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i
AbstractAlgorithms for Complementarity Problems and Generalized EquationsStephen C. BillupsUnder the Supervision of Associate Professor Michael C. Ferrisat the University of Wisconsin{MadisonRecent improvements in the capabilities of complementarity solvers have led toan increased interest in using the complementarity problem framework to addresspractical problems arising in mathematical programming, economics, engineering,and the sciences. As a result, increasingly more di�cult problems are being pro-posed that exceed the capabilities of even the best algorithms currently available.There is, therefore, an immediate need to improve the capabilities of comple-mentarity solvers. This thesis addresses this need in two signi�cant ways. First,the thesis proposes and develops a proximal perturbation strategy that enhancesthe robustness of Newton-based complementarity solvers. This strategy enablesalgorithms to reliably �nd solutions even for problems whose natural merit func-tions have strict local minima that are not solutions. Based upon this strategy,three new algorithms are proposed for solving nonlinear mixed complementarityproblems that represent a signi�cant improvement in robustness over previousalgorithms. These algorithms have local Q-quadratic convergence behavior, yetdepend only on a pseudo-monotonicity assumption to achieve global convergencefrom arbitrary starting points. Using the MCPLIB and GAMSLIB test libraries,we perform extensive computational tests that demonstrate the e�ectiveness ofthese algorithms on realistic problems.Second, the thesis extends some previously existing algorithms to solve moregeneral problem classes. Speci�cally, the NE/SQP method of Pang & Gabriel(1993), the semismooth equations approach of De Luca, Facchinei & Kanzow(1995), and the infeasible-interior point method of Wright (1994) are all general-ized to the mixed complementarity problem framework. In addition, the pivotalmethod of Cao & Ferris (1995b), which solves a�ne variational inequalities, isextended to solve a�ne generalized equations. To develop this extension, the



iipiecewise-linear homotopy framework of Eaves (1976) is used to generate an al-gorithm for �nding zeros of piecewise a�ne maps. We show that the resultingalgorithm �nds a solution in a �nite number of iterations under the assumptionthat the piecewise a�ne map is coherently oriented.
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1
Chapter 1IntroductionOver the last thirty years, the class of problems known as complementarity prob-lems has become increasingly popular as a tool for addressing practical prob-lems arising in mathematical programming, economics, engineering, and the sci-ences (Ferris & Pang 1995, Dirkse & Ferris 1995a). It is not surprising thenthat the mathematical programming community has devoted considerable ener-gies toward developing robust and e�cient algorithms for solving these problems.Conversely, it is the considerable success of some of these algorithms (Dirkse& Ferris 1995b, Rutherford 1993, Chen & Mangasarian 1995a, Pang & Gabriel1993, Harker & Xiao 1990) that has generated much of the recent enthusiasm forapplying the complementarity framework to new applications.Although the e�ectiveness of complementarity algorithms has improved sub-stantially in recent years, the fact remains that increasingly more di�cult prob-lems are being proposed that are exceeding the capabilities of these algorithms.As a result, there is an immediate need to improve the capabilities of comple-mentarity solvers. This thesis addresses this need in two signi�cant ways. First,the thesis proposes and develops a proximal perturbation strategy that enhancesthe robustness of Newton-based complementarity solvers. This strategy enablesalgorithms to reliably �nd solutions even for problems whose natural merit func-tions have strict local minima that are not solutions. Based upon this strategy,three new algorithms are proposed for solving nonlinear mixed complementarityproblems that represent a signi�cant improvement in robustness over previousalgorithms. These algorithms have local Q-quadratic convergence behavior, yetdepend only on a pseudo-monotonicity assumption to achieve global convergencefrom arbitrary starting points.Second, the thesis extends some previously existing algorithms to solve moregeneral problem classes. Speci�cally, the NE/SQP method of Pang & Gabriel(1993), the semismooth equations approach of De Luca et al. (1995), and the



2infeasible-interior point method of Wright (1994) are all generalized to the mixedcomplementarity problem framework. In addition, the pivotal method of Cao &Ferris (1995b), which solves a�ne variational inequalities, is extended to solvea�ne generalized equations. To develop this extension, the piecewise-linear ho-motopy framework of Eaves (1976) is used to generate an algorithm for �ndingzeros of piecewise a�ne maps. We show that the resulting algorithm �nds a so-lution in a �nite number of iterations under the assumption that the piecewisea�ne map is coherently oriented.1.1 Notation and De�nitionsWhen discussing matrices, vectors and vector-valued functions, subscripts are usedto indicate components, whereas superscripts are used to indicate the iterationnumber or some other label. For example Ai�; A�j; Aij refer to the ith row, jthcolumn, and (i; j)th entry of A, respectively, whereas xk typically represents thekth iterate generated by an algorithm. In contrast to the above, for scalars orscalar-valued functions, we use subscripts to refer to labels so that superscriptscan be reserved for exponentiation. Index sets can also be used to refer to subsetsof the components. For example if J and K are subsets of f1; : : : ; ng, then MJ;Kdenotes the jJ j�jKj submatrix ofM consisting of the elementsMjk; j 2 J; k 2 K.In concatenating matrices and vectors, we use the MATLAB notation of a commato separate columns and a semicolon to separate rows. For example, if we havethe expressions A = (x; y) and w = (x; y), then A is a matrix with columns x andy, whereas w is the vector formed by concatenating x and y. The vector of allones is represented by e and the jth unit vector is represented by ej.Unless otherwise speci�ed, k�k denotes the Euclidean norm. Inner productsare denoted by h�; �i. We use the notation (�)+, (�)�, and j � j to represent the plus,minus, and absolute value operators, respectively, for vectors. That is, x+ :=(max(x1; 0); : : : ;max(xn; 0)), x� := (max(�x1; 0); : : : ;max(�xn; 0)), and jxj :=(jx1j; : : : ; jxnj).The symbols IR+ and IR++ refer to the nonnegative real numbers and thepositive real numbers, respectively. The extended real numbers are denoted byIR := IRSf�1;+1g. The vectors l and u 2 IR n, specify a set of lower and upperbounds. Throughout this thesis we assume that l < u. The symbol IB representsthe box de�ned by IB := [l; u] := fx j l � x � ug.For a function f : C � IRn ! IRm, we de�ne rifj(x) := @fj(x)=@xi. rf(x)is the n �m matrix whose ijth element is rifj(x). Thus, if f is a scalar valuedfunction, then rf(x) is a column vector. Finally, we de�ne f 0(x) = rf(x)>.The directional derivative of f evaluated at the point x in the direction d is



3denoted by f 0(x; d) := lim�#0 f(x+ �d) � f(x)� ;provided the limit exists. Note that if x is a stationary point of f on C, thenf 0(x; d) = 0 for all d such that x+ d 2 C.The notation!! is used to indicate a point to set mapping or multifunction.Thus, T : IRn!!IRm indicates that T is a multifunction, which maps points inIRn to subsets of IRm. In discussing multifunctions, we may refer either to apoint to set mapping, T (�), or to the graph of that mapping, which is the setT := f(x; y) 2 IRn � IRm j y 2 T (x)g. The expression T�1(�) is de�ned as a setinverse; i.e., T�1(y) := fxj(x; y) 2 Tg. Further, T�1 := f(y; x)j(x; y) 2 Tg. Thee�ective domain of T , is de�ned by dom(T ) := fxjT (x) 6= ;g.For a set C, a�(C), co(C), int(C), ri(C), rec(C), dim(C), and �(�jC) refer tothe a�ne hull, convex hull, interior, relative interior, recession cone, dimension,and indicator function of C, respectively (see Rockafellar (1970) for de�nitions ofthese terms). The projection operator for the set C is denoted by �C(�). That is�C(x) represents the projection (with respect to the Euclidean norm) of x ontothe set C.In several convergence proofs, we use the notation O(�) and o(�) as follows:given a sequence fukg, we use the expression fO(uk)g to represent any sequencefvkg satisfying lim supk!1 vkkukk <1:Given a function h : IRn ! IRm, we use the expression o(h(x)) to represent anyfunction g : IRn ! IRs satisfying limkxk!0 kg(x)kkh(x)k = 0:In proving convergence results, we will refer to the following convergence rates. Asequence fxkg is said to converge to x� Q-linearly if0 < lim supk!1 xk+1 � x�kxk � x�k < 1:The sequence converges Q-superlinearly iflimk!1 xk+1 � x�kxk � x�k = 0:



4The sequence is said to converge Q-quadratically iflim supk!1 xk+1 � x�kxk � x�k2 <1:The sequence converges Q-subquadratically iflim supk!1 xk+1 � x�kxk � x�kp <1 8 p 2 [1; 2):Finally, several types of monotonicity need to be de�ned:De�nition 1.1.1 A function f : X � IRn ! IRn is said to be1. monotone if hf(x)� f(y); x� yi � 0 8x; y 2 X;2. strongly monotone with modulus � > 0 ifhf(x)� f(y); x� yi � � kx� yk2 8x; y 2 X;x 6= y1.2 Problem ClassesMost of the literature about complementarity problems is concerned with thestandard forms given by the nonlinear complementarity problem (NCP) and thelinear complementarity problem (LCP): Given a function f : 
 ! IRn, whereIRn+ � 
 � IRn, the nonlinear complementarity problem is de�ned byNCP(f): Find x 2 IRn+ such thatf(x) � 0 and hx; f(x)i = 0:When f is an a�ne function, i.e. f(x) :=Mx+q, withM 2 IRn�n and q 2 IRn,NCP(f) reduces to the linear complementarity problem:LCP(M; q): Find x 2 IRn+ such thatMx+ q � 0; and hx;Mx+ qi = 0:A generalization of the LCP is the horizontal linear complementarity problemgiven byHLCP(M;N; q): Find (x; y) 2 IRn+ � IRn+ such thatMx+Ny = q; and hx; yi = 0;



5where M;N 2 IRn�n.While the standard forms are convenient from a theoretical viewpoint, manypractical problems are more naturally formulated using the framework of themixed complementarity problem (MCP). The MCP is de�ned in terms of a boxIB := [l; u] � IR n, with l < u, and a function f : 
! IRn, where IB � 
 � IRn:MCP(f; IB): Find x 2 IB such thathx� l; f(x)+i = 0 and hu� x; f(x)�i = 0:Note that the assumption that l < u represents no loss of generality, since ifli = ui then the corresponding variable xi must be �xed and can therefore beremoved from the problem. In the special case where f is the a�ne functionf(x) :=Mx+ q, we get the linear mixed complementarity problem given byLMCP(M; q; IB): Find x 2 IB such thathx� l; (Mx+ q)+i = 0 and hu� x; (Mx+ q)�i = 0:In the above de�nitions, note that components of the bounds l and u may be in�-nite. We therefore adopt the convention that �1�0 = 0. Using this convention,it is easily seen that the NCP is the special case of the MCP given by lettingl = 0, and u =1. Stated another way, NCP(f) is equivalent to MCP(f; IRn+).Conversely, the MCP can be reformulated as an NCP (Ferris & Pang 1995).Thus, one way of solving a mixed complementarity problem is simply to reformu-late it and solve it as an NCP. However, this is often a tedious and error prone task.Moreover, even if the reformulation is performed automatically, e�ciency may belost because the resulting NCP usually involves a larger number of variables, andalthough a great deal of structure will exist in the reformulated problem, the NCPsolver will be unable to exploit this structure. We therefore contend that algo-rithms for solving complementarity problems should be aimed at solving problemsin the MCP format rather than the standard NCP or LCP format.Note that by setting 
 = IB, the de�nition of MCP requires only that f isde�ned on IB. However, for theoretical purposes, we shall assume throughout thisthesis that 
 is an open set and that f is continuous on 
.The NCP and MCP are special cases of the variational inequality problem,which is de�ned in terms of a set C � IRn and a function f : 
 ! IRn, whereC � 
 � IRn:VI(f;C): Find x 2 C such thathf(x); y � xi � 0 8y 2 CIt is easily shown that NCP(f) is equivalent to VI(f; IRn+) and MCP(f; IB) is equiv-alent to VI(f; IB) (Dirkse 1994, Theorem 2).



6Another way of writing the variational inequality makes use of the concept ofa normal cone.De�nition 1.2.1 Given a closed convex set C � IRn, the normal cone NC(x) toC at a point x 2 IRn is de�ned byNC(x) := ( fwj hw; y � xi � 0; 8y 2 Cg x 2 C; x 62 CBy comparing the de�nitions, it is easily seen that x solves VI(f;C) if andonly if �f(x) 2 NC(x). Thus, the variational inequality can be restated as theproblem of �nding x 2 C, such that0 2 f(x) +NC(x):(1)This equation is a special case of the generalized equation (Robinson 1979b), whichis de�ned in terms of maximal monotone multifunctions (Rockafellar 1970).De�nition 1.2.2 A multifunction T : IRn!!IRn is said to be monotone if for each(x1; y1), (x2; y2) in the graph of T ,Dx1 � x2; y1 � y2E � 0:T is maximal if its graph is not properly contained in that of any other monotonemultifunction. T is polyhedral if its graph is the union of �nitely many polyhedralconvex sets.Given a maximal monotone multifunction T , a set 
 � dom(T ) and a functionf : 
! IRn, the generalized equation GE(f; T ) is toGE(f; T ): �nd x 2 dom(T ) such that0 2 f(x) + T (x):If f is an a�ne function, and if T is polyhedral, then we get the a�ne generalizedequation.It is well-known (Rockafellar 1970) that the normal cone is a maximal mono-tone multifunction. Thus, in light of (1), the variational inequality VI(f;C) isequivalent to the generalized equation GE(f;NC).



71.3 Solution Methods for Nonlinear ProblemsThis section describes several techniques for solving nonlinear complementarityproblems that will serve as background for the algorithms presented in Chapters2 and 3 of this thesis. Later, in Section 1.4, we will discuss solution methods forlinear complementarity problems.There is currently a wide variety of techniques for solving nonlinear comple-mentarity problems. Some of the older approaches include classical pivotal meth-ods (Cottle 1966, Habetler & Kostreva 1978) and �xed-point homotopy methods(Garcia & Zangwill 1981, Todd 1976). More recent approaches include di�eren-tiable optimization based methods (Fukushima 1992, Kanzow 1994, Mangasarian1976, Mangasarian & Solodov 1993, Tseng, Yamashita & Fukushima 1994), pro-jection and proximal methods (Auslander 1993, Auslander & Haddou 1994, Ferris& Ralph 1995, Mor�e 1994, Solodov & Tseng 1994), and interior point methods,(Chen & Harker 1995, G�uler 1993, Kojima, Megiddo & Noma 1991, Kojima,Mizuno & Noma 1989, Monteiro, Pang & Wang 1995, Wang, Monteiro & Pang1994, Wright & Ralph 1993). In addition to these, Ferris & Pang (1995) list sev-eral other classes of algorithms, which we shall discuss in detail in the context ofNewton-based methods.1.3.1 Newton-Based MethodsWhile many di�erent approaches are available, the fastest algorithms for solvingnonlinear complementarity problems are all based upon Newton's method. New-ton's method is an iterative technique for solving the system f(x) = 0, wheref : IRn ! IRn is continuously di�erentiable. The iterates fxkg are generated bysolving a sequence of linear approximations to f given by a �rst order Taylorseries approximation. Speci�cally, at the kth iteration, the Newton direction dk iscomputed by solving the following linear subproblem for the vector d:f(xk) +rf(xk)>d = 0:(2)The next iterate xk+1 is then set equal to xk + dk. This method is known to beQ-quadratically convergent in a neighborhood of a solution x� if rf(x�) is non-singular and if rf is Lipschitzian in a neighborhood of x� (Ortega & Rheinboldt1970).This fast local convergence rate is an attractive feature of Newton's method;however, to ensure convergence starting far away from a solution, a globalizingstrategy needs to be performed. There are two main techniques for doing this,which are based upon linesearch strategies and trust-region strategies. Our inter-est here is in linesearch techniques, which give us the damped Newton methods ;



8for information on the trust-region methods, see Fletcher (1987, Chapter 5).The linesearch strategy is based upon forcing decrease of a merit function� : IRn ! IR+, which in some way measures how close a point is to a solution.Normally, the merit function is nonnegative, and is equal to zero only at solutionsto the problem. For example, we might choose � := kf(�)k2 =2. The linesearchstrategy is then to use this merit function to choose a step length �k 2 (0; 1] sothat the new iterate xk+1 := xk + �kdk produces an acceptable decrease in themerit function.A popular linesearch technique is the backtracking scheme based on the workof Armijo (1966) and Goldstein (1967). Given a parameter � 2 (0; 1), the strategyis to evaluate the merit function at the sequence of points fxk+�jdk : j = 0; 1; : : :g,until a steplength �m is found such that xk + �mdk produces \su�cient" decreasein the merit function. Under appropriate criteria for what constitutes \su�cient"decrease, global convergence results can be established, which guarantee that theiterates will either be unbounded, or will converge to a local minimum of the meritfunction �. Note that these global convergence results do not guarantee that asolution will be found from arbitrary starting points. For example, a \globallyconvergent" algorithm might converge to a local minimum that is not a globalminimum.Newton's method has the limitation that the direction �nding subproblem (2)may not always be solvable. In particular, if rf(xk) is singular, then the Newtondirection cannot be calculated unless f(xk) 2 ker(rf(xk)>). This di�culty isavoided by the Gauss-Newton method. In this method, the Gauss-Newton direc-tion is chosen by solving the least squares problem given bymin 12 f(xk) +rf(xk)>d2subject to xk + d 2 dom(f):(3)This problem always has a solution, although not necessarily a unique one. More-over, if rf is non-singular, then the Newton direction will be the unique solutionto the least squares problem.1.3.2 Reformulations of Complementarity ProblemsSince the publication of Mangasarian (1976), numerous algorithms have been pro-posed based upon reformulating nonlinear complementarity problems as systemsof nonlinear equations H(x) = 0. Many of these proposals have involved smoothreformulations, that is, where the function H is continuously di�erentiable. Asimple example comes from Mangasarian (1976)Hi(x) = (fi(x)� xi)2 � jf(x)ijfi(x)� jxijxi:



9Other examples are given in Watson (1979), Ferris & Lucidi (1991), Fukushima(1992), Mangasarian & Solodov (1993), and Subramanian (1993). The chief ad-vantage of smooth reformulations is that the Newton-type methods can be em-ployed without modi�cation.However, smooth reformulations su�er from a fundamental aw: fast localconvergence is achieved only if the problem is nondegenerate, that is, if at asolution x�, fi(x�) = 0 ) x�i is not at a bound. The reason for this is that, at adegenerate solution x�, rH(x�) is singular, so the fast local convergence rates ofNewton's method are lost.In contrast, a considerable number of algorithms have been proposed whichinstead use a nonsmooth reformulation. See for example, De Luca et al. (1995),Dirkse & Ferris (1995b), Facchinei & Soares (1994), Facchinei & Soares (1995),Ferris & Ralph (1995), Fischer & Kanzow (1994), Geiger & Kanzow (1994), Han,Pang & Rangaraj (1992), Harker & Xiao (1990), Mor�e (1994), Pang (1990), Pang(1991), Pang & Gabriel (1993), Ralph (1994), Robinson (1992), Xiao & Harker(1994a), and Xiao & Harker (1994b). These nonsmooth reformulations do notforce the Jacobian of H to be singular at degenerate solutions. Thus, fast localconvergence can be achieved even to degenerate solutions. However, because thefunction H is nonsmooth, the classical Newton type methods cannot be useddirectly; instead, modi�cations must be made to handle the nonsmoothness.There are three nonsmooth reformulations for NCP(f) that we will be inter-ested in. The �rst, called the minimum map is de�ned as follows:Hi(x) := min(xi; fi(x)):(4)This reformulation is the basis of algorithms presented in Chen (1995) Chen &Mangasarian (1995a), Gabriel & Pang (1992), Han et al. (1992), Pang (1990),Pang (1991), Pang, Han & Rangaraj (1991), and Pang & Gabriel (1993).It is easily seen that H(x) = 0 if and only if x solves NCP(f). However, the(Fr�echet) derivative of the function is not de�ned whenever xi = fi(x) for some i,so classical Newton methods cannot be employed. Two di�erent approaches havebeen taken to handle this di�culty. In Chen & Mangasarian (1995a), a solution isfound by solving a sequence of smooth approximations to the equation H(x) = 0.This technique was implemented in a computer code called SMOOTH. Compu-tational tests on this software (see Chapter 3) demonstrate that this approach isremarkably robust, as well as extremely e�cient. We note that smoothing tech-niques have also been studied by Chen & Harker (1993), Chen & Harker (1995),Kanzow (1994), and Qi & Chen (1993).Another technique incorporates the notion of a Bouligand derivative, or B-derivative for short (Robinson 1987)



10De�nition 1.3.1 A function H : X ! IRn is said to be B-di�erentiable at a pointx if H is Lipschitz continuous in a neighborhood of x and there exists a positivelyhomogeneous function BH(x) : IRn ! IRn, such thatlimv!0 H(x+ v)�H(x)� (BH(x))(v)kvk = 0:The function BH(x) is called the B-derivative of f at x. f is said to be B-di�erentiable in a set X if f is B-di�erentiable at all points x 2 X.Shapiro (1988) showed that if H is locally Lipschitz, then it is B-di�erentiable ata point x if and only if it is directionally di�erentiable at x. When it exists, theB-derivative is unique (Pang 1990, Proposition 1). Thus, using the B-derivative,Newton's method can be generalized by replacing (2) byH(xk) + (BH(xk))(d) = 0:(5)If this equation has a solution dk, it is shown in Pang (1990) that if H(xk) 6= 0,then dk is a descent direction for � := kH(�)k2 =2.Pang (1990) uses this approach, in conjunction with a linesearch strategy toproduce an algorithm that is globally convergent under certain relatively strongregularity conditions. Local Q-quadratic convergence for this approach was provedin Pang (1991), again under fairly strong regularity conditions.It is also possible to use B-derivatives to form a generalization of the Gauss-Newton method by replacing (3) withmin 12 H(xk) +BH(xk)d2subject to xk + d � 0:(6)This generalization is the basis for the NE/SQP algorithm (Pang & Gabriel 1993,Gabriel & Pang 1992). Pang and Gabriel proved global convergence and local Q-quadratic convergence for this algorithm using weaker regularity conditions thanwere needed for the Newton-based approach. A desirable feature of this algorithmis that the Gauss-Newton subproblems are always solvable, thus contributing tothe robustness of the algorithm. However, as we shall show in Chapter 2, therobustness of the NE/SQP algorithm is disappointing.The minimummap reformulation is the basis for the algorithms QPCOMP andPROXI, which will be presented in Chapters Chapter 2 and Chapter 3. In Chap-ter 2, we de�ne a generalization of the minimummap whose zeros are solutions tothe MCP. Using this reformulation, we develop the QPCOMP algorithm, whichis based largely on NE/SQP. This algorithm improves on NE/SQP in two ways.



11First, it generalizes the NE/SQP method to the MCP framework, and second, itis considerably more robust than NE/SQP. In Chapter 3, we present an algorithmcalled PROXI, which is similar to QPCOMP, however, it used a Newton methodrather than a Gauss-Newton method to solve the generalized minimum map.The second reformulation we shall consider is based on the semismooth func-tion � : IR2 ! IR de�ned by�(a; b) = pa2 + b2 � (a+ b):This function was �rst introduced by Fischer (1992), and has been further studiedby Facchinei & Soares (1994), Facchinei & Soares (1995), Geiger & Kanzow (1994),Kanzow (1994), Kanzow (1995), Pang & Qi (1993), Qi (1993), Qi & Sun (1993),Qi & Jiang (1994), and Tseng (1994). An up to date review of the uses of thisfunction is given by Fischer (1995).This function has the property that�(a; b) = 0 () a � 0; b � 0; ab = 0:(7)Note also that � is continuously di�erentiable everywhere except at the origin.Several algorithms for solving NCP(f) have been proposed based on the �function (Facchinei & Soares 1994, Facchinei & Soares 1995, Geiger & Kanzow1994, Kanzow 1994). These algorithms assume that f is continuously di�eren-tiable on all of IRn. The NCP is then reformulated as the zero �nding problem�(x) = 0, where � : IRn ! IRn is de�ned by�i(x) := �(xi; fi(x)):(8)Based upon (7), it is easily seen that x solves NCP(f) if and only if �(x) = 0.This semismooth reformulation has two advantages over the minimum map.First, it always incorporates both the boundary and the function information atevery iteration. This is in marked contrast to the minimum map, which usesinformation only from one or the other. Second, the natural merit function�(x) := kH(x)k2 =2 is continuously di�erentiable. De Luca et al. (1995) use thisreformulation to propose an algorithm that is proven to be globally convergentand locally Q-quadratically convergent based on considerably weaker regularityconditions than those required by the NE/SQP method.In Chapter 3 we shall generalize the function � to the MCP framework. Wewill then use this generalization to develop a a Newton-based algorithm for theMCP, which is considerably more robust than the original algorithm of De Lucaet al. (1995)The third reformulation we consider is of interest not as a basis for a nonlinearMCP algorithm, but rather as motivation for the algorithms presented in Chapters



124 and 5, which solve the LMCP and the a�ne generalized equation, respectively.This reformulation is based upon the normal map (Eaves 1971, Minty 1962, Robin-son 1992). Given a closed convex set C � IRn and a function f : C ! IRn, thenormal map FC : IRn ! IRn is de�ned byFC(x) := f(�C(x)) + x� �C(x):(9)In the case where C := IB, �nding a zero of this equation is equivalent to solv-ing MCP(f; IB) in the following sense: if FIB(x) = 0, then z := �IB(x) solvesMCP(f; IB). Conversely, if z is a solution to MCP(f; IB), then x := z � f(z) is azero of FIB.Several algorithms have been developed based on this normal map formulation.Harker & Xiao (1990) present a B-di�erentiable equation approach to �nding azero of the normal map. However, the convergence theory for this algorithm issomewhat restrictive.A more successful approach has been based upon the well-established theory ofgeneralized equations (Robinson 1980). The basic idea is to generalize Newton'smethod by solving a sequence of piecewise-linear approximations to FIB, whichare formed by replacing f with its �rst order Taylor approximation at the currentiterate. Speci�cally, at the kth iteration, the Newton point �x is calculated bysolving the piecewise a�ne equation MkIB(x) = 0, whereMkIB(x) := f(�IB(xk)) +rf(xk)>(�IB(x)� �IB(xk)) + x� �IB(x):But this is equivalent to solving LMCP(Mk; qk; IB), whereMk := rf(xk)> and qk := f(�IB(xk))�rf(xk)>�IB(xk):Thus, at each iteration, the Newton point is calculated by solving an LMCP thatapproximates the nonlinear problem near the current iterate. It is for this reasonthat this approach is often referred to as a successive linear complementarityproblem (SLCP) method (Mathiesen 1987, Mathiesen 1985).Josephy (1979) proved local quadratic convergence for an algorithm based onthe above ideas, assuming a strong regularity condition (Robinson 1980) at asolution. However, global convergence results for Josephy's algorithm were notestablished. To achieve global convergence, a globalization strategy is needed.Rutherford (1993) describes an algorithm called MILES that globalizes the Jose-phy method by performing a simple linesearch between the current iterate andthe Newton point. This approach works well in practice, but is theoretically un-justi�ed since the linesearch direction is not necessarily a descent direction for thenatural merit function given by �(x) := FIB(x)2 =2.



