follows from this inequality. For part 2, we need only establish the
necessary and sufficient conditions for equality to hold. Suppose ¢(x,d) = ¢(x,0).
Then we have

0= ¢(x,d) — ¢(x,0) = H(x)"b(x,d) + z(x,d),

which, by the second line of (11), implies that z(z, d) = 0. Conversely, if z(z, d)
0, then b(x, d) = 0, which clearly yields ¢(z, d) o(x,0).

The proof to part 3 is identical to the proof of Pang & Gabriel (1993, Propo-
sition 2, part(c)). The proof to part 4 is also identical except that we have to
examine a different collection of index sets to establish the following inequality:
let y be any vector satisfying the s-regularity condition (8), then for ¢ > 0 suffi-
ciently small,

(12) bi(z,ey) < (1 —e)?di(2,0), i=1,...,n.

For ¢ € L(x)UIf(z)UI5(z)U L(x)UI0,(x), this inequality is satisfied as an
equality. For 7 € [ch(l') U1, (x), we have f;(x) < 0, so for small e,

0> fix)+eVfi(x) Ty = (1 —e)filx), by (8).

(12) follows by squaring this inequality. The argument for 7 € [}(x) UIf(z) is
similar. The remainder of the proof is then identical to the proof of Pang &
Gabriel (1993, Proposition 2, part(d)). 0
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The third part of this proposition guarantees that the integer my in Step 3 of
the algorithm can always be determined in a finite number of trials. Moreover,
since the direction finding subproblems are always solvable, the algorithm will
generate a well-defined sequence of points {2}, along with a sequence of optimal
solutions {d*} to the direction finding subproblems (QP}). If we remove the
stopping rule in Step 4 of the algorithm, the sequence generated by the algorithm
will be infinite unless the algorithm terminates at a point = in step 2. In that
case, by part 4 of Proposition 2.2.6,  solves MCP(f, B) if & is s-regular. For the
remainder of our analysis, we assume that the algorithm does not terminate in
Step 2, so that we may assume that the algorithm generates an infinite sequence
of iterates {a"}.

Lemma 2.2.7 Suppose that x* is the limit of the subsequence {z* : k € x}. If 2
is b-regular, then {d* : k € k} is bounded.

Proof The proof is identical to the proof of Pang & Gabriel (1993, Lemma 3),
with the following substitutions:

[}"(:1;*) = ]}?(:1;*)
Iz )ULe(z™) = Lp(a")Ula(z™)U Leu(27)

O

Lemma 2.2.8 Suppose that x* is the limit of the subsequence {x* : k € k} and
that the sequence {z(x*,d*) : k € k} converges. Suppose also that x* is b-regular.
Then, for every sequence of positive scalars {\, : k € K} converging to zero,

k K\ _ p( .k
lim sup O(z” + M) = (") < — lim (2", d).

k—oo,k€R )\k - k—oo,k€R

Proof By Lemma 2.2.7, the sequence {d* : k € k} is bounded. Thus, the
sequence {l‘k +Md5 ke k} also converges to x*. Let yk = 2% 4+ \.d®. In similar
fashion to the proof of Pang & Gabriel (1993, Lemma 4), we can show that for &
sufficiently large, the following holds: for 7 € [¢(a*)U L;(a*) U L.(x¥),

Oi(y") — 0i(«*) = { M(af — L)df + o(Ar) 1€ Ii(a")
(28— w;)d® + o( M) i € L(z");

Bl

-



and forz € [ ( UL ("),

Mo fil@®)V fi(a®) TdM 4 o(Ag) i€ TF(")
0ls) — 0:(c) < 4 MleF =0 o) i€ UL
A (2F —wp)db + o( M) i € L(xM)U I (aF).

k
T, —
k
7

Summing these expression, we get

(13) Z

(9(:1;’“ + )\kdk) — (9(:1;’“)

2%[0 U (z*) )\k
< RNV AEDTE 43 (2F = 1)dE+ Y (2F — wh)df + o( M),
€Ty 1€y €T3
where

7= (TN 1ED) U () UL ) N e >)
Ty = (L) N AER) U (UL )N (B U L)
Ty = (L) N L) U (UL )N (Ll >u1w<xk>))

Note that T3 U715 JT5 is the Complement of I%(x*)UJI2,(z%).
It is also easily shown that for ¢ € I9(x )U I° (z%),

(Y — 0. (2
lim buly’) 02(:1;):0‘

k—oo,k€R )\k

Notice that [¢(zF)\Ty C I%(z*) U I°,(z*), Ji(z*)\Ty C I9(z*), and, J,(z*)\T5 C
I° (z*). Thus,

limsup > fi(a")Vfi(e")Td* = limsup > fi(a®)V[fi(a")Td",

k€r,k—oo €Ty k€r,k—oo i€l (x k)
limsup > (zf —1)d! = limsup > (af —1;)dF, and
k€r,k—oo icTy k€r,k—oo i€dy (k)
limsup > (2Ff —w;))dl = limsup > (af —w)dl.
k€r,k—oo ieT, k€r,k—oo i€ du(zk)

Thus, by (13)

lim sup Ot + Med?) — 0(a) lim sup ( > Fia®)V fi(a®) T d

k€r,k—oo )\k - k€r,k—oo iEIf(GUk)
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—I—Z x—ld—l— Z x—uzdk)

1€ (zF) 1€y (zk)
< _legﬂm z(2F, d¥) by (11)
< -
since z(z¥, d*) is nonnegative. 0

Lemma 2.2.9 Suppose that x* is the limit of the subsequence {2* : k € x}. If 2
is b-reqular, then
lim  z(2", d*) = 0;

k€r,k—oo

hence, {d* : k € k} converges to zero.

Proof The proof is identical to the proof of Pang & Gabriel (1993, Lemma 5)
except that Lemma 2.2.7 is used in place of Pang & Gabriel (1993, Lemma 3).

Lemma 2.2.10 Suppose that x* is the limit of the subsequence {z* : k € k} and
that x* is s-reqular. Let y be a solution of the system (8) with = «*. Then
there exists an € € (0,1] such that for all k € & large enough, ey is feasible for the
problem (QPy) for any € € [0, €].

Proof We look at each component i to show that [; < :L'f + ey < w; for all
k € k sufficiently large, and for all € sufficiently small. This is certainly true if
[; < xf < uy, since for k large enough, :L'f will be bounded away from [; and wu;.
If ¥ = [;, then for k large enough, x¥ is bounded away from wu;. Thus, we need
only show that ¥+ ey > ;. But a7 =1, =i € [}(:1;*) U L(2*) U I%(z*). Thus by
the s-regularity system (8), y: > 0, so ¥ + ey¥ > I; for any ¢ > 0. The proof is
completed by a similar argument showing that if 7 = w;, then y; <0. 0

Lemma 2.2.11 Under the assumptions of Lemma 2.2.10, it holds that for all
e > 0 sufficiently small,
(14) lim sup $(e, ) < (1 — 26(a,0) + O(e).

k€r,k—oo
Proof Suppose k € k is large enough that all of the inclusions of Lemma 2.2.3
are satisfied. If i € Ji(z*) then by Lemma 2.2.3, 1 € L(x*)U I%(z*)U [F(z*). If
i € 1)U IS(e"), then by (8), : = & — a7, 5o

1

P(a, ey) = §($f — i — (] = 1))?

_ % ((1 = (e = 1) + af - a7)’

= (1-%¢(z",0)+ O (aF —a7).
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If i € IF(2%), then for k large enough, z¥ is bounded away from /;, so for ¢ small
enough,
ngf—li—l—cyi §xf—li—e(:1;f—li).

This implies that

(0F =1 — (w7 = 1)* = (1 — €)*¢(a™,0) + O (aF — 7).

[N

Qbi(l'k, Gy) <
For i € I, (z*)UI°(z*)U I, («), a similar argument gives

! e —uy—e(xr —u))? = (1= e)?p(2",0) + O (:ch — :1;2*) .

Summing over all ¢ € J[(l‘k) U Ju(z*) gives
(15) S Gie (1= > &0+ 0 (|5 -

i@l (k) i@y (2F)

).
Consider now an index i € I;(z*). By Lemma 2.2.3,
i€ @) J L) U () U 1 ) U I U 1) U L),
If i € IF(2*), then by (8), Vfi(2*)Ty = — fi(2™), so
fi@®) + eV i(a") Ty = fila") + eV fila™) Ty + oV fila") Ty = Vfi(a) Ty)
= fi(a®) — efia™) + «(Vfia?) Ty — Vfi(a*)Ty).
Thus,
dilatey) = 3 (") = efila™) + (T hlah) = Vi) Ty)

=< €)2¢i(27,0) + O (fil2*) — fi(a™))
+ 0 ([Vrih) = Vi)

If i € If(2*), then fi(2") is negative and bounded away from 0 for k large enough.
Thus, for € > 0 small enough,

0> fila*) + eV i) Ty > file®) — cfi(e™) + «(Vi(ah) = Vi) Ty
which implies
dilat,ey) < L{fileh) = cfile”) + eV ilak) = Vfi(e*)Ty)

fi
(1—€)2ei(2, o>+o(f< k) — fila")
+0 ([t = Vi)
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Similar arguments duplicate this inequality for ¢+ € I¥(x*), 1 € IH(z*) and i €
I, (z*). Finally, for ¢ € I9(2*)JI%,(z*), we have f;(x*) =0, so

silah ) = 5 (R i) + V)’
= (1= ¢¢i(a",0) + O (filz") = fi(a"))

+O (|Vila*) = V fi(a")|) + O(e),

where O(¢?) comes from squaring the term ¢V f;(2%)Ty. Summing up the above
inequalities, for all 7 € I;(2") we get

(16) >, dilx
i€l (zh)

< (1= X a0+ 0 (|f(") ~ f(7)

+OQfo — VF(z")

Adding (15) and (16) and passing to the limit k — oo, we obtain inequality (14).
a

Theorem 2.2.12 Let f : Q@ D B — R" be a once continuously differentiable
function. Let 2° € B be arbitrary. The following two statements hold:

1. NE/SQP generates a well defined sequence of iterates {x*} C B along with
a sequence of optimal solutions {d*} for the subproblems (QP});

2. if * is the limit of an infinite subsequence {x* : k € r}, and if * is both
b-reqular and s-reqular, then x* is a solution of MCP(f, B).

Proof The proof is identical to the proof of Pang & Gabriel (1993, Theorem 1),
except that Lemmas 2.2.5, 2.2.9, 2.2.10, and 2.2.11 are used in place of Pang &
Gabriel (1993, Lemmas 2,5,6, and 7). 0

Lemma 2.2.13 Let & be an arbitrary solution of MCP(f, B). Suppose that &
is b-reqular. Then for every ¢ > 0, there exists a 6 > 0 such that whenever
|z —z|| <&, and = € B,

(17) |z +d.—z| <ellz -2,

where d, is any optimal solution of the quadratic program (QF. ).
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Proof For convenience, we drop the subscript z from d,.

Since z € B, it follows that the vector d := & — z is feasible for the quadratic
program (QP,). By letting v :=d — d, we obtain from the minimum principle for
this program that

(18) = Yien(zi— i+ d;)v; + ZieNJu(z)(Zi —u; + di)v;
+ Sier ) (fil2) + VA(E)T) (Vilz) o).

0 < Vou(d)Tv

Furthermore, since z is close to &, we have 1 € Ji(z) = @, =1;,1 € J,(2) = &; =
u;, and @ € [f(z) = fi(2) = 0. Hence, by subtracting these quantities from (18)
and rearranging terms, we get

(19) > vt X (VAz) v

i€i(z)J Ju(2) i€ly(2)
< = Y (f@) = fil2) = V()T (@ = ) (Vi(2)Tv).
i€ls(z)

Let
1. 0

T Vo ()T Vifn(a)T

where J, := Ji(z)U Ju(2), I. = 14(2), and I,. denotes the identity matrix of order
|.J.|. Using this matrix, the left-hand side of (19) becomes ||A.v|*. Applying the
Cauchy-Schwarz inequality to the right-hand side of this same inequality produces

1] < [ £(2) = £(2) = V()@ = 2)| [ A0]].

The remainder of the proof is identical to the proof of Pang & Gabriel (1993,
Lemma 8). 0

z

Lemma 2.2.14 In the setting of Lemma 2.2.13, there exists a constant ¢ > 0
such that for all vectors z close enough to T,

do|| < el H(2)].

Moreover, if L > 0 is the Lipschitzian modulus of H at &, then, for e € (0,1),

0(=+d.) < (1“_L€)2 0(=).

Proof The proof is identical to the proof of Pang & Gabriel (1993, Lemma 9).
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Theorem 2.2.15 Let f : Q@ D B — R" be a once continuously differentiable
function, and 2° € B be arbitrary. Suppose that x* is an accumulation point of
an infinite sequence of iterates {x*} generated by the NE/SQP method, and x* is
both b-regular and s-reqular. Then x* solves MCP(f, B). Moreover, the following
statements hold:

1. there exists an integer K > 0 such that for all k > K, the stepsize T, =
p™* =1, hence, 2"t! = 2% + d*;

2. the sequence {x*} converges to x* Q-superlinearly.

3. if Vf is Lipschitzian in a neighborhood of x*, then the sequence {x*} con-
verges to x* Q-quadratically.

Proof The proof is identical to the proof of Pang & Gabriel (1993, Theorem 2)
except that Lemma 2.2.13 is used in place of Pang & Gabriel (1993, Lemma 8),
and Proposition 2.2.6 is used in place of Pang & Gabriel (1993, Proposition 2).

The above convergence results establish the fact that the NE/SQP algorithm
has very good local convergence behavior. But the global convergence results are
not very useful from a practical standpoint. The problem is that the s-regularity
and b-regularity conditions are dependent not only on the problem, but also on the
algorithm. In particular, they depend on the particular choice of merit function
used.

A global convergence result can be established by showing that these regularity
assumptions are satisfied whenever f is strongly monotone. This result is more
useful for our purposes and is proved in Theorem 2.2.18; the next two lemmas are
instrumental in proving this theorem.

Lemma 2.2.16 Let A € R™", B € R, where | + m = n. If the matrix

M =
B

is posilive definite, then for any vectors p € R™, q € R, and r € R', the system

X

Yy

(20) A =p, B > q, y >

has a solution (x,y) € R™ x R'.



42

Proof We first establish that the system

§
U

(21) A =0, B

has a solution (&,n) € R™ x R’. To do this, assume that no solution exists. Then
by Motzkin’s theorem of the alternative (Mangasarian 1969, Theorem 2.4.2), there
are vectors u € R™, v € R{I_, and w € R{I_, with (v,w) # 0 such that

el

Premultiplying both sides of this equation by (u',vT), we see that

(22) [ATBT]

(uT,UT)MT [ “ ] =—v' w <0, (since v > 0 and w > 0).

Since M is positive definite, this can happen only if (u,v) = 0. But then (22)
implies that w = 0, which contradicts the fact that (v,w) # 0. Thus, by contra-
diction, (21) has a solution (&,n).

We return now to (20). Since M is positive definite, A has full row rank, so
there exists a vector (#,7) such that A(Z,y) = p. Then, for A sufficiently large,
the point (x,y) := (Z,7) + A(&, n) will satisfy (20). 0

Lemma 2.2.17 If f is strongly monotone, then all points x € B are both b-regular
and s-reqular.

Proof Since f is strongly monotone, then by Ortega & Rheinboldt (1970, 5.4.3),
V f(x) is positive definite at every point «. Thus, V, f,(x) is nonsingular for any
index set « and any point x. It then follows that every point x is b-regular.

To prove s-regularity, we show that the point y in Definition 2.2.2 can be found.
Note that fori € I;U L, U IS U I2,, y; is determined a priori by the equations in the
definition. We can therefore eliminate these variables from the inequality system
(8), which leaves a system of the following form:

vafoz(x)-r vﬁfoz(x)-r _vwfoz(x)—r Ya = P
Vafs(@)T  Vfa(a)T =V fslx)’ ye | = | @ |
Vol ()T =Vfi(x)T Vif(x)T Yl =z L
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and
ol
Yy 2

and v := I¢U I, and the vectors p, g1, g2, 1, and

where a 1= I(x), 3 := [Jlf Ul,,
ro are determined by the elimination of the variables. Note that the matrix in the
system above is positive definite; thus, this system is of the form given by (20).

A solution is therefore guaranteed by Lemma 2.2.16. 0

It should be noted that the strongness in the monotonicity assumption above
is essential. For example, consider the monotone function f : Ry — R given
by f(x) = 1, and let B := Ry. For this choice of f and B, it is easily verified
that for all « > 1, x is neither b-regular or s-regular. As a consequence, even
though MCP(f, B) has the trivial solution @ = 0, NE/SQP fails to find it with
any starting point @ > 1. Thus, we see that NE/SQP cannot be relied upon to
solve monotone linear complementarity problems.

We now state our main convergence result of the NE/SQP algorithm.

Theorem 2.2.18 Suppose [ is strongly monotone. If x* is an accumulation point
of the iterates {x*} produced by the NE/SQP algorithm, then x* is a solution of
MCP(f, B) and the sequence {x*} converges to x* with the local convergence rates
specified in Theorem 2.2.15.

Proof By Lemma 2.2.17, 2* is both b-regular and s-regular. Therefore, by The-
orem 2.2.12, z* is a solution of MCP(f,B) and the iterates {z*} generated by
the NE/SQP algorithm converge to * with convergence rates specified in Theo-
rem 2.2.15. 0

2.2.2 Modification of NE/SQP to Guarantee Finite Ter-
mination

The NE/SQP algorithm has the drawback that it does not necessarily terminate in
a finite number of iterations unless it converges to a solution. In particular, while
the algorithm guarantees descent of § at every iteration, the sequence {0(z*)}
may not converge to 0. This can happen either by generating an unbounded se-
quence of points, or by converging slowly to an irregular point. This will clearly be
unacceptable if we are to use the algorithm to solve a sequence of perturbed sub-
problems. We therefore present a modified NE/SQP algorithm in Figure 2 which
has the same local convergence properties as the original NE/SQP algorithm, but
which also guarantees finite termination, even when it fails.
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Figure 2: Modified NE/SQP Algorithm

Step 1 [Initialization] Given a starting vector z° € B, a convergence toler-
ance tol, and termination parameters v € (0,1), and A > 11, select
p,o € (0,1), and set k = 0.

Step 2 [Direction generation] Solve (QPy), giving the direction d*.
2
If ¢(z*,d*) > (1 — 4)0(2%), or if ‘dkH > Af(2?), then terminate
the algorithm, returning the point z*
otherwise, continue.

along with a failure message;

Step 3 [Steplength determination] Let my be the smallest nonnegative inte-
ger m such that

(23) O(z" + pmd*) — 0(2%) < —op™ (2", db).
Set x**t! = 2k 4 pmrd* and continue.

Step 4 [Termination check] If #(2*T1) < tol terminate the algorithm, return-
ing the solution 2**!. Otherwise, return to Step 2, with k replaced by
k+ 1.

Note that by setting ¥ = 0 and A = oo, the modified algorithm is identical
to NE/SQP, with the addition of a particular stopping criteria in Step 4. How-
ever, by choosing v € (0,1) and A < oo, we can ensure that the algorithm will
terminate in a finite number of iterations, which we will prove in Theorem 2.2.25.
This has the drawback that the modified algorithm may fail when the original
algorithm would have succeeded. However, we shall overcome this drawback in
the QPCOMP algorithm by carefully controlling the parameter 4. Moreover, the
modified algorithm also has the same local convergence properties as the original
algorithm. To prove this fact, we shall show that if 2* is near a b-regular solution
of MCP(f,B), then the tests in Step 2 can never cause failure.

Observe, that when z* is close enough to a b-regular solution, H(l‘k)H <
| H ()| /¢, so HdkH < ||H(z)]|, and therefore, dkH2 < AfO(2%). Thus, when z* is

close to a b-regular solution, the second test in Step 2 of the Modified NE/SQP
algorithm cannot cause failure. We now show that the first test in Step 2 cannot
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cause failure either.

Lemma 2.2.19 Let & be a solution of MCP(f, B). If & is b-reqular, then for any
¢ € (0,1/2), there is a neighborhood N of & such that if z* € N B, then

¢(a*, d") < ef("),
where d* is an optimal solution of (QP;).
Proof By Lemma 2.2.14, for 2* close enough to z,
e N e B T B B R Gl
By Lemma 2.2.13, for any € > 0, it follows that

P

whenever 2% is close enough to . Rearranging terms,

21 o o] < o e < 2e e

1—¢€

By the continuity of f, there is a neighborhood N of z such that if 2¥ € N B,
then the following hold:

I¢(z) C I5(2")

I(z) C I(2%)

1,(%) C L(2")

La(z) C La(z*)U Ip(z") U Ii(=¥)
Le(®) C L) U Tp(a*) U Lu(2).

Without loss of generality, we can assume that N is small enough that (24) holds
whenever 2% € N.

Now, define G*(z): Q@ — R" by

T; — lZ 7 € [l(l'k) U[el(l'k)
Gf(:z;) =% @ —wu; 1€ L(xF)U Lu(zF)
filz) i € Ip(a").

It is easily seen that for z¥ € NN B, G*(z) = 0. Note further that G* is continu-

ously differentiable, and that HG’“ H2 /2 = ¢(2*,0). Further, for i & I;(z*), we
see that

§Gf(:1;)2 = ¢Z(xk, T — l’k)
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Conversely, if 1 € I;(2"), then

GH{a) = i) = fia") + T () (0 = ") 4 o o = o).
Thus,

Log2 1 k kT k)2 k k k|12
5@(95) :§(fz'(l' )+ V") (x—x )) + fi(x )O(Hx—x H)—I—o(Hx—x H )

Summing over all 7, we get
oo = teto 45 o - ) + o e - ).
Choosing z := Z, we see that, since G*(z) = 0,
ot =24 = e (- ) 4 (J - ).
Thus, for any ¢ > 0, then for z* close enough to z,

(el =] + =)
{2+ 4e2) [HM|" by (24),

©-
S
=
\'??‘
81
|
=
ol
S—’
AN

N

Finally, since 7 —z" is feasible for (QP}), we see that by choosing ¢ < ¢/(4(c+2¢?)),
$(a*, d") < ¢(a*, & — *) < ef(a"),

O

The above lemmas show that for 2* close enough to z, the modified algorithm
will not terminate in Step 2, as long as @ is b-regular. Thus, the modified algorithm
has the same local convergence properties as the original algorithm. We have
therefore proved the following theorem:

Theorem 2.2.20 Under the conditions of Theorem 2.2.12, the Modified
NE/SQP algorithm generates a well defined sequence of iterates {z*} C B, along
with a sequence of optimal solutions {d*} for the subproblems (QPy). Furthermore,
if * is an accumulation point of {x*}, and if either f is strongly monotone, or x*
is both b-reqular and s-regular, then x* is a solution of MCP(f, B) and the iterates
converge to x* at the rates specified in Theorem 2.2.15.
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The remainder of this section is aimed at proving that the Modified NE/SQP
algorithm terminates. This is accomplished by considering what happens if the
algorithm does not terminate. In this case, we shall show that the iterates {z*}
converge to a point x*. Using this fact, we will place bounds on certain quantities,
which will then be used to establish a minimum rate of decrease for the merit
function . This will then force the merit function to zero, which means that the
algorithm will terminate after all, by the test in Step 4.

For ease of discussion, we define the function

ox(d) == o(x,d).
The following lemma is a technical result needed in several ensuing proofs.

Lemma 2.2.21 [f ¢.(d) < (1 —y)8(x) then

%729(1‘)-

Proof Recall that z(z,d) = ||b(x,d)||* /2, where b is defined by (6). For simplic-
ity, let b := b(x,d). Note that

¢old) = |[H(x) + 0" /2 = ||[H()|* /2 + (H(x),b) = 0(x) + (H(x),0).

z(x,d) >

Thus, by assumption,
(1 =7)0(x) = ¢u(d) = 0(x) + (H(x),b).
Subtracting §(x) from both sides, we obtain
v
(H(2),b) < =0(x) = = [[H()]".
But this implies that

v
1olF = = 1 E ()]

SO
2

2 ’72 2 >
o) = bl /22 TP = Do),
which establishes the lemma. 0

We now prove that the iterates converge.

Lemma 2.2.22 Suppose f is continuously differentiable. If the Modified
NE/SQP algorithm, with v € (0,1) and A < oo, fails to terminate, then the

iterates {x*} produced by the algorithm will converge to a point x* € B with
f(x*) > 0.
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Proof Let ¢x(d) := ¢(2F,d) and let zi(d) := z(z*,d). By the test in Step 2 of
the algorithm, ¢x(d) < (1 —v)0(2*). Thus, by Lemma 2.2.21, z(d) > $720(a*).

Let {7x} be the sequence of steplengths generated in step 3 of the algorithm,
ie., 1, := p™*k. Then,

0($k+1) = (9(:1; + dek)
< G(xk) — O'Tka(dk) by the linesearch test (23)
< 0(2*) — omy*0(2%) /2 by Lemma 2.2.21

0
YAy

Let Bk := o7py?/2. Then
k
0(z"h) < H 1—4;).

Since O(z*) is bounded away from 0, it follows that

ﬁ(l—ﬁk)>0

k=0

By Ahlfors (1966, Theorem 5 of Chapter 5), this implies that 72, 3, is finite,
which means that >°7°, 7 is finite.