13A theoretically sound approach was proposed by Ralph (1994). In this ap-proach, a pathsearch is performed, seeking reduction of the merit function alonga piecewise linear path connecting the current iterate with the Newton point.This path is exactly the search path that was constructed by the LMCP solverin solving the linear subproblem. Following this path is guaranteed to producedescent of the merit function as long as the current iterate is not a stationarypoint of the merit function. Thus, Ralph was able to prove global convergence ofthis algorithm.A sophisticated version of Ralph's pathsearch algorithm has been implementedin a computer code called PATH (Dirkse 1994, Dirkse & Ferris 1995b, Dirkse &Ferris 1995c). This algorithm is comparable to SMOOTH in terms of robustnessand e�ciency, as will be shown in Chapter 3.Due in large part to the success of PATH and MILES, the economics commu-nity has been developing extremely large economic models in the mixed comple-mentarity framework (Harrison, Rutherford & Tarr 1995). Because of this, it isclear that techniques for improving the e�ciency of these algorithms on very largescale problems need to be explored. One possible avenue is to use interior-pointmethods to solve the LCP subproblems. But for such a technique to be useful,the interior-point method needs to be easily warm-started, since the solution toone subproblem will often be near the solution to the next. This consideration iswhat motivated Chapter 4 of this thesis, which presents an infeasible interior-pointmethod for solving the LMCP.1.3.3 Robustness IssuesAll of the algorithms discussed so far are examples of descent methods, whichwork to minimize the merit function. As such, their global convergence behavioris limited by a fundamental di�culty: the merit function may have local minimathat are not solutions of the complementarity problem. This di�culty manifestsitself in di�erent ways for di�erent algorithms. In PATH and MILES, it arisesas a rank-de�cient basis or as a linear complementarity subproblem that is notsolvable. In SMOOTH, it appears as a singular Jacobian matrix. In NE/SQP itarises as convergence to a point that fails some regularity condition.Because of this di�culty, the best these algorithms can hope for, in termsof global convergence behavior, is to guarantee �nding a solution only when themerit function has no strict local minimizers that are not global minimizers. Ingeneral, this means that the function f must be monotonic in order to guaranteeconvergence from arbitrary starting points.Another class of algorithms is based on numerical continuation. Examples of



14this class are given in Pang & Wang (1990), Reinoza (1985), Sellami (1994), Wat-son (1979). Theoretically, these algorithms are extremely robust, depending onlyon very weak assumptions. However, they do not have the fast local convergencerates enjoyed by the Newton-based algorithms.The challenge then, is to develop an algorithm that rivals the continuationmethods in terms of robustness, but which is still competitive with the descentmethods in terms of local convergence rates. This challenge is addressed in Chap-ters 2 and 3, where a proximal perturbation strategy is proposed and implemented.This strategy allows Newton-based methods to achieve global convergence depend-ing only on a pseudo-monotonicity assumption at a solution. Under this pseudo-monotonicity assumption, convergence from arbitrary starting points is achievedeven in the presence of strict local minima of the merit function.1.4 Solution Methods for Linear ProblemsThis section describes two common techniques for solving linear complementarityproblems: interior point methods, and pivoting methods. These two techniquesserve as the basis for the algorithms presented in Chapters 4 and 5. In describingthese methods, it is convenient to state the LCP in an alternative form given by:LCP(M; q): Find (x; y) 2 IRn+ � IRn+ such thaty =Mx+ q; and hx; yi = 0:1.4.1 Interior Point MethodsSince the landmark work of Karmarkar (1984), the mathematical programmingcommunity has witnessed an explosion of research devoted to interior point meth-ods. The reason for this enthusiasm is that interior point algorithms have beendemonstrated to have polynomial complexity, which means that the worst-caseexecution times of these algorithms is a polynomial function of the problem size.This contrasts sharply with the exponential complexity of pivoting schemes. Butthis is not just a theoretical advantage; when put into practice, run times forinterior-point algorithms have been observed to grow relatively slowly as prob-lem sizes are increased (Lustig, Marsten & Shanno 1994). Thus, interior pointmethods are viewed by many as the method of choice for very large scale problems.Most of the early work on interior-point methods was devoted to solving lin-ear programming problems. However, more recently, these techniques have alsobeen shown to be e�ective for monotone linear complementarity problems. There



15are many variations of interior point methods. The algorithm we shall developin Chapter 4 is an example of a path-following method. The basic idea behindpath-following methods is to reformulate the LCP as a minimization problem aug-mented with a barrier term to ensure that the iterates remain strictly feasible. Forexample, LCP(f) may be approximated by the following minimization problem:MP(�): min hx; yi � �Pni=1 (log xi + log yi)subject to y =Mx+ q:For any positive value of �, the log terms force the solution (x(�); y(�)) of theabove minimization problem to be strictly positive. As � is decreased continuouslyto 0, the corresponding solutions (x(�); y(�)) to MP(�) trace out a central paththat leads to the solution (�x; �y) of the LCP. The aim of the path-following methodis to follow this central path to the solution. The algorithm is started with apositive value of �, and a strictly feasible point (x0; y0) 2 IRn++ � IRn++, whichsatis�es the equality constraint y0 = Mx0 + q. A sequence of strictly feasibleiterates is then generated, where at each iteration, a single constrained dampedNewton step is taken toward the solution of MP(�), and then the value of � isdecreased.Until recently, interior-point methods were not amenable to warm-starting.This was unfortunate since our main interest in solving linear complementarityproblems is in the context of solving nonlinear problems. In particular, SLCPschemes work by solving a sequence of LCP subproblems, whose solutions convergeto the solution of the nonlinear problem. In general, the solution to one LCP isvery near the solution to the next. Thus, we would like to warm-start the LCPalgorithm with this \good" starting point.The reason interior point methods could not be easily warm-started was thatthe starting point needed to be strictly feasible, meaning that it needed to strictlysatisfy the inequality constraints (x; y) � 0 as well as satisfying the equalityconstraints y = Mx + q. Unfortunately, in an SLCP scheme, the solution to onesubproblem is not, in general, feasible for the next subproblem. Thus, it wouldneed to be modi�ed to make it feasible, a process that would generally carry itfar away from the solution.More recently, infeasible interior-point methods have been developed, whichdi�er from (feasible) interior-point methods by allowing the iterates to violatethe equality constraints while strictly satisfying the inequality constraints. Putdi�erently, the iterates are infeasible with respect to the equality constraints, butare interior to the region de�ned by the inequality constraints. We call this regionthe inequality-feasible region or more simply the i-feasible region.A typical implementation of an infeasible interior-point method replaces the



16minimization problem MP(�) with the following unconstrained problem:min hx; yi+ ky �Mx+ qk � � nXi=1 (log xi + log yi)In this problem, there is no requirement that the equality constraints y =Mx + q be satis�ed until the solution is found. The relaxation of the feasibilityrequirements allows these infeasible interior-point methods to handle warm startsquite e�ectively. Typically, the problems can be formulated in such a way thatthe only di�erence between the current problem and the nearby problem is in theequality constraints. Thus, with only a slight modi�cation, the solution to thenearby problem can be used as the starting point for the current problem. Thisslight modi�cation is needed simply to move the point from the boundary of thei-feasible region to the interior of the i-feasible region, and can be arbitrarily small.A signi�cant amount of work has been devoted to the development of infeasi-ble interior-point algorithms. This line of research �rst produced practical algo-rithms along with numerical tests and comparisons, which demonstrated superiorpractical performance of this class of algorithms. (Anstreicher 1991, Anstreicher1989, Lustig, Marsten & Shanno 1991, Lustig, Marsten & Shanno 1992, McShane,Monma & Shanno 1989, Mehrotra 1992, Kojima, Mizuno & Todd 1992, Mizuno1993, Potra 1992a, Potra 1992c).More recently, a number of theoretical papers have been written which analyzeconvergence and complexity behavior of various algorithms (Anitescu, Lesaja &Potra 1994, Kojima, Megiddo & Mizuno 1991, Kojima, Shindo & Hara 1994,Mizuno, Jarre & Stoer 1994, Potra 1994, Potra & Bonnans 1994, Potra & Sheng1994b, Potra & Sheng 1994a, Shanno & Simantiraki 1995, Stoer 1994, Wright1994, Wright 1993, Wright & Zhang 1994, Zhang 1994, Zhang & Zhang 1992).Of particular importance is the paper by Zhang (1994). In it, Zhang demon-strates global Q-linear convergence and polynomial complexity for a class of in-feasible interior-point methods for a generalization of the linear complementar-ity problem called the horizontal linear complementarity problem. This work isparticularly signi�cant because the class of algorithms Zhang analyzes is closelyrelated to already existing algorithms with proven e�ectiveness. More recentlyWright (1994) and Wright (1993) extended Zhang's algorithm to produce twoalgorithms that achieve local Q-subquadratic convergence.Unfortunately, both Zhang and Wright place a restriction on the starting pointthat will pose problems when warm-starting the algorithms. Their restriction isvery easy to satisfy if we are allowed to vary the starting point. However, thiscompletely defeats the purpose of warm-starting, since changing the starting pointmay take us farther away from the solution. Fortunately, this restriction on the



17starting points is unnecessary. The proof of this fact is one of the main resultsof Chapter 4. After this restriction is removed, it will then be a straightforwardtask to generalize Wright's algorithm to solve the LMCP.The issue of relaxing the restrictions on the starting points for infeasibleinterior-point algorithms has been addressed in several other papers. For lin-ear programming, global convergence from any positive starting point is provedby Potra (1992b). A similar result is given by Potra & Sheng (1994b) for the linearcomplementarity problem. Monteiro & Wright (1993) propose an algorithm forthe linear complementarity problem that achieves superlinear convergence fromany positive starting point. Their analysis is signi�cant in that they prove su-perlinear convergence without assuming the existence of a strictly feasible point.Another algorithm by Wright (1993) achieves similar convergence results for themixed monotone linear complementarity problem.G�uler (1995) proves that any interior-point algorithm for the linear comple-mentarity problem can be extended to an interior-point algorithm for the hori-zontal linear complementarity problem with identical convergence results. Thus,in principle, any of the methods cited above could be extended to the horizontallinear complementarity problem to provide an algorithm that converges from arbi-trary starting point. However, because of the fundamental importance of Zhang'salgorithm, a direct generalization of his analysis is appropriate.1.4.2 Pivoting MethodsThe �nal class of algorithms we are interested in is the pivoting methods. Themost famous of these approaches is Lemke's method (Lemke & Howson 1964).Numerous other pivoting strategies have been proposed, which are described indetail by Cottle, Pang & Stone (1992). Perhaps the most important of thesemethods are the principal pivoting algorithms, which were originally proposedby Zoutendijk (1960) and Bard (1972), and are described in their general formby Cottle (1966), Cottle (1968), Cottle & Dantzig (1968), and Dantzig & Cottle(1967). However, Lemke's method is still the preferred technique.Lemke's method is typically described in terms of generating a sequence of al-most complementary vector pairs f(yk; xk)g that are extreme points of the feasibleregion f(y; x) j y � 0; x � 0; y =Mx+ qg. The iterates are updated by movingwithin the kernel of a basis matrix Bk 2 IRn�n until a new boundary of the feasi-ble region is encountered. At each iteration a \pivot" is performed that updatesthe basis matrix. A complete and elegant description is provided in Cottle &Dantzig (1968).For our purposes, a more geometric view of Lemke's method is preferable. Thebackground for this was provided by Eaves' work on piecewise linear homotopies



18(Eaves 1976). To describe Lemke's method in the homotopy framework, we �rstreformulate LCP(M; q) as a zero-�nding problem of the normal map FIB, whereIB := IRn+: FIB(x) =Mx+ + q � x�:As was discussed in Section 1.3, if FIB(x) = 0, then (z; y) := (x+;Mx+ + q)is a solution of LCP(M; q), and conversely, if (z; y) is a solution to LCP(M; q),then x := z � y is a zero of FIB. To �nd a zero of FIB, a homotopy mapping isconstructed in which an additional variable is added to produce a piecewise-linearfunction � : IRn � IR+ ! IRn. This mapping is de�ned as follows:�(x; �) := FIB(x) + �e:(Recall that e is the vector of all ones). The strategy is then to track the zerocurve of � starting from a trivial solution until a point (�x; ��) is reached with �� = 0.At this point �x is a zero of FIB.In the terminology of Eaves, the domain of � can be subdivided into a �nitecollection of (n + 1)-dimensional cells whose interiors are disjoint, such that therestriction of � to each cell is an a�ne function. These cells are characterized bythe signs of the components of x. For example, if n = 2, there are four cells givenby �1 := f(x; �) j x1 � 0; x2 � 0; � � 0g�2 := f(x; �) j x1 � 0; x2 � 0; � � 0g�3 := f(x; �) j x1 � 0; x2 � 0; � � 0g�4 := f(x; �) j x1 � 0; x2 � 0; � � 0g ;and �j�1(x; �) := Mx+ �e+ q�j�2(x; �) := h I�1 M�2 ix+ �e+ q�j�3(x; �) := h M�1 I�2 ix+ �e+ q�j�4(x; �) := Ix+ �e+ qIn this example, the matrices multiplying x correspond to the basis matrices Bkin our �rst description of Lemke's method.Eaves (1976, Theorem 9.1) shows that if 0 is a regular value (Eaves 1976,Section 8), then ��1(0) is a 1-manifold whose endpoints lie on the boundary ofthe domain of �. A 1-manifold is a disjoint union of routes and loops, where aroute is a curve homeomorphic to an interval, and a loop is a curve homeomorphicto a circle.



19It follows then that if 0 is a regular value, then tracking the zero curve froma given starting point can have one of three possible outcomes: either 1) the zerocurve will loop back to the original point, 2) the zero curve will terminate in aray, or 3) the zero curve will terminate at a point on the boundary of dom(�). Inthis last case, a solution is found since any boundary point will necessarily have� = 0.To eliminate the �rst possibility, a starting point is chosen that is the endpointof a ray. This is accomplished by choosing the starting point (x0; �0) such that�0 � maxi(�qi), and x0 := �q��0e. Observe that by de�ning d0 := (�e; 1), thenthe ray f(x0; �0) + �d0 j � > 0g lies on the zero curve of �. Note further that thisray is entirely contained within the cell characterized by x nonpositive. Thus, inthe example above, this ray is contained in the cell �4. It is clear then that thestarting point lies on a component of the zero curve that is not a loop. Thus,tracking this zero curve will either result in ray termination, or in termination ata solution.To trace the zero curve we start by moving in the �d0 direction until a bound-ary of the starting cell is reached (i.e., until either � = 0 or xi = 0 for some i).If this boundary point is not a solution, then it must be shared by another cell.Furthermore, under the regularity assumption, it is shared by only one other cell.In this case, a new direction d1 is chosen that lies in the kernel of this new cell. Wethen move along this direction until a new boundary is encountered. The processcontinues until it terminates at either a ray or a solution. When 0 is not a regularvalue, then the above process can be enhanced by a lexicographic ordering.One characteristic of the above process is that in moving between adjacentcells, the � function di�ers only by a rank-1 update. Thus, the matrix can bestored in factored form, and the factors can be updated cheaply at each iteration.The foundation laid by Eaves (1976) provided a far more powerful theory thanwas required for Lemke's method. Using this theory, it is possible to developsimilar algorithms for more complex problems. Such an algorithm was devised fora�ne variational inequalities by Cao & Ferris (1995b). In Chapter 5 we extendthis work to produce an algorithm for a�ne generalized equations.1.5 OrganizationSo far, we have introduced several problem classes and provided an overviewof some of the relevant techniques for addressing these problems. The remain-der of this thesis expands upon these ideas, presenting �ve new algorithms forcomplementarity problems and generalized equations. In Chapter 2 a proximalperturbation strategy is presented in detail and a global convergence result is



20proven that depends only on a pseudomonotonicity assumption. This strategy isthen applied to the NE/SQP algorithm of Pang & Gabriel (1993). To do this,the NE/SQP algorithm is �rst extended to solve problems in the MCP frame-work, and then modi�ed to guarantee �nite termination. Finally, the QPCOMPalgorithm is presented along with a formal proof of global convergence.In Chapter 3 the proximal perturbation strategy is applied to two additionalNewton-based algorithms. The �rst is a very simple damped Newton schemethat, like the NE/SQP algorithm, uses a generalization of the minimum map toreformulate the MCP. The second algorithm is a semismooth equations approachthat uses the second reformulation described in Section 1.3. Extensive computa-tional results are then given comparing the performance of these algorithms to thecurrent state-of-the-art algorithms PATH (Dirkse & Ferris 1995b) and SMOOTH(Chen & Mangasarian 1995a)In Chapter 4, we present an infeasible interior-point algorithm for the linearmixed complementarity problem. To do this we �rst extend some theoreticalresults of two previous infeasible interior-point algorithms, proving global and localQ-subquadratic convergence from arbitrary starting points. We then use theseresults to prove convergence of our algorithm for the linear mixed complementarityproblem.Finally, in Chapter 5, we develop a path-following algorithm for the a�negeneralized equation. This algorithm is an extension of an algorithm for a�nevariational inequalities that was proposed by Cao & Ferris (1995b). We prove thatunder an assumption of coherent orientation, the algorithm will �nd a solution ina �nite number of iterations.



21
Chapter 2QPCOMPIn this chapter, we present QPCOMP: a Quadratic-Programming based solver formixed COMPlementarity solvers. This algorithm is the �rst of three algorithmsusing a proximal perturbation strategy that will be presented in Section 2.1. Thisstrategy provides a means of enhancing any algorithm that reliably solves stronglymonotone MCPs so that it will solve a much broader class of problems. In partic-ular, it will solve any problem that satis�es a pseudo-monotonocity condition at asolution. This result will be proved in Theorem 2.1.3 based upon exact solutionsto a sequence of perturbed subproblems. Applying this strategy to the NE/SQPalgorithm of Pang & Gabriel (1993) results in the QPCOMP algorithm.As mentioned in the introduction, the robustness of NE/SQP is disappointingwhen compared to PATH and SMOOTH. In fact, we shall show in Section 2.2 thatNE/SQP cannot reliably solve even one-dimensional monotone linear complemen-tarity problems! However, NE/SQP works well on strongly monotone problems,which is all that is required for our strategy to work.Before applying this strategy to NE/SQP, it is �rst necessary to extend theNE/SQP algorithm to the MCP framework. We do this in Section 2.2, where wepresent the algorithm and also duplicate all of the convergence results given inPang & Gabriel (1993). In addition, we extend these convergence results to provethat the NE/SQP algorithm will solve any strongly-monotone MCP. Finally, weintroduce some modi�cations to the algorithm to ensure that it will terminate ina �nite number of iterations, even when it fails.We will be referring to the analysis of Pang & Gabriel (1993) extensively. Asmuch as possible our notation is identical to the notation used by Pang & Gabriel.The only di�erence is in the meaning of rf(x). If f is a function from IRn to IRm,rf(x) is always a n�m matrix, whereas, in Pang & Gabriel (1993), it is an m�nmatrix, except when m = 1.In Section 2.3, we present the QPCOMP algorithm. The main convergence



22result for this algorithm is given in Theorem 2.3.1, which shows global conver-gence under the assumption of pseudo-monotonicity at a solution, whenever f isa Lipschitz continuous, continuously di�erentiable function. Finally, some testresults will be given in Section 2.4, which demonstrate that QPCOMP is signi�-cantly more robust than NE/SQP. Throughout this chapter we assume that f iscontinuously di�erentiable on an open set 
 � IB.2.1 The Proximal Perturbation StrategyIn this section we present a strategy for taking algorithms which work well onstrongly monotone MCPs and extending them to solve MCPs for which a consid-erably weakened monotonicity condition is satis�ed. To state this condition, we�rst need to de�ne the concept of pseudo-monotonicity:De�nition 2.1.1 Given a set IB � IRn, the mapping f : 
 ! IRn is said to bepseudo-monotone at a point x� 2 IB if 8y 2 IB,hf(x�); y � x�i � 0 implies hf(y); y � x�i � 0:(1)f is said to be pseudo-monotone on IB if it is pseudo-monotone at every point inIB. It is known (Harker & Pang 1990) that if a function g : IRn ! IR is pseudo-convex (Mangasarian 1969, De�nition 9.3.1), then rg is a pseudo-monotone func-tion. However, if g is only pseudo-convex at a point x�, it does not necessarilyfollow that rg is pseudo-monotone at x�.Pseudo-monotonicity is a weaker condition than monotonicity. In particularevery monotone function is pseudo-monotone. But the converse is not true. Forexample, consider the function f(x) := x=2 + sin(x). This function is pseudo-monotone, but is not monotone. Note further that the natural merit functionkf(x)k2 =2 has strict local minima that are not global minima. Thus, we see thatthe natural merit function of a pseudomonotone function can have local minimathat are not global minima.In order to guarantee global convergence of our algorithm we shall require thatthe following assumption be satis�ed:Assumption 2.1.2 MCP(f; IB) has a solution x� such that f is pseudomonotoneat x�.



23If MCP(f; IB) satis�es Assumption 2.1.2, we say that MCP(f; IB) is pseudo-monotone at a solution. However, for simplicity, we will abuse terminology some-what and say simply that MCP(f; IB) is pseudo-monotone. This should not causeany confusion since all of our discussions will refer to problems which satisfy As-sumption 2.1.2.The strategy we present for pseudo-monotone MCPs is based upon extending adescent-based algorithm for strongly monotone MCPs. The idea behind a descent-based algorithm is to minimize a nonnegative merit function � : IB ! IR+. If fis strongly monotone, it is easy to construct a merit function that has a globalminimum, but no other local minima. It is then a simple task to �nd the globalminimizer of �, thereby giving a solution to theMCP. If however f is not monotone,then the merit function chosen will, in all likelihood, contain local minima forwhich � 6= 0. The algorithm may then terminate at such a local minimum, ratherthan at the solution.To overcome this di�culty, we would like to �nd some way to \escape" fromthis local minimum. This can be accomplished by constructing an improved start-ing point ~x where �(~x) is smaller than the value of � at the local minimum. Sincethe descent-based algorithm never allows the value of � to increase, the algorithmcan be restarted from ~x with the guarantee that it will never return to the localminimum. Obviously, �nding such an improved starting point is not a straightfor-ward task. However, this can be achieved when the problem is pseudo-monotone.The remainder of this section describes how to construct this improved startingpoint.We begin by de�ning a particular merit function for our algorithm: To do this,we �rst introduce the mapping H : 
! IRn de�ned byHi(x) := min(xi � li;max(xi � ui; fi(x))):(2)It is easily shown that H(x) = 0 if and only if x solves MCP(f; IB). Using thisfunction, we de�ne the merit function�(x) := 12H(x)>H(x):(3)Clearly, x is a solution to MCP(f; IB) if and only if x is a minimizer of � with�(x) = 0.In Section 2.2 we will present a basic algorithm for solving strongly monotoneMCPs, which is based on minimizing this particular choice of �. However, fornow, we simply assume that such an algorithm exists. Moreover we assume thatthe algorithm will fail in a �nite number of iterations whenever it cannot solve theproblem.



24Now suppose the basic algorithm fails at a point x0. Our strategy will be tosolve a sequence of perturbed problems, generating a sequence of solutions fxkgthat leads to an improved starting point ~x. The perturbed problems we solve arebased on the following perturbation of f : given a centering point �x 2 IB, and anumber � > 0, let f�;�x(x) := f(x) + �(x� �x):If f is Lipschitz continuous, then for � large enough, f�;�x is strongly mono-tone. Thus, the basic algorithm will be able to solve the perturbed problemMCP(f�;�x; IB).With a su�ciently large � we can then generate a sequence of iterates asfollows: given a point x0, then for k = 0; : : :, choose xk+1 as the solution toMCP(f�;xk ; IB). Note that every subproblem in the sequence uses the same choiceof �, but a di�erent choice of centering point. In particular the centering pointfor one subproblem is the solution of the previous subproblem. This is veryreminiscent of the proximal point algorithm (Rockafellar 1978) and of Tikhonovregularization (Tikhonov & Arsenin 1977).The following lemma gives su�cient conditions for a subsequence of theseiterates to converge to a solution of MCP(f; IB).Theorem 2.1.3 Let � > 0 and let fxkg; k = 0; 1; ::: be a sequence of points in IBsuch that for each k, xk+1 is a solution to MCP(f�;xk ; IB). If MCP(f; IB) satis�esAssumption 2.1.2, then1. fxkg has a subsequence that converges to a solution �x of MCP(f; IB).2. Every accumulation point of fxkg is a solution of MCP(f; IB).3. If f is pseudomonotone at any accumulation point �x of fxkg, then the iter-ates converge to �x.Proof Let x� be the solution to MCP(f; IB) given by Assumption 2.1.2. Sincexk+1 is a solution to MCP(f�;xk ; IB), then for each component i, exactly one of thefollowing is true:1. xk+1i = li and fi(xk+1) + �(xk+1i � xki ) � 0,2. li < xk+1i < ui and fi(xk+1) + �(xk+1i � xki ) = 0,3. xk+1i = ui and fi(xk+1) + �(xk+1i � xki ) � 0,



25Let Il, If and Iu be the sets of indices which satisfy the �rst, second, and thirdconditions respectively.For i 2 Il, it follows that 0 � xki � xk+1i � fi(xk+1)=�. Also, xk+1i � x�i =li � x�i � 0, so (xk+1i � x�i )(xki � xk+1i ) � fi(xk+1)(xk+1i � x�i )=�:(4)By similar reasoning, this inequality holds for i 2 Iu. Finally, for i 2 If ,f�;xki (xk+1) = 0, so xki � xk+1i = fi(xk+1)=�, whereupon it follows that (4) issatis�ed as an equality.Thus in all cases, inequality (4) is satis�ed, which gives us the following.(xki � x�i )2 = (xk+1i � x�i + xki � xk+1i )2= (xk+1i � x�i )2 + 2(xk+1i � x�i )(xki � xk+1i ) + (xki � xk+1i )2� (xk+1i � x�i )2 + 2fi(xk+1)(xk+1i � x�i )=� + (xki � xk+1i )2 by (4).Summing over all components, we obtainxk � x�2 � xk+1 � x�2 + 2 Df(xk+1); xk+1 � x�E =� + xk � xk+12 :Under Assumption 2.1.2, the inner product term above is nonnegative. Thus,xk � x�2 � xk+1 � x�2 + xk � xk+12 ;so fxk � x�g is a decreasing sequence, and xk � xk+1 ! 0. It follows thatfxkg has an accumulation point. Let �x be any accumulation point of fxkg. Thenthere is a subsequence fxkj : j = 0; 1; : : :g converging to �x. Since xk � xk+1! 0,we also see that xkj+1 ! �x. Finally, since xkj+1 solves MCP(f�;xkj ; IB), we havemin�xkj+1i � li;max�xkj+1i � ui; fi(xkj+1) + �(xkj+1i � xkji )�� = 0; 8i:By continuity, min (�xi � li;max(�xi � ui; fi(�x))) = 0; 8i; that is, �x solvesMCP(f; IB). This proves items 1 and 2To prove item 3, note that if f is pseudomonotone at an accumulation point�x, then by item 2, �x is a solution, so the above analysis can be repeated with x�replaced by �x. We can then conclude that fxk � �xg is a decreasing sequence.But since �x is an accumulation point of fxkg, it follows that xk � �x! 0.



26Table 1: Iterates produced by solving sequence of perturbed problems, with (� =1:1) k xk f(xk) �(xk)0 0 -.01 .000051 .9110 -1.0021 .50212 1.5521 -.7052 .24873 1.8356 -.3118 .04864 1.9439 -.1191 .00715 1.9832 -.0433 .000946 1.9973 -.0155 .000127 2.0023 -.0055 .00002Note that Theorem 2.1.3 did not make any assumptions on the choice of �.Thus, even if � is too small to ensure that f�;�x is strongly monotone, the strategywill still work so long as each subproblem is solvable.To illustrate the technique, it is useful to look at a simple example. LetIB := IR+ and let f : IR! IR be de�ned byf(x) = (x� 1)2 � 1:01:This deceptively simple problem proved intractable for all of the descent-basedmethods we tested. In particular, we tried to solve this problem using PATH,MILES, NE/SQP, and SMOOTH. All four algorithms failed from a starting pointof x = 0. But this should not be surprising since f is not monotone. However, fis pseudo-monotone on IB. Thus, it is easily solved by our technique. For example,using � = 1:1 and a starting point x0 = 0, the strategy generates the sequence ofiterates shown in Table 2.1.Note that at the 7th iteration, an improved starting point is found, (i.e, �(x7) <�(x0)). At this point, a basic algorithm (e.g., Newton's method) can be used toobtain the �nal solution.In this section, we have introduced a basic strategy for taking descent-basedalgorithms that solve strongly monotone MCPs, and extending them to solvepseudo-monotone MCPs. This is, in fact, the main idea presented in this chapter.However, to turn this strategy into a working algorithm, a number of details mustbe addressed:1. We must ensure that the basic algorithm (for solving the strongly mono-tone MCPs) terminates in a �nite number of iterations. This issue will beaddressed in detail in Section 2.2.



272. Since we require �nite termination of the basic algorithm, we must allowinexact solutions of the perturbed subproblems. We shall therefore need toincorporate control parameters into our strategy which govern the accuracydemanded by each subproblem. In the our actual implementation of thealgorithm we demand very little accuracy for each subproblem. In fact, ex-cept in extreme circumstances, we allow only one step of the basic algorithmbefore updating the perturbed problem. To guarantee convergence of thisapproach requires more laborious analysis which we defer until Section 2.3.3. Since we have no a priori information regarding the Lipschitz continuity off , we shall have to incorporate some adaptive strategy for choosing � inorder to ensure that, eventually, the subproblems all become solvable.The remainder of this chapter addresses these details.2.2 Subproblem SolutionIn this section, we present an algorithm for solving strongly monotone MCPs,which is based on the NE/SQP algorithm of Pang & Gabriel (1993). NE/SQPwas originally developed as a method for solving the nonlinear complementarityproblem. When it was �rst introduced, NE/SQP o�ered a signi�cant advancein the robustness of NCP solvers because the subproblems it needs to solve ateach iteration are convex quadratic programs, which are always solvable. Today,its robustness has been greatly surpassed by PATH, MILES, and SMOOTH (seeChapter 3). However, NE/SQP is still a viable technique for solving stronglymonotone MCPs. Moreover, NE/SQP has the very desirable feature of evaluatingthe function f only on IB. This is in marked contrast to the SMOOTH algorithmwhich requires f to be de�ned on all of IRn.In this section, we �rst present the NE/SQP algorithm extended to the MCPframework, and prove global and local convergence results for it, which parallelthe results given in Pang & Gabriel (1993). We then extend these results to showthat the algorithm solves all strongly monotone MCPs. Finally, we modify thealgorithm to ensure �nite termination.Before we begin, we note that in his Ph.D. dissertation, Gabriel extendedNE/SQP to address the upper bound nonlinear complementarity problem (UB-NCP) (Gabriel 1992). The UBNCP is the special case of MCP where l = 0 andu > 0 is �nite. Gabriel's algorithm used a slightly di�erent merit function thanthe one we de�ned in (3). In particular, Gabriel's merit function is given by�̂(x) := Ĥ(x)>Ĥ(x)=2, where Ĥi(x) := min(xi� li; fi(x)+) +min(ui� xi; fi(x)�).



282.2.1 Extension of NE/SQP to the MCP FrameworkRecall that a vector x solves MCP(f; IB) if and only if �(x) = 0, where � is de�nedby (2) and (3). The NE/SQP algorithm attempts to solve this problem by solvingthe minimization problem min �(x);subject to x 2 IB:We will use � as a merit function for the MCP. To describe the algorithm indetail we need to partition the indices f1; : : : ; ng into �ve sets as follows:Il(x) := fi : xi � li < fi(x)gIel(x) := fi : xi � li = fi(x)gIf(x) := fi : xi � ui < fi(x) < xi � ligIeu(x) := fi : xi � ui = fi(x)gIu(x) := fi : xi � ui > fi(x)g:It will at times be convenient to refer also to the index sets Jl(x) := Il(x)S Iel(x)and Ju(x) := Iu(x)S Ieu(x). As in the original description of NE/SQP, the sub-scripts of these sets are chosen to reect their meaning. For example, the sub-scripts l; f , and u correspond to the indices where Hi(x) = (xi � li); fi(x), and(xi � ui) respectively. The subscripts el and eu correspond to the indices wherefi(x) is equal to li and ui, respectively.These index sets are used to de�ne an iteration function � : IB � IRn ! IR asfollows: �(x; d) := kh(x; d)k2 =2, wherehi(x; d) := 8>>>><>>>>: (xi � li + di) i 2 Il(x)S Iel(x)(xi � ui + di) i 2 Iu(x)S Ieu(x)(fi(x) +rfi(x)>d) i 2 If (x) i = 1; : : : ; n:(5)To be consistent with the notation used by Pang and Gabriel, we also de�ne�i(x; d) := (hi(x; d))2=2. Given a point x 2 IB, the algorithm chooses a descentdirection d by solving the convex quadratic programming problem (QPx) givenby minimize �(x; d)subject to x+ d 2 IB: (QPk)When discussing particular iterates of the algorithm, we shall also use the abbre-viation (QPk) := (QPxk).



29We note that in the original NE/SQP algorithm, an additional constraint wasadded to this quadratic program, namely,di = 0 if fi(xk) = 0 and xki = li or xki = ui:However, this constraint is unnecessary for the convergence results, so we omit itfrom our algorithm.To ensure descent of the merit function �, we will need to perform a linesearchalong the direction dk. To describe this linesearch, we introduce a forcing functionz : IB� IRn ! IR+, de�ned by z(x; d) := kb(x; d)k2 =2, wherebi(x; d) := 8><>: di i 62 If (x)rfi(x)>d i 2 If (x) i = 1; : : : ; n:(6)This forcing function will be used to guarantee su�cient decrease in the meritfunction at each iteration. Again to be consistent with the notation used by Pangand Gabriel, we de�ne zi(x; d) := (bi(x; d))2=2. Note that h(x; d) = H(x)+b(x; d).The NE/SQP algorithm for mixed complementarity problems is stated in Fig-ure 1. Figure 1: Algorithm NE/SQPStep 1 [Initialization] Select �; � 2 (0; 1), and a starting vector x0 2 IB. Setk = 0.Step 2 [Direction generation] Solve (QPk), giving the direction dk.If �(xk; dk) = �(xk), terminate the algorithm; otherwise, continue.Step 3 [Steplength determination] Let mk be the smallest nonnegative inte-ger m such that�(xk + �mdk)� �(xk) � ���mz(xk; dk);(7)set xk+1 = xk + �mkdk.Step 4 [Termination check] If xk+1 satis�es a prescribed stopping rule, stop.Otherwise, return to Step 2, with k replaced by k + 1.



30To present the convergence results for this algorithm, it is convenient to furtherpartition the index sets as follows:I+el (x) := fi 2 Iel : xi � li > 0gI0el(x) := fi 2 Iel : xi � li = 0gI lf (x) := fi 2 If : xi � li = 0gInf (x) := fi 2 If : xi � ui < 0 < xi � ligIuf (x) := fi 2 If : xi � ui = 0gI0eu(x) = fi 2 Ieu : xi � ui = 0gI�eu(x) := fi 2 Ieu : xi � ui < 0g:Note that for x 2 IB, the sets Il(x); I+el(x); I0el(x); I lf(x); Inf (x); Iuf (x); I0eu; I�eu(x), andIu(x) form a partition of the indices f1; : : : ; ng.The convergence results of this algorithm are based on two regularity condi-tions: b-regularity and s-regularity.De�nition 2.2.1 A nonnegative vector x is said to be b-regular if for every indexset � satisfying Inf (x) � � � If(x)[ Iel(x)[ Ieu(x);the principal submatrix r�f�(x)is nonsingular.The term \b-regular" is chosen because the condition is used to prove bound-edness of the search directions computed by the NE/SQP algorithm.De�nition 2.2.2 A nonnegative vector x is said to be s-regular if the following



31linear inequality system has a solution in y:xi � li + yi = 0 i 2 Il(x)xi � ui + yi = 0 i 2 Iu(x)fi(x) +rfi(x)>y = 0 i 2 Inf (x)xi � li + yi � 0 i 2 I lf(x)fi(x) +rfi(x)>y � 0 i 2 I lf(x)xi � ui + yi � 0 i 2 Iuf (x)fi(x) +rfi(x)>y � 0 i 2 Iuf (x)xi � li + yi � 0 i 2 I+el (x)fi(x) +rfi(x)>y � 0 i 2 I+el (x)xi � ui + yi � 0 i 2 I�eu(x)fi(x) +rfi(x)>y � 0 i 2 I�eu(x)yi = 0 i 2 I0el(x)S I0eu(x):(8)
Note that when l = 0; u =1 the above de�nitions are identical to the conceptsof b-regularity and s-regularity de�ned by Pang and Gabriel. The term \s-regular"is chosen to emphasize the relationship given by Pang & Gabriel (1993, Proposition3), which relates s-regularity to the notion of an S-matrix (Cottle et al. 1992,De�nition 3.1.4).The analysis that follows is nearly identical to the analysis in Pang & Gabriel(1993) with the exception that we have to handle a more extensive collection ofindex sets. Whenever possible, we refer to the original paper. However, occasion-ally we are forced to recreate the proofs to be assured that the results hold forthe MCP.Lemma 2.2.3 Suppose that fxkg � IB converges to �x. Then for all k su�cientlylarge, the following relations hold:1. Inf (�x) � Inf (xk),2. Il(�x) � Il(xk),3. Iu(�x) � Iu(xk),4. I lf(�x) � Inf (xk)S I lf (xk),5. Iuf (�x) � Inf (xk)S Iuf (xk),6. I+el (�x) � Inf (xk)S Il(xk)S I+el (xk),



327. I�eu(�x) � Inf (xk)S Iu(xk)S I�eu(xk),8. I0el(xk) � I0el(�x),9. I0eu(xk) � I0eu(�x),Proof Parts 1{7 are obvious consequences of the continuity of the function f .To prove part 8, let Tl(xk) := If(xk)S Iel(xk)S Il(xk), and observe that I0el(xk) isthe complement in Tl(xk) of Inf (xk)S Il(xk)S I lf(xk)S I+el (xk). Part 8 then followseasily from parts 1,2,4, and 6. Similarly, part 9 follows from parts 1,3,5, and 7.Proposition 2.2.4 Suppose that x is a stationary point of the problemmin �(x)subject to x 2 IB:Then x solves MCP(f; IB) if and only if x is s-regular.Proof If x is a solution, then I lf(x); Iuf (x); I+el(x); and I�eu(x) are all empty. It isthen easily seen that y = 0 satis�es the s-regularity conditions (8). This establishesthe necessity.To prove the su�ciency, let y be a solution of (8). It is easily seen that for� > 0 small enough, x+ �y 2 IB. Thus, since x is a stationary point of � over IB,0 � �0(x; �y) which implies 0 � �0(x; y):(9)But �0(x; y) = Pni=1Hi(x)H 0i(x; y). By examining each term of this sum, we canshow that �0(x; y) � �2�(x). For example if i 2 Il(x), we see that Hi(x) = xi� li,while by (8), H 0i(x; y) = yi = �(xi � li). Thus, Hi(x)H 0i(x; y) = �(xi � li)2 =�Hi(x)2 = �2�i(x; 0). In similar fashion, we can easily show thatHi(x)H 0i(x; y) ��2�i(x; 0) for all i. Thus, �0(x; y) � �2�(x) � 0. But by (9), 0 � �0(x; y), so�(x) = 0.Lemma 2.2.5 The following properties hold:1. �(x; 0) = �(x) for all x 2 IB.2. �(x; d)� �(x; 0)� z(x; d) � �0(x; d) for all (x; d) 2 IB� IRn, and3. for any sequence f(xk; dk)g � IB � IRn converging to (�x; 0) for some �x 2 IB,limk!1 �(xk; dk) = �(�x; 0).



33Proof The proof of the �rst two parts comes simply by writing out the de�nitionfor all the quantities involved as the sum of the componentwise terms, and thencomparing each of the summands individually. The proof of the last part requiresthe use of Lemma 2.2.3. Let the sequence f(xk; dk)g be as given. In similar fashionto the proof of Pang & Gabriel (1993, Lemma 2), we see that for i 2 If(�x), thenfor all k su�ciently large, by Lemma 2.2.3, i 2 If(xk), so�i(�x; 0) = 12fi(�x)2 = limk!1 12(fi(xk) +rfi(xk)>dk)2 = limk!1 �i(xk; dk):Similarly, for i 2 Il(�x),�i(�x; 0) = 12(�xi � li)2 = limk!1 12(xki � li + dki )2 = limk!1 �i(xk; dk);and for i 2 Iu(�x), �i(�x; 0) = limk!1 �i(xk; dk);For i 2 Iel(�x), limk!1(xki � li + dk) = �xi � li = fi(�x) = limk!1(fi(xk) +rfi(xk)>dk). Thus, by a simple combinatorial argument, limk!1 �i(xk; dk) =�i(�x; 0). A similar argument gives the result for i 2 Ieu(�x).Proposition 2.2.6 Let x 2 IB be arbitrary. Then the problem (QPx) has at leastone optimal solution. Let ~dx denote an arbitrary optimal solution. The followingstatements hold:1. z(x; ~dx) � �(x),2. �(x; ~dx) � �(x; 0), with equality holding if and only if z(x; ~dx) = 0,3. if �(x; ~dx) < �(x; 0), then for any � 2 (0; 1), there exists a scalar �� > 0 suchthat for all � 2 [0; �� ],�(x+ � ~dx)� �(x) � ���z(x; ~dx);4. if �(x; ~dx) = �(x; 0) and if x is s-regular, then x solves the MCP(f; IB).Proof For simplicity, we drop the subscript x from the optimal solution ~dx. Insimilar fashion to the proof of Pang & Gabriel (1993, Proposition 2), we canestablish the inequalityXi2Jl(x) ~d2i + Xi2Ju(x) ~d2i + Xi2If (x)(rfi(x)> ~d)2(10)



34� � Xi2Jl(x)(xi � li) ~di � Xi2Ju(x)(xi � ui) ~di � Xi2If (x) fi(x)(rfi(x)> ~d)� 12 Xi2Jl(x)((xi � li)2 + ~di2) + 12 Xi2Ju(x)((xi � ui)2 + ~di2)+12 Xi2If (x)((fi(x)2 + (rfi(x)> ~d)2):Thus, 2z(x; ~d) = nXi=1 bi(x; ~d)2(11) � � nXi=1Hi(x)bi(x; ~d)� 12 nXi=1 �Hi(x)2 + bi(x; ~d)2�= �(x) + z(x; ~d):Part 1 easily follows from this inequality. For part 2, we need only establish thenecessary and su�cient conditions for equality to hold. Suppose �(x; ~d) = �(x; 0).Then we have 0 = �(x; ~d)� �(x; 0) = H(x)>b(x; ~d) + z(x; ~d);which, by the second line of (11), implies that z(x; ~d) = 0. Conversely, if z(x; ~d) =0, then b(x; ~d) = 0, which clearly yields �(x; ~d) = �(x; 0).The proof to part 3 is identical to the proof of Pang & Gabriel (1993, Propo-sition 2, part(c)). The proof to part 4 is also identical except that we have toexamine a di�erent collection of index sets to establish the following inequality:let y be any vector satisfying the s-regularity condition (8), then for � > 0 su�-ciently small, �i(x; �y) � (1 � �)2�i(x; 0); i = 1; : : : ; n:(12)For i 2 Il(x)S Inf (x)S I0el(x)S Iu(x)S I0eu(x), this inequality is satis�ed as anequality. For i 2 I lf (x)S I�eu(x), we have fi(x) < 0, so for small �,0 > fi(x) + �rfi(x)>y � (1 � �)fi(x); by (8).(12) follows by squaring this inequality. The argument for i 2 Iuf (x)S I+el (x) issimilar. The remainder of the proof is then identical to the proof of Pang &Gabriel (1993, Proposition 2, part(d)).



35The third part of this proposition guarantees that the integer mk in Step 3 ofthe algorithm can always be determined in a �nite number of trials. Moreover,since the direction �nding subproblems are always solvable, the algorithm willgenerate a well-de�ned sequence of points fxkg, along with a sequence of optimalsolutions fdkg to the direction �nding subproblems (QPk). If we remove thestopping rule in Step 4 of the algorithm, the sequence generated by the algorithmwill be in�nite unless the algorithm terminates at a point �x in step 2. In thatcase, by part 4 of Proposition 2.2.6, �x solves MCP(f; IB) if �x is s-regular. For theremainder of our analysis, we assume that the algorithm does not terminate inStep 2, so that we may assume that the algorithm generates an in�nite sequenceof iterates fxkg.Lemma 2.2.7 Suppose that x� is the limit of the subsequence fxk : k 2 �g. If x�is b-regular, then fdk : k 2 �g is bounded.Proof The proof is identical to the proof of Pang & Gabriel (1993, Lemma 3),with the following substitutions:I+f (x�) ) Inf (x�)If(x�)S Ie(x�) ) If(x�)S Iel(x�)S Ieu(x�)Jf (xk) ) Jl(xk)SJu(xk):Lemma 2.2.8 Suppose that x� is the limit of the subsequence fxk : k 2 �g andthat the sequence fz(xk; dk) : k 2 �g converges. Suppose also that x� is b-regular.Then, for every sequence of positive scalars f�k : k 2 �g converging to zero,lim supk!1;k2� �(xk + �kdk)� �(xk)�k � � limk!1;k2� z(xk; dk):Proof By Lemma 2.2.7, the sequence fdk : k 2 �g is bounded. Thus, thesequence fxk+�kdk : k 2 �g also converges to x�. Let yk := xk +�kdk. In similarfashion to the proof of Pang & Gabriel (1993, Lemma 4), we can show that for ksu�ciently large, the following holds: for i 2 If (x�)S Il(x�)S Iu(x�),�i(yk)� �i(xk) = 8>><>>: �kfi(xk)rfi(xk)>dk + o(�k) i 2 If(xk)�k(xki � li)dki + o(�k) i 2 Il(xk)�k(xki � ui)dki + o(�k) i 2 Iu(xk);



36and for i 2 I+el (x�)S I�eu(x�),�i(yk)� �i(xk) � 8>><>>: �kfi(xk)rfi(xk)>dk + o(�k) i 2 Inf (xk)�k(xki � li)dki + o(�k) i 2 Il(xk)S I+el (xk)�k(xki � ui)dki + o(�k) i 2 Iu(xk)S I�eu(xk):Summing these expression, we getXi 62I0el(x�)S I0eu(x�) �(xk + �kdk)� �(xk)�k(13) � Xi2T1 fi(xk)rfi(xk)>dk + Xi2T2(xki � li)dki + Xi2T3(xki � ui)dki + o(�k);whereT1 := �If(x�)T If(xk)�S�(I+el (x�)S I�eu(x�))T Inf (xk)�T2 := �Il(x�)T Il(xk)�S�(I+el (x�)S I�eu(x�))T�Il(xk)S I+el (xk)��T3 := �Iu(x�)T Iu(xk)�S�(I+el (x�)S I�eu(x�))T�Iu(xk)S I�eu(xk)�� :Note that T1ST2ST3 is the complement of I0el(x�)S I0eu(x�).It is also easily shown that for i 2 I0el(x�)S I0eu(x�),limk!1;k2� �i(yk)� �i(xk)�k = 0:Notice that If(xk)nT1 � I0el(x�)S I0eu(x�), Jl(xk)nT2 � I0el(x�), and, Ju(xk)nT3 �I0eu(x�). Thus,lim supk2�;k!1 Xi2T1 fi(xk)rfi(xk)>dk = lim supk2�;k!1 Xi2If (xk) fi(xk)rfi(xk)>dk;lim supk2�;k!1 Xi2T2(xki � li)dki = lim supk2�;k!1 Xi2Jl(xk)(xki � li)dki ; andlim supk2�;k!1 Xi2T3(xki � ui)dki = lim supk2�;k!1 Xi2Ju(xk)(xki � ui)dki :Thus, by (13)lim supk2�;k!1 �(xk + �kdk)� �(xk)�k � lim supk2�;k!10@ Xi2If (xk) fi(xk)rfi(xk)>dk



37+ Xi2Jl(xk)(xki � li)dki + Xi2Ju(xk)(xki � ui)dki1A� �2 limk2�;k!1 z(xk; dk) by (11)� � limk2�;k!1 z(xk; dk);since z(xk; dk) is nonnegative.Lemma 2.2.9 Suppose that x� is the limit of the subsequence fxk : k 2 �g. If x�is b-regular, then limk2�;k!1 z(xk; dk) = 0;hence, fdk : k 2 �g converges to zero.Proof The proof is identical to the proof of Pang & Gabriel (1993, Lemma 5)except that Lemma 2.2.7 is used in place of Pang & Gabriel (1993, Lemma 3).Lemma 2.2.10 Suppose that x� is the limit of the subsequence fxk : k 2 �g andthat x� is s-regular. Let y be a solution of the system (8) with x = x�. Thenthere exists an �� 2 (0; 1] such that for all k 2 � large enough, �y is feasible for theproblem (QPk) for any � 2 [0; ��].Proof We look at each component i to show that li � xki + �y � ui for allk 2 � su�ciently large, and for all � su�ciently small. This is certainly true ifli < x�i < ui, since for k large enough, xki will be bounded away from li and ui.If x�i = li, then for k large enough, xki is bounded away from ui. Thus, we needonly show that xki + �yki � li. But x�i = li) i 2 I lf(x�)S Il(x�)S I0el(x�). Thus bythe s-regularity system (8), yi � 0, so xki + �yki � li for any � � 0. The proof iscompleted by a similar argument showing that if x�i = ui, then yi � 0.Lemma 2.2.11 Under the assumptions of Lemma 2.2.10, it holds that for all� � 0 su�ciently small,lim supk2�;k!1 �(xk; �y) � (1 � �)2�(x�; 0) +O(�2):(14)Proof Suppose k 2 � is large enough that all of the inclusions of Lemma 2.2.3are satis�ed. If i 2 Jl(xk) then by Lemma 2.2.3, i 2 Il(x�)S I0el(x�)S I+el (x�). Ifi 2 Il(x�)S I0el(x�), then by (8), yi = li � x�i , so�(xk; �y) = 12(xki � li � �(x�i � li))2= 12 �(1 � �)2(x�i � li) + xki � x�i�2= (1� �)2�(x�; 0) +O �xki � x�i � :