Now, by the test in Step 2 of the algorithm,
bounded, so

H2 < Af(z"). Thus,

H is

Z TL HdkH < 00.

k=0
From this it follows that the sequence of iterates {z*} converges to some point x*.
Clearly, 8(x*) > 0, or the algorithm would terminate in Step 4. 0

Using the fact that the iterates converge, we are now able to place bounds on
several quantities, which we will use to prove Lemma 2.2.24.

Lemma 2.2.23 Under the hypotheses of Lemma 2.2.22, there exist constants My,
M;, and L, depending on the starting point x°, such that for all T € [0,1], the
following inequalities hold:

(25) | fi(a® + 7d")| < My, IV fi(z" + 7d*)| < M,

and

(26) fila®) = 7L |d¥| < fila® 4 vd*) < fia®) + 7L |d¥).
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Furthermore, for any § > 0, we can choose 7(§) > 0 such that for k sufficiently
large, the following holds for all 7 € [0,7(5)]:

(27) [fi(a® + 7d")| <

fz(:zjk) + TVfZ'(l'k)Tdk‘ + 76 HdkH )

Proof By Lemma 2.2.22, {z*} converges. Also, dkH is bounded by the constant

AfO(x%). Thus, there is a compact set S C B such that for all 7 € [0,1],

* + 7d* € S,Vk. Since f is continuously differentiable, f and Vf are bounded
on S, from which we get (25). Furthermore, f is Lipschitz continuous on 5, from
which (26) follows.

Since f is continuously differentiable, then for any § > 0, there exists an ¢ > 0
such that
(25) IV /(@) = VAW <6 oy e M),

where the neighborhood N, is defined by N.(a*) := {x : ||z — 2| < €}.

Since z* converges to x*, then for k large enough, 2* € N, 3(z*). Moreover,
by Step 2 of the algorithm, dkH < VAOxY. Thus, if we let 7(0) := €/(24/A0(xY)),
it follows that %(5)dkH < ¢/2. Thus, x + 7d" € N (z*),Vr € [0,7(4)].

Thus, for any § > 0, we can choose 7(4) > 0 such that for k sufficiently large,
the following holds for all 7 € [0, 7(d)]:

i 47t =

fi(@®) + 7V fi(2® + ?dk)Tdk‘ for some 7 € [0, 7]
Fila®) + 7V fila®)TdE 4 7 (Vi + 75T = V()T d’f\
Fila®) + oV fi(a) TdE 4+ 78 |df| by (28).

<

O

We are now able to establish a minimum rate of decrease for the merit function.

Lemma 2.2.24 Under the hypotheses of Lemma 2.2.22, there exists a constant
p € (0,1) such that

O(z*1) < pO(x"), Y k sufficiently large.

Proof Suppose 6 € (0,1), and let 7 € [0,7(5)] where 7(§) is chosen according
to Lemma 2.2.23. Suppose that k is large enough that (27) holds. We shall
examine the terms H;(2*+7d")? in order to establish an upper bound on #(z*+!) =

S Hy(2F 4 7d*)? /2.
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To simplify notation, we drop the superscripts k. Thus, we let 2 := 2% and
d := d*, etc. We shall also find it convenient to define the scalar function ¢; :
Ry — Ry, as follows:

&i(T) = i(x, Td).
Observe that qAb;’(O) = z(x,d), so

(29) i@;f@ _ (and),

To bound H;(x + Td)z, we have to look at two different cases:

Case 1: 1 € [4(x). Note that |H;(xz + 7d)| < |fi(x + 7d)|. Thus, by (27),

Hi(z+7d)* < (fi(2)+7V fi(2)Td)*+275

fi(x) + 7V fi(x)Td| |[dl|+7%5 | ]
But, (fi(x) + 7V fi(z)Td)? = 26:(7) = 26;(0) + 276{(0) + 726{(0), so

Hi(z +7d)* < 26,(0) +2r¢}(0) + r2¢/(0)

30 ,
(30) 4278 fi() + 7 fi(e) | | + 7262 ]

Case 2: 1 ¢ [;(x). We look only at the case i € [j(x)U [.(x); the argument for
i € I(x)U () is similar.

If H;(x 4+ 7d) is negative, then

Hi(xz+7d) = filz+7d)
> (o)~ L]l by (26)
> x;—li+7d; —7(d; + L||d||) since fi(x) > x; —1;
Thus,

L+ 1) |d]f*
< (v —lLi+7d)? + 7L+ 1)? HdH2

If H;(x47d) is nonnegative, this inequality holds trivially since Hi(:z:—I—TAdi) <
v; — l; + 7d;. Finally, (z; — ; + 7d;)? = 2¢:(1) = 20;(0) + 275(0) 4+ 72¢/(0),
so

(1)  Hilw+7d)* < 26:(0) +274(0) + 7°3{(0) + (L +1)” |ld]*.
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Summing over all components, we get

(32) O(x + 7d) Z Hi(z + 7d)* < ¢,(0) + 7¢.(0;d) + 760 + 7%,

where

ni= )

iEIf(l’)

Fila) + 7V fil) Td] || d]

and

GO+ X (L+1 |+ 32 & ||dlf*

=1 igIs(x) i€y (z)
We now establish bounds for n and ¢. By (25),

2.

iEIf(l’)

Thus, n < Cy ||d]| < C1/AO(2°) =: K;.

For ¢, we deduce from (29) that

n

Fila) + 7V fie) Td| < (@) + 7 M [[d]] < My + 7 Mo/ A0 () =: €.

n

Z Qg;/ ,d) < 8(x), by item 4 of Proposition 2.2.4.
=1
Thus,
¢ < 0(@) 4 I (n(L 4 1) + )
< (14 nA((L+1)*+6%))0(z%), since HdH2 < Af(2?)
< K,

where K3 := (1 + nA((L + 1)* 4+ 1))8(2®). This last inequality holds since § < 1.
Returning to (32), we find that

O(z +7d) < ¢,(0)+78(0;d) + 76K, + 72K,
= O(a)+ 70 (a;d) + 76K, + 2 K,.
By Item 2 of Proposition 2.2.4,

¢x(d) = ¢(0) — z(x, d)
(1 —=%)0(x) —0(x) — z(x,d), by the test in Step 2

—~v0(x) — z(x, d).

0 (x; d)

IA A
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Thus,
Oz +7d) —0(x) < 7(—v0(x) — z(x,d)) + 70 K1 + 2 K,.

Note that the definitions of K| and K, are independent of §. We can therefore
consider a particular choice of §: let § := min(1l,~v0(2*)/(2K1)) and let 7 :=
min(7(4),v0(x*)/(2K3)). Note that § > 0 and 7 > 0, since 6(«*) > 0. Further,
since f(x*) < (x), it follows that for all 7 < 7, and for k sufficiently large,

Oz +7d) —0(x) < —7z(x,d)—7y0(x) + 7v0(x*) /2 + 77K,
< —rz(d) = m0(x) + 7y0(x) 2 + Ty0(x) /2
(33) = —7z(x,d)
< —orz(x,d), Yo<l1.

Observe that the steplength p™ generated by Step 3 of the algorithm is chosen

m—1

such that m is the smallest integer satisfying (23). Thus, 7 :=p
(33). But this means that

cannot satisfy

p™1 > 7, which implies p™ > p7.

From this, it follows by the linesearch test (23) that

Oz +p"d) < 0(x)—oprz(x,d)

2
< (1- U'O;Y )0(x), by Lemma 2.2.21.

By setting p := 1 — op79?/2, we complete the proof. 0

Theorem 2.2.25 [fy € (0,1) and A < oo, then the modified NE/SQP algorithm
will terminate in a finite number of iterations provided that f is continuously

differentiable on B.

Proof Let tol > 0 be the stopping tolerance used in the algorithm. If the algo-
rithm does not terminate, then by Lemma 2.2.24, there exists p € (0,1) such that

for k sufficiently large,
O(z") < po(z").

Thus, after sufficiently many iterations, #(x*) < tol, and the algorithm will ter-
minate in Step 4. 0
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2.3 The QPCOMP Algorithm

The basic idea behind QPCOMP is simple. The algorithm first tries to solve
the problem using the modified NE/SQP algorithm. If this fails, QPCOMP then
solves a sequence of perturbed problems in order to find a point with an improved
value of the merit function. Once this point is found, QPCOMP returns to run-
ning the modified NE/SQP algorithm on the original problem, starting from this
improved point.

One complication of the algorithm is that the subproblems must be solved
inexactly in order to guarantee that they are each completed in a finite amount
of time. To handle this we have introduced a sequence of tolerances {n;} which
control the accuracy demanded by each subproblem.

Another complication is that the best choices of the parameters A and ~ can-
not be known in advance. Thus, the algorithm must choose these parameters
adaptively. The algorithm is given is Figure 3.

Observe, that the QPCOMP algorithm has the same local convergence prop-
erties as NE/SQP. In particular, by Theorem 2.2.20, for any b-regular solution x*,
there is a neighborhood such that the modified NE/SQP algorithm is identical to
NE/SQP within this neighborhood. Thus, in Step 2 of the QPCOMP algorithm,
if 2% is sufficiently close to *, then the modified NE/SQP algorithm will converge
to z* at the rates specified by Theorem 2.2.15.

We now establish global convergence properties for the algorithm:

Theorem 2.3.1 If f is Lipschitz continuous and continuously differentiable on
B, and if MCP(f, B) satisfies Assumption 2.1.2, then for any ¢ > 0 the QP-
COMP algorithm generates an iterate x* satisfying 0(z*) < ¢ in a finite number
of iterations.

The remainder of this section is devoted to proving this theorem. As an
introduction to the proof, note that if Step 4 is always successful at generating
an improved starting point, then even if the Modified NE/SQP always fails in
Step 2, the merit function values {0(z*)} will converge to 0 at least linearly, since
O(x"+1) < pb(x*) for all k. Thus, our convergence analysis is reduced to proving
that Step 4 always generates an improved starting point.

In the analysis that follows, it will be convenient to define perturbed index



Figure 3: Algorithm QPCOMP
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Step 1 [Initialization] Given a starting vector ° € B and a convergence
tolerance € > 0, choose § > 0, € (0,1), v € (0,1), v € (0,1), and set
E=0.

Step 2 [Attempt NE/SQP] Run the Modified NE/SQP algorithm with start-

ing point 2%, with tol = e. This generates a point 2.

Step 3 [Termination check] If & solves MCP( f, B), stop; otherwise continue
with step 4.

Step 4 [Generate better starting point] Set Oy, := 6(3), set y° = 7, set
J =0, and choose A > 0, and choose a positive sequence {n;} | 0.

Step 4a Run the Modified NE/SQP algorithm to solve the per-
turbed problem MCP(f*¥ B) from starting point y’, with
tol = n; /(1 + ||y’||). This generates a point .

Step 4b If § fails to solve the perturbed problem to the requested
accuracy, set A > A 4+ 40 and v < vy, and goto step 4a;
otherwise, continue.

Step 4c [Check point] If 0(7) < pbpest, set ¥ = 7 and return
to step 2, with k replaced by k4 1. Otherwise, set 47t :=
and return to step 4a, with j replaced by 5 + 1.
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sets by
IIME ) = {irei—1L< f?’f(fﬁ)}
[jl’f z) = {1z, —1; = fﬁf(:p)}
g

—

o)
<

~
S SR e
8l
P N e N e N S N N
=

= {iix,—w = f )
v) = {iixi—u> f(a))

We shall also use the following obvious perturbations of the functions H, 8, ¢,
and z:

S
El

HM(x) := min(2; — ;, max(z; — uq, £7(2))),

_ ~ 2
0/\,1’(1,) 1 HHA,QU ‘ ,
M(d) = qux(:Jc d) := qu?’f(x,d), where for i =1,...,n,
plai =L+ di)? i€ W(x) UL ()
2 Zq 7 7 I el
() = My — w4 dy)? i€ IM(x)UIN (2)
) + T @) T i e 1)

237(d) == 2N (2, d) := X 2N (,d), where for i =1,...,n,
i L2 g T
2 ad) ::{ g
LV (2)Td)? i€ 1;7(a).

To show that Step 4 is always successful at generating an improved starting
point, we begin by assuming that the Modified NE/SQP algorithm in Step 4a
of QPCOMP fails at most a finite number of times. Later will shall remove this
assumption. It follows that after a finite number of iterations, y always solves
the perturbed problem to the desired accuracy, so the algorithm always continues
past Step 4b to Step 4c. Thus, either an improved point will eventually be found,
or the algorithm will generate a sequence of iterates {y’} such that

"

J# ) <

We then use the fact that {n;} converges to 0 to show that 0(y’) — 0. This result
is proved in the following lemma:

Lemma 2.3.2 Let f be a Lipschitz continuous function and let {n;.} be a sequence
of positive numbers that converges to 0. Let A > 0 and let {x*} be a sequence of
points in B such that

Tk k.

(34) HH/\x k—|—1 H < W’
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Suppose MCP(f, B) satisfies Assumption 2.1.2, then for any ¢ > 0, there exists
an iterate ¥/ € {z*} such that O(z7) < e.

Proof Let «* be the solution to MCP(f,B) guaranteed by Assumption 2.1.2
which satisfies (1), and let y* := HA’Q”k(:I;k"'l). In the same spirit as the proof of

Theorem 2.1.3, we establish a lower bound on the term (2%t — 27)(2F — 2.

Case 1: y* = 2™ — [; and 2} < 2™, Observe that
(25 — i
33) (e (e ) = (@b PO T
where ot
w = (2 = 27) (:z:f — it — fe™) i yi) .

A
Now, 0 < (2t — o7) <2ttt — [ = y¥. Also, af — 2t > [ — 2Fth = gk
Thus,

wh o= (2 =) (oF — e /) — @ =) (M)
yl (=yk + yl/A) = [yl | £t /A
—(y5)? = [yf] | @) /2

VARV

Returning to (35), we get
(36) (2 —af)(af — i) 2

O ) () - ) = = B

fi(l’k-l—l)‘ ‘

Case 2: yf = "' —[;, and 27 > zf*'. In this case, f?’xk(xk“) > gt | =
y¥. Thus,
F(EH) A — aF) > g, so of — 2 < (fi(eH) — gh)/A. Since
aF 1 — 2 <0, we get

(38)  (@FF—an)(af -2 > @B =) (MY - ) /0

Case 3: y* = £ (251). In this case, y* = fi(z*1) + MM — 2%, so 2F —
et = (fi(a") = yf) /A Thus,

(b —ap)(ah — 2f ) = (@8 — ) (F(™) = o) /0
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Case 4: yf = g —

(38) is satisfied.

wg, o¥T > 2%, By similar arguments to Case 2, inequality

Case 5: yf = o¥™' —u;, o™ < 7. By similar arguments to Case 1, inequality

(36) is satisfied.

In every case above, inequality (36) holds: Thus,

(wh —ap)? = (af —ar+af —aft)?
= (aft =) 4 20l — (k= 2T 4 (o — 22
> (aft —ap)? 4 2(eb T = a) (fila™) — yb) /X - 2(0h)?

—2yf | £l )|+ (2h =22 by (36).
Summing over all components, we get
Hl‘k — :1;*H2 > H:L'k"'l — :1;*H2 +2 <f(:1;k+1),:1;k+1 — :1;*> JA—2 <yk,xk+1 — :1;*> /A
=2 =2 ot Lt e ot - e
Now, let L be the Lipschitz constant for f. Then
|| <[l = p@)| + I EON < Lt = 2| + 1))

Further, by Assumption 2.1.2, <f(:1;k+1), i — :1;*> > 0. Thus,

ekl B e I T e e v |

=2 [y (Lo = @ 1) A+t =t

2

okt = =2 ot = (1 ) =20/ (14 [2*])
—2n (Lt — o 1A / (14 ]*])
+ Hl‘k - $k+1H2 by (34)

‘ 2

2

Y

(39) _ ka-l—l _ 2 i ka _ $k+1H2 -
where
P el TSN ) ittt Rl UG
T T ()2 ACL A [|2*]]) '
Note that

(40) B < "' — 2| (nL+ 1)/ + 1m0+ n || (27 /A
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Let C:=(nL 4+ 1)/A+no +n||f(«*)| /A Then 8y > C implies that
H:L'k"'l —a*| > 1. Now, let {8 : & € &} be the subsequence of {3} for which

T
Br > C,Vk € k. It follows then that H:L'k"'l —

side of (40) by H Rl g 2, it is easily seen that {3/ \\xk"'l — |
bounded.

c k€ k}is

However, dividing (39) by H:L'k"'l — gives
[l N ot |
_ 20355
[ttt — 2 H2 = e P et — e

Since n | 0, the last term above converges to 0 on k. Thus, for k € k large
enough,

=] s
T =~ 2
and \\ . ( H K )
21zt — x* mn n (2L ||z (51/'*)”
B Y e I T | T R
Observe that
o= e

) = e = mest el

Thus, the subsequence {3 : k € x} is bounded, from which it follows that
{Bx} is bounded.

Now, assume the lemma is false. Then there exists an € > 0 such that for all
k, 0(x ) > ¢?/2, which implies HH H > e. Furthermore, for £ large enough,
nr < 2. Without loss of generality, we can assume that this inequality holds for
all k.

Since f is Lipschitz continuous, HM" s also Lipschitz continuous with some
Lipschitz constant K. But then,

6—62 H—nk

H 1" @ (1 *])
H/\x _ gt (2 k-|—1 H
s

(VAN VANIN VANRIVAN

Thus, for € small enough,

c/2K) < (e— ) /K < H:L'k"'l — l’kH :
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Finally, since the sequence {n;8x} converges to 0, then for all & sufficiently
large, niBr < €¢/(8K). Thus, from (39)

o2 oot o = 2
> [t — 2|+ e/ (2K) - ¢/(4K)
= [t | /).
But, then
H:Jck _ > f: €/(4K) = o0 > Hl‘k -
k+1

But this contradicts the assumption that € > 0. The lemma is thus proved by
contradiction. 0

Note that Lemma 2.3.2 did not make any assumption on the choice of A other
than that it is greater than 0. Thus, even if A is smaller than the Lipschitz
constant, we can guarantee convergence.

The next stage in our analysis is to prove that the Modified NE/SQP algo-
rithm can fail at most a finite number of times in Step 4a of QPCOMP. This
is accomplished by observing that after each failure, the value of A is increased,
while the value of v is decreased. Thus, the result will be proved if we can show
that for A large enough, and v small enough, the Modified NE/SQP algorithm
will always solve the perturbed problem MCP(f*¥ B). This is accomplished in
the following two lemmas.

Lemma 2.3.3 Suppose f is Lipschitz continuous with Lipschitz constant L, and
let x and = be arbitrary points in B. If X > 2L + 2, and if d satisfies ¢%(d) <
$27(0), then

[d]” <1162 (2).
Proof For simplicity of notation, we shall drop the superscripts A, z; that is, let
¢ = &M%, ete. Also, let I;:= [;(x) := [?w(x) Observe that ¢,(d) is a quadratic

function with Hessian B given by
B:=(M+D+1)"(M+D+1)

where M is the n x n matrix whose ith row is given by

M ‘_{ ViT(z) ifiel

A1 -
(4) 0 ifigl,,



60

and D is the diagonal matrix with entries

. ‘_{ A1 ifiel

"o if i & I,
We then see that
d"Bd = |Md|| +2d"DMd + || Dd|]* +2dT Md + 2d" Dd + ||d||*
= M| + 200 — )], (M), + (A — 1) |dy, | +24F (M), +

200 — 1) s, |+ 1)
J1d? = 203 = 1) | M, | + 3 = 17, [
=2, [ 31y, | + 20— 1) i, [+
= ||d||* (¢ = 2(\ — D)ab + (A — 1)%6* — 2ab + 2(A — 1)b* + 1),

Y

where

T (CTZ77 I ] |
el el el
Note that ¢ < L and b < 1. Simplifying the inequality above, we obtain
dTBd > ||d||? (a® — 2Xab + \2b? — b 4+ 1)
ldl* (@ = A0)* + (1 = b%)).
If b > 1/2, then Ab > 2(L + 1)b > L + 1. Since a < L, we get (a — Ab)?
Conversely, if b < 1/2, then 1 — b* > 3/4. Thus, in either case,

Y
—

(12) B> |,

for any d. ) )
Now, let d be an unconstrained minimizer of ¢,(d). Clearly, Vg.(d) = 0.
Furthermore, since ¢, is a nonnegative function, it follows that for any d,
¢z (d) 6:(d) + Vu(d)T(d = d) + 3(d — )T B(d - d)
Y= d) Bl = d
ld=d|" by (42).

(AVARAVS

Since ¢,(0) = 6(x), it follows that chH2 < 80(x)/3. By hypothesis and the above,
HJ— czHZ < 80(x)/3. Thus,

SH|
|
Qo
1T
Qs

J]

S

VASRVAN
)

SH|
o] |
= a
%
|+
et
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Thus, JHQ <3260(x)/3 < 116(x). 0

Lemma 2.3.4 Suppose [ is Lipschitz continuous. There exist constants 4 > 0,
and X > 0, such that for any A > X, the modified NE/SQP algorithm applied to

MCP(fM ) will not terminate in Step 2 for any v <7 and & € B.

Proof Suppose the lemma is false. Then there must exist a sequence {A;,v;},
with A — oo and ~ | 0 such that for each j there exists a perturbed problem
MCP(f** B) where the modified NE/SQP algorithm with 4 := 5; fails in Step
2 when run on MCP(f%* B)}.

Define fi(z), H’(z), 0;(x), and ¢;(x,d), to be the f, H, 0, and ¢ functions
corresponding to the jth perturbed problem. For example f(z) := f%:% (z), etc.
Then for the jth problem to fail in Step 2, there must exist a point 2/ and a
direction d’ such that d’ is an optimal solution to the quadratic program (QP;)
defined by

min oj(?,d)
subject to 2/ +d € B,

and also d’ fails one of the two tests in Step 2 of the algorithm. Without loss of
generality, we can assume A\; > 2L 4+ 2,Vj. By Lemma 2.3.3, deHz <110;(2%) <
A0;(x7). Thus, the failure must occur because of the first test in Step 2. In other
words,

(43) ¢i(a’,d") = (1 —;)0;(2"), Vj.

Since ¢;j(27,d7) < ¢;(27,0) = 0;(z7), and also, 7, | 0, we see that

qu(xjv d])

o)

(44) lim

Let [; := ]?J’W(:I;j), J; be the set of indices not in [;,

E )] 0]
Y= M T me)

We first show that lim;,., A; = 0. To do this, we examine a particular choice
of j. Let H’ := H’(2?). We can then rewrite ¢;(x’, d), as follows:

bi(a?, d) = % |3 + Dyd 4 1|
where

A V()T ifiel il A ifiel
T itielJ, i 1 ifieJ;.
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Observe that :L'f —u; < HZ] < :L'f — {;. Note that for d defined by

G N el
' 0 if i € J

it follows that x7 + de B, since A > 1. Furthermore

, - , Mid
MF+WM+H%:F}ﬁM].
J]
Now, since d’ is an optimal solution to (QP;),

byl d') < gi(al,d) = L] M]+D]d+H]H
= S(Jora | +[u])
<yl + )
< L|HI|P(L2A2 /0 + B

Thus, by (44),

(el ) L?A
1 =1lim ](9]‘(1']) < liminf )\?]—I-B]2 .

But, since {A;} is bounded, and A\; — oo, we see that 1 < lim inf BJZ. Furthermore,
B; <1, so lim B; =1, which implies that A; — 0.

Let us now examine the direction finding subproblem (QP;) for large j. For
some «a € [0, 1], define d by

p_Jo o itiel
' —aH! ifieJ,.

Here we see that

(M’ + D)Yd + H' =

Hi + (M7d),
(1 —a)Hj,

Thus,

bie,d) < S |(MI+ DI+ B

DO — DN —

nguMwQZ

(-2,
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< L) + 2 Jaed] + |ped) + - o |
< S| 2 | )+ 2 ) + (0 - o8, | #])°)
< S| (424 24500 40222 4 (1 - 0)?B?)

< 0(a') (A2 +24;0L + (1 — 20 + (L* + 1)a?)) , since B; < 1.
Choosing o = 1/(1 + L?), we get
By, d7) < 0(x?) (A;(2L/(1+ L2) + A) + 1= 1/(1 + 12)).
But since lim A; = 0, we see that

(d I
lim sup 7%(1;7 )

, l]——<«1
o) = 141F

Y

contradicting (44). Thus, the lemma is proved by contradiction. 0

We can now combine the results of the previous three lemmas to prove that
Step 4 always generates an improved starting point.

Lemma 2.3.5 Suppose that f is Lipschitz continuous and continuously differ-
entiable on B and that MCP(f, B) satisfies Assumption 2.1.2. If the QPCOMP

algorithm fails to terminate, it will execute Step 2 an infinite number of times.

Proof Assume the lemma is false. It then follows that after a finite number of
statements are executed, the algorithm never returns to Step 2. But this means
that, thereafter, the test in Step 4c of the algorithm is never satisfied.