38If i 2 I+el (x�), then for k large enough, xki is bounded away from li, so for � smallenough, 0 � xki � li + �yi � xki � li � �(x�i � li):This implies that�i(xk; �y) � 12(xki � li � �(x�i � li))2 = (1 � �)2�(x�; 0) +O �xki � x�i� :For i 2 Iu(x�)S I0eu(x�)S I�eu(x�), a similar argument gives�i(xk; �y) � 12(xki � ui � �(x�i � ui))2 = (1� �)2�(x�; 0) +O �xki � x�i� :Summing over all i 2 Jl(xk)S Ju(xk) givesXi 62If(xk)�i(xk; �y) � (1 � �)2 Xi 62If (xk)�i(x�; 0) +O �xk � x�� :(15)Consider now an index i 2 If(xk). By Lemma 2.2.3,i 2 Inf (x�)[ I lf(x�)[ Iuf (x�)[ I+el (x�)[ I0el(x�)[ I�eu(x�)[ I0eu(x�):If i 2 Inf (x�), then by (8), rfi(x�)>y = �fi(x�), sofi(xk) + �rfi(xk)>y = fi(xk) + �rfi(x�)>y + �(rfi(xk)>y �rfi(x�)>y)= fi(xk)� �fi(x�) + �(rfi(xk)>y �rfi(x�)>y):Thus, �i(xk; �y) = 12 �fi(xk) � �fi(x�) + �(rfi(xk)�rfi(x�))>y�2= (1� �)2�i(x�; 0) +O �fi(xk)� fi(x�)�+O �rfi(xk)�rfi(x�)� :If i 2 I lf(x�), then fi(xk) is negative and bounded away from 0 for k large enough.Thus, for � � 0 small enough,0 � fi(xk) + �rfi(xk)>y � fi(xk)� �fi(x�) + �(rfi(xk)�rfi(x�))>y;which implies�i(xk; �y) � 12 �fi(xk)� �fi(x�) + �(rfi(xk)�rfi(x�))>y�2= (1� �)2�i(x�; 0) +O �fi(xk)� fi(x�)�+O �rfi(xk)�rfi(x�)� :



39Similar arguments duplicate this inequality for i 2 Iuf (x�), i 2 I+el (x�) and i 2I�eu(x�). Finally, for i 2 I0el(x�)S I0eu(x�), we have fi(x�) = 0, so�i(xk; �y) = 12 �fi(xk)� �fi(x�) + �rfi(xk)>y�2= (1� �)2�i(x�; 0) +O �fi(xk)� fi(x�)�+O �rfi(xk)�rfi(x�)�+O(�2);where O(�2) comes from squaring the term �rfi(xk)>y. Summing up the aboveinequalities, for all i 2 If(xk) we getXi2If (xk)�i(xk; �y)(16) � (1 � �)2 Xi2If (xk)�i(x�; 0) +O �f(xk)� f(x�)�+O �rf(xk)�rf(x�)�+O(�2):Adding (15) and (16) and passing to the limit k !1, we obtain inequality (14).Theorem 2.2.12 Let f : 
 � IB ! IRn be a once continuously di�erentiablefunction. Let x0 2 IB be arbitrary. The following two statements hold:1. NE/SQP generates a well de�ned sequence of iterates fxkg � IB along witha sequence of optimal solutions fdkg for the subproblems (QPk);2. if x� is the limit of an in�nite subsequence fxk : k 2 �g, and if x� is bothb-regular and s-regular, then x� is a solution of MCP(f; IB).Proof The proof is identical to the proof of Pang & Gabriel (1993, Theorem 1),except that Lemmas 2.2.5, 2.2.9, 2.2.10, and 2.2.11 are used in place of Pang &Gabriel (1993, Lemmas 2,5,6, and 7).Lemma 2.2.13 Let �x be an arbitrary solution of MCP(f; IB). Suppose that �xis b-regular. Then for every � > 0, there exists a � > 0 such that wheneverkz � �xk � �, and z 2 IB, z + ~dz � �x � � kz � �xk ;(17)where ~dz is any optimal solution of the quadratic program (QPz).



40Proof For convenience, we drop the subscript z from ~dz.Since z 2 IB, it follows that the vector d := �x� z is feasible for the quadraticprogram (QPz). By letting v := d� ~d, we obtain from the minimum principle forthis program that0 � r�x( ~d)>v= Pi2Jl(z)(zi � li + ~di)vi +Pi2Ju(z)(zi � ui + ~di)vi+Pi2If (z) �fi(z) +rfi(z)> ~d� (rfi(z)>v):(18)Furthermore, since z is close to �x, we have i 2 Jl(z)) �xi = li, i 2 Ju(z) ) �xi =ui, and i 2 If(z) ) fi(�x) = 0. Hence, by subtracting these quantities from (18)and rearranging terms, we getXi2Jl(z)SJu(z) v2i + Xi2If(z)(rfi(z)>v)2(19) � � Xi2If (z) �fi(�x)� fi(z)�rfi(z)>(�x� z)� (rfi(z)>v):Let Az := 24 Izz 0rJzfIz(z)> rIzfIz(z)> 35where Jz := Jl(z)SJu(z), Iz = If(z), and Izz denotes the identity matrix of orderjJzj. Using this matrix, the left-hand side of (19) becomes kAzvk2. Applying theCauchy-Schwarz inequality to the right-hand side of this same inequality produceskAzvk2 � f(�x)� f(z)�rf(z)>(�x� z) kAzvk :The remainder of the proof is identical to the proof of Pang & Gabriel (1993,Lemma 8).Lemma 2.2.14 In the setting of Lemma 2.2.13, there exists a constant c > 0such that for all vectors z close enough to �x, ~dz � c kH(z)k :Moreover, if L > 0 is the Lipschitzian modulus of H at �x, then, for � 2 (0; 1),�(z + ~dz) � � �cL1 � ��2 �(z):Proof The proof is identical to the proof of Pang & Gabriel (1993, Lemma 9).



41Theorem 2.2.15 Let f : 
 � IB ! IRn be a once continuously di�erentiablefunction, and x0 2 IB be arbitrary. Suppose that x� is an accumulation point ofan in�nite sequence of iterates fxkg generated by the NE/SQP method, and x� isboth b-regular and s-regular. Then x� solves MCP(f; IB). Moreover, the followingstatements hold:1. there exists an integer K > 0 such that for all k � K, the stepsize �k =�mk = 1, hence, xk+1 = xk + dk;2. the sequence fxkg converges to x� Q-superlinearly.3. if rf is Lipschitzian in a neighborhood of x�, then the sequence fxkg con-verges to x� Q-quadratically.Proof The proof is identical to the proof of Pang & Gabriel (1993, Theorem 2)except that Lemma 2.2.13 is used in place of Pang & Gabriel (1993, Lemma 8),and Proposition 2.2.6 is used in place of Pang & Gabriel (1993, Proposition 2).The above convergence results establish the fact that the NE/SQP algorithmhas very good local convergence behavior. But the global convergence results arenot very useful from a practical standpoint. The problem is that the s-regularityand b-regularity conditions are dependent not only on the problem, but also on thealgorithm. In particular, they depend on the particular choice of merit functionused.A global convergence result can be established by showing that these regularityassumptions are satis�ed whenever f is strongly monotone. This result is moreuseful for our purposes and is proved in Theorem 2.2.18; the next two lemmas areinstrumental in proving this theorem.Lemma 2.2.16 Let A 2 IRm�n; B 2 IRl�n, where l +m = n. If the matrixM := 24 AB 35is positive de�nite, then for any vectors p 2 IRm, q 2 IRl, and r 2 IRl, the systemA24 xy 35 = p; B 24 xy 35 � q; y � r(20)has a solution (x; y) 2 IRm � IRl.



42Proof We �rst establish that the systemA24 �� 35 = 0; B 24 �� 35 > 0; � > 0(21)has a solution (�; �) 2 IRm� IRl. To do this, assume that no solution exists. Thenby Motzkin's theorem of the alternative (Mangasarian 1969, Theorem 2.4.2), thereare vectors u 2 IRm, v 2 IRl+, and w 2 IRl+, with (v;w) 6= 0 such thathA>B>i 24 uv 35 = 24 0�w 35 :(22)Premultiplying both sides of this equation by (u>; v>), we see that(u>; v>)M> 24 uv 35 = �v>w � 0; (since v � 0 and w � 0).Since M is positive de�nite, this can happen only if (u; v) = 0. But then (22)implies that w = 0, which contradicts the fact that (v;w) 6= 0. Thus, by contra-diction, (21) has a solution (�; �).We return now to (20). Since M is positive de�nite, A has full row rank, sothere exists a vector (~x; ~y) such that A(~x; ~y) = p. Then, for � su�ciently large,the point (x; y) := (~x; ~y) + �(�; �) will satisfy (20).Lemma 2.2.17 If f is strongly monotone, then all points x 2 IB are both b-regularand s-regular.Proof Since f is strongly monotone, then by Ortega & Rheinboldt (1970, 5.4.3),rf(x) is positive de�nite at every point x. Thus, r�f�(x) is nonsingular for anyindex set � and any point x. It then follows that every point x is b-regular.To prove s-regularity, we show that the point y in De�nition 2.2.2 can be found.Note that for i 2 IlS IuS I0elS I0eu, yi is determined a priori by the equations in thede�nition. We can therefore eliminate these variables from the inequality system(8), which leaves a system of the following form:2664 r�f�(x)> r�f�(x)> �rf�(x)>r�f�(x)> r�f�(x)> �rf�(x)>�r�f(x)> �r�f(x)> rf(x)> 37752664 y�y��y 3775 =�� 2664 pq1q2 3775 ;



43and 24 y��y 35 � 24 r1r2 35 ;where � := Inf (x), � := I lf S I�eu, and  := Iuf S I+el , and the vectors p; q1; q2; r1; andr2 are determined by the elimination of the variables. Note that the matrix in thesystem above is positive de�nite; thus, this system is of the form given by (20).A solution is therefore guaranteed by Lemma 2.2.16.It should be noted that the strongness in the monotonicity assumption aboveis essential. For example, consider the monotone function f : IR+ ! IR givenby f(x) = 1, and let IB := IR+. For this choice of f and IB, it is easily veri�edthat for all x > 1, x is neither b-regular or s-regular. As a consequence, eventhough MCP(f; IB) has the trivial solution x = 0, NE/SQP fails to �nd it withany starting point x > 1. Thus, we see that NE/SQP cannot be relied upon tosolve monotone linear complementarity problems.We now state our main convergence result of the NE/SQP algorithm.Theorem 2.2.18 Suppose f is strongly monotone. If x� is an accumulation pointof the iterates fxkg produced by the NE/SQP algorithm, then x� is a solution ofMCP(f; IB) and the sequence fxkg converges to x� with the local convergence ratesspeci�ed in Theorem 2.2.15.Proof By Lemma 2.2.17, x� is both b-regular and s-regular. Therefore, by The-orem 2.2.12, x� is a solution of MCP(f; IB) and the iterates fxkg generated bythe NE/SQP algorithm converge to x� with convergence rates speci�ed in Theo-rem 2.2.15.2.2.2 Modi�cation of NE/SQP to Guarantee Finite Ter-minationThe NE/SQP algorithm has the drawback that it does not necessarily terminate ina �nite number of iterations unless it converges to a solution. In particular, whilethe algorithm guarantees descent of � at every iteration, the sequence f�(xk)gmay not converge to 0. This can happen either by generating an unbounded se-quence of points, or by converging slowly to an irregular point. This will clearly beunacceptable if we are to use the algorithm to solve a sequence of perturbed sub-problems. We therefore present a modi�ed NE/SQP algorithm in Figure 2 whichhas the same local convergence properties as the original NE/SQP algorithm, butwhich also guarantees �nite termination, even when it fails.



44Figure 2: Modi�ed NE/SQP AlgorithmStep 1 [Initialization] Given a starting vector x0 2 IB, a convergence toler-ance tol, and termination parameters  2 (0; 1), and � � 11, select�; � 2 (0; 1), and set k = 0.Step 2 [Direction generation] Solve (QPk), giving the direction dk.If �(xk; dk) � (1 � )�(xk), or if dk2 > ��(x0), then terminatethe algorithm, returning the point xk along with a failure message;otherwise, continue.Step 3 [Steplength determination] Let mk be the smallest nonnegative inte-ger m such that�(xk + �mdk)� �(xk) � ���mz(xk; dk):(23)Set xk+1 = xk + �mkdk and continue.Step 4 [Termination check] If �(xk+1) � tol terminate the algorithm, return-ing the solution xk+1. Otherwise, return to Step 2, with k replaced byk + 1.Note that by setting  = 0 and � = 1, the modi�ed algorithm is identicalto NE/SQP, with the addition of a particular stopping criteria in Step 4. How-ever, by choosing  2 (0; 1) and � < 1, we can ensure that the algorithm willterminate in a �nite number of iterations, which we will prove in Theorem 2.2.25.This has the drawback that the modi�ed algorithm may fail when the originalalgorithm would have succeeded. However, we shall overcome this drawback inthe QPCOMP algorithm by carefully controlling the parameter . Moreover, themodi�ed algorithm also has the same local convergence properties as the originalalgorithm. To prove this fact, we shall show that if xk is near a b-regular solutionof MCP(f; IB), then the tests in Step 2 can never cause failure.Observe, that when xk is close enough to a b-regular solution, H(xk) �kH(x0)k =c, so dk � kH(x0)k, and therefore, dk2 � ��(x0). Thus, when xk isclose to a b-regular solution, the second test in Step 2 of the Modi�ed NE/SQPalgorithm cannot cause failure. We now show that the �rst test in Step 2 cannot



45cause failure either.Lemma 2.2.19 Let �x be a solution of MCP(f; IB). If �x is b-regular, then for any� 2 (0; 1=2), there is a neighborhood N of �x such that if xk 2 N T IB, then�(xk; dk) � ��(xk);where dk is an optimal solution of (QPk).Proof By Lemma 2.2.14, for xk close enough to �x,xk � �x � xk + dk � �x+ dk � xk + dk � �x + c H(xk) :By Lemma 2.2.13, for any �� > 0, it follows thatxk � �x � �� xk � �x+ c H(xk) ;whenever xk is close enough to �x. Rearranging terms,xk � �x � c1� �� H(xk) � 2c H(xk) :(24)By the continuity of f , there is a neighborhood N of �x such that if xk 2 N T IB,then the following hold:If(�x) � If(xk)Il(�x) � Il(xk)Iu(�x) � Iu(xk)Iel(�x) � Iel(xk)S If(xk)S Il(xk)Ieu(�x) � Ieu(xk)S If(xk)S Iu(xk):Without loss of generality, we can assume that N is small enough that (24) holdswhenever xk 2 N .Now, de�ne Gk(x) : 
! IRn byGki (x) := 8>><>>: xi � li i 2 Il(xk)S Iel(xk)xi � ui i 2 Iu(xk)S Ieu(xk)fi(x) i 2 If(xk):It is easily seen that for xk 2 N T IB, Gk(�x) = 0. Note further that Gk is continu-ously di�erentiable, and that Gk(xk)2 =2 = �(xk; 0). Further, for i 62 If (xk), wesee that 12Gki (x)2 = �i(xk; x� xk):



46Conversely, if i 2 If(xk), thenGki (x) = fi(x) = fi(xk) +rfi(xk)>(x� xk) + o �x� xk� :Thus,12Gki (x)2 = 12 �fi(xk) +rfi(xk)>(x� xk)�2+fi(xk)o �x� xk�+ o�x� xk2� :Summing over all i, we get12 Gk(x)2 = �(xk; x� xk) + H(xk) o �x� xk�+ o�x� xk2� :Choosing x := �x, we see that, since Gk(�x) = 0,�(xk; �x� xk) = H(xk) o ��x� xk�+ o��x� xk2� :Thus, for any �̂ > 0, then for xk close enough to �x,�(xk; �x� xk) � �̂�H(xk) �x� xk+ �x� xk2�� �̂(2c+ 4c2) H(xk)2 by (24).Finally, since �x�xk is feasible for (QPk), we see that by choosing �̂ � �=(4(c+2c2)),�(xk; dk) � �(xk; �x� xk) � ��(xk):The above lemmas show that for xk close enough to �x, the modi�ed algorithmwill not terminate in Step 2, as long as �x is b-regular. Thus, the modi�ed algorithmhas the same local convergence properties as the original algorithm. We havetherefore proved the following theorem:Theorem 2.2.20 Under the conditions of Theorem 2.2.12, the Modi�edNE/SQP algorithm generates a well de�ned sequence of iterates fxkg � IB, alongwith a sequence of optimal solutions fdkg for the subproblems (QPk). Furthermore,if x� is an accumulation point of fxkg, and if either f is strongly monotone, or x�is both b-regular and s-regular, then x� is a solution of MCP(f; IB) and the iteratesconverge to x� at the rates speci�ed in Theorem 2.2.15.



47The remainder of this section is aimed at proving that the Modi�ed NE/SQPalgorithm terminates. This is accomplished by considering what happens if thealgorithm does not terminate. In this case, we shall show that the iterates fxkgconverge to a point x�. Using this fact, we will place bounds on certain quantities,which will then be used to establish a minimum rate of decrease for the meritfunction �. This will then force the merit function to zero, which means that thealgorithm will terminate after all, by the test in Step 4.For ease of discussion, we de�ne the function�x(d) := �(x; d):The following lemma is a technical result needed in several ensuing proofs.Lemma 2.2.21 If �x(d) � (1� )�(x) thenz(x; d) � 122�(x):Proof Recall that z(x; d) = kb(x; d)k2 =2, where b is de�ned by (6). For simplic-ity, let b := b(x; d). Note that�x(d) = kH(x) + bk2 =2 � kH(x)k2 =2 + hH(x); bi = �(x) + hH(x); bi :Thus, by assumption,(1 � )�(x) � �x(d) � �(x) + hH(x); bi :Subtracting �(x) from both sides, we obtainhH(x); bi � ��(x) = �2 kH(x)k2 :But this implies that kbk � 2 kH(x)k ;so z(x; d) = kbk2 =2 � 24 kH(x)k2 = 22 �(x);which establishes the lemma.We now prove that the iterates converge.Lemma 2.2.22 Suppose f is continuously di�erentiable. If the Modi�edNE/SQP algorithm, with  2 (0; 1) and � < 1, fails to terminate, then theiterates fxkg produced by the algorithm will converge to a point x� 2 IB with�(x�) > 0.



48Proof Let �k(d) := �(xk; d) and let zk(d) := z(xk; d). By the test in Step 2 ofthe algorithm, �k(d) � (1� )�(xk). Thus, by Lemma 2.2.21, zk(d) � 122�(xk).Let f�kg be the sequence of steplengths generated in step 3 of the algorithm,i.e., �k := �mk . Then,�(xk+1) = �(xk + �kdk)� �(xk)� ��kzk(dk) by the linesearch test (23)� �(xk)� ��k2�(xk)=2 by Lemma 2.2.21=  1� ��k22 ! �(xk):Let �̂k := ��k2=2. Then �(xk+1) � �(x0) kYj=0(1� �̂j):Since �(xk) is bounded away from 0, it follows that1Yk=0(1� �̂k) > 0:By Ahlfors (1966, Theorem 5 of Chapter 5), this implies that P1i=0 �̂k is �nite,which means that P1i=0 �k is �nite.Now, by the test in Step 2 of the algorithm, dk2 � ��(x0). Thus, dk isbounded, so 1Xk=0 �k dk <1:From this it follows that the sequence of iterates fxkg converges to some point x�.Clearly, �(x�) > 0, or the algorithm would terminate in Step 4.Using the fact that the iterates converge, we are now able to place bounds onseveral quantities, which we will use to prove Lemma 2.2.24.Lemma 2.2.23 Under the hypotheses of Lemma 2.2.22, there exist constantsM1,M2, and L, depending on the starting point x0, such that for all � 2 [0; 1], thefollowing inequalities hold:jfi(xk + �dk)j �M1; jrfi(xk + �dk)j �M2(25)and fi(xk)� �L dk � fi(xk + �dk) � fi(xk) + �L dk :(26)



49Furthermore, for any � > 0, we can choose �̂ (�) > 0 such that for k su�cientlylarge, the following holds for all � 2 [0; �̂ (�)]:jfi(xk + �dk)j � ���fi(xk) + �rfi(xk)>dk���+ �� dk :(27)Proof By Lemma 2.2.22, fxkg converges. Also, dk is bounded by the constantq��(x0). Thus, there is a compact set S � IB such that for all � 2 [0; 1],xk + �dk 2 S;8k. Since f is continuously di�erentiable, f and rf are boundedon S, from which we get (25). Furthermore, f is Lipschitz continuous on S, fromwhich (26) follows.Since f is continuously di�erentiable, then for any � > 0, there exists an � > 0such that krf(x)�rf(y)k � � 8x; y 2 N�(x�);(28)where the neighborhood N� is de�ned by N�(x�) := fx : kx� x�k < �g:Since xk converges to x�, then for k large enough, xk 2 N�=2(x�). Moreover,by Step 2 of the algorithm, dk � p��x0. Thus, if we let �̂ (�) := �=(2q��(x0)),it follows that �̂(�)dk � �=2. Thus, x+ �dk 2 N�(x�);8� 2 [0; �̂(�)].Thus, for any � > 0, we can choose �̂ (�) > 0 such that for k su�ciently large,the following holds for all � 2 [0; �̂ (�)]:jfi(xk + �dk)j = ���fi(xk) + �rfi(xk + ~�dk)>dk��� for some ~� 2 [0; � ]= ���fi(xk) + �rfi(xk)>dk + � �rfi(xk + ~�dk)> �rfi(xk)>� dk���� ���fi(xk) + �rfi(xk)>dk���+ �� dk by (28).We are now able to establish a minimumrate of decrease for the merit function.Lemma 2.2.24 Under the hypotheses of Lemma 2.2.22, there exists a constant�̂ 2 (0; 1) such that �(xk+1) � �̂�(xk); 8 k su�ciently large.Proof Suppose � 2 (0; 1), and let � 2 [0; �̂ (�)] where �̂ (�) is chosen accordingto Lemma 2.2.23. Suppose that k is large enough that (27) holds. We shallexamine the termsHi(xk+�dk)2 in order to establish an upper bound on �(xk+1) =PiHi(xk + �dk)2=2:



50To simplify notation, we drop the superscripts k. Thus, we let x := xk andd := dk, etc. We shall also �nd it convenient to de�ne the scalar function �̂i :IR+ ! IR+, as follows: �̂i(� ) := �i(x; �d):Observe that �̂00i (0) = zi(x; d), sonXi=1 �̂00i (0) = z(x; d):(29)To bound Hi(x+ �d)2, we have to look at two di�erent cases:Case 1: i 2 If(x). Note that jHi(x+ �d)j � jfi(x+ �d)j. Thus, by (27),Hi(x+�d)2 � (fi(x)+�rfi(x)>d)2+2�� ���fi(x) + �rfi(x)>d��� kdk+� 2�2 kdk2 :But, (fi(x) + �rfi(x)>d)2 = 2�̂i(� ) = 2�̂i(0) + 2� �̂0i(0) + � 2�̂00i (0), soHi(x+ �d)2 � 2�̂i(0) + 2� �̂0i(0) + � 2�̂00i (0)+2�� ���fi(x) + �rfi(x)>d��� kdk+ � 2�2 kdk2 :(30)Case 2: i 62 If(x). We look only at the case i 2 Il(x)S Iel(x); the argument fori 2 Iu(x)S Ieu(x) is similar.If Hi(x+ �d) is negative, thenHi(x+ �d) = fi(x+ �d)� fi(x)� �L kdk by (26)� xi � li + �di � � (di + L kdk) since fi(x) � xi � li� xi � li + �di � � (L+ 1) kdk :Thus,Hi(x+ �d)2 � (xi � li + �di)2 � 2� (xi � li + �di)(L+ 1) kdk+� 2(L+ 1)2 kdk2� (xi � li + �di)2 + � 2(L+ 1)2 kdk2 :IfHi(x+�d) is nonnegative, this inequality holds trivially sinceHi(x+�di) �xi� li+ �di. Finally, (xi� li+ �di)2 = 2�̂i(� ) = 2�̂i(0) + 2� �̂0i(0) + � 2�̂00i (0),so Hi(x+ �d)2 � 2�̂i(0) + 2� �̂0i(0) + � 2�̂00i (0) + � 2(L + 1)2 kdk2 :(31)



51Summing over all components, we get�(x+ �d) = 12XHi(x+ �d)2 � �x(0) + ��0x(0; d) + ��� + � 2�;(32)where � := Xi2If (x) ���fi(x) + �rfi(x)>d��� kdk ;and � := nXi=1 �̂00i (0) + Xi 62If (x)(L + 1)2 kdk2 + Xi2If (x) �2 kdk2 :We now establish bounds for � and �. By (25),Xi2If (x) ���fi(x) + �rfi(x)>d��� � kf(x)k+ �M2 kdk �M1 + �M2q��(x0) =: C1:Thus, � � C1 kdk � C1q��(x0) =: K1.For �, we deduce from (29) thatnXi=1 �̂00i (0) = z(x; d) � �(x); by item 4 of Proposition 2.2.4:Thus, � � �(x) + kdk2 (n(L+ 1)2 + n�2)� (1 + n�((L+ 1)2 + �2)) �(x0); since kdk2 � ��(x0)� K2;where K2 := (1 + n�((L+ 1)2 + 1))�(x0). This last inequality holds since � � 1.Returning to (32), we �nd that�(x+ �d) � �x(0) + ��0x(0; d) + ��K1 + � 2K2= �(x) + ��0(x; d) + ��K1 + � 2K2:By Item 2 of Proposition 2.2.4,�0(x; d) � �x(d) � �x(0) � z(x; d)� (1� )�(x)� �(x)� z(x; d); by the test in Step 2= ��(x)� z(x; d):



52Thus, �(x+ �d) � �(x) � � (��(x)� z(x; d)) + ��K1 + � 2K2:Note that the de�nitions of K1 and K2 are independent of �. We can thereforeconsider a particular choice of �: let � := min(1; �(x�)=(2K1)) and let �� :=min(�̂ (�); �(x�)=(2K2)). Note that � > 0 and �� > 0, since �(x�) > 0. Further,since �(x�) � �(x), it follows that for all � � �� , and for k su�ciently large,�(x+ �d)� �(x) � ��z(x; d)� ��(x) + ��(x�)=2 + � ��K2� ��z(x; d)� ��(x) + ��(x)=2 + ��(x)=2= ��z(x; d)� ���z(x; d); 8 � � 1:(33)Observe that the steplength �m generated by Step 3 of the algorithm is chosensuch that m is the smallest integer satisfying (23). Thus, � := �m�1 cannot satisfy(33). But this means that�m�1 � �� ; which implies �m � ��� :From this, it follows by the linesearch test (23) that�(x+ �md) � �(x)� ����z(x; d)� (1� ����22 )�(x); by Lemma 2.2.21:By setting �̂ := 1� ����2=2, we complete the proof.Theorem 2.2.25 If  2 (0; 1) and � <1, then the modi�ed NE/SQP algorithmwill terminate in a �nite number of iterations provided that f is continuouslydi�erentiable on IB.Proof Let tol > 0 be the stopping tolerance used in the algorithm. If the algo-rithm does not terminate, then by Lemma 2.2.24, there exists �̂ 2 (0; 1) such thatfor k su�ciently large, �(xk+1) � �̂�(xk):Thus, after su�ciently many iterations, �(xk) < tol, and the algorithm will ter-minate in Step 4.