By Theorem 2.2.25, the modified NE/SQP algorithm will always terminate
in a finite number of steps. Thus, Step 4b of the QPCOMP algorithm will be
executed an infinite number of times. But the test in Step 4b can fail only a finite
number of times. After that, A will be large enough and 4 will be small enough
that by Lemma 2.3.4 the Modified NE/SQP algorithm will always find a solution
to the perturbed problems. Thus we see that Step 4c is visited an infinite number
of times, and moreover, after a finite number of iterations, the value of X is fixed.
But then Lemma 2.3.2 guarantees that the test in Step 4c¢ will be satisfied after a
finite number of iterations. But this contradicts our original assumption, so the
lemma is true. 0

We are now ready to prove Theorem 2.3.1
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Proof (of Theorem 2.3.1)

By Lemma 2.3.5 either the algorithm will terminate with a solution in Step 3, or
Step 2 will be executed an infinite number of times. But if Step 2 is executed an
infinite number of times, then we have

O™y < pub(2*)

, thus, 0(2%) < ¢#0(2), so O(z*) converges to zero. 0

2.4 Implementation and Testing

We implemented the QPCOMP algorithm in ANSI C, using double precision
arithmetic. The Fortran package MINOS (Murtagh & Saunders 1983) was used
to solve the quadratic subproblems. An interface with the GAMS modeling lan-
guage (Brooke, Kendrick & Meeraus 1988, Dirkse, Ferris, Preckel & Rutherford
1994) was incorporated so that the solver can be called from GAMS. This allows
problems to be easily specified, and also allowed the algorithm to be tested us-
ing MCPLIB (Dirkse & Ferris 1995a) and GAMSLIB (Brooke et al. 1988). The
algorithm allows for a great deal of flexibility in the choice of parameters, which
can be specified in an options file. For testing purposes, we used the following
choices of parameters in the QPCOMP and Modified NE/SQP algorithms: @ = .9,
A = 1.0e4, p = .5, 0 = .5. The sequence {n;} used in Step 4 of the QPCOMP al-
gorithm was given by n;1; = 0.999%n;, with g set to 1000. This effectively caused
the Modified NE/SQP algorithm to perform only one iteration before returning
control back to QPCOMP. The parameter A was updated as follows:

1. In Step 4, X is set to peq.

2. In Step 4b, if g fails to solve the perturbed problem, A is set to max(.1, 10A);
otherwise, it is multiplied by .9.

Finally, the parameter ~ is initially chosen to be .01. Thereafter, in Step 4b, it
is set to min(1/A,~). For practical considerations, we also placed a limit on the
number of allowable iterations of the linesearch in Step 3 of modified NE/SQP
algorithm. This limit is set to 10 when the Modified NE/SQP algorithm is called
from Step 2 of QPCOMP, and is increased by 4 whenever the Modified NE/SQP
algorithm fails, up to a maximum of 30.

QPCOMP was tested using problems from MCPLIB and GAMSLIB, as well
as the example problem given in Section 2.1. Specifically, we tested QPCOMP on
every problem with fewer than 110 variables in MCPLIB and GAMSLIB. Larger

problems were excluded because our implementation of QPCOMP uses a dense
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solver for the QP subproblems. Table 2 summarizes the features of the problems
in MCPLIB and GAMSLIB. Even though only the small problems are used here,
we include descriptions of all the problems since they will be used in Chapter 3

We also tested NE/SQP, on the problems in Table 2. To run NE/SQP, we
simply used the QPCOMP algorithm with A = oo and v = 0. A comparison of
the performance of the algorithms is given in Table 3. Many of the problems in the
library are specified with more than one starting point. The particular starting
point used is shown in the second column of the table. For each problem we
report the execution time (in seconds) and the number of function and Jacobian
evaluations, f and J. To save space, we have omitted from this table any problems
that both algorithms solved in less than a second. All of the problems were
solved to an accuracy of 107%. Specifically, for QPCOMP the stopping criteria
was || H(z)|| < 107°.

The results of the testing demonstrate the high degree of robustness of the
QPCOMP algorithm. We note that although it did not solve the Von Thinen
problems, QPCOMP was able to solve these problems to an accuracy of 107*. Ex-
perimentation with the Von Thinen problems suggests that the Jacobian matrix
is singular at the solution. Thus, near the solution, the Jacobian matrix is poorly
conditioned. This ill-conditioning is exacerbated in QPCOMP by the fact that
the QP subproblems are formulated using the square of the Jacobian matrix, re-
sulting in extremely ill-conditioned QP subproblems. The inability of QPCOMP
to achieve higher-accuracy on these problems appears to be a symptom of this

difficulty.
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GAMS file Model origin Type Size | Nonzeros
bert_oc.gms Optimal control MCP | 5000 | 21991
bertsekas.gms | Traffic assignment NCP 15 74
bratu.gms MCPLIB NLP | 5625 | 33750
billups.gms Section 2 NCP 1 1
cafemge.gms | GAMSLIB (139) MCP 101 900
cammcp.gms K MCP 242 1622
cammge.gms K MPSGE | 128 1228
choi.gms Nash equil. NCP 13 169
cirimge.gms GAMSLIB MCP 9 34
co2mge.gms K MCP 208 1464
colvnep.gms Colville #2 NLP 15 99
colvdual.gms | Colville #2 (Dual) | NLP 20 168
dmemge.gms GAMSLIB MCP 170 1595
ehl k60.gms Lubrication MCP 61 3721
ehl k80.gms K MCP 81 6561
ehl kost.gms K MCP 101 10201
ers®2mep.gms GAMSLIB MCP 232 1553
etamge.gms K MCP 114 849
finmge.gms K MCP 153 1916
freebert.gms | Traffic assignment | MCP 15 74
gafni.gms K MCP 5 25
gemmecp.gms GAMSLIB MCP 262 2794
gemmge.gms K MCP 178 3442
hanskoop.gms Capital stock NCP 14 129
hansmep.gms | GAMSLIB (135) MCP 43 398
hansmge.gms 7(147) MCP 43 503
harkmep.gms 7(128) MCP 32 131
harmge.gms 7(148) MCP 11 60
hydroc06.gms Distillation NE 29 222
hydroc20.gms K NE 99 838
josephy.gms MCPLIB NCP 4 16
kehomge.gms | GAMSLIB (149) MCP 9 75
kojshin.gms MCPLIB NCP 4 16
kormep.gms | GAMSLIB (130) MCP 78 423




Table 2: Models (cont.)

GAMS file Model origin Type | Size | Nonzeros
mathi*.gms Walrasian NCP | 4 14
methan(8.gms Distillation NE 31 225
mrhmep.gms GAMSLIB MCP | 350 1688
nash.gms Nash equil. NCP | 10 100
nsmge.gms GAMSLIB MCP | 212 1409
obstacle.gms MCPLIB NLP | 2500 15000
oligomep.gms | GAMSLIB (133) | MCP | 6 16
opt_cont.gms MCPLIB MCP | 288 4928
pgvonl05.gms Von Thinen NCP | 105 796
pgvonl06.gms K NCP | 106 898
pies.gms PIES model MCP | 42 183
powell.gms Powell NLP | 16 203
powell_mcp.gms K NCP 8 54
sammge.gms | GAMSLIB (151) | MCP | 23 117
scarfanum.gms Walrasian NCP | 13 98
scarfasum.gms K NCP | 14 109
scarfbnum.gms K NCP | 39 361
scarfbsum.gms K NCP | 40 614
scarfmge.gms K NCP | 18 181
shovmge.gms | GAMSLIB (153) | MCP | 51 375
sppe.gms Spatial price MCP | 27 110
tobin.gms K MCP | 42 243
transmcep.gms | GAMSLIB (126) | MCP | 11 34
two3mep.gms 7(131) MCP | 6 29
unstmge.gms 7(155) MCP | 5 25
vonthmep.gms GAMSLIB MCP | 125 761
vonthmge.gms Von Thinen MCP | 80 594
wallmep.gms | GAMSLIB (127) | MCP | 6 25
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Table 3: Performance Results

Problem | st. NE/SQP QPCOMP
Name | pt. sec. f(J) sec. f(J)
bertsekas 1 fail fail 2.83 | 151(44)
bertsekas | 2 fail fail 2.41 126(40)
billups 1 fail fail 0.11 23(22)
cafemge 1| 18.16 | 16(10) | 20.11 16(10)
cafemge 21 16.57 | 15(8) | 14.19 15(8)
choi 1] 200 5(4)| 228 5(4)
colvdual 1 fail fail 5.76 | 252(78)
colvdual 2 fail fail 5.39 | 184(59)
colvnlp 1 fail fail 2.13 | 178(54)
colvnlp 2 fail fail 1.62 | 137(30)
ehl k60 1] 16.11 11(8) 16.91 11(8)
ehlk60 | 2| fail | fail | 147.22 | 186(84)
ehl k60 3 fail fail | 492.33 | 1030(98)
ehl k80 1 fail fail | 313.15 98(95)
ehlk80 | 2| fail | fail | 129.02 |  72(33)
ehl k80 3| 435.77 442 | 729.89 | 556(135)
ehl kost 1 fail fail | 611.41 | 108(105)
ehl_kost 2 | 248.79 | 97(30) | 250.28 97(30)
ehl_kost 3 fail fail | 866.08 | 409(79)
freebert 1 fail fail 2.72 | 151(44)
freebert 3 fail fail 2.86 | 173(45)
freebert 4 fail fail 2.47 | 151(44)
freebert 5 fail fail 1.38 | 116(23)
freebert 6 fail fail 3.02 | 173(45)
hanskoop | 5 fail fail 0.70 27(11)
hanskoop 7 fail fail 0.86 45(13)
hansmep 1 fail fail fail fail
hansmge 1 3.14 | 11(8) 2.86 11(8)
harkmep 1 1.27 | 34(11) 1.06 23(10)
harkmep 4 6.96 | 29(13) 9.31 27(14)
harmge 1 fail fail 1.86 | 132(57)
harmge 2 fail fail 0.14 5(4)
harmge 3 fail fail 0.13 5(4)
harmge 4 fail fail 0.15 5(4)
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Table 3: Performance Results (cont.)

Problem | st. NE/SQP QPCOMP
Name pt. | sec. f(J) | sec. f(J)
harmge 5 fail fail | 0.16 8(5)
harmge 6 fail fail | 3.24 | 379(78)
hydroc20 11]16.11 10(8) | 13.31 10(8)
josephy 1 fail fail | 0.08 13(7)
josephy 2 fail fail | 0.07 15(7)
josephy 4 fail fail | 0.04 5(4)
kojshin 1 fail fail | 0.07 16(7)
kojshin 3 fail fail | 0.12 | 35(10)
kormep 1] 2.82 4(3) | 2.82 4(3)
pgvonl05 1 fail fail fail fail
pgvonl05 2 | 41.51 | 199(39) | 50.91 | 213(30)
pgvonl05 3| 33.47 | 153(32) | 58.80 | 322(40)
pgvonl05 4 fail fail fail fail
pgvonl06 1 fail fail fail fail
pgvonl06 2 fail fail fail fail
pgvonl06 3 fail fail fail fail
pgvonl06 4 fail fail fail fail
pgvonl06 5 fail fail fail fail
pgvonl06 6 fail fail fail fail
pies 1 fail fail | 7.26 | 54(49)
sammge 1 fail fail fail fail
sammge | 10 fail fail fail fail
sammge | 17 | 0.62 24(7) | 1.05 43(7)
scarfasum | 2 fail fail | 1.51 | 73(26)
scarfbnum | 1| 6.27 | 70(20) | 6.42 | 76(21)
scarfbnum | 2| 6.01 | 97(22) | 6.09 | 58(19)
scarfbsum | 1 fail fail | 8.77 | 26(22)
scarfbsum | 2 fail fail | 31.11 | 157(83)
shovmge 41 1.19 10(4) | 1.96 20(4)
tobin 1| 1.33] 15(10) | 1.49 | 15(10)
tobin 2| 1.83 ] 18(11) | 1.78 | 18(11)
transmcp 1 fail fail | 1.22 | 69(67)
transmcep 2 fail fail fail fail
vonthmge 1 fail fail fail fail
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Chapter 3

Computational Experience with
the Proximal Perturbation
Strategy

In the preceding chapter, we presented a proximal perturbation strategy and used
it to improve the robustness of the NE/SQP algorithm. Unfortunately, the result-
ing QPCOMP algorithm is relatively slow compared to SMOOTH and PATH. This
speed differential is largely explained by the fact that the Gauss-Newton-based
method of finding search directions, which is used by NE/SQP and QPCOMP, is
more expensive than the Newton-based method used by SMOOTH and PATH.
The additional cost of the Gauss-Newton-based method was well-justified in the
NE/SQP algorithm since it resulted in a significant theoretical improvement in
robustness. However, in the context of the proximal perturbation strategy, the
advantages of the Gauss-Newton method are not clear. Note that by using the
proximal perturbation strategy, it is no longer fatal if a Newton-based direction
finding subproblem is unsolvable; we simply perturb the problem and try again.
It is therefore reasonable to expect that using the proximal perturbation strategy
on a Newton-based method will be as robust as using it on a Gauss-Newton-based
method.

In this chapter we present two new Newton-based algorithms that use the
proximal perturbation strategy. The first algorithm, called PROXI, is very similar
to QPCOMP in that it searches for a zero of the generalized minimum map given
by
(1) H;(x) := min(z; — [;, max(x; — u;, fi(2)));

however, instead of computing the Gauss-Newton direction at each iteration, it
computes a Newton direction by solving a single linear system.
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The second algorithm, called SEMICOMP, is based upon the semismooth
equations approach of De Luca et al. (1995). Here the ® function defined by
(8) in the introduction is generalized to the MCP framework, and solved using
a variant of Newton’s method, which is based upon the theory of semismooth
equations. The resulting algorithm is shown to be Q-quadratically convergent
under standard assumptions. We then enhance the robustness of this algorithm
by applying the proximal perturbation strategy.

The emphasis in this chapter is on computational experimentation; we provide
extensive computational results comparing the performance of PROXI and SEMI-
COMP with QPCOMP, PATH, and SMOOTH. Further theoretical development

of the new algorithms remains as a subject for future research.

3.1 PROXI

The algorithm PROXIT is very closely related to QPCOMP. The major difference
is that instead of solving a quadratic program to determine the search direction,
PROXI solves a linear system to compute the Newton point and then performs
a projected linesearch to determine the next iterate. In what follows, we first
describe the basic (i.e., unperturbed) algorithm, which we call NE/NEWT. We
then apply the proximal perturbation strategy to the NE/NEWT algorithm to
produce PROXI.

3.1.1 NE/NEWT Algorithm

To describe the basic algorithm, we shall use several functions that were defined
in Chapter 2. The first is the generalization of the minimum map given by (1).
As we showed in Chapter 2, finding a zero of H is equivalent to finding a solution

to MCP(f,B). Thus, using the H function, the MCP is reformulated as a zero

finding problem. The natural merit function for this reformulation is given by
1
(2) 0(x) o= 5 | H (@)

We shall also need to use the index sets

Lz) = {i:a, =< filz)}

[el(l') = {Z Y lZ = fz(l')}

[f(l‘) = {Z T — U < fz(l') < x; — lz}
Ly(2) = {ira;—w = fi(2)}

L(z) = {i:a;—u; > filz)}

J[(l’) == II(J})UISI(J})

Ju(x) = L(x)U ().



72

Using these index sets, a linearization of the H function is given by the function

h:B x R" — R" defined by

(l‘i — ;i + dz) 1€ [l(l‘) U [el(l')
(3) hi(z,d) =1 (2; —uw; + d;) i € L(x)U Leu(2) 1=1,...,n.
(fila) + Vfi(x)Td) i€ I(z)

Recall that in NE/SQP and QPCOMP, the search direction was calculated by

computing the constrained minimum of the function ¢, : R" — R defined by

¢u(d) = ||h(x, d)||" /2.

In NE/NEWT and PROXI, we shall instead compute the direction d* simply by
solving the linear system h*(d) := h(z*,d) = 0. One potential difficulty of this
approach is that the Newton point z* 4+ d* may not be in B. Thus, f(z* + d*)
may not be defined. To circumvent this difficulty, a projected linesearch is used,
based on the projected gradient method of Calamai & Moré (1987).

The projected gradient method finds a stationary point of a continuously dif-
ferentiable function ¢ : R" — R on a box B C R". At each iteration, the method
calculates a direction d* := —Vg(2*). Then a projected linesearch is used to
determine a new point z*t! that produces “sufficient” descent of g. The idea
behind the projected linesearch is to evaluate g at a sequence of projected points
{2(a;) := mg(a" + oyd")}, where ; := p' for some p € (0,1). The linesearch pro-
cedure terminates when the following condition is satisfied for a given o € (0, 1):

glz(ai)) < g(a®) + oVg(a") (2 (ai) — ).

The next iterate is then defined by zF+! := z(a;).

Calamai & Moré (1987) showed that if ¢ is bounded below on B, ¢ is contin-
uously differentiable, and Vg is uniformly continuous on B, then the projected
gradient method converges to a stationary point of g on B.

In our context, we can use the projected linesearch technique to force descent
of the merit function #. However, two potential difficulties must be addressed.
First, the function # is not continuously differentiable. To deal with this problem,
instead of using the gradient of § at z*, we use the gradient of ¢,(d) := ¢, (d)
evaluated at d = 0. This gives us the following condition for terminating the
linesearch:

0(z(a;)) < 0(z®) + oVor(0)T () — 2F).
Note that if I;(2*) and I.,(z*) are empty, then VO(z*) is equal to Vr(d).
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A simple calculation reveals that V¢,(0) is given by

Vé.(0) := Vh(a)h(x)
= Z Vfi(z) fi(z) + Z(l'z - li)eﬂ— + Z (x; — ui)eﬂ.

iely ied; i€y

The second difficulty that must be addressed is that the solution d* to the
problem Ah*(d) = 0 is not in general the negative gradient of # at z*. However,
part 2 of Lemma 2.2.5 shows that if ¢,(d) < ¢,.(0), then d is a descent direction
for 0 at the point . Since d* satisfies ¢x(d*) = 0, it follows that d* is a descent
direction for # at 2*. If the parameter o is made suitably small, we can therefore
expect that the process will yield a stationary point of #. A formal proof of this
hypothesis is left as future research.

As a final observation, note that if #* is on or very near the boundary of B,
then the projected point 7T]B($k + d*) may be very close to #*. Thus, even if a full
step is taken, the decrease in # may be very small, or none at all. This situation
is analogous to the NE/SQP algorithm converging to an s-irregular point. We
therefore add an additional termination test into the NE/NEWT algorithm in

order to detect this situation. This test is given by
Vr(0)T (7T]B($k +d*) — l’k) > —y0(z").

In words, ¢ represents a quadratic model of 8. If the projection of z* 4+ d* does
not represent a “sufficient” decrease of this quadratic model, we cannot reasonably
hope to get descent of §. Therefore, we abandon the algorithm.

The complete unperturbed algorithm is given in Figure 4.

For our implementation, the stopping rule in Step 4 is given by #(z*+!) < tol
for some small tolerance tol > 0.

3.1.2 PROXI Algorithm

We now apply the proximal perturbation strategy to the NE/NEWT algorithm.
The resulting PROXT algorithm is given in Figure 5.

The PROXT algorithm was coded in ANSI C, using double precision arithmetic.
As with QPCOMP, an interface with the GAMS modeling language was incorpo-
rated. For testing purposes, we used the following choices of parameters: y = .9,
p =.5, 0 =.01. The sequence {n;} used in Step 4 was given by n;41 = 0.999 * n;,
with 79 set to 1000. This effectively caused the NE/NEWT algorithm to perform
only one iteration before returning control back to PROXI. The parameter A was
updated as follows:



Figure 4: Algorithm NE/NEWT
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Step 1 [Initialization] Select p, o,y € (0,1), and a starting vector z° € B.
Set k= 0.

Step 2 [Direction generation] Solve the system
h(z*,d) =0
for d, giving the direction d*. If this system is unsolvable, or if
Vor(0) (rg(a* + d*) — 2*) > —40(a¥)

terminate the algorithm, returning the point 2* along with a failure
message; otherwise, continue.

Step 3 [Steplength determination] Let my be the smallest nonnegative inte-
ger m such that

O(mp(* + 7)) — () < +oVBy(0) (rp (e + p7d¥) — o)
set zFtl = 2% + pmkdk.

Step 4 [Termination check] If #**! satisfies a prescribed stopping rule, stop,
returning the point %!, Otherwise, return to Step 2, with k replaced

by k+ 1.
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Figure 5: Algorithm PROXI

Step 1 [Initialization] Given a starting vector ° € B and a convergence

tolerance € > 0, choose § > 0, px € (0,1), and set k = 0.

Step 2 [Attempt NE/SQP] Run the NE/NEWT algorithm with starting

point z¥ and with tol = e. This generates a point 2.

Step 3 [Termination check] If & solves MCP( f, B), stop; otherwise continue
with step 4.

Step 4 [Generate better starting point] Set Oy, := 6(3), set y° = 7, set
J =0, and choose A > 0, and choose a positive sequence {n;} | 0.

Step 4a Run the NE/NEWT algorithm to solve the perturbed
problem MCP(f*¥' B) from starting point y’, with tol =
n; /(1 +||y’|). This generates a point .

Step 4b If § fails to solve the perturbed problem to the requested
accuracy, set A > A44 and goto step 4a; otherwise, continue.

Step 4c [Check point] If 0(7) < pbpest, set ¥ = 7 and return

to step 2, with k replaced by k4 1. Otherwise, set 47t :=
and return to step 4a, with j replaced by 5 + 1.

1. In Step 4, X is set to peq.

2. In Step 4b, if g fails to solve the perturbed problem, A is set to max(.1, 10A);
otherwise, it is multiplied by .9.

Finally, the parameter ~ is initially chosen to be .01. Thereafter, in Step 4b, it
is set to min(1/A,~). For practical considerations, we also placed a limit on the
number of allowable iterations of the linesearch in Step 3 of modified NE/SQP
algorithm. This limit is set to 10 when the NE/NEWT algorithm is called from
Step 2 of PROXI, and is increased by 4 whenever the NE/NEWT algorithm fails,
up to a maximum of 30.

PROXI was tested on all of the problems from MCPLIB and GAMSLIB, as
well as the example problem given in Section 2.1. Table 4 shows the results
of this testing in comparison to the unperturbed algorithm NE/NEWT. To run



76

NE/NEWT, we simply used the PROXI algorithm with 4 = 0 and no limit on
the line search. To save space, we have omitted from the table any problems that
both algorithms solved in less than one second.

3.2 SEMICOMP

The second algorithm presented in this chapter is based upon an algorithm devel-
oped by De Luca et al. (1995), which uses the function

) Ha,8) = VETF — (a +D).
Recall from the introduction that this function has the property that
(5) dla,b) =0 <= a>0,b>0,ab=0.

Using this fact, De Luca et al. (1995) reformulated the NCP as the zero finding
problem ®(x) = 0, where ® : R® — R" is defined by

Pi(x) == o, fi(x)),

where, by assumption, f is continuously differentiable on all of R".

To find a zero of ®, a generalization of Newton’s method was used, which is
based upon the theory of semismooth equations. To describe this method, some
background definitions are needed.

Definition 3.2.1 (Qi (1993)) Let f: R — R" be locally Lipschitzian, and let
D be the set where [ is differentiable, the B-subdifferential of f at x is defined by

Opf(z) i= {H € R

H = lim f'(z%) for some {2*} C D, converging to :1;} .

k—oc0

The Clarke subdifferential (Clarke 1983) of f at x is defined by

Of(x) := codpf(x).

Definition 3.2.2 Let f : R" — R" be locally Lipschitzian at * € R". We say
that [ is semismooth at © if

(6) lim HY'
Hep Lzt

exists for all v € R".



Table 4: NE/NEWT vs. PROXI

Problem | st. NE/NEWT PROXI

Name pt. sec f(J) sec f(J)
bert_oc 1 3.37 4(3) 2.61 4(3)
bert_oc 2 2.64 4(3) 3.24 4(3)
bert_oc 3 2.72 4(3) 2.78 4(3)
bert_oc 4 2.29 4(3) 2.67 4(3)
bertsekas 1 fail fail 0.39 138(37)
bertsekas 2 fail fail 0.27 83(31)
bertsekas | 3 fail fail 0.12 21(20)
billups 1 fail fail 0.02 23(22)
bratu 1 || 145.96 | 48(25) || 149.37 48(25)
cammcep 1 fail fail 2.89 77(23)
choi 1 2.36 5(4) 2.03 5(4)
co2mge 1 fail fail 0.27 8(2)
co2mge 6 fail fail fail fail
colvdual 1 fail fail 0.25 201(36)
colvdual 2 fail fail 0.50 250(55)
colvnlp 1 fail fail 0.09 77(16)
colvnlp 2 fail fail 0.05 29(12)
dmcemge 1 fail fail fail fail
dmcemge 2 fail fail fail fail
ehl k60 1 fail fail 9.47 60(14)
ehl k60 2 fail fail || 10.72 60(42)
ehl k60 3 fail fail || 142.28 | 1221(144)
ehl k80 1 fail fail 8.20 20(13)
ehl k80 2 fail fail || 29.26 101(45)
ehl k80 3 fail fail || 51.59 190(74)
ehl kost 1 fail fail || 18.50 25(14)
ehl_kost 2 fail fail || 37.67 95(28)
ehl kost 3 fail fail | 64.88 144(44)
finmge 2 fail fail | 11.34 151(25)
finmge 3 1.82 | 30(7) 0.98 10(4)
finmge 4 fail fail | 12.34 135(28)
finmge 5 fail fail 2.01 20(6)
freebert 1 fail fail 0.39 138(37)
freebert 2 fail fail 0.07 26(8)
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Table 4: NE/NEWT vs. PROXI (cont.)