532.3 The QPCOMP AlgorithmThe basic idea behind QPCOMP is simple. The algorithm �rst tries to solvethe problem using the modi�ed NE/SQP algorithm. If this fails, QPCOMP thensolves a sequence of perturbed problems in order to �nd a point with an improvedvalue of the merit function. Once this point is found, QPCOMP returns to run-ning the modi�ed NE/SQP algorithm on the original problem, starting from thisimproved point.One complication of the algorithm is that the subproblems must be solvedinexactly in order to guarantee that they are each completed in a �nite amountof time. To handle this we have introduced a sequence of tolerances f�jg whichcontrol the accuracy demanded by each subproblem.Another complication is that the best choices of the parameters � and  can-not be known in advance. Thus, the algorithm must choose these parametersadaptively. The algorithm is given is Figure 3.Observe, that the QPCOMP algorithm has the same local convergence prop-erties as NE/SQP. In particular, by Theorem 2.2.20, for any b-regular solution x�,there is a neighborhood such that the modi�ed NE/SQP algorithm is identical toNE/SQP within this neighborhood. Thus, in Step 2 of the QPCOMP algorithm,if xk is su�ciently close to x�, then the modi�ed NE/SQP algorithm will convergeto x� at the rates speci�ed by Theorem 2.2.15.We now establish global convergence properties for the algorithm:Theorem 2.3.1 If f is Lipschitz continuous and continuously di�erentiable onIB, and if MCP(f; IB) satis�es Assumption 2.1.2, then for any � > 0 the QP-COMP algorithm generates an iterate xk satisfying �(xk) < � in a �nite numberof iterations.The remainder of this section is devoted to proving this theorem. As anintroduction to the proof, note that if Step 4 is always successful at generatingan improved starting point, then even if the Modi�ed NE/SQP always fails inStep 2, the merit function values f�(xk)g will converge to 0 at least linearly, since�(xk+1) � ��(xk) for all k. Thus, our convergence analysis is reduced to provingthat Step 4 always generates an improved starting point.In the analysis that follows, it will be convenient to de�ne perturbed index



54
Figure 3: Algorithm QPCOMPStep 1 [Initialization] Given a starting vector x0 2 IB and a convergencetolerance � > 0, choose � > 0, � 2 (0; 1),  2 (0; 1), � 2 (0; 1), and setk = 0.Step 2 [AttemptNE/SQP] Run theModi�ed NE/SQP algorithmwith start-ing point xk, with tol = �. This generates a point ~x.Step 3 [Termination check] If ~x solves MCP(f; IB), stop; otherwise continuewith step 4.Step 4 [Generate better starting point] Set �best := �(~x), set y0 = ~x, setj = 0, and choose � > 0, and choose a positive sequence f�jg # 0.Step 4a Run the Modi�ed NE/SQP algorithm to solve the per-turbed problem MCP(f�;yj ; IB) from starting point yj, withtol = �j=(1 + kyjk). This generates a point ~y.Step 4b If ~y fails to solve the perturbed problem to the requestedaccuracy, set � � � + � and  � �, and goto step 4a;otherwise, continue.Step 4c [Check point] If �(~y) � ��best, set xk+1 = ~y and returnto step 2, with k replaced by k+1. Otherwise, set yj+1 := ~yand return to step 4a, with j replaced by j + 1.



55sets by I�;�xl (x) := fi : xi � li < f�;�xi (x)gI�;�xel (x) := fi : xi � li = f�;�xi (x)gI�;�xf (x) := fi : xi � ui < f�;�xi (x) < xi � ligI�;�xeu (x) := fi : xi � ui = f�;�xi (x)gI�;�xu (x) := fi : xi � ui > f�;�xi (x)g:We shall also use the following obvious perturbations of the functions H, �, �,and z:H�;�x(x) := min(xi � li;max(xi � ui; f�;�xi (x)));��;�x(x) := 12 H�;�x(x)2 ;��;�xx (d) := ��;�x(x; d) := P��;�xi (x; d); where for i = 1; : : : ; n;��;�xi (x; d) := 8>><>>: 12(xi � li + di)2 i 2 I�;�xl (x)S I�;�xel (x)12(xi � ui + di)2 i 2 I�;�xu (x)S I�;�xeu (x)12(f�;�xi (x) +rf�;�xi (x)>d)2 i 2 I�;�xf (x):z�;�xx (d) := z�;�x(x; d) := P z�;�x(x; d); where for i = 1; : : : ; n;z�;�xi (x; d) := 8<: 12d2i i 62 I�;�xf (x)12(rf�;�xi (x)>d)2 i 2 I�;�xf (x):To show that Step 4 is always successful at generating an improved startingpoint, we begin by assuming that the Modi�ed NE/SQP algorithm in Step 4aof QPCOMP fails at most a �nite number of times. Later will shall remove thisassumption. It follows that after a �nite number of iterations, ~y always solvesthe perturbed problem to the desired accuracy, so the algorithm always continuespast Step 4b to Step 4c. Thus, either an improved point will eventually be found,or the algorithm will generate a sequence of iterates fyjg such thatH�;yj (yj+1) � �j1 + kyjk :We then use the fact that f�jg converges to 0 to show that �(yj)! 0. This resultis proved in the following lemma:Lemma 2.3.2 Let f be a Lipschitz continuous function and let f�kg be a sequenceof positive numbers that converges to 0. Let � > 0 and let fxkg be a sequence ofpoints in IB such that H�;xk(xk+1) � �k1 + kxkk ; 8k:(34)



56Suppose MCP(f; IB) satis�es Assumption 2.1.2, then for any � > 0, there existsan iterate xj 2 fxkg such that �(xj) � �.Proof Let x� be the solution to MCP(f; IB) guaranteed by Assumption 2.1.2which satis�es (1), and let yk := H�;xk(xk+1). In the same spirit as the proof ofTheorem 2.1.3, we establish a lower bound on the term (xk+1i � x�i )(xki � xk+1i ).Case 1: yki = xk+1i � li and x�i < xk+1i . Observe that(xk+1i � x�i )(xki � xk+1i ) = (xk+1i � x�i )fi(xk+1)� yi� + wki ;(35)where wki := (xk+1i � x�i ) xki � xk+1i � fi(xk+1) � yi� ! :Now, 0 < (xk+1i � x�i ) � xk+1i � li = yki . Also, xki � xk+1i � li � xk+1i = �yki .Thus,wki = (xk+1i � x�i ) �xki � xk+1i + yi=�� � (xk+1i � x�i )(fi(xk+1)=�)� yki ��yki + yki =�� � jyki j ���fi(xk+1)��� =�� �(yki )2 � jyki j ���fi(xk+1)��� =�:Returning to (35), we get(xk+1i � x�i )(xki � xk+1i ) �(36) (xk+1i � x�i ) �fi(xk+1)� yi� =� � (yki )2 � jyki j� ���fi(xk+1)��� :(37)Case 2: yki = xk+1i � li; and x�i � xk+1i . In this case, f�;xki (xk+1) � xk+1i � li =yki . Thus,fi(xk+1) + �(xk+1i � xki ) � yki , so xki � xk+1i � (fi(xk+1) � yki )=�. Sincexk+1i � x�i � 0, we get(xk+1i � x�i )(xki � xk+1i ) � (xk+1i � x�i ) �fi(xk+1)� yi� =�:(38)Case 3: yki = f�;xki (xk+1). In this case, yki = fi(xk+1) + �(xk+1i � xki ), so xki �xk+1i = (fi(xk+1)� yki )=�. Thus,(xk+1i � x�i )(xki � xk+1i ) = (xk+1i � x�i ) �fi(xk+1)� yki � =�:



57Case 4: yki = xk+1i � ui; xk+1i � x�i . By similar arguments to Case 2, inequality(38) is satis�ed.Case 5: yki = xk+1i � ui; xk+1i < x�i . By similar arguments to Case 1, inequality(36) is satis�ed.In every case above, inequality (36) holds: Thus,(xki � x�i )2 = (xk+1i � x�i + xki � xk+1i )2= (xk+1i � x�i )2 + 2(xk+1i � x�i )(xki � xk+1i ) + (xki � xk+1i )2� (xk+1i � x�i )2 + 2(xk+1i � x�i ) �fi(xk+1)� yki � =� � 2(yki )2� 2�jyki j ���fi(xk+1)���+ (xki � xk+1i )2; by (36).Summing over all components, we getxk � x�2 � xk+1 � x�2 + 2 Df(xk+1); xk+1 � x�E =� � 2 Dyk; xk+1 � x�E =��2 yk2 � 2n yk f(xk+1) =� + xk � xk+12 :Now, let L be the Lipschitz constant for f . Thenf(xk+1) � f(xk+1)� f(x�)+ kf(x�)k � L xk+1 � x�+ kf(x�)k :Further, by Assumption 2.1.2, Df(xk+1); xk+1 � x�E � 0. Thus,xk � x�2 � xk+1 � x�2 � 2 yk xk+1 � x� =� � 2 yk2�2n yk �L xk+1 � x�+ kf(x�)k� =� + xk � xk+12� xk+1 � x�2 � 2�k� xk+1 � x� = �1 + xk�� 2�2k= �1 + xk�2�2n�k� �L xk+1 � x�+ kf(x�)k� = �1 + xk�+ xk � xk+12 by (34)= xk+1 � x�2 + xk � xk+12 � 2�k�k;(39)where �k := xk+1 � x��(1 + kxkk) + �k(1 + kxkk)2 + n �L xk+1 � x� + kf(x�)k��(1 + kxkk) :Note that �k � xk+1 � x� (nL+ 1)=� + �0 + n kf(x�)k =�:(40)



58Let C := (nL + 1)=� + �0 + n kf(x�)k =�. Then �k � C implies thatxk+1 � x� � 1. Now, let f�k : k 2 �g be the subsequence of f�kg for which�k � C;8k 2 �. It follows then that xk+1 � x� � 1;8k 2 �. If we divide eachside of (40) by xk+1 � x�2, it is easily seen that f�k= xk+1 � x�2 : k 2 �g isbounded.However, dividing (39) by xk+1 � x�2 givesxk � x�2kxk+1 � x�k2 � 1 + xk � xk+12kxk+1 � x�k2 � 2�k�kkxk+1 � x�k2 :Since �k # 0, the last term above converges to 0 on �. Thus, for k 2 � largeenough, xk � x�kxk+1 � x�k > 12 ;and �k � 2 xk � x��(1 + kxkk) + �k(1 + kxkk)2 + n �2L xk � x�+ kf(x�)k��(1 + kxkk) :Observe that xk � x�(1 + kxkk) � kx�k+ xk(1 + kxkk) � max(1; kx�k):Thus, the subsequence f�k : k 2 �g is bounded, from which it follows thatf�kg is bounded.Now, assume the lemma is false. Then there exists an � > 0 such that for allk, �(xk) > �2=2, which implies H(xk) > �. Furthermore, for k large enough,�k < �2: Without loss of generality, we can assume that this inequality holds forall k.Since f is Lipschitz continuous, H�;xk is also Lipschitz continuous with someLipschitz constant K. But then,�� �2 < H(xk)� �k� H�;xk(xk)� H�;xk(xk+1) �1 + xk�� H�;xk(xk)�H�;xk(xk+1)� K xk+1 � xkThus, for � small enough,�=(2K) < (�� �2)=K < xk+1 � xk :



59Finally, since the sequence f�k�kg converges to 0, then for all k su�cientlylarge, �k�k < �=(8K). Thus, from (39)xk � x�2 � xk+1 � x�2 + xk+1 � xk2 � 2�k�k� xk+1 � x�2 + �=(2K) � �=(4K)= xk+1 � x�2 + �=(4K):But, then xk � x�2 � 1Xk+1 �=(4K) =1 > xk � x�2 :But this contradicts the assumption that � > 0. The lemma is thus proved bycontradiction.Note that Lemma 2.3.2 did not make any assumption on the choice of � otherthan that it is greater than 0. Thus, even if � is smaller than the Lipschitzconstant, we can guarantee convergence.The next stage in our analysis is to prove that the Modi�ed NE/SQP algo-rithm can fail at most a �nite number of times in Step 4a of QPCOMP. Thisis accomplished by observing that after each failure, the value of � is increased,while the value of  is decreased. Thus, the result will be proved if we can showthat for � large enough, and  small enough, the Modi�ed NE/SQP algorithmwill always solve the perturbed problem MCP(f�;yj ; IB). This is accomplished inthe following two lemmas.Lemma 2.3.3 Suppose f is Lipschitz continuous with Lipschitz constant L, andlet x and �x be arbitrary points in IB. If � > 2L + 2, and if �d satis�es ��;�xx ( �d) ���;�xx (0), then  �d2 < 11 ��;�x(x):Proof For simplicity of notation, we shall drop the superscripts �; �x; that is, let� := ��;�x, etc. Also, let If := If(x) := I�;�xf (x). Observe that �x(d) is a quadraticfunction with Hessian B given byB := (M +D + I)>(M +D + I)where M is the n� n matrix whose ith row is given byMi;� := 8<: rf>i (x) if i 2 If0 if i 62 If ;(41)



60and D is the diagonal matrix with entriesDii := 8<: �� 1 if i 2 If0 if i 62 If :We then see thatd>Bd = kMdk2 + 2d>DMd + kDdk2 + 2d>Md + 2d>Dd + kdk2= kMdk2 + 2(� � 1)d>If (Md)If + (�� 1)2 dIf 2 + 2d>If (Md)If+2(� � 1) dIf 2 + kdk2� kMdk2 � 2(� � 1) dIf  (Md)If + (� � 1)2 dIf 2�2 dIf  (Md)If + 2(� � 1) dIf 2 + kdk2= kdk2 (a2 � 2(� � 1)ab+ (�� 1)2b2 � 2ab+ 2(� � 1)b2 + 1) ;where a := kMdkkdk = (Md)If kdk and b := dIf kdk :Note that a � L and b � 1. Simplifying the inequality above, we obtaind>Bd � kdk2 (a2 � 2�ab+ �2b2 � b2 + 1)= kdk2 ((a� �b)2 + (1 � b2)) :If b � 1=2, then �b � 2(L + 1)b � L + 1. Since a � L, we get (a � �b)2 � 1.Conversely, if b � 1=2, then 1 � b2 � 3=4. Thus, in either case,d>Bd � 34 kdk2 ;(42)for any d.Now, let d̂ be an unconstrained minimizer of �x(d). Clearly, r�x(d̂) = 0.Furthermore, since �x is a nonnegative function, it follows that for any d,�x(d) = �x(d̂) +r�x(d̂)>(d � d̂) + 12(d� d̂)>B(d� d̂)� 12(d� d̂)>B(d� d̂)� 38 d � d̂2 by (42).Since �x(0) = �(x), it follows that d̂2 � 8�(x)=3. By hypothesis and the above, �d� d̂2 � 8�(x)=3. Thus,  �d =  �d� d̂+ d̂�  �d� d̂+ d̂� 2q8�(x)=3:



61Thus,  �d2 � 32 �(x)=3 < 11 �(x).Lemma 2.3.4 Suppose f is Lipschitz continuous. There exist constants � > 0,and �� � 0, such that for any � � ��, the modi�ed NE/SQP algorithm applied toMCP(f�;�x) will not terminate in Step 2 for any  � � and �x 2 IB.Proof Suppose the lemma is false. Then there must exist a sequence f�j; jg,with � ! 1 and  # 0 such that for each j there exists a perturbed problemMCP(f�j;�xj ; IB) where the modi�ed NE/SQP algorithm with  := j fails in Step2 when run on MCP(f�j;�xj ; IB)g.De�ne f j(x), Hj(x), �j(x), and �j(x; d), to be the f , H, �, and � functionscorresponding to the jth perturbed problem. For example f j(x) := f�j ;�xj(x), etc.Then for the jth problem to fail in Step 2, there must exist a point xj and adirection dj such that dj is an optimal solution to the quadratic program (QPj)de�ned by min �j(xj; d)subject to xj + d 2 IB;and also dj fails one of the two tests in Step 2 of the algorithm. Without loss ofgenerality, we can assume �j � 2L + 2;8j. By Lemma 2.3.3, kdjk2 < 11 �j(xj) ���j(xj). Thus, the failure must occur because of the �rst test in Step 2. In otherwords, �j(xj; dj) � (1� j)�j(xj); 8j:(43)Since �j(xj; dj) � �j(xj; 0) = �j(xj), and also, j # 0, we see thatlim �j(xj; dj)�j(xj) = 1:(44)Let Ij := I�j ;�xjf (xj), Jj be the set of indices not in Ij,Aj := HjIj (xj)kHj(xj)k and Bj := HjJj (xj)kHj(xj)k :We �rst show that limj!1Aj = 0. To do this, we examine a particular choiceof j. Let Hj := Hj(xj). We can then rewrite �j(xj; d), as follows:�j(xj; d) := 12 (M j +Dj)d+Hj2where M ji;� := 8<: rf ji (xj)> if i 2 Ij0 if i 2 Jj: Djii := 8<: � if i 2 Ij1 if i 2 Jj:



62Observe that xji � ui � Hji � xji � li. Note that for ~d de�ned by~di := 8<: �Hji =� if i 2 Ij0 if i 2 Jjit follows that xj + ~d 2 IB, since � � 1. Furthermore(M j +Dj) ~d+Hj = 24 (M j ~d)IjHjJj 35 :Now, since dj is an optimal solution to (QPj),�j(xj; dj) � �j(xj; ~d) = 12 (M j +Dj) ~d +Hj2= 12 �(M j ~d)Ij2 + HjJj2�� 12 �L2  ~d2 + HjJj2�� 12 kHjk2 �L2Aj2=�j2 +Bj2� :Thus, by (44), 1 = lim �j(xj; dj)�j(xj) � lim inf  L2A2j�2j +B2j! :But, since fAjg is bounded, and �j !1, we see that 1 � lim infB2j . Furthermore,Bj � 1, so limBj = 1, which implies that Aj ! 0.Let us now examine the direction �nding subproblem (QPj) for large j. Forsome � 2 [0; 1], de�ne ~d by ~di := 8<: 0 if i 2 Ij��Hji if i 2 Jj:Here we see that (M j +Dj) ~d+Hj = 24 HjIj + (M j ~d)Ij(1 � �)HjJj 35 :Thus,�j(xj; dj) � 12 (M j +Dj) ~d +Hj2= 12 �HjIj + (M j ~d)Ij2 + (1� �)2 HjJj2�



63� 12 �HjIj2 + 2 HjIj M j ~d+ M j ~d2 + (1 � �)2 HjJj2�� 12 �(Aj Hj)2 + 2Aj HjL  ~d+ L2  ~d2 + �(1 � �)Bj Hj�2�� 12 Hj2 �A2j + 2Aj�L + �2L2 + (1 � �)2B2j �� �(xj) �A2j + 2Aj�L + (1� 2� + (L2 + 1)�2)� ; since Bj � 1:Choosing � = 1=(1 + L2), we get�j(xj; dj) � �(xj) �Aj(2L=(1 + L2) +Aj) + 1� 1=(1 + L2)� :But since limAj = 0, we see thatlim sup �j(xj; dj)�(xj) � 1� 11 + L2 < 1;contradicting (44). Thus, the lemma is proved by contradiction.We can now combine the results of the previous three lemmas to prove thatStep 4 always generates an improved starting point.Lemma 2.3.5 Suppose that f is Lipschitz continuous and continuously di�er-entiable on IB and that MCP(f; IB) satis�es Assumption 2.1.2. If the QPCOMPalgorithm fails to terminate, it will execute Step 2 an in�nite number of times.Proof Assume the lemma is false. It then follows that after a �nite number ofstatements are executed, the algorithm never returns to Step 2. But this meansthat, thereafter, the test in Step 4c of the algorithm is never satis�ed.By Theorem 2.2.25, the modi�ed NE/SQP algorithm will always terminatein a �nite number of steps. Thus, Step 4b of the QPCOMP algorithm will beexecuted an in�nite number of times. But the test in Step 4b can fail only a �nitenumber of times. After that, � will be large enough and  will be small enoughthat by Lemma 2.3.4 the Modi�ed NE/SQP algorithm will always �nd a solutionto the perturbed problems. Thus we see that Step 4c is visited an in�nite numberof times, and moreover, after a �nite number of iterations, the value of � is �xed.But then Lemma 2.3.2 guarantees that the test in Step 4c will be satis�ed after a�nite number of iterations. But this contradicts our original assumption, so thelemma is true.We are now ready to prove Theorem 2.3.1



64Proof (of Theorem 2.3.1)By Lemma 2.3.5 either the algorithm will terminate with a solution in Step 3, orStep 2 will be executed an in�nite number of times. But if Step 2 is executed anin�nite number of times, then we have�(xk+1) < ��(xk), thus, �(xk) < �k�(x0), so �(xk) converges to zero.2.4 Implementation and TestingWe implemented the QPCOMP algorithm in ANSI C, using double precisionarithmetic. The Fortran package MINOS (Murtagh & Saunders 1983) was usedto solve the quadratic subproblems. An interface with the GAMS modeling lan-guage (Brooke, Kendrick & Meeraus 1988, Dirkse, Ferris, Preckel & Rutherford1994) was incorporated so that the solver can be called from GAMS. This allowsproblems to be easily speci�ed, and also allowed the algorithm to be tested us-ing MCPLIB (Dirkse & Ferris 1995a) and GAMSLIB (Brooke et al. 1988). Thealgorithm allows for a great deal of exibility in the choice of parameters, whichcan be speci�ed in an options �le. For testing purposes, we used the followingchoices of parameters in the QPCOMP and Modi�ed NE/SQP algorithms: � = :9,� = 1:0e4, � = :5, � = :5. The sequence f�jg used in Step 4 of the QPCOMP al-gorithm was given by �j+1 = 0:999��j , with �0 set to 1000. This e�ectively causedthe Modi�ed NE/SQP algorithm to perform only one iteration before returningcontrol back to QPCOMP. The parameter � was updated as follows:1. In Step 4, � is set to �best.2. In Step 4b, if ~y fails to solve the perturbed problem, � is set to max(:1; 10�);otherwise, it is multiplied by :9.Finally, the parameter  is initially chosen to be :01. Thereafter, in Step 4b, itis set to min(1=�; ). For practical considerations, we also placed a limit on thenumber of allowable iterations of the linesearch in Step 3 of modi�ed NE/SQPalgorithm. This limit is set to 10 when the Modi�ed NE/SQP algorithm is calledfrom Step 2 of QPCOMP, and is increased by 4 whenever the Modi�ed NE/SQPalgorithm fails, up to a maximum of 30.QPCOMP was tested using problems from MCPLIB and GAMSLIB, as wellas the example problem given in Section 2.1. Speci�cally, we tested QPCOMP onevery problem with fewer than 110 variables in MCPLIB and GAMSLIB. Largerproblems were excluded because our implementation of QPCOMP uses a dense



65solver for the QP subproblems. Table 2 summarizes the features of the problemsin MCPLIB and GAMSLIB. Even though only the small problems are used here,we include descriptions of all the problems since they will be used in Chapter 3We also tested NE/SQP, on the problems in Table 2. To run NE/SQP, wesimply used the QPCOMP algorithm with � = 1 and  = 0. A comparison ofthe performance of the algorithms is given in Table 3. Many of the problems in thelibrary are speci�ed with more than one starting point. The particular startingpoint used is shown in the second column of the table. For each problem wereport the execution time (in seconds) and the number of function and Jacobianevaluations, f and J. To save space, we have omitted from this table any problemsthat both algorithms solved in less than a second. All of the problems weresolved to an accuracy of 10�6. Speci�cally, for QPCOMP the stopping criteriawas kH(x)k � 10�6.The results of the testing demonstrate the high degree of robustness of theQPCOMP algorithm. We note that although it did not solve the Von Th�unenproblems, QPCOMP was able to solve these problems to an accuracy of 10�4. Ex-perimentation with the Von Th�unen problems suggests that the Jacobian matrixis singular at the solution. Thus, near the solution, the Jacobian matrix is poorlyconditioned. This ill-conditioning is exacerbated in QPCOMP by the fact thatthe QP subproblems are formulated using the square of the Jacobian matrix, re-sulting in extremely ill-conditioned QP subproblems. The inability of QPCOMPto achieve higher-accuracy on these problems appears to be a symptom of thisdi�culty.