Problem st. || NE/NEWT PROXI

Name pt. || sec f(J) || sec f(J)
freebert 3 || fail fail || 0.25 | 106(35)
freebert 4| fail fail || 0.31 | 138(37)
freebert 5| fail fail || 0.12 | 53(14)
freebert 6 || fail fail || 0.33 | 106(35)
gemmge 211 3.75 ] 30(7) | 3.31 22(7)
gemmege 3 2.25 6(5) || 1.89 6(5)
gemmge 41 2.65 7(6) || 2.37 7(6)
gemnmge | 5 | 4.95 | 25(11) [ 5.00 | 25(11)
hanskoop 1| fail fail || 0.10 | 42(16)
hanskoop 2 || fail fail || 0.01 2(1)
hanskoop 3| fail fail || 0.09 | 44(13)
hanskoop 4 || fail fail || 0.01 2(1)
hanskoop 5| fail fail || 0.10 | 68(15)
hanskoop 6 || fail fail || 0.01 2(1)
hanskoop 7| fail fail || 0.09 | 37(15)
hanskoop 8 || fail fail || 0.00 2(1)
hanskoop 9 | fail fail || 0.24 | 187(41)
hanskoop | 10 || fail fail || 0.01 2(1)
hansmcp 1| fail fail || 0.14 18(9)
hansmge 1| fail fail || 0.70 | 37(15)
harkmep 1] fail fail || 0.08 | 39(12)
harkmcp 2 || fail fail || 0.07 | 24(12)
harkmep 3| fail fail || 0.02 5(4)
harkmcp 4 || fail fail || 0.21 | 23(14)
harmge 1| fail fail || 0.44 | 222(38)
josephy 1| fail fail || 0.02 | 37(14)
josephy 3 || fail fail || 0.06 | 155(32)
kehomge 2| fail fail || 0.66 | 125(26)
kehomge 3| fail fail || 0.13 | 30(11)
kojshin 1] fail fail || 0.01 18(9)
kojshin 3 || fail fail || 0.05 | 97(22)
mathinum | 3 || fail fail || 0.01 10(8)
mrhmep 1| fail fail || 2.17 | 64(15)
nsmge 1| fail fail || 1.64 | 35(14)
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Table 4: NE/NEWT vs. PROXI (cont)

Problem st. || NE/NEWT PROXI

Name pt. sec f(J) sec f(J)
obstacle 1| 3.00 | 11(10) || 3.40 11(10)
obstacle 2 5.98 | 12(11) || 7.33 12(11)
obstacle 30 7.23121(13) || 8.85 21(13)
obstacle 4 110.86 | 23(16) || 9.29 23(16)
obstacle 5| 5.57 8(6) || 4.52 8(6)
obstacle 6 || 10.51 | 16(9) || 9.92 16(9)
obstacle T 9.89 | 17(9) | 7.57 17(9)
obstacle 8| 8.33 9(6) || 7.54 9(6)
opt_contl27 | 1| 8.02 6(5) || 9.91 6(5)
opt_cont255 | 1 | 19.97 6(5) || 18.71 6(5)
opt_cont31 1] 1.36 5(4) || 1.51 5(4)
opt_cont511 1 42.43 6(5) || 43.19 6(5)
pgvonl05 1 fail fail || 7.99 403(75)
pgvonl05 2 fail fail | 2.18 135(23)
pgvonl0s 3 fail fail || 52.13 | 3353(338)
pgvonl05 4 fail fail fail fail
pgvonl06 1 fail fail || 13.21 739(88)
pgvonl06 2 fail fail fail fail
pgvonl06 3 fail fail fail fail
pgvonl106 4 fail fail | 2.46 86(28)
pgvonl06 5 fail fail fail fail
pgvonl06 6 fail fail fail fail
pies 1 fail fail || 0.29 73(23)
powell 1 fail fail || 0.10 11(8)
powell 2 fail fail || 0.06 6(5)
powell 3 fail fail || 0.08 8(7)
powell 4 fail fail || 0.25 46(13)
sammge 6 fail fail || 0.27 52(19)
sammge 9 fail fail || 0.45 139(26)
sammge 15 fail fail || 0.48 83(23)
sammge 17 fail fail || 0.57 75(22)
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Table 4: NE/NEWT vs. PROXI (cont.)

Problem st. || NE/NEWT PROXI

Name pt. || sec f(J) || sec f(J)
scarfanum | 1 || fail fail || 0.12 21(8)
scarfanum | 2 || fail fail || 0.14 25(9)
scarfanum | 3 || fail fail || 0.16 40(13)
scarfasum 2 || fail fail || 0.15 25(9)
scarfasum 3 || fail fail || 0.15 34(13)
scarfbnum | 1 || fail fail || 0.57 164(46)
scarfbnum | 2 || fail fail || 0.43 165(35)
scarfbsum 1| fail fail || 0.49 60(25)
scarfbsum | 2 || fail fail || 5.16 | 1062(117)
scarfmcp 1| fail fail || 0.16 26(11)
scarfmge 1 || fail fail || 0.19 28(12)
scarfmge 2 || fail fail || 0.13 14(7)
scarfmge 3 || fail fail || 0.28 34(12)
scarfmge 4 || fail fail || 0.32 39(12)
sppe 1| fail fail || 0.07 25(14)
sppe 2 || fail fail || 0.02 9(6)
threemge 7| fail fail || fail fail
threemge 8 || fail fail || fail fail
threemge | 11 || fail fail || fail fail
threemge | 12 || fail fail || 0.10 26(9)
tobin 1| fail fail || 0.13 27(13)
tobin 2 || fail fail || 0.14 43(17)
transmcep 1| fail fail || 0.09 92(26)
transmcp 2 || fail fail || 0.00 1(1)
transmep 3 || fail fail || 0.01 3(2)
transmcp 4 | fail fail || 0.01 3(2)
vonthmep 1 || fail fail || fail fail
vonthmge 1| fail fail || fail fail
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It is known (Mifflin 1977, Qi & Sun 1993) that convex functions and continu-
ously differentiable functions are semismooth. Semismooth functions also have
the following useful properties:

e Sums, products, and composites of semismooth functions are semismooth.

o If a function f is semismooth at x, then f is directionally differentiable at
x, and the directional derivative f'(x;v) is equal to the limit (6).

Definition 3.2.3 A function f: R* — R is said to be SC' at x if f is conlinu-
ously differentiable at x and if the gradient of f is semismooth at x. f is said to
be SC* if for all x € R, f is SC' at x.

Qi & Sun (1993) show that C* functions are SC*.

Definition 3.2.4 Suppose that f is semismooth at x. We say that f is strongly
semismooth at x if for any sequence {d*} C R" converging to 0, and for H* €

af(x + d¥), 2
(7) HEdE = f'(;d") = O(|d*])).

Definition 3.2.5 We say that a semismooth function f: R" — R" is BD-regular
at « if all the elements of Ogf(x) are nonsingular. f is said to be BD-regular if
for all x € R", f is BD-regular at x.

A generalized Newton method can now be defined as follows:
(8) "= o d* where dF = —(H")TUf(2F),

where H* is a nonsingular element of dp f(x").
The utility of this generalized method is established by the following theorem
from Qi (1993):

Theorem 3.2.6 Suppose that x* is a solution of the system f(x) =0 and that f
is semismooth and BD-reqular at x*. Then the iteration method (8) is well-defined
and convergent to x* Q-superlinearly in a neighborhood of x*. If, in addition, f
is directionally differentiable in a neighborhood of x* and strongly semismooth at
x*, then the convergence rate is QQ-quadratic.

Facchinei & Soares (1994) showed that if f is continuously differentiable on
R", then ® is semismooth everywhere. Thus, the iterative method (8) can be
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applied to find a zero of ®. In addition, they proved that if f; is twice continu-
ously differentiable with Lipschitz continuous Hessian, then & is strongly semis-
mooth everywhere. Thus, under reasonable assumptions, the method converges
Q-quadratically.

A nice feature of this particular reformulation of the NCP is that the natural
merit function ¥ associated with ®, which is defined by

(9 W) = 3 o),

is continuously differentiable (Facchinei & Soares 1994). Thus the problem of
finding a solution to NCP( f) is reduced to finding a global minimum of the smooth
function . However, because ® itself is not smooth, it is still possible to achieve
local Q-quadratic convergence to degenerate solutions, which, as we discussed in
the introduction, is not possible for algorithms involving smooth reformulations.

3.2.1 Generalization to MCP Framework

To generalize this method to the MCP framework, we propose the function @ :
R"™ — R" given by

(10) ®i(x) = oz — i, o(ui — i, — fi(@)),

where obvious limits are used to define the function when either bound is infinite;
thus, if [; = —oo, then ®,(z) := —¢p(u; — x;, — fi(x)), if u; = oo, then ®;(x) :=
oz — i, filx)), and if [; = —oc0 and u; = oo, then ®;(x) := — fi(x). Observe that
if { =0 and u = oo, this function is identical to the ® function used by De Luca
et al. (1995).

It can again easily be shown that finding a zero of this function is equivalent

to solving MCP(f, B):
Proposition 3.2.7 x is a solution to MCP(f, B) if and only if ®(x) = 0.

Proof If x solves MCP(f, B), then for each i, one of three cases can occur:
L. 2; = u; with fij(z) <0;
2. l; < x; < u; with fi(2) =0; or
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In the first two cases, by (5), ¢
In the third case, ¢(u; — v, —f;
that ®,(x) = 0.

To prove the converse, observe that if ®;(x) = 0, then either x; — [; = 0 and
d(u; — xy,—fi(x)) > 0, or 2, — I; > 0 and ¢(u; — x;,—fi(x)) = 0. In the first
case, u; — x; = u; — l; > 0. Thus, since ¢(a,b) is negative for (a,b) > 0, we
see that fi(x) > 0. Thus, the complementarity condition x; — l; > 0, f;(x) > 0,
(x; — ;) fi(x) = 0 is satisfied.

In the second case, by (5), the complementarity conditions u; —x; > 0, f;(x) <
0, fi(2)(u;—x;) = 0 are satisfied. It follows then that x is a solution of MCP( f, B).

O

(u; — a5, — fi(x)) = 0, so again by (5), ®;(x) = 0.
(x)) > 0. Thus, since x; — [; = 0, it follows by (5)

To use the generalized Newton method (8) to find a zero of ®, we need to
establish that @ is semismooth.

Theorem 3.2.8 If f is continuously differentiable on R", then the following hold:
1. The function ® defined by (10) is semismooth on R".

2. If f s twice continuously differentiable with Lipschitz continuous Hessian,
then @ is strongly semismooth everywhere.

3. The function U defined by (9) is continuously differentiable, with gradient
given by VU (z) = H"®(x), where H is any element of 0®(x).

Proof To prove Part 1, let n; : R” — R? be defined by n;(x) := (u; — i, — fi(z)),
and let ¢; : R™ — R be defined by (;(«) := ¢(n;(x)). Since (; is the composition of
the semismooth functions ¢ and 7;, then (; is semismooth. In similar fashion, if we
define & : R" — R? by &(z) := (w; — l;, (;()), then we see that ®;(z) := &(&(2)),
so ®; is the composition of semismooth functions and is therefore semismooth.
Finally, by Qi & Sun (1993), ® is semismooth since each of its components is
semismooth.

To prove Part 2, we observe that if n;(x) # (0,0), then (;(z) is twice contin-
uously differentiable with Lipschitz continuous Hessian in a neighborhood of .
Thus, by Qi & Jiang (1994, Lemma 3.1), @, is strongly semismooth at x.

On the other hand, if n;(2) = (0,0), then a; —[; = v; — ; > 0, so &(x) # (0,0),
and thus, ¢ is continuously differentiable in a neighborhood of &;(x). We then get
that

Ol + s ) = V(e + )€l e + s ).
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Now, by Qi & Jiang (1994, Lemma 3.1), n; is strongly semismooth, so &; is also
strongly semismooth. Thus, by (7)

€+ dd*) = e d*) + O] )

Finally, since V¢ is Lipschitz continuous in a neighborhood of & (x), and & is
Lipschitz continuous in a neighborhood of =, we see that

Vo(&i(x + d") = V(&) + O d*|).

Combining the last three equations, we get

(e +d5dh) = (Vo) + o)) (f’xd’“ )+ o))
= Voltta) ) + Of )
= ®(z;d") + O( HdkH

It then follows by Qi (1993, Lemma 2.3) that ®; is strongly semismooth at x.
Finally, ® is strongly semismooth since each component of @ is strongly semis-
mooth.

The proof to Part 3 is identical to the proof of Facchinei & Soares (1994,
Proposition 3.4).

O

The SEMISMOOTH algorithm is given in Figure 6.
In our implementation, SEMISMOOTH terminates in Step 2 if one of the
following two conditions is satisfied:

1. H\I/(:Jck)H < tol for some tolerance tol.

HV\I/ H < ~ for some tolerance 7.

In the first case, the algorithm is considered to be successful, whereas in the second
case, the algorithm is considered to have failed, since the iterates have converged
to a stationary point of W, which is not a solution. These stopping rules are similar
to the rules used by De Luca et al. (1995).

The main convergence result for this algorithm is given by the following theo-
rem, whose proof is identical to the proof of De Luca et al. (1995, Theorem 3.1),
except that we use Theorem 3.2.8 in place of De Luca et al. (1995, Theorem 2.3).

Theorem 3.2.9 [ holds that



Figure 6: Algorithm SEMISMOOTH
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Step 1 [Initialization] Choose 2 € R", p > 0, p > 2, o € (0,1/2), and set
k=0.

Step 2 [Termination Check] If % satisfies a prescribed stopping rule, stop.
Otherwise continue.

Step 3 [Direction generation] Select an element H* € dp®(x*). Find the
solution d* of the system

(11) H*d = —&(2").
If (11) is not solvable, or if the condition
(12) V() Td" < —p |dH|
is not satisfied, set d* = —V¥(2*).
Step 4 [Linesearch] Find the smallest my € {0,1,2,...} such that
(13) (k427 dF) < W(ah) + 027 VU (2F) TP

Set z*+1 = 2% 4 277 d* and go to Step 1, with k replaced by k + 1.
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1. Each accumulation point of the sequence {z*} generated by the semismooth
algorithm is a stationary point of V.

2. If one of the limit points of the sequence {x*}, say *, is an isolated solution

of MCP(f, B), then {2} — z*.

3. If one of the limit points of the sequence {x*}, say x*, is a BD-regular solu-
tion of the system ®(x) = 0, and if each f; is twice continuously differentiable
with Lipschitz continuous Hessian, then {z*} — z*, and

(a) Fventually d* is always given by the solution of (11) (i.e., the negative
gradient is never used for k large enough).

(b) Fventually the stepsize of one is always accepted so that 2*' = 2% +d*.

(¢) The local convergence rate is Q-quadratic.

Observe that Step 2 of the algorithm requires choosing an element of dp®(z*).
We now address the question of how to calculate such an element. To do this,
we shall need the following lemma, which generalizes Facchinei & Soares (1994,
Proposition 3.1).

Lemma 3.2.10
8<I>(:L')T CHAD.(2) + Vf(z)Dy(x)}.

Here Dy(x) and Dy(x) are n x n diagonal matrices whose ith diagonal elements
are given by

(Da)ii(x) := ai(x) + bi(x)ei(x),  (Dp)ilz) = bi(x)di(x),

where
ai(x) = [(z: — li,qb(zi:zn—fi(x)))” -t
(14) _ d(u; — i, —fi()) 1

(s = Ly dui — s, = file))

if (x; — 1, fi(x)) # (0,0), or
(15) () b)) € (€~ 1o~ D) e B €] < 1)
if (xi — 1, filx)) =0; and

(16) di(x) = o !
i(x)) = (2 — wg, fi(2))]| "
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if (i — i, fi(x)) #0, or
(17) (ci(2),bi()) € {(5 +Lp+1) e R |(&p) < 1}
if (i — i, fi(x)) = 0.

Note that in (14) and (16), if either [; or w; is infinite, then the obvious limits are
used to define the fractions. Thus, if [; = —oo, then (a;(x),b;(x)) = (0,—1), and
if u; = oo, then (¢;(x),d;(x)) = (0,1).

Proof By Clarke (1983, Proposition 2.6.2(e)),
0B(x)T C (9y(x) x -+ x OB, (z)).
Thus, it suffices to prove that for each 1,
(18) 00(x) C {(ai(x) + bi(x)ei(2))e’ + bi(w)di(2)V fi(x) T},

where a;(x),b;(x), ¢;(x), d;(x) satisfy (14)-(17).

To prove this result, let ¢g; : R" — R be defined by ¢g;(z) := &(u; — 2, — fi(2)),
and let h; : R* — R? be defined by hi(z) := (z; — l;,g:(x)). We then have that
O, (x) = ¢(hi(x)). Our first step is to show that 9®,(x) = dp(hi(x))0hi(x).

We consider two cases. In the first case, suppose that h;(z) # (0,0). It follows
that ¢ is continuously differentiable at h;(x). Furthermore, since f is continuously
differentiable, and ¢ is Lipschitz, h; is locally-Lipschitz at x. Thus, by Clarke
(1983, Theorem 2.6.6), 0P,;(x) = dp(h;(x))0h;(x).

In the second case, suppose that h;(x) = (0,0). It then follows that u; — x; =
u; — l; > 0, so ¢ is continuously differentiable at (u; — ;, —fi()), and therefore
h; is continuously differentiable at x. By the corollary to Clarke (1983, Proposi-
tion 2.2.1), h; is strictly differentiable at . Furthermore, since ¢ is Lipschitz and
convex (Fischer 1992), then by Clarke (1983, Proposition 2.3.6(b)), ¢ is regular ev-
erywhere. Thus, by Clarke (1983, Theorem 2.3.9(iii)), 0®;(x) = d¢(hi(x))0h(z).

We now look at the terms d¢(h;(x)) and Oh;(x). It is known (Facchinei &
Soares 1994) that

a b
9(a.b) = e~ e 1)} @020
{6=1p=DllEpl <1} (a,b)=0.

Also, o
Ohi(x)" = {(¢',0")

o' € agi(x)} :
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Thus,

00,(x) = {ai(ac)eiT + bi(:zj)ai ol e 0gi(x), a;(x), b(x) satisfy (14) and (15) }

By similar arguments, we get
Jgi(z) = {ci(gc)eiT + di(:zj)Vfi(x)T | ¢;(x), d;(x) satisfy (16)and (17) } )
Combining these last two relations, we see that (18) is satisfied as an equality.

Figure 7 describes a simple procedure for calculating an element of dg®(z).

Theorem 3.2.11 The matriz H calculated by the procedure given in Figure 7 is
an element of Op®(x).

Proof In similar fashion to the proof of De Luca et al. (1995, Theorem 7.1), we
build a sequence of points {y*} where ®(z) is differentiable and such that V& (y*)"
tends to H. The theorem then follows by the definition of the B-subdifferential.

Let y* := x + €,2, where z is the vector of Step 2 and {e;} is a sequence of
positive numbers converging to 0. For ¢ € 3, 3., either ; # [; and x; # u;, or
fi(z) # 0; and for i« € B;UBu, z: # 0. Thus, if ¢, is small enough, either y* # [
and y¥ # u;, or fi(y*) # 0. In either case, ® is differentiable at y*.

We now show that for each 7, limy_yo, V®;(y*)T = H;(x). If either [; or u; is
infinite, the result is given by De Luca et al. (1995, Theorem 7.1) by a simple
change of variables. Thus, without loss of generality, we assume that [; and u; are
both finite.

By Lemma 3.2.10, V®,(y*) is given by

(ai(y™) + bily")eiy®))e + bily")di(y")V fily")
where a;,b;, ¢;,d; are defined by (14) and (16).
We now consider three cases.
Case 1: i € 3/J3.: In this case, by continuity, limy_., V®;(y*)T = M.

Case 2: 1 € (,: In this case, x; = u;, so yf — U; = €1z, SO

aly®) = W !
di(y*) = |(exz, fi(y"))]] !

(19)



Figure 7: Procedure to evaluate an element of dg®(x)

Step 1 Set By:={i|a;—1;,=0= fi(x)}and B, :={i|u; —2; =0 = fi(x)}
Step 2 Choose z € R” such that z; # 0 for all ¢ € 5, ..
Step 3 For each ¢, if ¢ & (3, set

ci(z) = H(xi—lui,f:(w))HJrl

fi()

di(x + 1;
= = A
else if © € B3y, set
Z;
cilx) = +1
©) = R
Vii(z) =
©) = N AT
Step 4 For each ¢, if 1 € (3, set
a;(x) = i —li —1

[(2s = Liy dus — @5, — fil @) |
P(ui — x4, — fi(7)) L
(i = Ly d(w; — i, = filx))||

“O = s+ DV R
ci(w)zi + di(x)V fi(2) " 2)

(2, ci(@)z: + di(2)V fi(2) T 2) ||

— 1.
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Since f is continuously differentiable, we can use a Taylor series expansion
to get
Fiy®) = fila) + eV F(C) T2 with ¢F e oy,

Substituting this expression into (19), we see that

lim ¢(y*) = - 1
dm () = ereran

' Vfi(x)" =

lim d; By = 1
dm &) = v

Thus, limy_., V®;(y*)T = H;.

Case 3: 7 € §;: In this case, ; = [; and fi(¢) = 0. Clearly, x; # u;, so ¢ is
continuously differentiable in a neighborhood of (u; — ;, —fi(x)). Thus,
using an argument similar to the above we get

(20) R N TP (TR T s R
e Vo(ui —xi, —fix))T2)
(21) dm W) = s e e A

Finally, Vo (u; — z;, — fi(2)) = ei(x)e' + di(2)V fi(z), where ¢;(z) and d;(z)
are given by (16). Substituting this expression into (20) and (21), we see
that limk_mo Vq)z(yk)T == HZ

3.2.2 SEMICOMP Algorithm

We now use the proximal perturbation strategy to improve the robustness of
the SEMISMOOTH algorithm. The resulting SEMICOMP algorithm is given in
Figure 8.

The SEMICOMP algorithm was coded in ANSI C, using double precision
arithmetic. Aswith QPCOMP and PROXI, an interface with the GAMS modeling
language was incorporated. For testing purposes, we used the same choices of
parameters that were used by the PROXI algorithm. SEMICOMP was tested on
all of the problems from MCPLIB and GAMSLIB, as well as the example problem
given in Section 2.1. Table 5 shows the results of this testing in comparison to
the unperturbed algorithm SEMISMOOTH. To run SEMISMOOTH, we simply
used the SEMICOMP algorithm with no limit on the line search. To save space,
we have omitted from the table any problems that both algorithms solved in less
than one second.



Figure 8: Algorithm SEMICOMP
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Step 1 [Initialization] Given a starting vector ° € B and a convergence

tolerance € > 0, choose § > 0, px € (0,1), and set k = 0.

Step 2 [Attempt SEMISMOOTH Algorithm] Run the SEMISMOOTH al-
gorithm with starting point z*, with tol = e. This generates a point

x.

Step 3 [Termination check] If & solves MCP( f, B), stop; otherwise continue
with step 4.

Step 4 [Generate better starting point] Set Oy, := 6(3), set y° = 7, set
J =0, and choose A > 0, and choose a positive sequence {n;} | 0.

Step 4a Run the SEMISMOOTH algorithm to solve the per-
turbed problem MCP(f*¥ B) from starting point y’, with
tol = n; /(1 + ||y’||). This generates a point .

Step 4b If § fails to solve the perturbed problem to the requested
accuracy, set A > A44 and goto step 4a; otherwise, continue.

Step 4c [Check point] If 0(7) < pbpest, set ¥ = 7 and return
to step 2, with k replaced by k4 1. Otherwise, set 47t :=
and return to step 4a, with j replaced by 5 + 1.




Table 5: SEMISMOOTH vs. SEMICOMP
Problem | st. SEMISMOOTH SEMICOMP
Name pt. sec f(J) sec f(J)
bert_oc 1 13.50 21(11) 11.38 21(11)
bert_oc 2| 54.41 143(42) 46.44 143(42)
bert_oc 3 17.99 41(15) 15.52 41(15)
bert_oc 4 5.91 7(6) 5.80 7(6)
bertsekas 1 fail fail 0.64 251(42)
bertsekas 2 fail fail 0.59 327(38)
billups 1 0.90 | 6903(345) 0.10 631(76)
bratu 1 fail fail | 7452.38 | 3164(538)
cammcep 1 fail fail fail fail
choi 1 2.93 6(5) 2.95 6(5)
co2mge 2 2.42 63(16) 2.02 62(15)
co2mge 6 fail fail fail fail
colvdual 2 fail fail fail fail
dmcemge 1 fail fail fail fail
dmcemge 2 fail fail | 133.73 | 3099(661)
ehl k60 1 8.21 43(18) 8.25 43(18)
ehl_k60 2 fail fail 55.26 488(78)
ehl k60 3 fail fail fail fail
ehl k80 1 10.38 37(16) 11.29 37(16)
ehl k80 2 29.01 121(32) 29.74 121(32)
ehl k80 3| 123.01 | 568(100) 126.13 | 568(100)
ehl kost 1 15.02 32(15) 18.99 32(15)
ehl_kost 2| 58.25 125(34) 49.06 125(34)
ehl_kost 3| 240.12 | 671(114) 233.23 | 671(114)
etamge 1 1.34 30(17) 1.27 30(17)
finmge 2 fail fail fail fail
finmge 3 1.58 8(5) 1.65 8(5)
finmge 4 fail fail fail fail
finmge 5 1.36 9(6) 1.73 9(6)
freebert 1 fail fail 0.51 266(46)
freebert 3 fail fail 0.55 206(42)
freebert 4 fail fail 0.60 240(42)
freebert 6 fail fail 0.53 200(40)




Table 5: SEMISMOOTH vs. SEMICOMP (cont.)

Problem st. || SEMISMOOTH SEMICOMP

Name pt. sec f(J) sec f(J)
gemmege 2 3.60 16(9) 3.31 16(9)
gemmege 3 3.92 10(8) 2.88 10(8)
gemmge 4 3.22 8(7) 2.84 8(7)
gemmge 5 6.93 | 31(13) 5.32 | 31(13)
hanskoop 1 fail fail fail fail
hanskoop 2 fail fail fail fail
hanskoop 3 fail fail fail fail
hanskoop 4 fail fail fail fail
hanskoop 7 fail fail fail fail
harkmep 4 fail fail fail fail
harmge 1 fail fail 1.52 | 672(75)
harmge 2 fail fail 0.01 3(2)
mrhmep 1 2.01 | 26(13) 2.09 | 26(13)
nsmge 1 1.65 | 23(12) 1.69 | 23(12)
obstacle 1 5.59 | 15(14) 6.86 | 15(14)
obstacle 2| 15.56 | 17(14) || 18.01 | 17(14)
obstacle 3 9.45 | 14(13) || 11.77 | 14(13)
obstacle 41 10.66 | 17(16) || 11.01 | 17(16)
obstacle 5 14.59 8(7) 15.08 8(7)
obstacle 6| 21.14 | 20(13) || 19.62 | 20(13)
obstacle T 1552 ) 17(12) || 12.84 | 17(12)
obstacle 8 || 14.32 10(7) || 14.76 10(7)
opt_cont127 | 1| 45.58 | 27(12) | 46.05 | 27(12)
opt_cont255 | 1 | 110.61 | 31(14) || 107.97 | 31(14)
opt_cont31 1 4.45 11(9) 5.55 11(9)
opt_cont511 1 || 360.42 | 73(20) || 348.63 | 73(20)
pgvonl05 1 fail fail fail fail
pgvonl05 2 fail fail fail fail
pgvonl05 3 fail fail fail fail
pgvonl05 4 fail fail | 28.09 | 352(42)
pgvonl06 1 fail fail fail fail
pgvonl06 2 fail fail fail fail
pgvonl06 3 fail fail fail fail

93



Table 5: SEMISMOOTH vs. SEMICOMP (cont.)

Problem st. || SEMISMOOTH SEMICOMP

Name pt. || sec f(J) sec f(J)
pgvonl106 4 | fail fail || 38.30 412(65)
pgvonl06 5| fail fail fail fail
pgvonl06 6 || fail fail fail fail
sammege 2| 1.96 645(53) || 0.13 38(7)
sammge 3| fail fail || 0.17 41(8)
sammge 5 fail fail || 0.36 84(14)
sammge 6 || fail fail || 0.40 103(17)
sammge 7 fail fail || 0.23 54(11)
sammge 8| fail fail || 0.39 114(16)
sammge 9| fail fail || 0.65 168(29)
sammge 11 || 1.76 577(48) || 0.19 62(9)
sammge 13 ] fail fail || 0.23 61(14)
sammge 14 ] fail fail || 0.23 74(11)
sammge 15 || fail fail || 0.38 122(20)
sammge 16 || fail fail || 0.31 80(12)
sammge 17 ] fail fail || 0.20 61(11)
sammge 18 || fail fail || 0.50 148(22)
scarfasum 3 || fail fail fail fail
scarfbnum | 1| fail fail || 1.01 241(51)
scarfbnum | 2 || fail fail | 7.36 | 1497(341)
scarfbsum | 2 || fail fail || 1.22 276(43)
threemge | 11 || fail fail || 0.82 215(26)
transmcep 1] fail fail || 0.23 | 193(105)
transmcp 2| fail fail || 0.00 1(1)
transmcep 3 || fail fail || 0.03 15(8)
transmcp 4| fail fail || 0.04 43(10)
vonthmep 1 || fail fail fail fail
vonthmge 1] fail fail fail fail
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3.3 Effects of Proximal Perturbation Strategy

The test results given in Tables 3-5 demonstrate the robustness of the proximal
perturbation strategy in convincing fashion. In all three of the perturbed algo-
rithms, the perturbation strategy significantly improved the robustness, with no
significant loss in efficiency. Indeed, all three algorithms were extremely successful
at solving the problems in the model libraries.

It is interesting to note that the robustness of the underlying algorithms plays
little role in the performance of the perturbed algorithms. Indeed PROXI had
the fewest failures of all the algorithms tested even though the underlying algo-
rithm, NE/NEWT, is the least robust algorithm tested. In contrast, the least
successful of the perturbed algorithms, SEMICOMP, is based on the most robust
of the underlying algorithms, SEMISMOOTH. This observation suggests that a
promising approach for improving the capabilities of complementarity solvers on
very large scale problems may be to use a simple (but possibly not very robust)
basic algorithm and then enhance its robustness by using the proximal pertur-
bation strategy. It may therefore be worthwhile to reexamine some algorithmic
approaches that have been abandoned due to deficiencies in robustness.

3.4 Comparison with PATH and SMOOTH

In this section we compare the performance of the algorithms described in this
thesis, namely PROXI, SEMICOMP and QPCOMP with PATH version 28, and
SMOOTH version 3. The PATH algorithm is based upon the path search scheme
of Ralph (1994), but includes several enhancements that greatly improve its per-
formance. In particular, PATH employs a projected Newton preprocessor as a tool
for rapidly identifying the active set. PATH also uses a nonmonotone linesearch as
well as the watchdog technique described by Chamberlain, Powell & Lemaréchal
(1982). A detailed description of PATH is given by Dirkse (1994).

The SMOOTH algorithm is based upon the smoothing technique of Chen &
Mangasarian (19956) and Chen (1995), which replaces the minimum map with
a sequence of smooth approximations. SMOOTH version 3 employs the same
projected Newton preprocessor that was developed for PATH version 27. However,
the use of this preprocessor is slightly different. In SMOOTH, the preprocessor is
used actually to solve the problem. Thus, the smoothing technique is used only
if the problem is not solved by the preprocessor. In contrast, PATH uses the
preprocessor only to identify the active set.

We tested the five algorithms on all of the problems included in the GAMSLIB
and MCPLIB problem libraries, with the exception of QPCOMP, which was tested
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only on problems with fewer than 110 variables. In our testing, the algorithms
were run using their default options on all problems. Execution times for these
tests are reported in Table 6. To save space we have omitted any problems that
all the algorithms solved in less than one second.

From these results it is clear that PROXI and SEMICOMP are comparable to
SMOOTH and PATH in terms of efficiency and robustness. When only smaller
problems are considered, QPCOMP is also competitive in terms of robustness,
but is considerably slower.



Table 6: Execution Times (sec.)

Problem | st.

Name pt. || PATH | PROXI | QPCOMP | SEMICOMP | SMOOTH
bert_oc 1 2.63 2.61 - 11.38 3.23
bert_oc 2 3.13 3.24 - 46.44 2.57
bert_oc 3 2.10 2.78 - 15.52 2.55
bert_oc 4 2.29 2.67 - 5.80 2.62
bertsekas 1 0.08 0.39 2.83 0.64 0.24
bertsekas | 2 0.04 0.27 2.41 0.59 0.05
bertsekas | 3 0.09 0.12 0.33 0.49 0.21
billups 1 fail 0.02 0.11 0.10 fail
bratu 1| 138.52 | 149.37 - 7452.38 135.48
cafemge 1 0.29 0.50 20.11 0.50 0.41
cafemge 2 0.26 0.35 14.19 0.50 0.25
cammcep 1 0.21 2.89 - fail 0.23
choi 1 2.09 2.03 2.28 2.95 2.10
cirimge 3 0.42 0.33 - 0.86 1.25
co2mge 1 fail 0.27 - 0.10 0.42
co2mge 2 0.50 0.48 - 2.02 0.52
co2mge 6 0.46 fail - fail 1.96
colvdual 1 0.11 0.25 5.76 0.12 0.11
colvdual 2 0.09 0.50 5.39 fail 0.10
colvnlp 1 0.05 0.09 2.13 0.08 0.06
colvnlp 2 0.03 0.05 1.62 0.06 0.05
dmemge 1 3.75 fail - fail 5.42
dmemge 2 0.55 fail - 133.73 0.60
ehl k60 1 1.56 9.47 16.91 8.25 1.59
ehl k60 1| 25.16 10.72 147.22 55.26 14.71
ehl k60 1| 44.97 | 142.28 492.33 fail fail
ehl k80 1 2.37 8.20 313.15 11.29 2.93
ehl k80 1 131.99 29.26 129.02 29.74 6.57
ehl k80 1] 56.58 51.59 729.89 126.13 85.26
ehl kost 1 3.86 18.50 611.41 18.99 4.73
ehl kost 21 13.56 37.67 250.28 49.06 12.58
ehl kost 3 9.76 64.88 866.08 233.23 90.38
etamge 1 0.49 1.11 - 1.27 0.97
finmge 2 1.95 11.34 - fail 5.16
finmge 3 0.94 0.98 - 1.65 0.94
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Table 6: Execution Times (sec.) (cont.)

Problem | st.

Name pt. || PATH | PROXI | QPCOMP | SEMICOMP | SMOOTH
finmge 4 1.72 12.34 - fail 9.18
finmge 5 0.91 2.01 - 1.73 1.09
freebert 1 0.07 0.39 2.72 0.51 0.04
freebert 2 0.03 0.07 0.61 0.06 0.04
freebert 3 0.05 0.25 2.86 0.55 0.04
freebert 4 0.09 0.31 2.47 0.60 fail
freebert 5 0.04 0.12 1.38 0.15 0.04
freebert 6 0.08 0.33 3.02 0.53 fail
gemmge 2 3.24 3.31 - 3.31 4.18
gemmege 3 1.85 1.89 - 2.88 1.85
gemmge 4 2.51 2.37 - 2.84 1.84
gemmge 5 8.85 5.00 - 5.32 2.28
hanskoop 1 0.05 0.10 0.37 fail 0.33
hanskoop 2 0.06 0.01 0.05 fail 0.02
hanskoop 3 0.11 0.09 0.42 fail 0.23
hanskoop | 4 0.05 0.01 0.05 fail 0.02
hanskoop 7 0.05 0.09 0.86 fail 0.22
hansmcp 1 0.47 0.14 fail 0.16 0.13
hansmge 1 0.36 0.70 2.86 0.84 0.64
harkmep 1 0.05 0.08 1.06 0.07 0.07
harkmep 4 0.12 0.21 9.31 fail 0.37
harmge 1 0.06 0.44 1.86 1.52 0.09
harmge 6 0.06 fail 3.24 0.02 2.08
hydroc20 1 0.38 0.44 13.31 0.54 0.36
josephy 6 fail 0.02 0.05 0.01 0.02
kormep 1 0.08 0.06 2.82 0.07 0.05
mrHmep 1 0.62 2.17 - 2.09 0.62
nsmge 1 0.91 1.64 - 1.69 2.40
obstacle 1 2.36 3.40 - 6.86 2.39
obstacle 2 5.90 7.33 - 18.01 6.39
obstacle 3 5.03 8.85 - 11.77 6.27
obstacle 4 4.84 9.29 - 11.01 6.12
obstacle 5 8.04 4.52 - 15.08 7.13
obstacle 6 8.86 9.92 - 19.62 10.07
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Problem st.

Name pt. || PATH | PROXI | QPCOMP | SEMICOMP | SMOOTH
obstacle 7 7.39 7.57 - 12.84 7.97
obstacle 8| 13.84 7.54 - 14.76 10.58
opt_cont31 1 1.36 1.51 - 5.55 1.65
opt_cont127 1 8.14 9.91 - 46.05 6.38
opt_cont255 1| 14.86 18.71 - 107.97 13.80
opt_cont511 1 39.51 43.19 - 348.63 37.52
pgvonl05 1 1.54 7.99 fail fail fail
pgvonl05 2 0.77 2.18 50.91 fail fail
pgvonl05 3 1.58 52.13 58.80 fail fail
pgvonl05 4 fail fail fail 28.09 fail
pgvonl06 1] 19.77 13.21 fail fail 125.46
pgvonl06 2 1.80 fail fail fail 5.37
pgvonl06 3 1.29 fail fail fail 8.48
pgvonl06 4 fail 2.46 fail 38.30 fail
pgvonl06 5 fail fail fail fail fail
pgvonl06 6 fail fail fail fail 3.76
pies 1 0.13 0.29 7.26 0.11 0.27
sammge 1 0.01 0.01 fail 0.00 0.00
sammge 10 0.01 0.01 fail 0.01 0.01
sammge 17 0.09 0.57 1.05 0.20 0.17
scarfasum 2 0.04 0.15 1.51 0.15 0.10
scarfasum 3 0.07 0.15 0.37 fail 0.05
scarfbnum 1 0.39 0.57 6.42 1.01 0.32
scarfbnum 2 0.44 0.43 6.09 7.36 0.32
scarfbsum 1 fail 0.49 8.77 0.39 0.24
scarfbsum 2 3.43 5.16 31.11 1.22 0.66
shovmge 2 0.09 0.09 1.11 0.09 0.10
shovmge 4 0.08 0.10 1.96 0.11 0.08
threemge 7 0.06 fail - 0.14 0.05
threemge 8 0.06 fail - 0.12 0.05
threemge 11 0.05 fail - 0.82 0.05
tobin 1 0.08 0.13 1.49 0.11 0.13
tobin 2 0.10 0.14 1.78 0.09 0.09
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Problem | st.

Name pt. || PATH | PROXI | QPCOMP | SEMICOMP | SMOOTH
transmcp 1 0.04 0.09 1.22 0.23 0.05
transmep 2 0.01 0.00 fail 0.00 0.00
vonthmep | 1 fail fail - fail fail
vonthmge | 1 1.06 fail fail fail 17.14
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Chapter 4

An Infeasible Interior-Point

Algorithm for LMCP

The purpose of this chapter is to develop an infeasible interior-point algorithm
for the linear mixed complementarity problem. As discussed in the introduc-
tion, such an algorithm could be extremely useful in the context of solving very
large scale monotone nonlinear mixed complementarity problems. In particu-
lar, if a successive LCP technique is used to solve the nonlinear MCP, then a
fast algorithm that can be easily warm-started is needed for solving the linear
subproblems. This exactly describes the infeasible interior-point methods. In
particular, they are extremely efficient on very large scale monotone problems;
but, unlike other interior-point methods, the infeasible interior-point methods are
easily warm-started.

The algorithm we present in this chapter is based upon two algorithms pro-
posed in Zhang (1994) and Wright (1994). Zhang’s algorithm solves the horizontal
linear complementarity problem (HLCP), and is proven, under certain assump-
tions, to converge to a solution at a global Q-linear rate. Unfortunately, Zhang’s
convergence analysis places a restriction on the starting point. This restriction can
easily be satisfied by making the starting point large in every component; but this
completely defeats the purpose of warm-starting since changing the starting point
may take us farther away from the solution. Moreover, this restriction presents
difficulties when Zhang’s results are used in the analysis of the LMCP algorithm
presented later in this chapter. Fortunately, the restriction on the starting point
is unnecessary. The proof of this fact is one of the major results of this chapter.

Wright’s algorithm is a sophisticated special case of Zhang’s algorithm that
solves the linear complementarity problem and achieves local Q-subquadratic con-
vergence in addition to the global Q-linear rate proved by Zhang. Unfortunately,
Wright’s analysis, like Zhang’s, places a restriction on the starting point. But



102

again, we shall be able to remove this restriction.

The algorithm we propose for the LMCP is derived directly from Wright’s
algorithm. The strategy we use exploits the fact that the LMCP can be refor-
mulated as an LCP. However, since this reformulated problem has a great deal
of structure, we shall take care to ensure that this structure is exploited to full
advantage. With this in mind, the LMCP algorithm is derived as as follows:
first, we reformulate the LMCP as an equivalent LCP. Next, we substitute this
reformulated LCP directly into Wright’s algorithm, producing a naive algorithm
for the LMCP whose iterates correspond directly with the iterates of the LCP.
Finally, we simplify this algorithm, taking advantage of the structure inherent in
the reformulated problem. This produces the LMCP algorithm, which in general,
involves fewer variables than the naive algorithm.

To prove global and local -subquadratic convergence, we construct a one-to-
one function T', which maps the iterates of the LMCP algorithm to the iterates of
the naive algorithm. With this mapping, the task of proving convergence results
for the LMCP algorithm is reduced to proving convergence results for the naive
algorithm. But since the iterates of the naive algorithm are actually iterates
of Wright’s LCP algorithm, we can establish convergence rates for the LMCP
algorithm directly from Wright’s convergence results.

But now the restriction on the starting point becomes significant. Recall that
this restriction is easily satisfied by making the starting point large in every com-
ponent. But, this cannot be done in our analysis since we require that the starting
point of the LCP lies in the range of T'. In general, this places an upper bound
on some components of the iterates of the LCP. In other words, it may not be
possible to find any starting point for the LMCP for which the corresponding
starting point for the LCP satisfies Wright’s restriction. However, by extending
Zhang’s and Wright’s convergence results to arbitrary positive starting points,
this difficulty is removed.

The chapter is organized as follows. We begin by presenting Zhang’s algorithm
for the HLCP and extending the global convergence results to apply to arbitrary
starting points. We then present Wright’s algorithm for the LCP and extend the
global and local convergence results to apply to arbitrary starting points. Finally,
we present the LMCP algorithm and prove global Q-linear convergence and local
QQ-subquadratic convergence.

4.1 Zhang’s HLCP Algorithm

In Zhang (1994), two algorithms are presented for solving the horizontal linear
complementarity problem. The first algorithm is a very general algorithm about
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which a number of useful lemmas can be proved. The second algorithm is a
special case of the first for which Zhang proves a global Q-linear convergence
result. In this section, we describe both of these algorithms and then extend
Zhang’s convergence analysis to apply to arbitrary positive starting points.

Because our analysis is intimately connected with Zhang’s analysis, it is de-
sirable to be consistent with the notation used in Zhang’s paper. We therefore
restate the HLCP as follows:

Find (z,y) € R" x R" such that

Mz 4+ Ny —h
F(x,yw:[ Yy ]:o, (2,) > 0,

HLCP(M, N, h):
where M, N € R"*" e,h € R", X = diag(z),Y = diag(y),e = (1,1,---,1)".

For convenience of discussion, Zhang defines the following sets:

S = {(z,y) €R™:h =Mz + Ny,(z,y) > 0,2y = 0},i.e., the solution set,
A = {(x,y) € R*" : h = Mz + Ny},
F = {(z,y) € A: (x,y) > 0},i.e., the set of feasible points.

Zhang’s algorithms can be described as centered and damped Newton meth-
ods that work as follows: given a starting point (2°,y°) > 0, both algorithms
generate a sequence of strictly positive iterates {(z*, y*)} that, under appropriate
assumptions, converge to a solution (a*,y*) of the HLCP.

To prove his results, Zhang makes the following assumptions on the problem:

Assumption 4.1.1 For any (z,y) € A and (3,9) € A, (x —2)"(y —9) > 0, i.e.
A is the graph of a monotone operator.

Assumption 4.1.2 F £ (), i.e., a feasible point exists.

It is known that Assumptions4.1.1 and 4.1.2 imply the existence of a solution
(x*,y*) to HLCP(M, N, h) (Giiler 1995, Theorem 3.1). It is also well-known that
Assumption 4.1.1 is satisfied by linear programs, convex quadratic programs, and
monotone linear complementarity problems.

In addition to these two explicit assumptions, Zhang also makes an implicit
assumption about the starting point. Given a point (u°,v") € A (such a point
exists by Assumption 4.1.2), Zhang proves his convergence results by choosing a
starting point (2% y°) > 0 that satisfies (2% y°) > (u® v°). It is easy to find such
an (2% y°) (simply choose 2° = max((,u") and y° = max((,v?) for some ¢ > 0).
However, since we are interested in warm-starting the algorithm, we do not want
to change the starting point. Thus, given a fized starting point (2°,y%), Zhang’s
results are based on the following implicit assumption:
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Assumption 4.1.3 There exists (u®,v°) € A such that (2°,y°) > (u®,0°).

We now prove Zhang’s results without this implicit assumption. We start with
Zhang’s first algorithm, which is given in Figure 9.

Figure 9: Zhang’s First Algorithm

Given (2%, 4%) > 0, for k =0,1,2,..., do

1. Choose o € [0,1) and let py, = %kayk. Solve the following linear system
for (Ax*, Ay*)

TN AR

Y X Ay —X*Y* 4 opppe
2. Choose a steplength ay, € (0, 1] and

1
min((X*)~TAzk (YF)-TAy*, —1/2)

o < Gy =

Let 2*t' = 2% + ap Ax? and ¢! = y* + . AyF.

We shall prove a number of technical lemmas about the algorithm given in
Figure 9, which we will then use to prove global Q-linear convergence of Zhang’s
second algorithm, which is a special case of Zhang’s first algorithm.

We begin as Zhang does by constructing an auxiliary sequence {(u*,v*)}.
Given a pair (u°,0v%) € A, for k = 0,1,... we define

(2) uFt = F o ozk(A:L'k 4ok - uk), o=k o ak(Ayk + yk — vk),

where 2%, y*, Az* and Ay* are defined in Figure 9. The sequence is strictly a
tool for analysis and is not actually computed. The following lemma summarizes
some of the properties of the auxiliary sequence.

Lemma 4.1.4 Let {(z*,y*)} and {a)} be generated by the algorithm in Figure
9, {(u*,v")} be given by (2) and vy, := Hf;é(l —«aj). Then for k>0

1. (uF,0%) € A, d.e., h = Mu* + NvF;

k

2. 2 —uf = (2 — %) and y*F — vF = v (y? —0°);
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3. ok —uF| = |2 — uf) < |20 — w0 and |y* — oF| = v ly? — 00 < |y° — 00

Proof Statements 1 and 2 are proven in Zhang (1994, Lemma 4.1). Statement

3 follows immediately from Statement 2 and the fact that 0 < vy < 1. 0

Lemma 4.1.5 Let (2°,4°) € R}, x Ry, (u°,0°) € A(%,9) € F, and let
{(=%,y*)} be generated by the algorithm in Figure 9. Then, under Assump-
tions 4.1.1-4.1.2, for all k > 0,

(& = (@ =) ) Ty" + (9 = (y° =) T
AT A T A A
< J}Ty + F yk + 1 (|$0 . u0|Ty + |y0 . U0|T$ + I/k|$0 . u0|T|y0 . U0|) ‘
Proof Define {(u",v*)} according to (2). Then, by Lemma4.1.4(1), (u*,v*) € A,
so (& —u®)T(§ — v¥) > 0, by Assumption 4.1.1.
Using this fact,
i,Tyk T QTxk T (l‘k o uk)Tyk T (yk o Uk)Txk
(3) < i,Tyk_I_yATxk_l_(xk uk

< )
_ i,TyA 4 kayk 4 (xk uk)TyA 4 (yk . Uk)Ti, 4 (xk . uk)T(yk . Uk)‘

Thus,
(&= (@ =u”) )Ty + (§ = (v° = 0"))T"
= ATy 4Tt — (20— )Ty — (40 — %) Tt
< dTyF Tt — (F =Ty — (yF —v")T2*  (by Lemma 4.1.4(2))
< BTy 4Tt 4 (@ — )Ty (g — o) Tt
< T4 Ty (2 — TG (= oM) TR (2 — d)T (g = oh) (by (3))
< T4 Tyt e — T+ [y — of e+ [ — oF|T Iy = o]

(since (&,9) > 0)
FTg 4y ([ — TG+ 1y — 1T+ vla® — u® Ty = 0°))
(by Lemma 4.1.4(3)).

O

Lemma 4.1.6 Let {(z*,y*)} be generated by the algorithm in Figure 9 in such

a way that ¢o > :L'kTyk for some ¢o > 0. Further, let (x*,y*) be a solution
to HLOP(M, N, k). If for some i, x7 > 0, then the sequence {y*} is bounded.
Similarly, if y7 > 0, then {x¥} is bounded.
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*

*)o and § := y* — (y° — y*)-. By applying
= (z*,y*), and noting that :zj*T * =0, we get
(z*,y%), g g

Proof Define # := 2" — (2 — 2
Lemma 4.1.5 with (#,9) = (u?,v°)

FTyb 4+ Tk

T b b b b b b
e (K T e T e A e A M AT
< oA |2t =2t Tyt =yt T+ (2 — 2|y -yt = CL

N

Thus,
(4) > (:I:ny + l‘fﬂz) <C.
=1
Now, ¢; = min(y?,y’) > 0 and 7; = min(2?,27) > 0. So, each term on the left

side of (4) is nonnegative. Therefore, for all ¢,

xfgigc, and :Z'Z'yfgc.

Thus, if g; > 0, then {z¥} is bounded. Similarly, if #; > 0, then {y*} is bounded.
O

The next lemma is the counterpart to Zhang (1994, Lemma 6.1).