66Table 2: ModelsGAMS �le Model origin Type Size Nonzerosbert oc.gms Optimal control MCP 5000 21991bertsekas.gms Tra�c assignment NCP 15 74bratu.gms MCPLIB NLP 5625 33750billups.gms Section 2 NCP 1 1cafemge.gms GAMSLIB (139) MCP 101 900cammcp.gms " MCP 242 1622cammge.gms " MPSGE 128 1228choi.gms Nash equil. NCP 13 169cirimge.gms GAMSLIB MCP 9 34co2mge.gms " MCP 208 1464colvncp.gms Colville #2 NLP 15 99colvdual.gms Colville #2 (Dual) NLP 20 168dmcmge.gms GAMSLIB MCP 170 1595ehl k60.gms Lubrication MCP 61 3721ehl k80.gms " MCP 81 6561ehl kost.gms " MCP 101 10201ers82mcp.gms GAMSLIB MCP 232 1553etamge.gms " MCP 114 849�nmge.gms " MCP 153 1916freebert.gms Tra�c assignment MCP 15 74gafni.gms " MCP 5 25gemmcp.gms GAMSLIB MCP 262 2794gemmge.gms " MCP 178 3442hanskoop.gms Capital stock NCP 14 129hansmcp.gms GAMSLIB (135) MCP 43 398hansmge.gms "(147) MCP 43 503harkmcp.gms "(128) MCP 32 131harmge.gms "(148) MCP 11 60hydroc06.gms Distillation NE 29 222hydroc20.gms " NE 99 838josephy.gms MCPLIB NCP 4 16kehomge.gms GAMSLIB (149) MCP 9 75kojshin.gms MCPLIB NCP 4 16kormcp.gms GAMSLIB (130) MCP 78 423



67Table 2: Models (cont.)GAMS �le Model origin Type Size Nonzerosmathi*.gms Walrasian NCP 4 14methan08.gms Distillation NE 31 225mr5mcp.gms GAMSLIB MCP 350 1688nash.gms Nash equil. NCP 10 100nsmge.gms GAMSLIB MCP 212 1409obstacle.gms MCPLIB NLP 2500 15000oligomcp.gms GAMSLIB (133) MCP 6 16opt cont.gms MCPLIB MCP 288 4928pgvon105.gms Von Th�unen NCP 105 796pgvon106.gms " NCP 106 898pies.gms PIES model MCP 42 183powell.gms Powell NLP 16 203powell mcp.gms " NCP 8 54sammge.gms GAMSLIB (151) MCP 23 117scarfanum.gms Walrasian NCP 13 98scarfasum.gms " NCP 14 109scarfbnum.gms " NCP 39 361scarfbsum.gms " NCP 40 614scarfmge.gms " NCP 18 181shovmge.gms GAMSLIB (153) MCP 51 375sppe.gms Spatial price MCP 27 110tobin.gms " MCP 42 243transmcp.gms GAMSLIB (126) MCP 11 34two3mcp.gms "(131) MCP 6 29unstmge.gms "(155) MCP 5 25vonthmcp.gms GAMSLIB MCP 125 761vonthmge.gms Von Th�unen MCP 80 594wallmcp.gms GAMSLIB (127) MCP 6 25



68Table 3: Performance ResultsProblem st. NE/SQP QPCOMPName pt. sec. f(J) sec. f(J)bertsekas 1 fail fail 2.83 151(44)bertsekas 2 fail fail 2.41 126(40)billups 1 fail fail 0.11 23(22)cafemge 1 18.16 16(10) 20.11 16(10)cafemge 2 16.57 15(8) 14.19 15(8)choi 1 2.00 5(4) 2.28 5(4)colvdual 1 fail fail 5.76 252(78)colvdual 2 fail fail 5.39 184(59)colvnlp 1 fail fail 2.13 178(54)colvnlp 2 fail fail 1.62 137(30)ehl k60 1 16.11 11(8) 16.91 11(8)ehl k60 2 fail fail 147.22 186(84)ehl k60 3 fail fail 492.33 1030(98)ehl k80 1 fail fail 313.15 98(95)ehl k80 2 fail fail 129.02 72(33)ehl k80 3 435.77 442 729.89 556(135)ehl kost 1 fail fail 611.41 108(105)ehl kost 2 248.79 97(30) 250.28 97(30)ehl kost 3 fail fail 866.08 409(79)freebert 1 fail fail 2.72 151(44)freebert 3 fail fail 2.86 173(45)freebert 4 fail fail 2.47 151(44)freebert 5 fail fail 1.38 116(23)freebert 6 fail fail 3.02 173(45)hanskoop 5 fail fail 0.70 27(11)hanskoop 7 fail fail 0.86 45(13)hansmcp 1 fail fail fail failhansmge 1 3.14 11(8) 2.86 11(8)harkmcp 1 1.27 34(11) 1.06 23(10)harkmcp 4 6.96 29(13) 9.31 27(14)harmge 1 fail fail 1.86 132(57)harmge 2 fail fail 0.14 5(4)harmge 3 fail fail 0.13 5(4)harmge 4 fail fail 0.15 5(4)



69Table 3: Performance Results (cont.)Problem st. NE/SQP QPCOMPName pt. sec. f(J) sec. f(J)harmge 5 fail fail 0.16 8(5)harmge 6 fail fail 3.24 379(78)hydroc20 1 16.11 10(8) 13.31 10(8)josephy 1 fail fail 0.08 13(7)josephy 2 fail fail 0.07 15(7)josephy 4 fail fail 0.04 5(4)kojshin 1 fail fail 0.07 16(7)kojshin 3 fail fail 0.12 35(10)kormcp 1 2.82 4(3) 2.82 4(3)pgvon105 1 fail fail fail failpgvon105 2 41.51 199(39) 50.91 213(30)pgvon105 3 33.47 153(32) 58.80 322(40)pgvon105 4 fail fail fail failpgvon106 1 fail fail fail failpgvon106 2 fail fail fail failpgvon106 3 fail fail fail failpgvon106 4 fail fail fail failpgvon106 5 fail fail fail failpgvon106 6 fail fail fail failpies 1 fail fail 7.26 54(49)sammge 1 fail fail fail failsammge 10 fail fail fail failsammge 17 0.62 24(7) 1.05 43(7)scarfasum 2 fail fail 1.51 73(26)scarfbnum 1 6.27 70(20) 6.42 76(21)scarfbnum 2 6.01 97(22) 6.09 58(19)scarfbsum 1 fail fail 8.77 26(22)scarfbsum 2 fail fail 31.11 157(83)shovmge 4 1.19 10(4) 1.96 20(4)tobin 1 1.33 15(10) 1.49 15(10)tobin 2 1.83 18(11) 1.78 18(11)transmcp 1 fail fail 1.22 69(67)transmcp 2 fail fail fail failvonthmge 1 fail fail fail fail



70
Chapter 3Computational Experience withthe Proximal PerturbationStrategyIn the preceding chapter, we presented a proximal perturbation strategy and usedit to improve the robustness of the NE/SQP algorithm. Unfortunately, the result-ing QPCOMP algorithm is relatively slow compared to SMOOTH and PATH. Thisspeed di�erential is largely explained by the fact that the Gauss-Newton-basedmethod of �nding search directions, which is used by NE/SQP and QPCOMP, ismore expensive than the Newton-based method used by SMOOTH and PATH.The additional cost of the Gauss-Newton-based method was well-justi�ed in theNE/SQP algorithm since it resulted in a signi�cant theoretical improvement inrobustness. However, in the context of the proximal perturbation strategy, theadvantages of the Gauss-Newton method are not clear. Note that by using theproximal perturbation strategy, it is no longer fatal if a Newton-based direction�nding subproblem is unsolvable; we simply perturb the problem and try again.It is therefore reasonable to expect that using the proximal perturbation strategyon a Newton-based method will be as robust as using it on a Gauss-Newton-basedmethod.In this chapter we present two new Newton-based algorithms that use theproximal perturbation strategy. The �rst algorithm, called PROXI, is very similarto QPCOMP in that it searches for a zero of the generalized minimummap givenby Hi(x) := min(xi � li;max(xi � ui; fi(x)));(1)however, instead of computing the Gauss-Newton direction at each iteration, itcomputes a Newton direction by solving a single linear system.



71The second algorithm, called SEMICOMP, is based upon the semismoothequations approach of De Luca et al. (1995). Here the � function de�ned by(8) in the introduction is generalized to the MCP framework, and solved usinga variant of Newton's method, which is based upon the theory of semismoothequations. The resulting algorithm is shown to be Q-quadratically convergentunder standard assumptions. We then enhance the robustness of this algorithmby applying the proximal perturbation strategy.The emphasis in this chapter is on computational experimentation; we provideextensive computational results comparing the performance of PROXI and SEMI-COMP with QPCOMP, PATH, and SMOOTH. Further theoretical developmentof the new algorithms remains as a subject for future research.3.1 PROXIThe algorithm PROXI is very closely related to QPCOMP. The major di�erenceis that instead of solving a quadratic program to determine the search direction,PROXI solves a linear system to compute the Newton point and then performsa projected linesearch to determine the next iterate. In what follows, we �rstdescribe the basic (i.e., unperturbed) algorithm, which we call NE/NEWT. Wethen apply the proximal perturbation strategy to the NE/NEWT algorithm toproduce PROXI.3.1.1 NE/NEWT AlgorithmTo describe the basic algorithm, we shall use several functions that were de�nedin Chapter 2. The �rst is the generalization of the minimum map given by (1).As we showed in Chapter 2, �nding a zero of H is equivalent to �nding a solutionto MCP(f; IB). Thus, using the H function, the MCP is reformulated as a zero�nding problem. The natural merit function for this reformulation is given by�(x) := 12 kH(x)k2 :(2) We shall also need to use the index setsIl(x) := fi : xi � li < fi(x)gIel(x) := fi : xi � li = fi(x)gIf(x) := fi : xi � ui < fi(x) < xi � ligIeu(x) := fi : xi � ui = fi(x)gIu(x) := fi : xi � ui > fi(x)gJl(x) := Il(x)S Iel(x)Ju(x) := Iu(x)S Ieu(x):



72Using these index sets, a linearization of theH function is given by the functionh : IB� IRn ! IRn de�ned byhi(x; d) := 8>><>>: (xi � li + di) i 2 Il(x)S Iel(x)(xi � ui + di) i 2 Iu(x)S Ieu(x)(fi(x) +rfi(x)>d) i 2 If (x) i = 1; : : : ; n:(3) Recall that in NE/SQP and QPCOMP, the search direction was calculated bycomputing the constrained minimum of the function �x : IRn ! IR de�ned by�x(d) := kh(x; d)k2 =2:In NE/NEWT and PROXI, we shall instead compute the direction dk simply bysolving the linear system hk(d) := h(xk; d) = 0. One potential di�culty of thisapproach is that the Newton point xk + dk may not be in IB. Thus, f(xk + dk)may not be de�ned. To circumvent this di�culty, a projected linesearch is used,based on the projected gradient method of Calamai & Mor�e (1987).The projected gradient method �nds a stationary point of a continuously dif-ferentiable function g : IRn ! IR on a box IB � IRn. At each iteration, the methodcalculates a direction dk := �rg(xk). Then a projected linesearch is used todetermine a new point xk+1 that produces \su�cient" descent of g. The ideabehind the projected linesearch is to evaluate g at a sequence of projected pointsfx(�i) := �IB(xk +�idk)g, where �i := �i for some � 2 (0; 1). The linesearch pro-cedure terminates when the following condition is satis�ed for a given � 2 (0; 1):g(x(�i)) � g(xk) + �rg(xk)>(x(�i)� xk):The next iterate is then de�ned by xk+1 := x(�i).Calamai & Mor�e (1987) showed that if g is bounded below on IB, g is contin-uously di�erentiable, and rg is uniformly continuous on IB, then the projectedgradient method converges to a stationary point of g on IB.In our context, we can use the projected linesearch technique to force descentof the merit function �. However, two potential di�culties must be addressed.First, the function � is not continuously di�erentiable. To deal with this problem,instead of using the gradient of � at xk, we use the gradient of �k(d) := �xk(d)evaluated at d = 0. This gives us the following condition for terminating thelinesearch: �(x(�i)) � �(xk) + �r�k(0)>(x(�i)� xk):Note that if Iel(xk) and Ieu(xk) are empty, then r�(xk) is equal to r�k(d).



73A simple calculation reveals that r�x(0) is given byr�x(0) := rh(x)h(x)= Xi2If rfi(x)fi(x) +Xi2Jl(xi � li)ei> + Xi2Ju(xi � ui)ei>:The second di�culty that must be addressed is that the solution dk to theproblem hk(d) = 0 is not in general the negative gradient of � at xk. However,part 2 of Lemma 2.2.5 shows that if �x(d) < �x(0), then d is a descent directionfor � at the point xk. Since dk satis�es �k(dk) = 0, it follows that dk is a descentdirection for � at xk. If the parameter � is made suitably small, we can thereforeexpect that the process will yield a stationary point of �. A formal proof of thishypothesis is left as future research.As a �nal observation, note that if xk is on or very near the boundary of IB,then the projected point �IB(xk+dk) may be very close to xk. Thus, even if a fullstep is taken, the decrease in � may be very small, or none at all. This situationis analogous to the NE/SQP algorithm converging to an s-irregular point. Wetherefore add an additional termination test into the NE/NEWT algorithm inorder to detect this situation. This test is given byr�k(0)> ��IB(xk + dk)� xk� � ��(xk):In words, � represents a quadratic model of �. If the projection of xk + dk doesnot represent a \su�cient" decrease of this quadratic model, we cannot reasonablyhope to get descent of �. Therefore, we abandon the algorithm.The complete unperturbed algorithm is given in Figure 4.For our implementation, the stopping rule in Step 4 is given by �(xk+1) < tolfor some small tolerance tol > 0.3.1.2 PROXI AlgorithmWe now apply the proximal perturbation strategy to the NE/NEWT algorithm.The resulting PROXI algorithm is given in Figure 5.The PROXI algorithmwas coded in ANSI C, using double precision arithmetic.As with QPCOMP, an interface with the GAMS modeling language was incorpo-rated. For testing purposes, we used the following choices of parameters: � = :9,� = :5, � = :01. The sequence f�jg used in Step 4 was given by �j+1 = 0:999 � �j,with �0 set to 1000. This e�ectively caused the NE/NEWT algorithm to performonly one iteration before returning control back to PROXI. The parameter � wasupdated as follows:
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Figure 4: Algorithm NE/NEWTStep 1 [Initialization] Select �; �;  2 (0; 1), and a starting vector x0 2 IB.Set k = 0.Step 2 [Direction generation] Solve the systemh(xk; d) = 0for d, giving the direction dk. If this system is unsolvable, or ifr�k(0)> ��IB(xk + dk)� xk� � ��(xk)terminate the algorithm, returning the point xk along with a failuremessage; otherwise, continue.Step 3 [Steplength determination] Let mk be the smallest nonnegative inte-ger m such that�(�IB(xk + �mdk))� �(xk) � +�r�k(0)>(�IB(xk + �mdk)� xk);set xk+1 = xk + �mkdk.Step 4 [Termination check] If xk+1 satis�es a prescribed stopping rule, stop,returning the point xk+1. Otherwise, return to Step 2, with k replacedby k + 1.



75Figure 5: Algorithm PROXIStep 1 [Initialization] Given a starting vector x0 2 IB and a convergencetolerance � > 0, choose � > 0, � 2 (0; 1), and set k = 0.Step 2 [Attempt NE/SQP] Run the NE/NEWT algorithm with startingpoint xk and with tol = �. This generates a point ~x.Step 3 [Termination check] If ~x solves MCP(f; IB), stop; otherwise continuewith step 4.Step 4 [Generate better starting point] Set �best := �(~x), set y0 = ~x, setj = 0, and choose � > 0, and choose a positive sequence f�jg # 0.Step 4a Run the NE/NEWT algorithm to solve the perturbedproblem MCP(f�;yj ; IB) from starting point yj, with tol =�j=(1 + kyjk). This generates a point ~y.Step 4b If ~y fails to solve the perturbed problem to the requestedaccuracy, set � � �+� and goto step 4a; otherwise, continue.Step 4c [Check point] If �(~y) � ��best, set xk+1 = ~y and returnto step 2, with k replaced by k+1. Otherwise, set yj+1 := ~yand return to step 4a, with j replaced by j + 1.1. In Step 4, � is set to �best.2. In Step 4b, if ~y fails to solve the perturbed problem, � is set to max(:1; 10�);otherwise, it is multiplied by :9.Finally, the parameter  is initially chosen to be :01. Thereafter, in Step 4b, itis set to min(1=�; ). For practical considerations, we also placed a limit on thenumber of allowable iterations of the linesearch in Step 3 of modi�ed NE/SQPalgorithm. This limit is set to 10 when the NE/NEWT algorithm is called fromStep 2 of PROXI, and is increased by 4 whenever the NE/NEWT algorithm fails,up to a maximum of 30.PROXI was tested on all of the problems from MCPLIB and GAMSLIB, aswell as the example problem given in Section 2.1. Table 4 shows the resultsof this testing in comparison to the unperturbed algorithm NE/NEWT. To run



76NE/NEWT, we simply used the PROXI algorithm with  = 0 and no limit onthe line search. To save space, we have omitted from the table any problems thatboth algorithms solved in less than one second.3.2 SEMICOMPThe second algorithm presented in this chapter is based upon an algorithm devel-oped by De Luca et al. (1995), which uses the function�(a; b) = pa2 + b2 � (a+ b):(4)Recall from the introduction that this function has the property that�(a; b) = 0 () a � 0; b � 0; ab = 0:(5)Using this fact, De Luca et al. (1995) reformulated the NCP as the zero �ndingproblem �(x) = 0, where � : IRn ! IRn is de�ned by�i(x) := �(xi; fi(x));where, by assumption, f is continuously di�erentiable on all of IRn.To �nd a zero of �, a generalization of Newton's method was used, which isbased upon the theory of semismooth equations. To describe this method, somebackground de�nitions are needed.De�nition 3.2.1 (Qi (1993)) Let f : IRn ! IRn be locally Lipschitzian, and letD be the set where f is di�erentiable, the B-subdi�erential of f at x is de�ned by@Bf(x) := �H 2 IRn�n ���� H = limk!1 f 0(xk) for some fxkg � D, converging to x� :The Clarke subdi�erential (Clarke 1983) of f at x is de�ned by@f(x) := co@Bf(x):De�nition 3.2.2 Let f : IRn ! IRn be locally Lipschitzian at x 2 IRn. We saythat f is semismooth at x if limH2@f(x+tv0)v0!v;t#0 Hv0(6)exists for all v 2 IRn.



77Table 4: NE/NEWT vs. PROXIProblem st. NE/NEWT PROXIName pt. sec f(J) sec f(J)bert oc 1 3.37 4(3) 2.61 4(3)bert oc 2 2.64 4(3) 3.24 4(3)bert oc 3 2.72 4(3) 2.78 4(3)bert oc 4 2.29 4(3) 2.67 4(3)bertsekas 1 fail fail 0.39 138(37)bertsekas 2 fail fail 0.27 83(31)bertsekas 3 fail fail 0.12 21(20)billups 1 fail fail 0.02 23(22)bratu 1 145.96 48(25) 149.37 48(25)cammcp 1 fail fail 2.89 77(23)choi 1 2.36 5(4) 2.03 5(4)co2mge 1 fail fail 0.27 8(2)co2mge 6 fail fail fail failcolvdual 1 fail fail 0.25 201(36)colvdual 2 fail fail 0.50 250(55)colvnlp 1 fail fail 0.09 77(16)colvnlp 2 fail fail 0.05 29(12)dmcmge 1 fail fail fail faildmcmge 2 fail fail fail failehl k60 1 fail fail 9.47 60(14)ehl k60 2 fail fail 10.72 60(42)ehl k60 3 fail fail 142.28 1221(144)ehl k80 1 fail fail 8.20 20(13)ehl k80 2 fail fail 29.26 101(45)ehl k80 3 fail fail 51.59 190(74)ehl kost 1 fail fail 18.50 25(14)ehl kost 2 fail fail 37.67 95(28)ehl kost 3 fail fail 64.88 144(44)�nmge 2 fail fail 11.34 151(25)�nmge 3 1.82 30(7) 0.98 10(4)�nmge 4 fail fail 12.34 135(28)�nmge 5 fail fail 2.01 20(6)freebert 1 fail fail 0.39 138(37)freebert 2 fail fail 0.07 26(8)



78Table 4: NE/NEWT vs. PROXI (cont.)Problem st. NE/NEWT PROXIName pt. sec f(J) sec f(J)freebert 3 fail fail 0.25 106(35)freebert 4 fail fail 0.31 138(37)freebert 5 fail fail 0.12 53(14)freebert 6 fail fail 0.33 106(35)gemmge 2 3.75 30(7) 3.31 22(7)gemmge 3 2.25 6(5) 1.89 6(5)gemmge 4 2.65 7(6) 2.37 7(6)gemmge 5 4.95 25(11) 5.00 25(11)hanskoop 1 fail fail 0.10 42(16)hanskoop 2 fail fail 0.01 2(1)hanskoop 3 fail fail 0.09 44(13)hanskoop 4 fail fail 0.01 2(1)hanskoop 5 fail fail 0.10 68(15)hanskoop 6 fail fail 0.01 2(1)hanskoop 7 fail fail 0.09 37(15)hanskoop 8 fail fail 0.00 2(1)hanskoop 9 fail fail 0.24 187(41)hanskoop 10 fail fail 0.01 2(1)hansmcp 1 fail fail 0.14 18(9)hansmge 1 fail fail 0.70 37(15)harkmcp 1 fail fail 0.08 39(12)harkmcp 2 fail fail 0.07 24(12)harkmcp 3 fail fail 0.02 5(4)harkmcp 4 fail fail 0.21 23(14)harmge 1 fail fail 0.44 222(38)josephy 1 fail fail 0.02 37(14)josephy 3 fail fail 0.06 155(32)kehomge 2 fail fail 0.66 125(26)kehomge 3 fail fail 0.13 30(11)kojshin 1 fail fail 0.01 18(9)kojshin 3 fail fail 0.05 97(22)mathinum 3 fail fail 0.01 10(8)mr5mcp 1 fail fail 2.17 64(15)nsmge 1 fail fail 1.64 35(14)



79Table 4: NE/NEWT vs. PROXI (cont)Problem st. NE/NEWT PROXIName pt. sec f(J) sec f(J)obstacle 1 3.00 11(10) 3.40 11(10)obstacle 2 5.98 12(11) 7.33 12(11)obstacle 3 7.23 21(13) 8.85 21(13)obstacle 4 10.86 23(16) 9.29 23(16)obstacle 5 5.57 8(6) 4.52 8(6)obstacle 6 10.51 16(9) 9.92 16(9)obstacle 7 9.89 17(9) 7.57 17(9)obstacle 8 8.33 9(6) 7.54 9(6)opt cont127 1 8.02 6(5) 9.91 6(5)opt cont255 1 19.97 6(5) 18.71 6(5)opt cont31 1 1.36 5(4) 1.51 5(4)opt cont511 1 42.43 6(5) 43.19 6(5)pgvon105 1 fail fail 7.99 403(75)pgvon105 2 fail fail 2.18 135(23)pgvon105 3 fail fail 52.13 3353(338)pgvon105 4 fail fail fail failpgvon106 1 fail fail 13.21 739(88)pgvon106 2 fail fail fail failpgvon106 3 fail fail fail failpgvon106 4 fail fail 2.46 86(28)pgvon106 5 fail fail fail failpgvon106 6 fail fail fail failpies 1 fail fail 0.29 73(23)powell 1 fail fail 0.10 11(8)powell 2 fail fail 0.06 6(5)powell 3 fail fail 0.08 8(7)powell 4 fail fail 0.25 46(13)sammge 6 fail fail 0.27 52(19)sammge 9 fail fail 0.45 139(26)sammge 15 fail fail 0.48 83(23)sammge 17 fail fail 0.57 75(22)



80Table 4: NE/NEWT vs. PROXI (cont.)Problem st. NE/NEWT PROXIName pt. sec f(J) sec f(J)scarfanum 1 fail fail 0.12 21(8)scarfanum 2 fail fail 0.14 25(9)scarfanum 3 fail fail 0.16 40(13)scarfasum 2 fail fail 0.15 25(9)scarfasum 3 fail fail 0.15 34(13)scarfbnum 1 fail fail 0.57 164(46)scarfbnum 2 fail fail 0.43 165(35)scarfbsum 1 fail fail 0.49 60(25)scarfbsum 2 fail fail 5.16 1062(117)scarfmcp 1 fail fail 0.16 26(11)scarfmge 1 fail fail 0.19 28(12)scarfmge 2 fail fail 0.13 14(7)scarfmge 3 fail fail 0.28 34(12)scarfmge 4 fail fail 0.32 39(12)sppe 1 fail fail 0.07 25(14)sppe 2 fail fail 0.02 9(6)threemge 7 fail fail fail failthreemge 8 fail fail fail failthreemge 11 fail fail fail failthreemge 12 fail fail 0.10 26(9)tobin 1 fail fail 0.13 27(13)tobin 2 fail fail 0.14 43(17)transmcp 1 fail fail 0.09 92(26)transmcp 2 fail fail 0.00 1(1)transmcp 3 fail fail 0.01 3(2)transmcp 4 fail fail 0.01 3(2)vonthmcp 1 fail fail fail failvonthmge 1 fail fail fail fail



81It is known (Mi�in 1977, Qi & Sun 1993) that convex functions and continu-ously di�erentiable functions are semismooth. Semismooth functions also havethe following useful properties:� Sums, products, and composites of semismooth functions are semismooth.� If a function f is semismooth at x, then f is directionally di�erentiable atx, and the directional derivative f 0(x; v) is equal to the limit (6).De�nition 3.2.3 A function f : IRn ! IR is said to be SC 1 at x if f is continu-ously di�erentiable at x and if the gradient of f is semismooth at x. f is said tobe SC 1 if for all x 2 IRn, f is SC 1 at x.Qi & Sun (1993) show that C2 functions are SC1.De�nition 3.2.4 Suppose that f is semismooth at x. We say that f is stronglysemismooth at x if for any sequence fdkg � IRn converging to 0, and for Hk 2@f(x+ dk), Hkdk � f 0(x; dk) = O(dk2):(7)De�nition 3.2.5 We say that a semismooth function f : IRn ! IRn is BD-regularat x if all the elements of @Bf(x) are nonsingular. f is said to be BD-regular iffor all x 2 IRn, f is BD-regular at x.A generalized Newton method can now be de�ned as follows:xk+1 = xk + dk; where dk = �(Hk)�1f(xk);(8)where Hk is a nonsingular element of @Bf(xk).The utility of this generalized method is established by the following theoremfrom Qi (1993):Theorem 3.2.6 Suppose that x� is a solution of the system f(x) = 0 and that fis semismooth and BD-regular at x�. Then the iteration method (8) is well-de�nedand convergent to x� Q-superlinearly in a neighborhood of x�. If, in addition, fis directionally di�erentiable in a neighborhood of x� and strongly semismooth atx�, then the convergence rate is Q-quadratic.Facchinei & Soares (1994) showed that if f is continuously di�erentiable onIRn, then � is semismooth everywhere. Thus, the iterative method (8) can be



82applied to �nd a zero of �. In addition, they proved that if fi is twice continu-ously di�erentiable with Lipschitz continuous Hessian, then � is strongly semis-mooth everywhere. Thus, under reasonable assumptions, the method convergesQ-quadratically.A nice feature of this particular reformulation of the NCP is that the naturalmerit function 	 associated with �, which is de�ned by	(x) := 12 k�(x)k2 ;(9)is continuously di�erentiable (Facchinei & Soares 1994). Thus the problem of�nding a solution to NCP(f) is reduced to �nding a global minimumof the smoothfunction 	. However, because � itself is not smooth, it is still possible to achievelocal Q-quadratic convergence to degenerate solutions, which, as we discussed inthe introduction, is not possible for algorithms involving smooth reformulations.3.2.1 Generalization to MCP FrameworkTo generalize this method to the MCP framework, we propose the function � :IRn ! IRn given by �i(x) := �(xi � li; �(ui � xi;�fi(x));(10)where obvious limits are used to de�ne the function when either bound is in�nite;thus, if li = �1, then �i(x) := ��(ui � xi;�fi(x)), if ui = 1, then �i(x) :=�(xi� li; fi(x)), and if li = �1 and ui =1, then �i(x) := �fi(x). Observe thatif l = 0 and u =1, this function is identical to the � function used by De Lucaet al. (1995).It can again easily be shown that �nding a zero of this function is equivalentto solving MCP(f; IB):Proposition 3.2.7 x is a solution to MCP(f; IB) if and only if �(x) = 0.Proof If x solves MCP(f; IB), then for each i, one of three cases can occur:1. xi = ui with fi(x) � 0;2. li < xi < ui with fi(x) = 0; or3. xi = li with fi(x) � 0.