Lemma 4.1.7 Let {(z*,y*)} be generated by the algorithm in Figure 9 in such
a way that ¢g > :L'kTyk > By, for some ¢o, 5 > 0. For any (z*,y*) € S, let
(u®v%) = (2*,y*) and generate {(u*,v*)} according to (2). Then there exists
K > 0 such that

lF — k| Tyk 4 [yk — k| Tk

T =~
(Ek yk

Proof Partition the indices {1,...,n} as follows:
Hy = {Z : l’? > J}Zf,y? > yj}v Hy = {Z : l’? < l'j}, Hs = {Z : yzo < yz*}

. Note that Hy( Hz = () since one of z¥ and y! is zero for each 7 and (2, y°) is
strictly positive.
By Lemma 4.1.4(2), 2% — uf = v,(2? — 27) and y* — vF = 14 (y? — y?), so

clat — uk| = (2% —uk), fori e Hy | Ha,
: A (uf — 2¥), for i € H,y,

| k_vk| _ (yzk_vzk)v fOfiEH1UH2,
Yi ‘ (vF —yF), fori e M.
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By Lemma 4.1.6, i € Hy = 27 > 0 = {y’} is bounded = {vf} is bounded.
Similarly, for 7 € Hs, {2*} and {uf} are bounded. Thus, there exists K; > 0 such
that |y* + vf| < K, for 1 € Hy, and |z¥ 4+ u¥| < K, for ¢ € Hs. Thus,

|$k k|T k_|_|y k|Txk
= 3 { —ubyl 4 o —oh)ab 3 {Wh = eyt + (0F = ob)at)
t€H, 1€H>
+ 3 {f = ubyyl + (of —yf)xf}
iEHg
(5) = kayk—ukv—l—Zx—u vk)
ZEHl
+ 30 (uf =Py +of) + D ( +ud)(vf — i)
1€H> 1€H3
< 2Ty Y fal byt - o]
iEHl
+K, (Z |2} —uf|+ > ny—vfl)
1€H> 1€H3
Note also that
0 < =y +y T2 + (2" —u)T(y* —v") (By Assumption 4.1.1)
(6) _ x*Ty* ‘|‘( )Ty* ‘|‘( o Uk)Tx* —I—UkTUk
S |$k k|T * T |y k|Tx* T Uk (since :z:*Ty* — 0)

Combining (5) and (6), we get
|$k k|T k_|_|y k|T k

< Ty et =l Ty 4 = T S e — ]l — o]

1€ H,
+ D |af =K+ Y0 Kyl - of]
1€Hy 1€H3
T
< ot yk+Vk(|$0—u0|T*+|y T+ Y e = lly) = o)
1€ H,

+ 3 |l = ul|K 4+ D> Ky — v?|) (By Lemma 4.1.4(3)).

1€Hy 1€H3
So,

WP Tyk [y — ok| T2k

kT, k
Y

X
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1 * *
L = 2% = Ty + |y = T + D 2 — ||y — o7
6 1€H,

+ D o =K+ Y Ky =l ) =
ieH, i€H
0

We are now ready to discuss Zhang’s second algorithm. This algorithm is
identical to Zhang’s first algorithm except that the steplength ay is defined more
precisely. We use the following merit function:

o(x,y) = y+ || Mz + Ny — hl.
For convenience we make several additional definitions:
z(o) = 2" +aAz®,  y(o):=y" 4+ oAy,
Ha) i= dlo(a),pla)),  dr = ety

The steplength «y, is chosen so as to minimize the merit function ¢(«a) subject to
the following constraints:

(7) a e [0,1],

(8) zla) > 0, yla)>0,

(9) 2(0)Ty(a) > (1—aja®

(10) z(e)iy(a)i = (y/n)x(a ) yla), i=1,....n

where y € (0,1) is chosen so that v < min(X°Y%%)/(2°"y°/n).
Condition (9) implies that

kayk
(11) 070 > V.
Zhang’s second algorithm is given in Figure 10.

Note that Zhang’s second algorithm is a special case of his first algorithm, so all
the lemmas proved for the algorithm in Figure 9 also apply for to the algorithm
in Figure 10. In particular, since ¢, is a decreasing sequence, it follows that
:L'kTyk < ¢y, for all k. We now show that the Zhang’s second algorithm achieves
global Q-linear convergence from any strictly positive starting point.

Theorem 4.1.8 Let {&r} be generated by the algorithm in Figure 10 with oy,
satisfying 0 < o < op < 1/2. Then {¢r} converges to zero al a global Q)-linear
rate, i.e., there exists 6 € (0,1) such that

¢k+1§(1—5)¢k, k:071727"'
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Figure 10: Zhang’s Second Algorithm

Given (2%, 4%) > 0, for k =0,1,2,..., do

1. Choose o € [0,1) and let up = %kayk. Solve the linear system (1) for
(Az*, Ay*)

2. Set the steplength oy by minimizing ¢(«) subject to the constraints (7).
Let 2"t = 2% + o, Azk, and "' = % + ap Ak

The proof is nearly identical to Zhang’s proof except that we can no longer depend
on (z% —u*) and (y* —v*) being nonnegative. To compensate, we redefine Zhang’s
constants & and 7 using absolute values as follows:

1/2
e e (1) R
v kayk ’
2 0 0|T|,.0 0
L oL 2ug|a® — P Ty — 0P|

With these definitions, the remainder of the proof is identical to Zhang’s except
that we use the following lemma in place of Zhang (1994, Lemma 6.2).

Lemma 4.1.9 Let {(2",y%)} and {(Az*, Ay*)} be generated by the algorithm in
Figure 10 and let DF := (Y*)Y2(X*)=1/2, Then

[DF st + (09 g < wia Ty

Wy 1= (fk + /& ‘|‘77k)2-

Moreover, the sequence {wy.} is bounded, i.e. there is a constant w > 0 such that
wr <w, forall k.

where

Proof Define 2
wem (ot + Jorr s

The proof is nearly identical to Zhang’s proof, so we only outline the arguments,
pointing out where differences occur. Using identical arguments to Zhang’s, the
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following three inequalities are easily established. These differ from Zhang’s results
only by the introduction of absolute value signs:

AkaAyk > _eT(Dk)—1|yk U

(14) —e T DF|ab —uty, — (2% — u®) T (y* — ob).
KTk M2 E__ kT, k
DMk — b < (M) oy
v xk yk
and

T 1/2
eT(Dk)—1|yk_Uk| < (nxk yk) |yk_vk|'|'xk

v kayk

Combining these inequalities,

tk . (l‘k _uk)'l'(yk —Uk),

kT R\ M2 E__ kT, k E__ kT .k
AkaAykZ_(nx y) e B o e

v kayk
which by (12) is equivalent to

T T
(15) At Ay* > (2" Y ) Pt — (@ = uF)T(y" = ob).
By Lemma 4.1.4(2) and (11),

(e — )T (y* — o)

(Vk)2(x0 _ uO)T(yO _ UO)

(16) < ()2 — Ty — o
_ I/kkayk|x0—u0|T|y0—U0|
- xoTyo ’

Now, using identical logic as Zhang,
YL = 204 + /]
(17) > (1) + 2A2F Ay
> ()? = 20aF ) e — 20t — )T —0b) (by (15)
T
kak yk|:1;0 . u0|T|y0 . v0| (by (16))

Yy

.
(ti)? = 2(2* ") 2ty — 2

Y

T
20 0

Thus, from (13),
tkz . Q(kayk)l/sztk . l'kTyknk <0.

The remainder of the proof is identical to Zhang’s proof, except that Lemma 4.1.7
is used in place of Zhang (1994, Lemma 6.1). 0
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4.2 Wright’s Algorithm for the Linear Comple-
mentarity Problem

In Wright (1994), a locally Q-subquadratic algorithm is presented for solving
the LCP which is based on Zhang’s algorithm for solving the HLCP. In fact,
Wright’s algorithm is a special case of Zhang’s first algorithm. Unfortunately,
Wright’s convergence results, like Zhang’s, suffer from the same restriction on the
starting point (2% y°) (see Assumption 4.1.3). In this section, we will remove
this assumption so that Wright’s results will apply to arbitrary strictly positive
starting points.

Again, it is desirable to be consistent with the notation used in Wright’s paper.
We therefore restate the linear complementarity problem as follows:

LCP(M,—h):  Find (x,y) € R" x R" such that
y =Mz —h, (x,y)>(0,0), z'y=0.
Note that this is a special case of HLCP(M, N, h) with N = —1.
The calculation of the search direction in Wright’s algorithm is exactly the

same as in Zhang’s algorithms. By substituting N = —1 into (1), we get the
following equation for calculating the search direction (Az*, Ay¥).

M -1 AxF h— Mz* + yk
(18) k k E|l = | _vkvk
Yo X Ay X*Y"e + opupe
The same substitution into the merit function gives us ¢(x,y) = 2Ty +

ly — Mz + h||. The definitions of g, X*,Y* z(a), and y(a) are unchanged.
The difference in Wright’s algorithm is that the constraints placed on the
steplength are relaxed in order to achieve local Q-subquadratic convergence. Given
the parameters v, € (0,1), and (G € [0,1), the steplength ay is calculated by min-
imizing the function ¢(«) := ¢(x(a), y(a)) subject to the following constraints:

a € [0,1],
z(a) >0, yla)>0,

(@) Ty(a) = (1= B)(1 — a)ra®'y”,
z(a)y(a), > (y/n)x(a) y(a), i=1,...,n.

The condition (21) is a relaxation of the condition (9) enforced by Zhang’s
second algorithm. Setting (8, > 0 allows the reduction in the complementarity

gap to exceed the reduction in the feasibility, thereby allowing larger steps. Note
that by setting Br = 0 we get Zhang’s algorithm.
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Another notable difference is that Wright’s algorithm can use a different ~;
at each iteration in condition (22). In fact, the local Q-subquadratic convergence
is dependent on being able to choose successively smaller choices of 7, at each
iteration.

The complete algorithm is given in Figure 11.

Figure 11: Wright’s Algorithm

Given 7 € (0,1/2).0 € (0,1/2).p € (0.7),
>0, and (22,y°%) > (0,0), with 2%? > 2vuo;
to 1,70 < 2v;
for £k =0,1,2,...
it pi= o(eh,yt) < o
then Compute a “fast” step by setting oy + g, Bp < ¥,
and yx < y(1 + ') and solving (18)-(19)
to calculate (Az*, Ay*) and ay;
if  o(aF + apAat,yt + aAyt) < poy
then (¢!, y"*1) « (2%, y*) + ax (A, Ay")
tpgr <t + 1;
go to next k;
end if
end if
Compute a “safe” step by setting o € [o,1/2], 6r = 0,
and v, = k-1, and solving (18)—(19)
to calculate (Az*, Ay*) and ay;
(xk-|—17yk+1) — (xk7yk) + Ozk(Al‘k,Ayk)
Lpgr < g
go to next k;
end for.

At each iteration, either a safe step or a fast step is taken. A safe step works
exactly like Zhang’s algorithm; we set 3, = 0 and hold v constant for the next
iteration. A fast step works by setting 8 > 0 and oy = py. It is these fast
steps that allow the algorithm to attain local Q-subquadratic convergence. Un-
fortunately, a fast step requires reducing the size of 4 for subsequent iterations.
Therefore, the fast step is only taken if it results in a significant decrease in ¢. If
it doesn’t, the step is discarded and a “safe step” is taken instead.
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We again will find it convenient to refer to the sets S, A, and F defined earlier.
For convenience we restate their definitions here with N = —1:

S={(z,y) €ER”" :y= Mz — h,(z,y) > 0,2Ty = 0},i.e., the solution set,
A={(z,y) €R*" :y= Mz — h},
F={(x,y) € A: (x,y) > 0},i.e., the set of feasible points,

Wright proves two convergence results for his algorithm. First, he shows that
the algorithm has global Q-linear convergence. Second, he shows that the al-
gorithm attains local QQ-subquadratic convergence. His results are based on the
following explicit assumptions:

Assumption 4.2.1 M is positive semidefinite.
Assumption 4.2.2 LCP(M,—h) has a strictly feasible point (z,y).

Assumption 4.2.3 The solution set for LCP(M,—h) is nonempty and, more-
over, there is a strictly complementary solution (x*,y*).

Wright’s results, like Zhang’s, are also dependent on Assumption 4.1.3. These
assumptions are more restrictive than Zhang’s assumptions. Assumption 4.2.1
is equivalent to Assumption 4.1.1 in the case of LCP, but Assumption 4.2.2 is
stronger than Assumption 4.1.2. In fact, Zhang’s assumptions are sufficient to
prove the global Q-linear convergence. However, Wright’s more restrictive as-
sumptions are used to prove the local Q-subquadratic convergence. We now
proceed to prove global Q-linear convergence of Wright’s algorithm using only
Assumptions 4.1.1-4.1.2.

Note that since Wright’s algorithm is a special case of Zhang’s first algorithm,
Lemmas 4.1.4-4.1.7 are applicable for it. We shall also need the following result
from Wright (1994):

Lemma 4.2.4 Let 3 := [Tieo(1 — Br) where By is defined in Figure 11, and let
Uy = :L'kTyk/n. Then 3> 0 and

B, and

BykxOTyO.

Ke =
Pyt >

Proof (Wright 1994), Lemmas 3.1 and 3.2. 0
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We now define the quantities ék,ﬁk, and @y, which we use to establish the
convergence rates:

é (n 1/2 |xk_uk|Tyk_|_|yk_Uk|Txk
k -— Ve BTk )

ﬁkizl—QO'k—l-

x
(o1)?  2u)2® —

+ =
Vi ﬁ:z;OTyO

Wy = (fk + (fk)2 + ﬁk)Q-

u|Ty? — v°|

Note the similarity to the definitions of & and ny in, (12), (13). ék is identical to
{ except that it has 4y in the denominator instead of 7. 7 differs from ny only
by dividing the last term by (.

Lemma 4.2.5 Let {(2",y*)} and {(Az*, Ay*)} be generated by the algorithm in
Figure 11 and let DF := (Y*)Y2(X*)=1/2, Then

(23) HDkA:JckH2 + H(Dk)_lAka2 < c&kkayk.
Moreover, the sequence {&p} is bounded.

Proof We can make minor modifications to the proof of Lemma 4.1.9 to prove
(23). These changes are as follows:

1. Replace &, nr, and wy by ék, Nk, and wy, respectively.
2. Replace (16) with the inequality
-
vpa a0 — w0 Ty — O]
BTy '

which we justify by Lemmas 4.1.4(2) and 4.2.4.

(24) (2" —u®)T(y* = ") <

3. Replace the last line of (17) with

.
= Y[l = 205 + of /]

.
kak yk|$0 _ u0|T|y0 _ U0|
G0y

T A
> (tk)z — Q(J}k yk)l/sztk -2

by (24).
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To show that {&} is bounded, observe that {7} is bounded. Moreover, by Lemmas
4.1.7 and 4.2.4,

12k k| T,k k kT .k 1/2
A n zt—=ut Yyt 4+ |yt —vt n .
Yk

2+ Ty Y

so {£x} is also bounded. Hence, {&;} is bounded. 0

We can now state the global Q-linear convergence theorem.

Theorem 4.2.6 Under Assumptions 4.1.1-4.1.2, there is a constant § € (0,1)
such that
Qbk.HS(l_(S)Qbk, k:()v"'v

that is, the Wright’s algorithm converges globally and Q-linearly.

Proof The proof is identical to the proof of Wright (1994, Theorem 4.2) but
using &g, Mk, and Wy in place of &, ng, and wy, and also using Lemma 4.2.5 in place

of Wright (1994, Lemma 4.1). 0

We now turn our attention toward proving global Q-subquadratic convergence.
We shall need to use Wright’s stronger assumptions 4.2.1-4.2.3.

We first prove two lemmas which place bounds on the iterates (z*,y*). We
need the following definitions:

B ={ilat >0}, N=/{ily;>0}.

where (a*,y*) is the strictly complementary solution guaranteed by Assump-

tion 4.2.3. Note that N|UB ={1,2,...,n} and NN\ B = 0.

Lemma 4.2.7 Let {(z*,y*)} be generated by the algorithm in Figure 11. There
is a constant Cy > 0 such that

i€ B=yf <Oy, zF>v/0C.
Proof Define 7 := 2* — (2 — 2*)_ and § := y* — (y° — y*)_, where (z*, y*) is the
strictly complementary solution guaranteed by Assumption 4.2.3. By applying

Lemma 4.1.5 with (2,9) = (u°,v°) = (*,y*), and noting that 2*Ty* = 0, we get
Ty 4Tt
T b b b b b b
< 2Pyt (e = 2Tyt Y =yt et 4 e = 2Ty - )

0 * | T, % 0 * | T % 0 *|T1,,0 *
kT ok 2° — 2"y + [y =y e+ e =2 Tyt — g
= y(l—l—l/k( :L'kTyk

< C’lkayk, by Lemmas 4.1.4(3) and 4.2.4,
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where

Ba0Tyo
Thus,
(26) Zn: (@Tyzk + fl?nyNz) < nCyug.

=1
Now, ¢; = min(y?,y7) > 0 and 7; = min(2?,27) > 0. So, each term on the left
side of (26) is nonnegative. Therefore,

:chyNZ < nC’l/,Lk, and :i'iyf < nC’l/,Lk.
Note further that for : € N, g; > 0, so

k nC’l
Ly S = Mk,

Similarly, for ¢« € B, #; > 0 and

kaS ~ Mk,

Finally, we obtain our result by taking

. 1 1
(1 :=nCimax | max —, max — | .
€B x,; €N s

Then for i € B,z¥ < Cyu, and by (22)

k, k ko~ TkHk Yk g
zyz - F)/kll’bk yz — xf — Cl — Cl
Similarly, for : € N,y* < Cyuy and z¥ > v/C. 0

Lemma 4.2.8 Let {(z*,y*)} be generated by the algorithm in Figure 11. There
is a constant Cy > 0 such that

(27) 0<af <Oy 0<yf <Oy
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Proof Define # := 7 —(2°—2)_ and § := y—(y°—y)_, where (z,7) is the strictly

feasible point guaranteed by Assumption 4.2.2. Note that (&,y) > 0. Now, by

applying Lemma 4.1.5 with (2,9) = (u°,0°) = (2,y), we get

T T T T _ _
< g+ v (e =2+ 1y -yl TE 4 20 = 2Ty’ —g))
< g4 =T+ O — g+ 20— 2Ty — gl
.

Hence,

C c,
0<yf< 2 0<af<2 i=12...n
T; :

K3 K3

The result is obtained by setting

. 1 1
(5 :=(Cymax | max —, max — |.
=1,..,n T; 1=1,...,n Y;

O

The remainder of Wright’s results can now be proved simply by replacing all
references to Wright (1994, Lemmas 3.4 and 3.5) by references to our Lemmas
4.2.7 and 4.2.8.

Theorem 4.2.9 Under Assumptions {.2.1-4.2.3, there is an € > 0 such that if
K is the smallest integer such that ¢ < €, then

1. the algorithm will take fast steps at iteration K and at all subsequent itera-
tions, and

2. the sequences {ur} and {¢dp} converge (Q)-subquadratically to zero.

Proof The proof is identical to the proof of Wright (1994, Theorems 6.3 and
6.4), but using Lemmas 4.2.7 and 4.2.8 in place of Wright (1994, Lemmas 3.4 and
3.5). O

Corollary 4.2.10 The algorithm in Figure 11 has local Q-subquadratic conver-
gence.

Proof Follows immediately from Theorem 4.2.9. 0
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4.3 Algorithm for Linear MCP

We now turn our attention to the linear mixed complementarity problem. To
employ the infeasible interior-point methodology, we reformulate the LMCP as
follows:

LMCP(M,q,B):  Given M € R"*" ¢ € R", find a vector
triple (z,w,v) € R” x R™ x R" such that
w—v=Mz+q,
zeB, w>0, v>0
(z—lLw)y=0 and (u—2zv)=0.

The algorithm presented in this section makes the additional assumption that
for each index 7, at least one of [; and u; is finite. This restriction was motivated by
a desire to avoid complications imposed by a lineality space. Without this restric-
tion, an adaptation of our analysis would seem to require an additional assumption
regarding the invertibility of a submatrix over the lineality space. However, Cao &
Ferris (1995a) show that such an assumption is unnecessary by using a reduction
technique to remove the lineality. Unfortunately, the linear algebra involved in
this approach would seem to make it impractical in this context.

In the analysis of this section, it will be convenient to define a generalized
inner product ((-,-),-) : R” x R" x R" — R, by

<(w7 U)v Z> = Z wi(Zi - li) + Z Ui(ui — ZZ)

te{u:li>—o0} te{nu;<oo}

The first step in deriving an algorithm of the LMCP is to reformulate it as an
LCP. To do this, we first make some observations about LMCP(M, ¢, B). Let us

partition the indices according to which bounds are finite.
H:={i:—cc<lju;<oc}, Ji={i:u,=00}, K:={i:l,=—oc0}.

Note that H,.J, and K are disjoint and further that HUJUK = {1,...,n}.
Without loss of generality, we can assume that the rows and columns of M and
the vectors ¢, [, and u are ordered so that the indices in H occur first, those in J
occur second, and those in K occur last. Let p, s, and ¢ be the cardinality of the
sets H,.J, and K respectively.

Note that if (z*,w*, v*) is a solution to LMCP(M, ¢, B), then wj = 0, and
vy = 0. Thus, we can remove wg and v; from the problem. This motivates the
definition of the set

Gi :={(w,v) € R" x R" : wg = 0,v; = 0}.
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We now define an invertible linear map L : G; — R?™® x RP** by

L(w,v) := (w0, 0),

where w::[wH] and ﬁ::[UH].

wy VK
Our plan now is to create an algorithm that generates iterates {(z*, %, o*)} such
that {(2%,wk v®)} = {(zF, L1 (", 5%))} converges to a solution (Z w*, v*) of
LMCP(M,q,B). To do this, we exploit the fact that LMCP(M ) can be

reformulated as an LCP with higher dimension.
Define the maps

X :R"x G, = R = (z,w,0) = (2 — lg, 25 — Ly, ux — 2K, vE),
Y:R"x G — R"™ .= (z,w,0) = (wg,wy, VK, ug — zg).

In order to refer to the last p components of X and ), we define the set of indices
H = H + n. For example, if + = X(z,w,v), then x5 = vy. Now, define the set

Gy = {(z,y) e R"? x R 1 2y + Yy =um — lm}.
We can now define an invertible linear map T : R" x G; — G, by the relation
T(z,w,v):=(X(z,w,v), Y(z,w,v)).

Using this mapping, the LMCP can be reformulated as follows:

(28) (x,y) :=T(z,w,v),
]]\\/[/[HH ]]\\/f/[HJ _%HK é
(29) M= _M]quH _M]I;]'J Mlx’if 01’
-1 0 0 0
—qag — Murlag — Myl — Mpguk
(30) | T~ Miglg — Mjsl; — Mjgug mi=n+p.

gk + Miplg + Migly+ Mggur |’
—ug + g

With these definitions, LMCP(M, ¢, B) is equivalent to the linear complemen-
tarity problem formed by replacing M, h, and n in LCP(M,—h) by M, h, and m,
respectively. Thus, given a starting point (2% w® v°%) € ri(B x G;) we can solve

LMCP(M, ¢q,B) s1mp1y by applying Wright’s algorlthm with the starting point
(2%, y%) := T'(2°,w® v°). If the algorithm finds a solution (z*,y*) of LCP(M, —h)
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with M = M, h = iL, then (z*,y*) € Gy and (2%, w*,v*) := T~ (z*,y*) is a
solution of LMCP(M, ¢, B).

Our plan now is to substitute (28)—(30) into Wright’s algorithm and to simplify
in order to produce an algorithm that generates iterates {(z*, ", ©%)}, such that
for all k,

T(Zkv L_l(wkv ﬁk)) = (xkv yk)v
where {(z*,y*)} are the iterates generated by Wright’s algorithm. Throughout
our discussion, we will occasionally find it convenient to refer to (w*,v*). In such
cases, we are implying the relationship (w, v*) = L1 (@, %).

We look first at the equation used to calculate the search direction. Direct
substitution into (18) yields

MHH MHJ _MHK [p —[p 0 0 0 1T Al‘% i
MJH MJJ —MJK 0 0 —[5 0 0 A$§
—Mgknp —Mgy; Mgxg 0 0 0 =L 0 Al
_ _ Axk
(31) [;f 0 0 0 Ok 0 0 I, :JckH
Wr 0 0 0 Ry O 0 0 Ayt
0 W}“ 0 0 0 Rﬁ 0 0 Ayf}
0 0 ij 0 0 0 S}} 0 Ayﬁr
i 0 0 0 Sﬁl 0 0 0 V}’} 11 Ay% ]
[ wh —vh — My.2* —qy ]
wf} — M.k — q7
U}i’ + Mp.2% + qK
(32) . "

—WE R e+ oppuge
—WffRﬁe + oppre
—ViSice + opppe
—VhESEe+ opupe

where R := diag(z — ), and S := diag(u — z). By the fourth row of this system,
Azk = —Ayg. We can thus replace the last equation of (31) with —V* Az}, +
S];IAJ}% = —VESEe + oppre. Removing, the fourth row and the last column, we
get

Mygg Mgy Mpg
Mg My Mk

L, =1, 0 0 [ Az
0 0 —I, 0 Axh
0 0 0 I ||-Azk
0 Ry 0000 Ach
0o Wr 0 0 0 RY 0 Ayt
0 0 0 Sk Ayk
Sk0 0 0 Ayk




(34)

[ why — vk — My.2F — gy
wf} — My.2* —qy
—v}iy — My.2* — g
~WERNe + opuge
—WHEREe + opure
—VESke + oxpre
—VhSke + opure
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Finally, moving column 4 to column 6, and switching rows 6 and 7, we obtain
the equation

M —lw Iy Az —q— Mz* — b 4wt
(35) Wk R0 Ak | = —RFWhe + oy e
—VvE 0 Sk Ab* —S*Vke + opppe
where
Azj ko] k
At | Ak Ak oo | BV | Apk o | BT
o Ayh |7 Ay
~ Ak J ] K
I, 0 (1, 0
[W 0 [5 5 [V = 0 0 5
0 0 0 L
Wk .=

R

Wk 0 0 ok [ VE 00
0 Wk ool Tl o o0 vE

[ Ry 0 w [ Sy 0
._[0 RJ], s._[ ]

0 Sk

steplength. Let us define the merit function

We now turn our attention to the equations governing the calculation of the

where (2,y) = T(z,w,v).

Then ¢(z,w,0) = ((w,v),z) + [|w —v — Mz — ¢||. Define

Direct substitution into (19) gives the following equations for calculating the

z(a) = 2+ aAzk,
w(a) = W+ aAw”,
O(a) = ok + aADR,

steplength for the LMCP algorithm:
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(36) o = argmin, ¥ (z(a), w(a), 0(a))

subject to

(37) a € [0,1],

(38) <zla)<wu, and (W(a),0(a)) >0,

(39) {(w(a ) v(a)), z(a)) = (1 = B)(1 — a){(w*,v*), ),

(40)  (2(a)i = Lwla)i = (v/(n + p))((wla),v(a)),z(a)), i€ HU,

(41)  (wi = z(@))v(a)i 2 (y/(n + p)){(w(e), v(a)), 2(a)), 1€ HUK
Finally, we note that from Figure 11, u; = :L'kTyk/m = ((w*,v%), %) /(n + p)

The complete algorithm is given in Figure 12.
By construction, there is a 1-1 correspondence between the iterates {(z*,y*)}

of Wright’s algorlthm and the iterates {(z*,w", %)} of the LMCP algorithm. This

1-1 correspondence is given by T'(2*, L~ 1(wk,vk)) = (2%, y*). Thus, we can prove

convergence results for the iterates {(z*, ", %)} of the LMCP algorithm simply
by analyzing the iterates {(z*,y*)} of Wright’s algorithm.

We now state several convergence theorems for the LMCP algorithm. These
results are based on the following assumptions:

Assumption 4.3.1 M is positive semidefinite.

Assumption 4.3.2 LMCP(M,q, B) has a point (z,w,v) € T, := {(z,w,v) : |l <
z <u, L{w,v) > 0,wxg =0,v; =0} and w—v =Mz +q.
Assumption 4.3.3 The solution set for LMCP(M, q, B) is nonempty and, more-

over, there is a strictly complementary solution (z*,w*,v*), that is zf = |, =
wi >0 and z2f = u;, = v’ > 0.

The following lemma shows that the above assumptions guarantee the assump-
tions for the convergence of Wright’s algorithm.

Lemma 4.3.4 Given the relationship between LMCP(M,q, B) and LCP(M,—h)
defined by equations (28) — (30), (i) Assumption 4.3.1 = Assumption 4.2.1;
(ii) Assumption 4.3.2 = Assumption 4.2.2; (iii) Assumption 4.3.3 = Assump-
tion 4.2.3;

Proof (i)
[T, y", 2T w Mz y; 23 w]
T T T T T T
= = Mpgx+ax Mpyjy+y Mjpr —2 Mygz—z2 Mgpgr+x [w
—w e +y Myyy—y Mygz— 2" Mgy + 2" Mgk
= [xTv yT7 —ZT]M[J}, Y; _Z]v
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Figure 12: LMCP Algorithm

Given v € (0,1/2),0 € (0,1/2),p € (0,7),
Y >0, and (2%, w°, 0%) with | < 2% < u, (@ 8°) > 0,
(z; — li)w; > 2yp for i € HUJ, and v;(u; — z;) > 2ypo for i € HU K
to 1,70 < 2v;
for £k =0,1,2,...
i (e ok, ) < o
then Compute a “fast” step by setting o), + ug, Bk < ',
and yx < v(1 + ') and solving (35)-(37) to calculate
(AR Aw* ADF) and ay;
if Vr(2" + apAzk R + ozkAﬁ) oF + apr ADR) < pify
then ("1 @*L kL) o (28 @k 6F) + ap (AR, A, AdF),
tpgr <t + 1;
go to next k;
end if
end if
Compute the “safe” step by setting oy € [o, 1/2],[3;g — 0,% < Vi1
and solving (35)—(37) to Calculate (AR Ak ADF) and ay;
(AL kL SR o (2R R DF) + ag(AZF, Awk AR,
Lpgr < g
(0541, 6541) - (o), blay), D(an));
go to next k;
end for.
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so M is positive semidefinite whenever M is positive semidefinite.
(ii) If (z,w, v) € T, then we can define (z,y) := T(z,w,v). Clearly, (z,y) > 0.
Moreover,

g —ly My z+ qn wy
N Ty . M,z I
Mi—h=n1 "% |_j_= J.Z:|‘QJ _ Wy — .
UK — ZK —Mg.z — qx UK
ﬁH uyg — EH u — EH

Thus, (#,y) is a strictly feasible point for LCP(M, —h).

(iii) By a similar argument to (ii), if (z*,w*,v*) is a strictly complemen-
tary solution of LMCP(M, ¢, B), then (a*,y*) := T(z*,w*,v*) is a solution to
LCP(M, —h). It is easy to check from Assumption 4.3.3 and the definition of T
that 7 = 0 implies y* > 0, so that (z*,y*) is strictly complementary. 0

We can now state the following convergence theorems for the LMCP algorithm.

Theorem 4.3.5 Under Assumptions 4.3.1-4.3.3, there is a constant § € (0,1)
such that

Yrp1 < (1=, k=0,1,2,...,
that is, the LMCP algorithm converges globally to a solution of LMCP(M,q, B)

at a Q-linear rate.

Proof By construction, ¥y = ¢, where ¢4 is as defined in Wright’s algorithm.
The result follows from Theorem 4.2.6. 0

Theorem 4.3.6 Under Assumptions 4.3.1-4.3.3, there ts an € > 0 such that if
K is the smallest positive integer such that 1y < €, then

1. the LMCP algorithm will take fast steps at iteration K and at all subsequent
iterations, and

2. the sequences {pg} and {1} converge Q-subquadratically to zero.

Proof Follows directly from the definitions of p and v, and Theorem 4.2.9.
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4.4 Summary

In this chapter, we have extended the convergence results of Zhang and Wright to
apply to arbitrary strictly positive starting points. This extension is important be-
cause it allows the convergence theory to be applied to cases where the algorithms
are warm-started from points not satisfying Zhang’s and Wright’s restrictions.

The extension also plays an important role in proving the convergence results of
the LMCP algorithm presented in Section 4.3. Recall that the restriction imposed
by Zhang and Wright on the starting point can easily be satisfied simply by making
the starting point (2°,y") large in every component. However, in the analysis of
the LMCP algorithm, we defined (2°,y%) = T'(2% w®, v°) so that (z°, y°) is required
to lie in the range of T'. In particular, xg + y5 = ug — (g, so increases in the
components of xy must be offset by decreases in the components of yz. Thus,
for the LMCP(M, ¢, B), it may not be possible to find a starting point that meets
the restriction. By removing the restriction from the convergence results, this
difficulty is eliminated.
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Chapter 5

An Algorithm for Solving Affine
Generalized Equations

Given a maximal monotone multifunction 7' : R"XR" and a continuously differ-
entiable function F': Q O dom(7T') — R", the generalized equation is to

GE(F,T): find z € dom(T") such that
0€ F(z)+T(z).

If F'is an affine function, and if 7" is polyhedral, then we get the affine generalized
equation.

As was mentioned in the introduction, complementarity problems and finite
dimensional variational inequalities are special cases of the generalized equation.
To date, most of the algorithmic development for generalized equations has been
focused on the special case where T' := N, the normal cone to a convex set ¢'. A
powerful tool for addressing this special case is the normal map (Robinson 1992)
given by
(42) Fo(x) = F(re(x)) + @ — mo().

In fact, the normal map is the basis for MILES (Rutherford 1993) and PATH
(Dirkse & Ferris 1995b), two of the most successful algorithms available for solving
nonlinear MCPs.

In this chapter, we use the algorithmic framework of Eaves (1976) to generate
an algorithm for determining zeros of coherently oriented piecewise affine maps.
As special cases of this algorithm, we obtain the affine variational inequality al-
gorithm of Cao & Ferris (19956) and an algorithm for solving affine generalized
equations. To demonstrate these special cases, we introduce the T-map, a gen-
eralization of the normal map, which can be used to solve generalized equations
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involving operators T' that do not necessarily correspond to the normal cone to
any set.

In Section 5.1, we present a path following algorithm for piecewise affine maps
and prove that under the assumption of coherent orientation, the algorithm finds
a zero after a finite number of steps. In Section 5.2, we define the T-map for
general [’ and T and prove several useful properties regarding this map. The
remainder of the chapter focuses on the case where T' is polyhedral and can be
viewed as an extension of the special case where T' := Ng, with C' polyhedral.
In particular, it is shown that the previously described algorithm is applicable to
this case, and generates an algorithm for affine generalized equations. Section 5.4
addresses the special case where T is separable. Finally, in Section 5.5 we discuss
how the algorithm can be applied to the piecewise linear-quadratic programming
problem.

5.1 Algorithm for Finding Zeros of M-PA Maps

The theoretical basis for the algorithm of this section is derived from the the-
ory of piecewise-linear homotopies given in Eaves (1976). Our motivation was
to generalize the algorithm for solving affine variational inequalities over convex
polyhedral sets that was described in Cao & Ferris (19956).

In order to describe the algorithm carefully, some preliminary definitions are
required to set up our framework.

Definition 5.1.1 (cell) A polyhedral convexr set o C R" is called a cell. If
dim(a) = k then o is called a k-cell. Let o := {z|Az < a}, where A € RF*", and
a € R, with p a nonnegative integer. Then (p, A, a) is said to represent o. If p is
the smallest number for which a representation of o exists, then (p, A,a) is called
a minimal representation of 0. A set 7 € R" is called a face of o if for some set
of indices a C{l,...,p}, T=H{x €o0: Ayx =b,}. If dim(r) =1, then 7 is called
an t-face of o.

Clearly any cell has a minimal representation.

Definition 5.1.2 (piecewise affine) Let M be a collection of n-cells and let
M :=U,emo. A function F': M — R™ is said to be piecewise-afline with respect
to M, denoted M-PA, if for each 0 € M, Fy, (i.c. the restriction of F to ¢) is
affine. If F' is M-PA for some M satisfying the above assumptions, then we say
that F' is piecewise affine.
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Note that in the above definition, if M is convex, then the function F' must
be continuous on M. Furthermore, in contrast to the work of Eaves (1976), M is
not required to correspond to a subdivided manifold.

Definition 5.1.3 (function representation) Let M be a collection of n-cells
in R", let F' be a M-PA function, and let o be an n-cell of M. Let b° € R™ and
let B be an m xn matriz. (B7,b%) is said to represent F' on o if F(x) = B7x+b°
forall x € o.

We now describe an algorithm to find a zero of an M-PA function G, for a
given collection of cells M. We will assume that representations of the cells of
M and of the map G have already been constructed. The basis of the algorithm
is to construct a piecewise affine homotopy mapping F'(x, ) with the following
properties

1. (2%,0) is a zero of F'if and only if 2* is a zero of G.

2. A point (2%, 1), and a direction (d',—1) is known such that x; > 0 and
F(a! — pd', pt + p) = 0 for all g > 0.

The algorithm uses a method described by Eaves (1976) to trace the zero curve
of F', proceeding in the direction (d',—1) from the starting point (x', ;). To
prove that the algorithm finds a solution in a finite number of steps, we restrict
ourselves to the case where (G is coherently oriented:

Definition 5.1.4 (coherent orientation) Let G be an M-PA map with repre-
sentation (B?,b%) on each o0 € M. We say that GG is coherently oriented if

sgn(det(B7))

is nonzero and constant for all o in M, where

-1 =<0
sgn(x) 1= 0 =0
1 z>0.

Since M is finite and U,cpq0 = R", it follows that R" = U,cs rec(o), and
further that there is a o such that int(rec(c)) # 0. Choose d such that —d €
int(rec(o)). Then for any z° in R", and for all x sufficiently large, 2°—ud € int(o).

In the AVI algorithm described by Cao and Ferris, the cell o and the direction
d were constructed by finding an extreme point ¢ of the set C'. The cell was then
given by o := 2° + N¢(2), and the direction d was chosen such that —d was in
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the interior of N¢(x¢). For our algorithm, rather than constructing the cell and
direction, we can rely instead on the fact that since R" = |,earec(o), then for
any direction d, there will be a cell o4 for which —d € rec(oy). Note further that for
each cell o, the boundary rec(o) \ int(rec(o)) of rec(o) has Lebesgue measure zero.
Therefore, since the number of cells is finite, [J,c s rec(o) \ int(rec(o)) has measure
zero. Thus, for almost all d, there will be a cell o4 for which —d € int(rec(oy)).

Thus, if 2° is any point in R”, then for all y sufficiently large, z° — ud will lie
interior to the cell g4. In other words, the cell can be chosen simply by picking an
arbitrary d and proceeding in the direction —d until a cell o4 is reached for which
—d is in the recession cone of o4. For almost all d, —d will be in the interior of
rec(og). We note, however, that for some special cases, construction of an extreme
point may still be preferable.

Once d and o, have been identified, the homotopy map can be constructed.
Let (B,b) be the representation of (¢ in 0,4. Define a function F': R" x Ry — R"
by

(43) F(x,p) = Glx) + pBd
Note that F(x,0) = 0 exactly when G/(x) = 0. Under the assumption that G is
coherently oriented, B is invertible. Let 2° := —B~!b and define

w(p) = 2° — pd.

Then, since —d € int(rec(oy))), there exists o > 0 such that w(w) € int(og), Vi >
to- Thus, for p > o,

Flw(p),p) = Glw(p)) +pBd
Bw(u)+ b+ uBd
B(z® — pd) + b+ pBd
—b—uBd+b+ uBd
= 0.

(44)

By choosing 111 > g, @' = w(p1), and d* = d, we see that F' satisfies the con-
ditions needed for the homotopy map. We are now ready to state the algorithm,
which is given in Figure 13. Note that by normalizing d in the discussion above to
be a unit vector, we can start the algorithm from the point (2, ;) constructed
above with o := oy.

Some comments about Algorithm AGE are in order:

1. Most of the work in the algorithm is in step 8 where the direction (d***, vy, 1)
is calculated. At the end of this section in Theorem 5.1.13 we show that
Bt — B% is a rank-1 matrix. Thus, an efficient implementation of the
algorithm can be obtained by keeping the B matrices in factored form and
performing rank-1 updates of the factors at each step of the algorithm.
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Figure 13: Algorithm AGE

Given a finite collection of n-cells M such that |J,cns 0 = R”, and an M-PA
function G on R”. Let G have representation (B*,b") on o), € M.

1) [Initialization] Determine (z', 11, 01, d") satisfying
) =1,
z! € int(ay),
ot — pd' €int(oy), Yu >0,
Bla! + u, BYd' + b = 0.
2)  wvi=—L
Repeat for £k =1,2,...
3) Oy :=sup{f|z* + 0d* € oy, i + Ovy, > 0}.
If 0, = 400, then
4)  output(“ray termination”); return.
Else
5) okt = ok 4 0,.dF
6) g1 = pr + Opvk
If i1 = 0 then
7)  output(“solution found at”, z**1); return.
Else
8)  determine oj41 (possibly using lexicographic ordering),
d**', and vy, such that
"t e oppy,
Bk+1dk+1 + Uk_HBldl — 07
| = 1,
d**! points into opyy from zF+!,
and o4 € M\ oy.
9) goto next k.




131

2. At step 8 in the algorithm, there may be more than one possible choice of
cells oj41. However, a lexicographic ordering, as described by Eaves (1976,
Section 15), can be used to resolve any ambiguity concerning which cell to
choose. The use of such a lexicographic ordering will be assumed in the
convergence proof, and will be presented in more detail in the discussion
preceding Lemma 5.1.9.

3. The requirement that Hdk"'l H =1 is arbitrarily chosen to force the choice of
d**1 to be unique.

4. The requirement that ' — pd' € int(oy), Vi > 0 guarantees that the zero
curve of F(z,u) := G(x) + pBd' contains a ray, and therefore assures us
that it will not have any loops. This fact will be useful in our convergence
proof. However, we shall also show that, under the assumption of coherent
orientation, vy is always negative, which by itself guarantees that no loops
occur. Thus, under the assumption of coherent orientation, it is not neces-
sary to find a ray start. However, in future work, we will prove convergence
for a broader class of problems, in which case the ray start requirement will
be useful.

The next few pages are devoted to proving the following convergence theorem:

Theorem 5.1.5 Let M be a finite collection of n-cells whose relative interiors are
disjoint and whose union s R". Let GG be a coherently oriented, M-PA function.
Algorithm AGE, using lexicographic ordering, terminates after finitely many steps
with a zero x* of GG.

Proof (Outline) There are three main parts to the proof. First, we will show
that the algorithm terminates at a solution if M is a subdivision of R" (see Def-
inition 5.1.6). This result is given in Lemma 5.1.9. Second, we will show that
even if M is not a subdivision of R", there is a refinement (see Definition 5.1.10)
N of M that is a subdivision. This result is given in Lemma 5.1.11. Finally, we
show in Lemma 5.1.12 that if a subdivision A is a refinement of M, then running
the algorithm using A/ will generate exactly the same path as would be generated
by using M. Thus, the fact that the algorithm terminates at a solution using A
guarantees that it will terminate at a solution using M. 0

We now set about proving the three lemmas mentioned above. At this point,
we recommend that the impatient reader skip ahead to Theorem 5.1.13.

Our proof technique is based on the work of Eaves (1976). Eaves’ analysis
relies heavily on the notion of a subdivided manifold:
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Definition 5.1.6 (subdivided manifold) Let N be a set in some Fuclidean
space, and let N be a finite or countable collection of n-cells in that space such
that N = Uyen 0. Let N be the collection of all faces of elements of N'. (N, N)

is a subdivided n-manifold if
1. any two n-cells of N are either disjoint or meet in a common face;
2. each point of N has a neighborhood meeting only finitely many n-cells of N';
3. each (n — 1)-cell of N lies in at most two n-cells;

If (N, ./\7) is a subdivided n-manifold for some subdivision N', we call N an n-
manifold and we call N a subdivision of N.

The following lemma shows that when N = R", item 3 in Definition 5.1.6 is
redundant. This result was proved by Robinson (1992) in the proof of Proposition
2.4. While Robinson’s proposition is stated for the normal manifold, his proof is
valid for general subdivisions of R".

Lemma 5.1.7 If N is a collection of cells whose union is R" and if N satisfies
1 and 2 of Definition 5.1.6, then N is a subdivision of R".

The next step in our analysis is to prove that the algorithm works whenever
M is a subdivision of R". In this case, by defining S := {0 x Ry|oc € M}, we see
that S is a subdivision of R" x Ry and further that I is S-PA. The starting point
(2!, p1) of the algorithm lies interior to the cell 5, := oy x Ry of S. Further, the
ray {(z', 1) — p(d*, —1)|g > 0} lies within 7;. Let S be the collection of all faces
of elements of S. Algorithm AGE is then seen to be equivalent to the algorithm
described by Eaves (1976, Section 10.2), with the following relationships between
the algorithms:

Eaves” Algorithm Algorithm AGE
M S
F(x) F(x,p) := G(z) + pBd*
Tk fl?k, Mk)
Ok Mk
Uk (d*, vp)

To discuss the behavior of this algorithm in more detail, we need some defini-
tions from Eaves (1976).
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Definition 5.1.8 (regularity) Let (N, N') be a subdivided (n + 1)-manifold, let
N be the collection of n-cells in N, and let F': N — R™ be a N'-PA map. A point
x in N is said to be degenerate (otherwise regular) if x lies in a cell o of N with
dim(F(o)) <n. A value y in F(N) is said to be a degenerate value (otherwise a
regular value) if F~(y) contains a degenerate point.

Note that if y is a regular value, then F'~'(y) cannot intersect any k-cells of S
with & < n.

By the assumption of coherent orientation, (G is one-to-one in every n-cell of
M. Thus, dim(F(n)) = n for all (n + 1)-cells n of S. Since the starting point
(2!, py1) of the algorithm is interior to ny, it is a regular point of F. According to
Eaves (1976, Theorem 15.13), since § is finite, the algorithm generates, in finitely
many steps, either a point (z*, i1,) in the boundary of R" x R4, or a ray in F7*(0)
different from the starting ray. In the first case, we know that p. = 0, since the
boundary of R" x Ry is R" x {0}. It then follows, from our earlier remarks that «*
satisfies G(a*) = 0. Therefore, to guarantee that the algorithm finds a solution,
we need only show that it cannot produce a ray different from the starting ray.

We first consider the case when 0 is a regular value of F. In this case, by
Eaves (1976, Theorem 9.1), F'=*(0) is a l-manifold which is subdivided by sets
of the form N F~'(0). Further, since F~'(0) cannot intersect any k-cells with
k < n, each point on F'71(0) is in at most two (rn 4 1)-cells of S. Thus, in step 8 of
the algorithm, the choice of oy is well-defined. (The only difficulty would be if
(2F+1 ppy1) lies in only one (n + 1)-cell 5, so that no o4, could be selected. But
in this case, (z"*1, j1341) would be a boundary point of R™ x Ry. Thus, s = 0,
so the algorithm would have terminated in step 5.)

Let (d*,v;,) be the direction of the path within the (n + 1)-cell n; of S, and
let G have representation (B*,b*) on the n-cell o} of M. Then by Eaves (1976,
Lemma 12.3), the curve index, given by

(sgnovy ) (sgn det B¥)

is constant everywhere along the path. Since v; = —1 for the starting direction
(d*,v1), and since G is coherently oriented, it follows that vy is negative in each
cell that the path enters. But this means that the parameter 1 decreases strictly
in each cell. Thus, after finitely many steps, we must have p = 0.

When 0 is a degenerate value of F', F~'(0) may intersect a k-cell of S with
k < n. Thus, in step 8 of the algorithm, there may be multiple choices for which
cell o141 to enter next. To address this problem, a lexicographic ordering can
be used to resolve ambiguities concerning which cell the path will enter. Such a
scheme is conceptually equivalent to solving a perturbed problem, which we now
describe.
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Let X = [¢',...,&"] be an (n + 1) x n matrix such that [X, d'] is of rank (n +
1). Define the vector [¢] := (e', €, ..., ¢")T (note: the superscripts here refer
to exponentiation). Define (z'(e);pi(€)) = (x5 u1) + X[e]. Since (z';p1) in
Algorithm AGE is interior to 1y, then (z'(e);ui(e)) € int(n) for small enough
e. Further, since (—d', 1) € int(rec(n1)), (z*(€), pu1(€)) + p(—d*, 1) € int(n), for
all 4 > 0. Thus, z'(¢€), p1(€), o1, and d*' satisfy the starting conditions needed to
apply the algorithm to the perturbed problem given by

0= Fla, ) — plo),
where p(e) := F(a'(€), u1(€)). Observe that

ple) = F(at, ) + [BY, B'd'| X[e]
(45) — [B', B'd'|X[¢]
= Yld,

where Y := [B!, B'd'|X. Y is an invertible n x n matrix, so that by Eaves
(1976, Lemma 14.2), p(€) is a regular value for all € sufficiently small. Thus, by
the arguments given above for regular values, using Algorithm AGE to solve the
perturbed problem will, after a finite number of steps J, produce a point (z7(¢))
such that G(z7(¢)) = p(¢).

Let (2%(c),ur(€)) be the sequence of points generated by the algorithm for
the perturbed problem. By the discussion in Eaves (1976, Section 15), there is a
sequence of matrices X* € ROTV*" and a sequence of points (2%, py) such that
(2%(e); purlc)) = (2% ur) + X¥[¢] for all small e. The points (2, jiz) are exactly
the sequence of points generated by the algorithm for solving the unperturbed
problem using the lexicographic ordering. Since the algorithm terminates after J
steps for all small ¢, we see that p;(e) = 0 and G(z7(¢)) = p(e). It follows that
py = 0 and further that G(27) = 0. Thus, using a lexicographic ordering, the
algorithm finds a solution after a finite number of steps.

We have proved the following lemma:

Lemma 5.1.9 Let M be a subdivision of R" and Ar be a coherently oriented,
M-PA function. Algorithm AGE, using lexicographic ordering, terminates after
finitely many steps with a zero x* of GG.

We now address the case where M is not a subdivision of R". We begin by
proving that M can be refined to produce a subdivision.

Definition 5.1.10 (refinement) Let M and N be finite collections of n-cells.
N is said to be a refinement of M if each cell o of M is the union of a finite
collection of cells 7; of N, and if each cell of N is contained in some cell of M.
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The following lemma is proved by Hudson (1969, Lemma 1.5), however, using
different nomenclature. In particular, the term “subdivision” is used in place of
our term “refinement”.

Lemma 5.1.11 Let M := {C;} be a collection of J < oo n-cells which covers
R”. There exists a subdivision N of R" such that N is a refinement of M.

We now show that using N, the algorithm follows the same path as it would
by using M.