83In the �rst two cases, by (5), �(ui � xi;�fi(x)) = 0, so again by (5), �i(x) = 0.In the third case, �(ui � xi;�fi(x)) � 0. Thus, since xi � li = 0, it follows by (5)that �i(x) = 0.To prove the converse, observe that if �i(x) = 0, then either xi � li = 0 and�(ui � xi;�fi(x)) � 0, or xi � li > 0 and �(ui � xi;�fi(x)) = 0. In the �rstcase, ui � xi = ui � li > 0. Thus, since �(a; b) is negative for (a; b) > 0, wesee that fi(x) � 0. Thus, the complementarity condition xi � li � 0, fi(x) � 0,(xi � li)fi(x) = 0 is satis�ed.In the second case, by (5), the complementarity conditions ui�xi � 0, fi(x) �0, fi(x)(ui�xi) = 0 are satis�ed. It follows then that x is a solution of MCP(f; IB).To use the generalized Newton method (8) to �nd a zero of �, we need toestablish that � is semismooth.Theorem 3.2.8 If f is continuously di�erentiable on IRn, then the following hold:1. The function � de�ned by (10) is semismooth on IRn.2. If f is twice continuously di�erentiable with Lipschitz continuous Hessian,then � is strongly semismooth everywhere.3. The function 	 de�ned by (9) is continuously di�erentiable, with gradientgiven by r	(x) = H>�(x), where H is any element of @�(x).Proof To prove Part 1, let �i : IRn ! IR2 be de�ned by �i(x) := (ui�xi;�fi(x));and let �i : IRn ! IR be de�ned by �i(x) := �(�i(x)). Since �i is the composition ofthe semismooth functions � and �i, then �i is semismooth. In similar fashion, if wede�ne �i : IRn ! IR2 by �i(x) := (xi� li; �i(x)), then we see that �i(x) := �(�i(x)),so �i is the composition of semismooth functions and is therefore semismooth.Finally, by Qi & Sun (1993), � is semismooth since each of its components issemismooth.To prove Part 2, we observe that if �i(x) 6= (0; 0), then �i(x) is twice contin-uously di�erentiable with Lipschitz continuous Hessian in a neighborhood of x.Thus, by Qi & Jiang (1994, Lemma 3.1), �i is strongly semismooth at x.On the other hand, if �i(x) = (0; 0), then xi� li = ui� li > 0, so �i(x) 6= (0; 0),and thus, � is continuously di�erentiable in a neighborhood of �i(x). We then getthat �0i(x+ dk; dk) = r�(�i(x+ dk))>�0i(x+ dk; dk):



84Now, by Qi & Jiang (1994, Lemma 3.1), �i is strongly semismooth, so �i is alsostrongly semismooth. Thus, by (7)�0i(x+ dk; dk) = �0i(x; dk) +O(dk2):Finally, since r� is Lipschitz continuous in a neighborhood of �i(x), and �i isLipschitz continuous in a neighborhood of x, we see thatr�(�i(x+ dk)) = r�(�i(x)) +O(dk):Combining the last three equations, we get�0i(x+ dk; dk) = �r�(�i(x)) +O(dk)�> ��0(x; dk) +O(dk2)�= r�(�i(x))>�0(x; dk) +O(dk2)= �0i(x; dk) +O(dk2):It then follows by Qi (1993, Lemma 2.3) that �i is strongly semismooth at x.Finally, � is strongly semismooth since each component of � is strongly semis-mooth.The proof to Part 3 is identical to the proof of Facchinei & Soares (1994,Proposition 3.4).The SEMISMOOTH algorithm is given in Figure 6.In our implementation, SEMISMOOTH terminates in Step 2 if one of thefollowing two conditions is satis�ed:1. 	(xk) � tol for some tolerance tol.2. r	(xk) �  for some tolerance .In the �rst case, the algorithm is considered to be successful, whereas in the secondcase, the algorithm is considered to have failed, since the iterates have convergedto a stationary point of 	, which is not a solution. These stopping rules are similarto the rules used by De Luca et al. (1995).The main convergence result for this algorithm is given by the following theo-rem, whose proof is identical to the proof of De Luca et al. (1995, Theorem 3.1),except that we use Theorem 3.2.8 in place of De Luca et al. (1995, Theorem 2.3).Theorem 3.2.9 It holds that



85
Figure 6: Algorithm SEMISMOOTHStep 1 [Initialization] Choose x0 2 IRn, � > 0, p > 2, � 2 (0; 1=2), and setk = 0.Step 2 [Termination Check] If xk satis�es a prescribed stopping rule, stop.Otherwise continue.Step 3 [Direction generation] Select an element Hk 2 @B�(xk). Find thesolution dk of the system Hkd = ��(xk):(11)If (11) is not solvable, or if the conditionr	(xk)>dk � �� dkp(12)is not satis�ed, set dk = �r	(xk).Step 4 [Linesearch] Find the smallest mk 2 f0; 1; 2; : : :g such that	(xk + 2�mkdk) � 	(xk) + �2�mkr	(xk)>dk:(13)Set xk+1 = xk + 2�mkdk, and go to Step 1, with k replaced by k + 1.



861. Each accumulation point of the sequence fxkg generated by the semismoothalgorithm is a stationary point of 	.2. If one of the limit points of the sequence fxkg, say x�, is an isolated solutionof MCP(f; IB), then fxkg ! x�.3. If one of the limit points of the sequence fxkg, say x�, is a BD-regular solu-tion of the system �(x) = 0, and if each fi is twice continuously di�erentiablewith Lipschitz continuous Hessian, then fxkg ! x�, and(a) Eventually dk is always given by the solution of (11) (i.e., the negativegradient is never used for k large enough).(b) Eventually the stepsize of one is always accepted so that xk+1 = xk+dk.(c) The local convergence rate is Q-quadratic.Observe that Step 2 of the algorithm requires choosing an element of @B�(xk).We now address the question of how to calculate such an element. To do this,we shall need the following lemma, which generalizes Facchinei & Soares (1994,Proposition 3.1).Lemma 3.2.10 @�(x)> � fDa(x) +rf(x)Db(x)g:Here Da(x) and Db(x) are n � n diagonal matrices whose ith diagonal elementsare given by (Da)ii(x) := ai(x) + bi(x)ci(x); (Db)ii(x) := bi(x)di(x);where ai(x) = xi � lik(xi � li; �(ui � xi;�fi(x)))k � 1;bi(x)) = �(ui � xi;�fi(x))k(xi � li; �(ui � xi;�fi(x)))k � 1;(14)if (xi � li; fi(x)) 6= (0; 0), or(ai(x); bi(x)) 2 n(� � 1; � � 1) 2 IR2 j k(�; �)k � 1o(15)if (xi � li; fi(x)) = 0; andci(x) = xi � uik(xi � ui; fi(x))k + 1;di(x)) = fi(x)k(xi � ui; fi(x))k + 1(16)



87if (xi � ui; fi(x)) 6= 0, or(ci(x); bi(x)) 2 n(� + 1; � + 1) 2 IR2 j k(�; �)k � 1o(17)if (xi � ui; fi(x)) = 0:Note that in (14) and (16), if either li or ui is in�nite, then the obvious limits areused to de�ne the fractions. Thus, if li = �1, then (ai(x); bi(x)) = (0;�1), andif ui =1, then (ci(x); di(x)) = (0; 1).Proof By Clarke (1983, Proposition 2.6.2(e)),@�(x)> � (@�1(x)� � � � � @�n(x)):Thus, it su�ces to prove that for each i,@�i(x) � f(ai(x) + bi(x)ci(x))ei> + bi(x)di(x)rfi(x)>g;(18)where ai(x); bi(x); ci(x); di(x) satisfy (14){(17).To prove this result, let gi : IRn ! IR be de�ned by gi(x) := �(ui� xi;�fi(x)),and let hi : IRn ! IR2 be de�ned by hi(x) := (xi � li; gi(x)). We then have that�i(x) = �(hi(x)). Our �rst step is to show that @�i(x) = @�(hi(x))@hi(x).We consider two cases. In the �rst case, suppose that hi(x) 6= (0; 0). It followsthat � is continuously di�erentiable at hi(x). Furthermore, since f is continuouslydi�erentiable, and � is Lipschitz, hi is locally-Lipschitz at x. Thus, by Clarke(1983, Theorem 2.6.6), @�i(x) = @�(hi(x))@hi(x).In the second case, suppose that hi(x) = (0; 0). It then follows that ui � xi =ui � li > 0, so � is continuously di�erentiable at (ui � xi;�fi(x)), and thereforehi is continuously di�erentiable at x. By the corollary to Clarke (1983, Proposi-tion 2.2.1), hi is strictly di�erentiable at x. Furthermore, since � is Lipschitz andconvex (Fischer 1992), then by Clarke (1983, Proposition 2.3.6(b)), � is regular ev-erywhere. Thus, by Clarke (1983, Theorem 2.3.9(iii)), @�i(x) = @�(hi(x))@hi(x).We now look at the terms @�(hi(x)) and @hi(x). It is known (Facchinei &Soares 1994) that@�(a; b) = 8>><>>: ( ak(a; b)k � 1; bk(a; b)k � 1!) (a; b) 6= 0f(� � 1; � � 1) j k�; �k � 1g (a; b) = 0:Also, @hi(x)> = n(ei; �i) ��� �i 2 @gi(x)o :



88Thus,@�i(x) = nai(x)ei> + bi(x)�i ��� �i 2 @gi(x); ai(x); bi(x) satisfy (14) and (15)o :By similar arguments, we get@gi(x) = nci(x)ei> + di(x)rfi(x)> j ci(x); di(x) satisfy (16)and (17)o :Combining these last two relations, we see that (18) is satis�ed as an equality.Figure 7 describes a simple procedure for calculating an element of @B�(x).Theorem 3.2.11 The matrix H calculated by the procedure given in Figure 7 isan element of @B�(x):Proof In similar fashion to the proof of De Luca et al. (1995, Theorem 7.1), webuild a sequence of points fykg where �(x) is di�erentiable and such thatr�(yk)>tends to H. The theorem then follows by the de�nition of the B-subdi�erential.Let yk := x + �kz, where z is the vector of Step 2 and f�kg is a sequence ofpositive numbers converging to 0. For i 62 �lS�u, either xi 6= li and xi 6= ui, orfi(x) 6= 0; and for i 2 �lS�u, zi 6= 0. Thus, if �k is small enough, either yki 6= liand yki 6= ui, or fi(yk) 6= 0. In either case, � is di�erentiable at yk.We now show that for each i, limk!1r�i(yk)> = Hi(x). If either li or ui isin�nite, the result is given by De Luca et al. (1995, Theorem 7.1) by a simplechange of variables. Thus, without loss of generality, we assume that li and ui areboth �nite.By Lemma 3.2.10, r�i(yk) is given by(ai(yk) + bi(yk)ci(yk))ei + bi(yk)di(yk)rfi(yk)where ai; bi; ci; di are de�ned by (14) and (16).We now consider three cases.Case 1: i 62 �lS�u: In this case, by continuity, limk!1r�i(yk)> = Hi.Case 2: i 2 �u: In this case, xi = ui, so yki � ui = �kzi, soci(yk) = �kzk(�kz; fi(yk))k + 1di(yk) = fi(yk)k(�kz; fi(yk))k + 1(19)



89Figure 7: Procedure to evaluate an element of @B�(x)Step 1 Set �l := fi j xi � li = 0 = fi(x)g and �u := fi j ui � xi = 0 = fi(x)gStep 2 Choose z 2 IRn such that zi 6= 0 for all i 2 �lS�u.Step 3 For each i, if i 62 �u, setci(x) := xi � uik(xi � ui; fi(x))k + 1di(x) := fi(x)k(xi � ui; fi(x))k + 1;else if i 2 �u, set ci(x) := zik(zi;rfi(x)>z)k + 1di(x) := rfi(x)>zk(zi;rfi(x)>z)k + 1:Step 4 For each i, if i 62 �l, setai(x) := xi � lik(xi � li; �(ui � xi;�fi(x))k � 1bi(x) := �(ui � xi;�fi(x))k(xi � li; �(ui � xi;�fi(x))k � 1;else if i 2 �l, setai(x) := zik(zi; ci(x)zi + di(x)rfi(x)>z)k � 1bi(x) := ci(x)zi + di(x)rfi(x)>z)k(zi; ci(x)zi + di(x)rfi(x)>z)k � 1:Step 5 For each i, setHi := (ai(x) + bi(x)ci(x))ei> + bi(x)di(x)rfi(x)>:



90Since f is continuously di�erentiable, we can use a Taylor series expansionto get fi(yk) = fi(x) + �krfi(�k)>z with �k 2 [x; yk]:Substituting this expression into (19), we see thatlimk!1 ci(yk) = zik(zi;rfi(x)>z)k + 1limk!1 di(yk) = rfi(x)>zk(zi;rfi(x)>z)k + 1Thus, limk!1r�i(yk)> = Hi.Case 3: i 2 �l: In this case, xi = li and fi(x) = 0. Clearly, xi 6= ui, so � iscontinuously di�erentiable in a neighborhood of (ui � xi;�fi(x)). Thus,using an argument similar to the above we getlimk!1 ai(yk) = zik(zi;r�(ui � xi;�fi(x))>z)k � 1(20) limk!1 bi(yk) = r�(ui � xi;�fi(x))>z)k(zi;r�(ui � xi;�fi(x))>z)k � 1(21)Finally, r�(ui � xi;�fi(x)) = ci(x)ei + di(x)rfi(x), where ci(x) and di(x)are given by (16). Substituting this expression into (20) and (21), we seethat limk!1r�i(yk)> = Hi.3.2.2 SEMICOMP AlgorithmWe now use the proximal perturbation strategy to improve the robustness ofthe SEMISMOOTH algorithm. The resulting SEMICOMP algorithm is given inFigure 8.The SEMICOMP algorithm was coded in ANSI C, using double precisionarithmetic. As with QPCOMP and PROXI, an interface with the GAMSmodelinglanguage was incorporated. For testing purposes, we used the same choices ofparameters that were used by the PROXI algorithm. SEMICOMP was tested onall of the problems from MCPLIB and GAMSLIB, as well as the example problemgiven in Section 2.1. Table 5 shows the results of this testing in comparison tothe unperturbed algorithm SEMISMOOTH. To run SEMISMOOTH, we simplyused the SEMICOMP algorithm with no limit on the line search. To save space,we have omitted from the table any problems that both algorithms solved in lessthan one second.



91
Figure 8: Algorithm SEMICOMPStep 1 [Initialization] Given a starting vector x0 2 IB and a convergencetolerance � > 0, choose � > 0, � 2 (0; 1), and set k = 0.Step 2 [Attempt SEMISMOOTH Algorithm] Run the SEMISMOOTH al-gorithm with starting point xk, with tol = �. This generates a point~x.Step 3 [Termination check] If ~x solves MCP(f; IB), stop; otherwise continuewith step 4.Step 4 [Generate better starting point] Set �best := �(~x), set y0 = ~x, setj = 0, and choose � > 0, and choose a positive sequence f�jg # 0.Step 4a Run the SEMISMOOTH algorithm to solve the per-turbed problem MCP(f�;yj ; IB) from starting point yj, withtol = �j=(1 + kyjk). This generates a point ~y.Step 4b If ~y fails to solve the perturbed problem to the requestedaccuracy, set � � �+� and goto step 4a; otherwise, continue.Step 4c [Check point] If �(~y) � ��best, set xk+1 = ~y and returnto step 2, with k replaced by k+1. Otherwise, set yj+1 := ~yand return to step 4a, with j replaced by j + 1.



92Table 5: SEMISMOOTH vs. SEMICOMPProblem st. SEMISMOOTH SEMICOMPName pt. sec f(J) sec f(J)bert oc 1 13.50 21(11) 11.38 21(11)bert oc 2 54.41 143(42) 46.44 143(42)bert oc 3 17.99 41(15) 15.52 41(15)bert oc 4 5.91 7(6) 5.80 7(6)bertsekas 1 fail fail 0.64 251(42)bertsekas 2 fail fail 0.59 327(38)billups 1 0.90 6903(345) 0.10 631(76)bratu 1 fail fail 7452.38 3164(538)cammcp 1 fail fail fail failchoi 1 2.93 6(5) 2.95 6(5)co2mge 2 2.42 63(16) 2.02 62(15)co2mge 6 fail fail fail failcolvdual 2 fail fail fail faildmcmge 1 fail fail fail faildmcmge 2 fail fail 133.73 3099(661)ehl k60 1 8.21 43(18) 8.25 43(18)ehl k60 2 fail fail 55.26 488(78)ehl k60 3 fail fail fail failehl k80 1 10.38 37(16) 11.29 37(16)ehl k80 2 29.01 121(32) 29.74 121(32)ehl k80 3 123.01 568(100) 126.13 568(100)ehl kost 1 15.02 32(15) 18.99 32(15)ehl kost 2 58.25 125(34) 49.06 125(34)ehl kost 3 240.12 671(114) 233.23 671(114)etamge 1 1.34 30(17) 1.27 30(17)�nmge 2 fail fail fail fail�nmge 3 1.58 8(5) 1.65 8(5)�nmge 4 fail fail fail fail�nmge 5 1.36 9(6) 1.73 9(6)freebert 1 fail fail 0.51 266(46)freebert 3 fail fail 0.55 206(42)freebert 4 fail fail 0.60 240(42)freebert 6 fail fail 0.53 200(40)



93Table 5: SEMISMOOTH vs. SEMICOMP (cont.)Problem st. SEMISMOOTH SEMICOMPName pt. sec f(J) sec f(J)gemmge 2 3.60 16(9) 3.31 16(9)gemmge 3 3.92 10(8) 2.88 10(8)gemmge 4 3.22 8(7) 2.84 8(7)gemmge 5 6.93 31(13) 5.32 31(13)hanskoop 1 fail fail fail failhanskoop 2 fail fail fail failhanskoop 3 fail fail fail failhanskoop 4 fail fail fail failhanskoop 7 fail fail fail failharkmcp 4 fail fail fail failharmge 1 fail fail 1.52 672(75)harmge 2 fail fail 0.01 3(2)mr5mcp 1 2.01 26(13) 2.09 26(13)nsmge 1 1.65 23(12) 1.69 23(12)obstacle 1 5.59 15(14) 6.86 15(14)obstacle 2 15.56 17(14) 18.01 17(14)obstacle 3 9.45 14(13) 11.77 14(13)obstacle 4 10.66 17(16) 11.01 17(16)obstacle 5 14.59 8(7) 15.08 8(7)obstacle 6 21.14 20(13) 19.62 20(13)obstacle 7 15.52 17(12) 12.84 17(12)obstacle 8 14.32 10(7) 14.76 10(7)opt cont127 1 45.58 27(12) 46.05 27(12)opt cont255 1 110.61 31(14) 107.97 31(14)opt cont31 1 4.45 11(9) 5.55 11(9)opt cont511 1 360.42 73(20) 348.63 73(20)pgvon105 1 fail fail fail failpgvon105 2 fail fail fail failpgvon105 3 fail fail fail failpgvon105 4 fail fail 28.09 352(42)pgvon106 1 fail fail fail failpgvon106 2 fail fail fail failpgvon106 3 fail fail fail fail



94Table 5: SEMISMOOTH vs. SEMICOMP (cont.)Problem st. SEMISMOOTH SEMICOMPName pt. sec f(J) sec f(J)pgvon106 4 fail fail 38.30 412(65)pgvon106 5 fail fail fail failpgvon106 6 fail fail fail failsammge 2 1.96 645(53) 0.13 38(7)sammge 3 fail fail 0.17 41(8)sammge 5 fail fail 0.36 84(14)sammge 6 fail fail 0.40 103(17)sammge 7 fail fail 0.23 54(11)sammge 8 fail fail 0.39 114(16)sammge 9 fail fail 0.65 168(29)sammge 11 1.76 577(48) 0.19 62(9)sammge 13 fail fail 0.23 61(14)sammge 14 fail fail 0.23 74(11)sammge 15 fail fail 0.38 122(20)sammge 16 fail fail 0.31 80(12)sammge 17 fail fail 0.20 61(11)sammge 18 fail fail 0.50 148(22)scarfasum 3 fail fail fail failscarfbnum 1 fail fail 1.01 241(51)scarfbnum 2 fail fail 7.36 1497(341)scarfbsum 2 fail fail 1.22 276(43)threemge 11 fail fail 0.82 215(26)transmcp 1 fail fail 0.23 193(105)transmcp 2 fail fail 0.00 1(1)transmcp 3 fail fail 0.03 15(8)transmcp 4 fail fail 0.04 43(10)vonthmcp 1 fail fail fail failvonthmge 1 fail fail fail fail



953.3 E�ects of Proximal Perturbation StrategyThe test results given in Tables 3{5 demonstrate the robustness of the proximalperturbation strategy in convincing fashion. In all three of the perturbed algo-rithms, the perturbation strategy signi�cantly improved the robustness, with nosigni�cant loss in e�ciency. Indeed, all three algorithms were extremely successfulat solving the problems in the model libraries.It is interesting to note that the robustness of the underlying algorithms playslittle role in the performance of the perturbed algorithms. Indeed PROXI hadthe fewest failures of all the algorithms tested even though the underlying algo-rithm, NE/NEWT, is the least robust algorithm tested. In contrast, the leastsuccessful of the perturbed algorithms, SEMICOMP, is based on the most robustof the underlying algorithms, SEMISMOOTH. This observation suggests that apromising approach for improving the capabilities of complementarity solvers onvery large scale problems may be to use a simple (but possibly not very robust)basic algorithm and then enhance its robustness by using the proximal pertur-bation strategy. It may therefore be worthwhile to reexamine some algorithmicapproaches that have been abandoned due to de�ciencies in robustness.3.4 Comparison with PATH and SMOOTHIn this section we compare the performance of the algorithms described in thisthesis, namely PROXI, SEMICOMP and QPCOMP with PATH version 28, andSMOOTH version 3. The PATH algorithm is based upon the path search schemeof Ralph (1994), but includes several enhancements that greatly improve its per-formance. In particular, PATH employs a projected Newton preprocessor as a toolfor rapidly identifying the active set. PATH also uses a nonmonotone linesearch aswell as the watchdog technique described by Chamberlain, Powell & Lemar�echal(1982). A detailed description of PATH is given by Dirkse (1994).The SMOOTH algorithm is based upon the smoothing technique of Chen &Mangasarian (1995b) and Chen (1995), which replaces the minimum map witha sequence of smooth approximations. SMOOTH version 3 employs the sameprojected Newton preprocessor that was developed for PATH version 27. However,the use of this preprocessor is slightly di�erent. In SMOOTH, the preprocessor isused actually to solve the problem. Thus, the smoothing technique is used onlyif the problem is not solved by the preprocessor. In contrast, PATH uses thepreprocessor only to identify the active set.We tested the �ve algorithms on all of the problems included in the GAMSLIBand MCPLIB problem libraries, with the exception of QPCOMP, which was tested



96only on problems with fewer than 110 variables. In our testing, the algorithmswere run using their default options on all problems. Execution times for thesetests are reported in Table 6. To save space we have omitted any problems thatall the algorithms solved in less than one second.From these results it is clear that PROXI and SEMICOMP are comparable toSMOOTH and PATH in terms of e�ciency and robustness. When only smallerproblems are considered, QPCOMP is also competitive in terms of robustness,but is considerably slower.