Lemma 5.1.12 Let GG be an M-PA function, where M is a finite collection of
relatively disjoint n-cells whose union is R". Let N be a refinement of M such
that N is a subdivision of R". Then Algorithm AGE, using lexicographic ordering,
will find a solution x* to G(x) = 0 in a finite number of steps. Furthermore, the
sequence of points generated by the algorithm using M is a subsequence of the
points that would be generated using N .

Proof Consider first running the algorithm using A" instead of M. By
Lemma 5.1.9, the algorithm will terminate after some finite number of steps J.
The algorithm will visit a sequence of n-cells {r,} C A, and will generate a
sequence of points {(2", uz)} and directions {(d*,vg)}, for k =1,...,J.

Let j; := 1 and let o; be the unique cell in M that contains 7. Then for
1 =2,..., let j; be the smallest index greater than j;_; such that 7, ¢ o;_y, and
if j; < J, let o; be the unique cell in M that contains 7;,. Let K be such that
Jk = J. This process defines a sequence of cells {o;},7 = 1,..., K and indices
{3:},i=1,..., K 4+ 1 such that 7, C o; whenever j; < k < ji11.

We will show that if the algorithm is run using M, then the sequence of points
{(€,14)} generated by the algorithm satisfies the equation (£°,1;) = (2%, u;,), for
each 1. Thus, (¢8,vk) = (27, 1s), so the algorithm finds a solution after a finite
number of steps.

Let {(6%,(;)} be the sequence of directions chosen by the algorithm using M.
Clearly, since the algorithm is started at the point (2!, 1) in the direction (d*, —1),
the following is true: (£',11) = (2t,v;,), (64,¢) = (d,v;,), and the first cell
visited by the algorithm is .

We now proceed by induction: Assume that (&',15) = (27, v;,), (6°,¢) =
(di,v;,), and that, using M, the ith cell visited by the algorithm is o;. We shall
prove that (£ 1) = (27, v5,,), (67, (ip1) = (d%+1,v;,,), and that the
(1 4 1)st cell visited by the algorithm is o;4;.

Let (B,b') be the representation of (G on ;. This is also the representation
of G on 7 whenever j; < k < j;41. Thus, in step 8 of the algorithm using A, the
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direction (dk"'l, Uk+1) chosen when entering cell 741 must satisfy
B'd* 4 v B =0

for j; < k < jiy1. Since G is coherently oriented, B’ is invertible. Further,
Hdk‘HH = 1 and, by our earlier discussion, viy; is negative. Thus, the direc-

tion is uniquely determined by the representation. In particular, (d’*,v;) =
(" vj4) = -+ = (d/+1,v5,,) = (8, ¢;). From this it is clear that z/+! lies on
the ray {£(0)|0 > 0}, where £'(0) := £' 4 06*. Further, a/i+' is on the boundary
of o;.

If the ray {£/(0)]0 > 0} contains a point in the interior of o;, then the ray
cannot be extended past x’/i+! without exiting o;. Thus, 27+ = £/(0;) where
0; == sup{0]£'(0) € o;}. In other words, (a7, p;,,, ) = (&1, v ).

If the ray {£°(0)|6 > 0} does not contain an interior point of o;, then we
must resort to the lexicographic ordering to prove that z7i+1 = £'(f;). Since oy
and 7;,_, are relatively disjoint convex sets, there exists a separating hyperplane
H; defined by a vector ¢, and a scalar a; such that dlr < a;, Yo € int(o;),
and ¢z > i, Vo € 7j,,,. Suppose we run the algorithm using A to solve the
perturbed problem G.(x) := G(x) — p(€) = 0, where p(¢) is defined by (45). Then,
for ¢ small enough, the algorithm will visit the same sequence of cells {73} as it
visits in the unperturbed problem. Also, by our earlier discussion, the algorithm
will generate the sequence of points {(x"(¢); ux(€))} = {(2F; ux) + X*[e]}, where
{X*} is a fixed sequence of matrices.

Since 0 is a regular value of G, dim(G (7 N 7k41)) > n — 1 for any k. Thus,
G=1(0) contains only one point in 74 (| 7441, namely z¥*!. Therefore, the direction
d*' must point into the interior of T44.

By similar arguments as before, z/i+! lies on the ray {£(0)|0 > 0}, where
£(0) := x’i(e) + 0(d’). But, since d**! points into the interior of 7;,, this ray
must contain a point & in the interior of o;. Thus, i < «;. But ¢ gl > o
since x%+! is in 7j,,,. It follows that i > 0. Thus, even for the unperturbed
problem, the ray £'(#) cannot be extended past the point x?#+! without crossing
the hyperplane I1;, and thereby exiting o;. Thus, z/+1 = £1(6;), and as before,
(xji+17/“bji+1) = (gi-l—lv’/i-l-l)‘ ]

Finally, note that for all small ¢, the point 2741 (¢) is a regular point, so 7, , 1)
and 7;,,, are the only n-cells of N that contain $ji+1(6). Thus, o; and 0,41 are
the only n-cells of M that contain @/ (¢). Thus, for all small €, the algorithm,
using M will enter cell 0,1, at the next iteration. But this means that using
lexicographic ordering the algorithm will enter cell 0,41 next when solving the
unperturbed problem. Finally, since the representation of G on o4, is identical
to the representation of G on 7j,,,, we must have (6§, (1) = (d/+1, viit1).
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The lemma is now proved by induction. 0

This completes the proof of Theorem 5.1.5. Our final task in this section is to
establish the claim made in Comment 1 following Algorithm AGE.

Theorem 5.1.13 Under the hypothesis of Theorem 5.1.5, let {o}} be the sequence
of cells chosen in Step 8 of Algorithm AGE using lexicographic ordering, and let
(B*,b%) represent Ay on oy. Then B*' — B* has rank 1.

Proof Using lexicographical ordering, the algorithm will choose the same cell
ort1 10 step 8 as it would when solving the perturbed problem for small e. How-
ever, 0 is a regular value for the perturbed problem, so 7 := o} (041 must have
dimension n — 1. Now, for any two points z!, 2% € 7,

Bk"'l(ac1 — :1;2) = Bk(:zjl — :1;2) = (:1;1 — :1;2) € ker(Bk"'1 — Bk)

Thus, dlimker(Bk"'1 — Bk) =n—1so ramk(Bk‘"1 — Bk) =1. 0

5.2 The T-map

The T-map, denoted Fr, is a generalization of the normal map that is formed
by replacing the projection operator m¢ in (42) by the resolvent operator Pr :=
(I 4+ T)~'. Specifically, the T-map is given by
(46) Fr(z):= F(Pr(z)) +x — Pr(x).
Minty (1962) showed that Pr is a continuous, single-valued, nonexpansive function
defined on all of R". Since the image of Pr is dom(7T'), it follows that Fr is a
single-valued function defined on all of R".

By Brézis (1973, Example 2.1.2), [ + T is monotone, and therefore Pr is

monotone. We now show that solving GE(F,T') is equivalent to finding a zero of

Fr.

Theorem 5.2.1 Gliven a maximal monotone multifunction T : R"XR", and a
function F : Q C R" — R", let Fr be defined by (46). If x is a zero of Fr, then
z = Pr(x) solves GE(F,T ). Conversely, if z solves GE(F,T), then ¥ := z— F(z)

is a zero of Frp.

Proof Suppose Fr(z) =0 and let z := Pr(z). Then 0 = Fr(x) = F(2) + 2 — z,

and

—F(z) = -z
e I+ +T) Y z)—=
= ([+T)z)—=

T(z).
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Conversely, suppose —F'(z) € T(z) and let @ := z—F(z). Thenz € z4T'(2) = (I+
T)(z),s0 Pr(z) = (I+T) Y (2) = 2. Thus Fr(z) = F(z)+a—2z= F(2)—F(2) = 0.
a

So far, we have not made any assumptions on 7' other than that it is maximal
monotone. We now focus on the case where T' is polyhedral.

Definition 5.2.2 (polyhedral) A multifunction T is polyhedral if its graph is
the union of finitely many polyhedral conver sets.

Our first task will be to show that, for polyhedral T, the resolvent operator
Pr:=(I+T)™" is a piecewise-affine map.

Lemma 5.2.3 A single-valued multifunction T : R"XR™ whose
graph is a convex polyhedron is affine on dom(T).

Proof Assume dom(7") # (). (Otherwise the lemma is true vacuously). Since the
graph of T is a polyhedron, T' can be written as T" = {(x,y)|Ax + By > ¢} for
some A € RP”*" B € R**™, and ¢ € R?, where p is some nonnegative integer. Let
K :={i|]Aix 4+ By = ¢;,¥(x,y) € T}. In words, K is the set of row indices for
which the corresponding constraint is active for all points in T'.

We first establish the fact that ker Bg. = {0}. To do this, let H := {i|i ¢
K}. Then for each 1 € H,3(a',y’) € T with A;2' + Biy' > ¢;. Let (2,7) =
Sien(zt,yt)/|H|, where |H| is the cardinality of the index set H. Note that
(Z,7) is a convex combination of points in 7" and is therefore also in T'. Further,
A2 + By > ¢;,Vi € ‘H. Now, if y € ker Bx., then for ¢ > 0 small enough,
A+ B(g+ey) > c. Thus, (2,9 + ey) € T. But since T is single-valued, g = 0.
Thus, ker Bx. = {0}.

Now, by the definition of K, we have (x,y) € T' = Ax.x + By = ¢cx. Con-
versely, suppose (x,y) satisfies Ax.x + By = ¢x. If @ € dom(T'), then 3y such
that (x,9) € T. But this means that Ax.x + Bx.y = cx, which implies that
y —y € ker Bx. = {0}. That is y = y. We have thus shown that

(v,y) € T'& & € dom(T') and Ag.x + Bry = cx.

Finally, since ker Bx. = {0}, Bx. has a left inverse R € R”*?. Thus, for = €
dom(T),
(x,y) €T & Axa+ Bry=cx
& y= Rex — RAg ..

So T is an affine function on dom(T'). 0
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Theorem 5.2.4 Given a mazximal monotone polyhedral multifunction
T : R"XR", the resolvent operator Pr:= (I +T)™" is a piecewise affine function
on all of R".

Proof Since T is polyhedral, I + T is also polyhedral (Robinson 1979a) and
therefore so is Pr = (I + T)~!'. Thus, Pr = UT;, where {T';} is a finite collection
of polyhedral convex sets. Let C; be the projection of I'; onto the domain of Pr
(i.e., C; = m(I';), where w1 := (2,y) — ). Define M := {C;|dim(C;) = n}.

Since Pr is defined on all of R", JC; = R". Let M := Ug,em Cs. Since M is
closed, its complement, \M := R"\ M, is open. Thus, \ M is either the empty set,
or it has nonempty interior. But \M C Ugim(c,)<n Ci- Thus, \M has no interior.
In other words \M = () and thus, M := R".

To show that Pr is M-PA, all that is needed is to show that for each C; € M,
the restriction of Pr to C; is affine. However, since Pr is single-valued, the graph
of Pr restricted to C; is simply the convex polyhedral set I';. By Lemma 5.2.3,
Pr 1s affine on ;. 0

Corollary 5.2.5 If T is polyhedral and F' is affine, then the T-map, Fr, defined
by (46) is piecewise affine.

5.3 Affine Generalized Equations

We now show how to apply the algorithm of Section 5.1 to construct an algorithm
to solve the affine generalized equation:

(47) 0€ Ax —a+T(x),

where A € R"*", a € R", and T is a maximal monotone polyhedral multifunction.
For this problem, the T-map is given by

(48) Ap = APr(x)+ a2 — Pr(z) — a.

As was shown in Section 5.2, for polyhedral T', Ar is piecewise affine with
respect to some finite collection M of n-cells whose union is R™. Thus, to complete
the description of the algorithm for affine generalized equations, it remains to show
how to generate the representations.

The task of constructing M is dependent upon how T'is described. For exam-
ple, in Robinson (1992), T is taken as the normal cone N¢ to a polyhedral convex
set C'. M is then chosen to be the normal manifold, which is defined in terms
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of the nonempty faces F; of C'. Specifically, the cells of the normal manifold are
defined by

g, = FZ + ]\/YFl.7
where N, is the common value of Ng, for x € ri(F;). This particular choice of
cells leads to the algorithm given in (Cao & Ferris 19955).

For more general T, we assume that T is described as the union of a finite
collection of polyhedral convex sets (;. We can then describe Pr as the union of
the sets S; := {(x + y,x) | (x,y) € C; }. By projecting each 5; onto the domain of
Pr., we produce a collection of sets

o ={r+y|(z,y) € Ci}.

Further, since we know dom(Pr) = R", it follows that [Jo; = R". We then let
M = {o;|int(c;) £0}.

To provide an example of this process, we return to the case where T' = N¢.

Observe that
Nc—U U{J}}XNF—UF XNF

F; zeF;

Thus, we see that N¢ is the union of the polyhedral convex sets
C; = {l‘—l—y| (x,y) e F; x NFi}: Fz‘|‘NF,

It follows that the process described above yields the normal manifold.

Robinson (1992, Proposition 2.4) proves that the normal manifold is a sub-
division of R". However, in general, the collection of cells M generated by the
above process is not a subdivision. This can be demonstrated by the following
example. Let

Cl = {:1;,0 ERQXR2|$1§0}
CQ : {J/'O €R2XR2|$1ZO7$220}
03 = {(l’ O)ERQXR2|$1ZO,$2§0}

and let T := (J2_, C;. Observe that T is simply the zero mapping, and is thus
a maximal monotone multifunction. However, employing our procedure for con-
structing M, we obtain oy = {:L' € R? | 21 < 0}, = {:L' € R? |2y > 0,25 > 0}

os = {:L' € R? | 21 > 0,25 < 0}. Since o1 (o, is not a face of oy, we see that
M :={0y,04,03} is not a subdivision of R".

Since Pr is single-valued, then by Lemma 5.2.3, Pr is affine on each cell o; €
M. A representation of Ar on each cell is then given by (48). In order to have
a workable description of these affine maps, it would appear necessary to exploit
the underlying structure of T'. One such case is the subject of the next section.
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5.4 Separable T

A particularly important class of affine variational inequalities is that for which
the set C' is rectangular, i.e., C' is defined by the constraints

[<z<u

where [ and w are vectors in R", with [; € [—o00,00) and u; € (—o0,00] for
1 < ¢ < n. This problem class has a number of features that are very attractive for
pivotal algorithms similar to Algorithm AGE. In particular, the cells of linearity of
the normal map are rectangular, and furthermore the normal map itself takes on
a very simple form. Specifically, for an affine function F(z) := Az + b, the matrix
used to represent the normal map on any cell is formed simply by replacing some
of the columns of A by the corresponding columns of the identity matrix.
Rectangular variational inequalities are also attractive from a theoretical

standpoint. In particular, if at least one of [; and wu; is finite for each ¢, then the
normal map is coherently oriented with respect to C' if and only if A is a P-matriz.

Definition 5.4.1 (Cottle et al. (1992)) A matriz A is said to be a P-matrix
if all its principal minors are positive.

Note that when C' is rectangular, then Ne(z) = Nyy(2) = TTiey Ny (2i)-
This suggests that we can extend the notion of rectangularity to generalized equa-
tions by requiring that the multifunction T' be separable, i.e., it is of the form

51(21)
T(2) = 2(322)
To(20)

where for each 7, T; is a maximal monotone polyhedral multifunction from R to
R. With such a T', we shall see that the cells of linearity of the T-map Ar are

rectangular.
We begin by looking at the resolvent operator Pr = (I + T)~'. Note that
Pr, (1)
Py = | T
}h%kxn)
where for each ¢, Pr, = (1 + T;)~'. Since Pr is a continuous piecewise affine

function, it follows that Pr, is a a continuous piecewise affine function from R
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into R. Let k; be the number of breakpoints of Pr. Then, for some strictly
increasing sequence of breakpoints {&;;}, 7 = 1,..., k; and some set of coefficients

{dij . bis}, 7 =0,... ki,

dipr + by <&y
Pr(z) =S dgx+by & <x<&Gpy, 1<j<k
dig, x4 bin, iy, < .
Note that since Pr is monotonic and nonexpansive, 0 < d;; < 1.
ky

The breakpoint sequence defines a subdivision of R given by M; = ;L 04,
where

v <&n 7=0
Tij = 7 fijgl'gfi(ﬂ-n 0< g <k
in, < J=k

We then define a subdivision of R* by M = [[i_; M; with n-cells defined by
Olj1szyein] = Tljs X O2jp X+ e X T -

Clearly, Pr (and therefore Ar)is M-PA. This establishes our earlier statement
that the cells of linearity of A7 are rectangular. For each cell oy;, 5, . ;.1 of M,
define a diagonal matrix Dy, j,...5.1 bY Dijjo,.jn](, 1) = dij,. Further, define the
vector by, g, i1 = [b1j,102j,5 - -5 bnj, ). Then on oy, 5, iy, Pris represented by
(Dy bijr ja,njn])- Thus, on oy in]s the T-map is given by

915021+ 0dn]0 J1002 5009

Ap(x) = A(Pr(z))+a+x— Pr(x)
= (ADpy gyin) L = Dpy o) + (A= Dby, ) T @
= [d1j1A~1 —|— (1 - dljl)].h d2j2A.2 —|— (1 - dzh)].z, P 7dn]nAn
(1 = dnj ) Ln]w + (A= Dby o) + @
=t My jarin]® F 001 s o]

Thus, we see that the matrix M, ;, ;.1 which represents Ar on oy; ;, ;.1 has
columns which are convex combinations of columns of A and the corresponding
columns of [I.

We now set about proving the main result of this section. Namely, if A is a
P-matrix, then Ag is coherently oriented for any separable polyhedral maximal
monotone multifunction T'. We first need to prove two technical lemmas.

Lemma 5.4.2 [f A and B are n x n matrices where B is rank-1 such that
det(A) > 0 and det(A + B) > 0, then det(A+ AB) > 0 for all A € [0,1].

Proof

det(A+AB) = S det[C},,...,C; ],



143

where the summation is taken over all possible choices of (ji,...,7,) such that
O, 1s either A; or AB,;. Since B is rank-1, the determinants in the above sum are
zero for all choices that include at least two columns of AB. Thus,

det(A+AB) =det A+ 3" det[A,..., B, ..., Al
= det A+ A\ (Y, det[A,..., B, ..., A))

Thus, det(A+ AB) is an affine function of A, which is positive at A = 0 and A = 1.
Thus, it is positive for all A € [0, 1]. 0

Lemma 5.4.3 Let A be an n x n matriz and let {B',..., B*} be a collection of
rank-1 n x n matrices. If det( A+ MBY 4+ )\kBk) > 0 for all choices of \; =0
or 1, then det(A+ X\ B+ -+ 4+ A\, B*) > 0 for all choices of \; € [0,1].

Proof (By induction). The lemma is true for & = 1 by Lemma 5.4.2. Now,
suppose the lemma is true for all & < m, we shall prove the lemma true for
k=m.

Suppose { B!, ..., B™} is a collection of rank-1 n xn matrices such that det( A+
MBY 4+ -+ AmB™) > 0 for all choices of A; =0 or 1. Let A=A 4+ B™. Then
A and {B',..., B™ '} satisfy the conditions of the lemma for k = m — 1. Thus,
if A; € [0,1], Vi, then

det((A+ B™)+ B+ -+ X\, B™ ) > 0.
Similarly, with A= A, we have
det(A+ N B' + -+ X, B™ 1) > 0.

From Nthese two results, we see that if we let A= A4 MBY N, B™TL
then A and B™ satisfy the hypotheses for Lemma 5.4.2. Thus, for A,, € [0,1]

0 < det(A+\,B™),
= det(A+ M\ B' 4+ -+ A\, B™).

O

Theorem 5.4.4 If A is a P-matriz, then for any separable maximal monotone
polyhedral multifunction T, the T-map Ar defined by (48) has the property that
in any cell of linearity, the matrixz representing Ar has positive determinant. In
particular, Ay is coherently oriented.
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Proof Let A7 have the representation (121, b) in the n-cell o. By the our earlier
discussion, A can be formed by replacing columns of A by a convex combination
of columns of A and the corresponding columns of the identity matrix. Thus, the
matrix is of the form

A=A+ MB +---+\,B", X\ €]0,1]

where B':= (I; — A;)I[. Observe that B is a rank-1 matrix.

Since A is a P-matrix, the matrix formed by replacing an arbitrary set of
columns of A by corresponding columns of the identity matrix has positive deter-
minant. Thus, the matrices A, BY,..., B" satisfy the hypotheses of Lemma 5.4.3.

A

Thus, by Lemma 5.4.3, det(A) > 0. 0

Corollary 5.4.5 If A is a P-matriz and T is a separable maximal monotone
polyhedral multifunction, then using lexicographic ordering, Algorithm AGE will
find a solution to Ar(x) =0 in a finite number of steps.

5.5 Piecewise Linear-Quadratic Programming

We conclude by giving an example of a well known problem in mathematical
programming that can be solved using the technique we have presented. The
piecewise linear-quadratic programming problem (PLQP) is given by

(49) min h(z) = f(z) + ¢(Az),

where A € R™*" and f : R® — RU{oc} and ¢ : R™ — R|J{o0} are convex

piecewise linear-quadratic functions.

Definition 5.5.1 A function f: R" — RU{oo} is piecewise linear-quadratic if
domf is closed and convex and there exists a finite subdivision M of dom(f) such
that for each o € M, f|, is a quadratic function.

Note that dom f is polyhedral, and further that since the cells in the subdivision
are closed, f is a continuous function on domf.
The optimality conditions for PLQP are stated by the relation

0 € 9h(x),

where d is the convex subdifferential operator defined by

Of(x) == {z|f(w) > f(z) + 2" (w — z),Yw € dom(f)}.
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Under appropriate constraint qualifications (i.e. ri( A(dom(f))) N ri(dom(¢)) # (),
then
Oh(z) = df(z) + ATOS(Ax).

Thus, for the optimality conditions to be satisfied, there must be an @ € dom(f)
and y € d¢(Ax) such that —ATy € df(x). By Rockafellar (1970, Theorem 23.5),

it follows that
Az € 06™(y),

where ¢* is the conjugate of ¢. The optimality conditions are then

-ATy € Of(x)
Az € 09" (y).

Thus, if we let

. [ oo ] - Tlwy)= [ ok ] |

then the optimality conditions for PLQP can stated as the generalized equation

A

(50) — Alz;y) € T(x;y).

The fact that T is polyhedral was shown in Sun (1986). Thus, the optimality
conditions for the piecewise linear-quadratic program can be expressed as an affine
generalized equation, which can then be solved using our algorithm.
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Chapter 6

Conclusions

In this thesis we have developed a number of algorithmic techniques aimed at
solving mixed complementarity problems and affine generalized equations. First,
we developed the proximal perturbation strategy, a useful tool for enhancing the
robustness of descent-based algorithms for mixed complementarity problems. We
established the effectiveness of this strategy both theoretically and practically.
On the theoretical side, we proved several strong global convergence results that
guarantee convergence based upon a pseudomonotonicity assumption at a solu-
tion. An important characteristic of this pseudomonotonicity assumption is that
it does not preclude functions for which the associated merit function has local
minima that are not global minima.

On the practical side, we implemented three algorithms using the proximal
perturbation strategy. All three algorithms are significantly more robust than the
underlying descent-based algorithms upon which they are based. Moreover, this
increase in robustness is achieved at virtually no cost in efficiency. Indeed, all
three algorithms maintain the fast local convergence properties of the underlying
algorithms. Two of these algorithms, PROXI and SEMICOMP rival PATH and
SMOOTH (the current state-of-the-art) in terms of efficiency and robustness.
Therefore, we believe that the thesis demonstrates the effectiveness of the proximal
perturbation strategy in convincing fashion.

Our computational results indicate that the best algorithm using the prox-
imal perturbation, PROXI, was based upon the least robust basic algorithm,
NE/NEWT. This suggests a very promising approach for improving the capa-
bilities of complementarity solvers for large scale problems is to use a simple (and
possibly not very robust) basic solver, and enhance its robustness using the prox-
imal perturbation strategy.

In addition to developing the proximal perturbation strategy, we have pro-
posed and implemented extensions of several algorithms to more general problem
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classes. Of particular practical importance are the generalizations of NCP algo-
rithms to produce algorithms that solve the MCP. Such generalizations are im-
portant because many practical problems are more naturally formulated using the
MCP framework rather than the NCP framework. Among the NCP algorithms
generalized in this thesis are the NE/SQP algorithm of Pang & Gabriel (1993),
the semismooth equations approach of De Luca et al. (1995), and the infeasible
interior-point algorithm of Wright (1994).

The final algorithm presented in the thesis is a path-following algorithm that
finds zeros of piecewise affine maps. In particular, the algorithm can be used to
solve affine generalized equations. This algorithm is a generalization of the pivotal
algorithm for affine variational inequalities due to Cao & Ferris (1995b), and is
based in large part upon the piecewise linear homotopy theory of Eaves (1976).
We showed that the algorithm generates a solution in a finite number of iterations
assuming that the piecewise affine map is coherently oriented.

There are several areas in which the ideas developed in this thesis warrant ad-
ditional research. In particular, because the PROXI and SEMICOMP algorithms
have demonstrated computational success, it appears worthwhile to develop con-
vergence results for these algorithms comparable to what we proved for the QP-
COMP algorithm. Further, additional work is needed to understand how best
to control the perturbation parameter used in forming the perturbed subprob-
lems. Finally, additional computational testing and experimentation are needed
to develop these algorithmic techniques into mature computer codes, which will
thoroughly exploit the inherent strengths of the proximal perturbation strategy.
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