97Table 6: Execution Times (sec.)Problem st.Name pt. PATH PROXI QPCOMP SEMICOMP SMOOTHbert oc 1 2.63 2.61 { 11.38 3.23bert oc 2 3.13 3.24 { 46.44 2.57bert oc 3 2.10 2.78 { 15.52 2.55bert oc 4 2.29 2.67 { 5.80 2.62bertsekas 1 0.08 0.39 2.83 0.64 0.24bertsekas 2 0.04 0.27 2.41 0.59 0.05bertsekas 3 0.09 0.12 0.33 0.49 0.21billups 1 fail 0.02 0.11 0.10 failbratu 1 138.52 149.37 { 7452.38 135.48cafemge 1 0.29 0.50 20.11 0.50 0.41cafemge 2 0.26 0.35 14.19 0.50 0.25cammcp 1 0.21 2.89 { fail 0.23choi 1 2.09 2.03 2.28 2.95 2.10cirimge 3 0.42 0.33 { 0.86 1.25co2mge 1 fail 0.27 { 0.10 0.42co2mge 2 0.50 0.48 { 2.02 0.52co2mge 6 0.46 fail { fail 1.96colvdual 1 0.11 0.25 5.76 0.12 0.11colvdual 2 0.09 0.50 5.39 fail 0.10colvnlp 1 0.05 0.09 2.13 0.08 0.06colvnlp 2 0.03 0.05 1.62 0.06 0.05dmcmge 1 3.75 fail { fail 5.42dmcmge 2 0.55 fail { 133.73 0.60ehl k60 1 1.56 9.47 16.91 8.25 1.59ehl k60 1 25.16 10.72 147.22 55.26 14.71ehl k60 1 44.97 142.28 492.33 fail failehl k80 1 2.37 8.20 313.15 11.29 2.93ehl k80 1 131.99 29.26 129.02 29.74 6.57ehl k80 1 56.58 51.59 729.89 126.13 85.26ehl kost 1 3.86 18.50 611.41 18.99 4.73ehl kost 2 13.56 37.67 250.28 49.06 12.58ehl kost 3 9.76 64.88 866.08 233.23 90.38etamge 1 0.49 1.11 { 1.27 0.97�nmge 2 1.95 11.34 { fail 5.16�nmge 3 0.94 0.98 { 1.65 0.94



98Table 6: Execution Times (sec.) (cont.)Problem st.Name pt. PATH PROXI QPCOMP SEMICOMP SMOOTH�nmge 4 1.72 12.34 { fail 9.18�nmge 5 0.91 2.01 { 1.73 1.09freebert 1 0.07 0.39 2.72 0.51 0.04freebert 2 0.03 0.07 0.61 0.06 0.04freebert 3 0.05 0.25 2.86 0.55 0.04freebert 4 0.09 0.31 2.47 0.60 failfreebert 5 0.04 0.12 1.38 0.15 0.04freebert 6 0.08 0.33 3.02 0.53 failgemmge 2 3.24 3.31 { 3.31 4.18gemmge 3 1.85 1.89 { 2.88 1.85gemmge 4 2.51 2.37 { 2.84 1.84gemmge 5 8.85 5.00 { 5.32 2.28hanskoop 1 0.05 0.10 0.37 fail 0.33hanskoop 2 0.06 0.01 0.05 fail 0.02hanskoop 3 0.11 0.09 0.42 fail 0.23hanskoop 4 0.05 0.01 0.05 fail 0.02hanskoop 7 0.05 0.09 0.86 fail 0.22hansmcp 1 0.47 0.14 fail 0.16 0.13hansmge 1 0.36 0.70 2.86 0.84 0.64harkmcp 1 0.05 0.08 1.06 0.07 0.07harkmcp 4 0.12 0.21 9.31 fail 0.37harmge 1 0.06 0.44 1.86 1.52 0.09harmge 6 0.06 fail 3.24 0.02 2.08hydroc20 1 0.38 0.44 13.31 0.54 0.36josephy 6 fail 0.02 0.05 0.01 0.02kormcp 1 0.08 0.06 2.82 0.07 0.05mr5mcp 1 0.62 2.17 { 2.09 0.62nsmge 1 0.91 1.64 { 1.69 2.40obstacle 1 2.36 3.40 { 6.86 2.39obstacle 2 5.90 7.33 { 18.01 6.39obstacle 3 5.03 8.85 { 11.77 6.27obstacle 4 4.84 9.29 { 11.01 6.12obstacle 5 8.04 4.52 { 15.08 7.13obstacle 6 8.86 9.92 { 19.62 10.07



99Table 6: Execution Times (sec.) (cont.)Problem st.Name pt. PATH PROXI QPCOMP SEMICOMP SMOOTHobstacle 7 7.39 7.57 { 12.84 7.97obstacle 8 13.84 7.54 { 14.76 10.58opt cont31 1 1.36 1.51 { 5.55 1.65opt cont127 1 8.14 9.91 { 46.05 6.38opt cont255 1 14.86 18.71 { 107.97 13.80opt cont511 1 39.51 43.19 { 348.63 37.52pgvon105 1 1.54 7.99 fail fail failpgvon105 2 0.77 2.18 50.91 fail failpgvon105 3 1.58 52.13 58.80 fail failpgvon105 4 fail fail fail 28.09 failpgvon106 1 19.77 13.21 fail fail 125.46pgvon106 2 1.80 fail fail fail 5.37pgvon106 3 1.29 fail fail fail 8.48pgvon106 4 fail 2.46 fail 38.30 failpgvon106 5 fail fail fail fail failpgvon106 6 fail fail fail fail 3.76pies 1 0.13 0.29 7.26 0.11 0.27sammge 1 0.01 0.01 fail 0.00 0.00sammge 10 0.01 0.01 fail 0.01 0.01sammge 17 0.09 0.57 1.05 0.20 0.17scarfasum 2 0.04 0.15 1.51 0.15 0.10scarfasum 3 0.07 0.15 0.37 fail 0.05scarfbnum 1 0.39 0.57 6.42 1.01 0.32scarfbnum 2 0.44 0.43 6.09 7.36 0.32scarfbsum 1 fail 0.49 8.77 0.39 0.24scarfbsum 2 3.43 5.16 31.11 1.22 0.66shovmge 2 0.09 0.09 1.11 0.09 0.10shovmge 4 0.08 0.10 1.96 0.11 0.08threemge 7 0.06 fail { 0.14 0.05threemge 8 0.06 fail { 0.12 0.05threemge 11 0.05 fail { 0.82 0.05tobin 1 0.08 0.13 1.49 0.11 0.13tobin 2 0.10 0.14 1.78 0.09 0.09



100
Table 6: Execution Times (sec.) (cont.)Problem st.Name pt. PATH PROXI QPCOMP SEMICOMP SMOOTHtransmcp 1 0.04 0.09 1.22 0.23 0.05transmcp 2 0.01 0.00 fail 0.00 0.00vonthmcp 1 fail fail { fail failvonthmge 1 1.06 fail fail fail 17.14



101
Chapter 4An Infeasible Interior-PointAlgorithm for LMCPThe purpose of this chapter is to develop an infeasible interior-point algorithmfor the linear mixed complementarity problem. As discussed in the introduc-tion, such an algorithm could be extremely useful in the context of solving verylarge scale monotone nonlinear mixed complementarity problems. In particu-lar, if a successive LCP technique is used to solve the nonlinear MCP, then afast algorithm that can be easily warm-started is needed for solving the linearsubproblems. This exactly describes the infeasible interior-point methods. Inparticular, they are extremely e�cient on very large scale monotone problems;but, unlike other interior-point methods, the infeasible interior-point methods areeasily warm-started.The algorithm we present in this chapter is based upon two algorithms pro-posed in Zhang (1994) and Wright (1994). Zhang's algorithm solves the horizontallinear complementarity problem (HLCP), and is proven, under certain assump-tions, to converge to a solution at a global Q-linear rate. Unfortunately, Zhang'sconvergence analysis places a restriction on the starting point. This restriction caneasily be satis�ed by making the starting point large in every component; but thiscompletely defeats the purpose of warm-starting since changing the starting pointmay take us farther away from the solution. Moreover, this restriction presentsdi�culties when Zhang's results are used in the analysis of the LMCP algorithmpresented later in this chapter. Fortunately, the restriction on the starting pointis unnecessary. The proof of this fact is one of the major results of this chapter.Wright's algorithm is a sophisticated special case of Zhang's algorithm thatsolves the linear complementarity problem and achieves local Q-subquadratic con-vergence in addition to the global Q-linear rate proved by Zhang. Unfortunately,Wright's analysis, like Zhang's, places a restriction on the starting point. But



102again, we shall be able to remove this restriction.The algorithm we propose for the LMCP is derived directly from Wright'salgorithm. The strategy we use exploits the fact that the LMCP can be refor-mulated as an LCP. However, since this reformulated problem has a great dealof structure, we shall take care to ensure that this structure is exploited to fulladvantage. With this in mind, the LMCP algorithm is derived as as follows:�rst, we reformulate the LMCP as an equivalent LCP. Next, we substitute thisreformulated LCP directly into Wright's algorithm, producing a naive algorithmfor the LMCP whose iterates correspond directly with the iterates of the LCP.Finally, we simplify this algorithm, taking advantage of the structure inherent inthe reformulated problem. This produces the LMCP algorithm, which in general,involves fewer variables than the naive algorithm.To prove global and local Q-subquadratic convergence, we construct a one-to-one function T , which maps the iterates of the LMCP algorithm to the iterates ofthe naive algorithm. With this mapping, the task of proving convergence resultsfor the LMCP algorithm is reduced to proving convergence results for the naivealgorithm. But since the iterates of the naive algorithm are actually iteratesof Wright's LCP algorithm, we can establish convergence rates for the LMCPalgorithm directly from Wright's convergence results.But now the restriction on the starting point becomes signi�cant. Recall thatthis restriction is easily satis�ed by making the starting point large in every com-ponent. But, this cannot be done in our analysis since we require that the startingpoint of the LCP lies in the range of T . In general, this places an upper boundon some components of the iterates of the LCP. In other words, it may not bepossible to �nd any starting point for the LMCP for which the correspondingstarting point for the LCP satis�es Wright's restriction. However, by extendingZhang's and Wright's convergence results to arbitrary positive starting points,this di�culty is removed.The chapter is organized as follows. We begin by presenting Zhang's algorithmfor the HLCP and extending the global convergence results to apply to arbitrarystarting points. We then present Wright's algorithm for the LCP and extend theglobal and local convergence results to apply to arbitrary starting points. Finally,we present the LMCP algorithm and prove global Q-linear convergence and localQ-subquadratic convergence.4.1 Zhang's HLCP AlgorithmIn Zhang (1994), two algorithms are presented for solving the horizontal linearcomplementarity problem. The �rst algorithm is a very general algorithm about



103which a number of useful lemmas can be proved. The second algorithm is aspecial case of the �rst for which Zhang proves a global Q-linear convergenceresult. In this section, we describe both of these algorithms and then extendZhang's convergence analysis to apply to arbitrary positive starting points.Because our analysis is intimately connected with Zhang's analysis, it is de-sirable to be consistent with the notation used in Zhang's paper. We thereforerestate the HLCP as follows:HLCP(M;N; h): Find (x; y) 2 IRn � IRn such thatF (x; y) := " Mx+Ny � hXY e # = 0; (x; y) � 0;where M;N 2 IRn�n; e; h 2 IRn;X = diag(x); Y = diag(y); e = (1; 1; � � � ; 1)>.For convenience of discussion, Zhang de�nes the following sets:S = f(x; y) 2 IR2n : h =Mx +Ny; (x; y) � 0; x>y = 0g; i.e., the solution set;A = f(x; y) 2 IR2n : h =Mx +Nyg;F = f(x; y) 2 A : (x; y) � 0g; i.e., the set of feasible points:Zhang's algorithms can be described as centered and damped Newton meth-ods that work as follows: given a starting point (x0; y0) > 0, both algorithmsgenerate a sequence of strictly positive iterates f(xk; yk)g that, under appropriateassumptions, converge to a solution (x�; y�) of the HLCP.To prove his results, Zhang makes the following assumptions on the problem:Assumption 4.1.1 For any (x; y) 2 A and (x̂; ŷ) 2 A; (x� x̂)>(y � ŷ) � 0, i.e.A is the graph of a monotone operator.Assumption 4.1.2 F 6= ;, i.e., a feasible point exists.It is known that Assumptions4.1.1 and 4.1.2 imply the existence of a solution(x�; y�) to HLCP(M;N; h) (G�uler 1995, Theorem 3.1). It is also well-known thatAssumption 4.1.1 is satis�ed by linear programs, convex quadratic programs, andmonotone linear complementarity problems.In addition to these two explicit assumptions, Zhang also makes an implicitassumption about the starting point. Given a point (u0; v0) 2 A (such a pointexists by Assumption 4.1.2), Zhang proves his convergence results by choosing astarting point (x0; y0) > 0 that satis�es (x0; y0) � (u0; v0). It is easy to �nd suchan (x0; y0) (simply choose x0 = max(�; u0) and y0 = max(�; v0) for some � > 0).However, since we are interested in warm-starting the algorithm, we do not wantto change the starting point. Thus, given a �xed starting point (x0; y0), Zhang'sresults are based on the following implicit assumption:



104Assumption 4.1.3 There exists (u0; v0) 2 A such that (x0; y0) � (u0; v0).We now prove Zhang's results without this implicit assumption. We start withZhang's �rst algorithm, which is given in Figure 9.Figure 9: Zhang's First AlgorithmGiven (x0; y0) > 0, for k = 0; 1; 2; : : :, do1. Choose �k 2 [0; 1) and let �k = 1nxk>yk. Solve the following linear systemfor (�xk;�yk) " M NY X # " �x�y # = " h�Mxk �Nyk�XkY k + �k�ke # :(1)2. Choose a steplength �k 2 (0; 1] and�k < �̂k = �1min((Xk)�1�xk; (Y k)�1�yk;�1=2) :Let xk+1 = xk + �k�xk and yk+1 = yk + �k�yk.We shall prove a number of technical lemmas about the algorithm given inFigure 9, which we will then use to prove global Q-linear convergence of Zhang'ssecond algorithm, which is a special case of Zhang's �rst algorithm.We begin as Zhang does by constructing an auxiliary sequence f(uk; vk)g.Given a pair (u0; v0) 2 A, for k = 0; 1; : : : we de�neuk+1 := uk + �k(�xk + xk � uk); vk+1 := vk + �k(�yk + yk � vk);(2)where xk, yk, �xk and �yk are de�ned in Figure 9. The sequence is strictly atool for analysis and is not actually computed. The following lemma summarizessome of the properties of the auxiliary sequence.Lemma 4.1.4 Let f(xk; yk)g and f�kg be generated by the algorithm in Figure9, f(uk; vk)g be given by (2) and �k := Qk�1j=0(1 � �j). Then for k � 01. (uk; vk) 2 A, i.e., h =Muk +Nvk;2. xk � uk = �k(x0 � u0) and yk � vk = �k(y0 � v0);



1053. jxk � ukj = �kjx0 � u0j � jx0 � u0j and jyk � vkj = �kjy0 � v0j � jy0 � v0j.Proof Statements 1 and 2 are proven in Zhang (1994, Lemma 4.1). Statement3 follows immediately from Statement 2 and the fact that 0 � �k < 1.Lemma 4.1.5 Let (x0; y0) 2 IRn++ � IRn++; (u0; v0) 2 A; (x̂; ŷ) 2 F , and letf(xk; yk)g be generated by the algorithm in Figure 9. Then, under Assump-tions 4.1.1{4.1.2, for all k � 0,(x̂� (x0 � u0)�)>yk + (ŷ � (y0 � v0)�)>xk� x̂>ŷ + xk>yk + �k �jx0 � u0j>ŷ + jy0 � v0j>x̂+ �kjx0 � u0j>jy0 � v0j� :Proof De�ne f(uk; vk)g according to (2). Then, by Lemma 4.1.4(1), (uk; vk) 2 A,so (x̂� uk)>(ŷ � vk) � 0, by Assumption 4.1.1.Using this fact,x̂>yk + ŷ>xk + (xk � uk)>yk + (yk � vk)>xk� x̂>yk + ŷ>xk + (xk � uk)>yk + (yk � vk)>xk + (x̂� uk)>(ŷ � vk)(3) = x̂>ŷ + xk>yk + (xk � uk)>ŷ + (yk � vk)>x̂+ (xk � uk)>(yk � vk):Thus,(x̂� (x0 � u0)�)>yk + (ŷ � (y0 � v0)�)>xk= x̂>yk + ŷ>xk � (x0 � u0)>�yk � (y0 � v0)>�xk� x̂>yk + ŷ>xk � (xk � uk)>�yk � (yk � vk)>�xk (by Lemma 4.1.4(2))� x̂>yk + ŷ>xk + (xk � uk)>yk + (yk � vk)>xk� x̂>ŷ + xk>yk + (xk � uk)>ŷ + (yk � vk)>x̂+ (xk � uk)>(yk � vk) (by (3))� x̂>ŷ + xk>yk + jxk � ukj>ŷ + jyk � vkj>x̂+ jxk � ukj>jyk � vkj(since (x̂; ŷ) � 0)= x̂>ŷ + xk>yk + �k(jx0 � u0j>ŷ + jy0 � v0j>x̂+ �kjx0 � u0j>jy0 � v0j)(by Lemma 4.1.4(3)):Lemma 4.1.6 Let f(xk; yk)g be generated by the algorithm in Figure 9 in sucha way that �0 � xk>yk for some �0 > 0. Further, let (x�; y�) be a solutionto HLCP(M;N; h). If for some i, x�i > 0, then the sequence fyki g is bounded.Similarly, if y�i > 0, then fxki g is bounded.



106Proof De�ne ~x := x� � (x0 � x�)� and ~y := y� � (y0 � y�)�. By applyingLemma 4.1.5 with (x̂; ŷ) = (u0; v0) = (x�; y�), and noting that x�>y� = 0, we get~x>yk + ~y>xk� xk>yk + �k(jx0 � x�j>y� + jy0 � y�j>x� + �kjx0 � x�j>jy0 � y�j)� �0 + jx0 � x�j>y� + jy0 � y�j>x� + jx0 � x�jjy0 � y�j =: C:Thus, nXi=1 �~xiyki + xki ~yi� � C:(4)Now, ~yi = min(y0i ; y�i ) � 0 and ~xi = min(x0i ; x�i ) � 0. So, each term on the leftside of (4) is nonnegative. Therefore, for all i,xki ~yi � C; and ~xiyki � C:Thus, if ~yi > 0, then fxki g is bounded. Similarly, if ~xi > 0, then fyki g is bounded.The next lemma is the counterpart to Zhang (1994, Lemma 6.1).Lemma 4.1.7 Let f(xk; yk)g be generated by the algorithm in Figure 9 in sucha way that �0 � xk>yk � ��k for some �0; � > 0. For any (x�; y�) 2 S, let(u0; v0) := (x�; y�) and generate f(uk; vk)g according to (2). Then there existsK > 0 such that jxk � ukj>yk + jyk � vkj>xkxk>yk � K:Proof Partition the indices f1; : : : ; ng as follows:H1 := fi : x0i � x�i ; y0i � y�i g; H2 := fi : x0i < x�i g; H3 := fi : y0i < y�i g:. Note that H2 TH3 = ; since one of x�i and y�i is zero for each i and (x0; y0) isstrictly positive.By Lemma 4.1.4(2), xki � uki = �k(x0i � x�i ) and yki � vki = �k(y0i � y�i ), socjxki � uki j = ( (xki � uki ); for i 2 H1 SH3;(uki � xki ); for i 2 H2;jyki � vki j = ( (yki � vki ); for i 2 H1SH2;(vki � yki ); for i 2 H3:



107By Lemma 4.1.6, i 2 H2 ) x�i > 0 ) fyki g is bounded ) fvki g is bounded.Similarly, for i 2 H3, fxki g and fuki g are bounded. Thus, there exists K1 > 0 suchthat jyki + vki j < K1 for i 2 H2, and jxki + uki j < K1 for i 2 H3. Thus,jxk � ukj>yk + jyk � vkj>xk= Xi2H1 n(xki � uki )yki + (yki � vki )xki o+ Xi2H2 n(uki � xki )yki + (yki � vki )xki o+ Xi2H3 n(xki � uki )yki + (vki � yki )xki o= xk>yk � uk>vk + Xi2H1(xki � uki )(yki � vki )(5) + Xi2H2(uki � xki )(yki + vki ) + Xi2H3(xki + uki )(vki � yki )� xk>yk � uk>vk + Xi2H1 jxki � uki jjyki � vki j+K1 0@Xi2H2 jxki � uki j+ Xi2H3 jyki � vki j1ANote also that0 � x�>yk + y�>xk + (x� � uk)>(y� � vk) (By Assumption 4.1.1)= x�>y� + (xk � uk)>y� + (yk � vk)>x� + uk>vk(6) � jxk � ukj>y� + jyk � vkj>x� + uk>vk (since x�>y� = 0)Combining (5) and (6), we getjxk � ukj>yk + jyk � vkj>xk� xk>yk + jxk � ukj>y� + jyk � vkj>x� + Xi2H1 jxki � uki jjyki � vki j+ Xi2H2 jxki � uki jK1 + Xi2H3K1jyki � vki j� xk>yk + �k 0@jx0 � u0j>y� + jy0 � v0j>x� + Xi2H1 jx0i � u0i jjy0i � v0i j+ Xi2H2 jx0i � u0i jK1 + Xi2H3K1jy0i � v0i j1A (By Lemma 4.1.4(3)).So, jxk � ukj>yk + jyk � vkj>xkxk>yk



108� 1 + 1� 0@jx0 � u0j>y� + jy0 � u0j>x� + Xi2H1 jx0i � u0i jjy0i � v0i j+ Xi2H2 jx0i � u0i jK1 + Xi2H3K1jy0i � v0i j1A =: K:We are now ready to discuss Zhang's second algorithm. This algorithm isidentical to Zhang's �rst algorithm except that the steplength �k is de�ned moreprecisely. We use the following merit function:�(x; y) := x>y + kMx+Ny � hk:For convenience we make several additional de�nitions:x(�) := xk + ��xk; y(�) := yk + ��yk;�(�) := �(x(�); y(�)); �k := �(xk; yk):The steplength �k is chosen so as to minimize the merit function �(�) subject tothe following constraints: � 2 [0; 1];(7) x(�) > 0; y(�) > 0;(8) x(�)>y(�) � (1� �)�kx0>y0;(9) x(�)iy(�)i � (=n)x(�)>y(�); i = 1; : : : ; n:(10)where  2 (0; 1) is chosen so that  � min(X0Y 0e)=(x0>y0=n).Condition (9) implies that xk>ykx0>y0 � �k:(11)Zhang's second algorithm is given in Figure 10.Note that Zhang's second algorithm is a special case of his �rst algorithm, so allthe lemmas proved for the algorithm in Figure 9 also apply for to the algorithmin Figure 10. In particular, since �k is a decreasing sequence, it follows thatxk>yk � �0, for all k. We now show that the Zhang's second algorithm achievesglobal Q-linear convergence from any strictly positive starting point.Theorem 4.1.8 Let f�kg be generated by the algorithm in Figure 10 with �ksatisfying 0 < � � �k � 1=2. Then f�kg converges to zero at a global Q-linearrate, i.e., there exists � 2 (0; 1) such that�k+1 � (1 � �)�k; k = 0; 1; 2; � � � :



109Figure 10: Zhang's Second AlgorithmGiven (x0; y0) > 0, for k = 0; 1; 2; : : :, do1. Choose �k 2 [0; 1) and let �k = 1nxk>yk. Solve the linear system (1) for(�xk;�yk)2. Set the steplength �k by minimizing �(�) subject to the constraints (7).Let xk+1 = xk + �k�xk, and yk+1 = yk + �k�yk.The proof is nearly identical to Zhang's proof except that we can no longer dependon (xk�uk) and (yk�vk) being nonnegative. To compensate, we rede�ne Zhang'sconstants �k and �k using absolute values as follows:�k :=  n!1=2 jxk � ukj>yk + jyk � vkj>xkxk>yk ;(12) �k := 1� 2�k + �k2 + 2�kjx0 � u0j>jy0 � v0jx0>y0 ;(13)With these de�nitions, the remainder of the proof is identical to Zhang's exceptthat we use the following lemma in place of Zhang (1994, Lemma 6.2).Lemma 4.1.9 Let f(xk; yk)g and f(�xk;�yk)g be generated by the algorithm inFigure 10 and let Dk := (Y k)1=2(Xk)�1=2. ThenDk�xk2 + (Dk)�1�yk2 � !kxk>yk;where !k := ��k +q�2k + �k�2 :Moreover, the sequence f!kg is bounded, i.e. there is a constant ! > 0 such that!k � !, for all k.Proof De�ne tk := �Dk�xk2 + (Dk)�1�yk2�1=2 :The proof is nearly identical to Zhang's proof, so we only outline the arguments,pointing out where di�erences occur. Using identical arguments to Zhang's, the



110following three inequalities are easily established. These di�er from Zhang's resultsonly by the introduction of absolute value signs:�xk>�yk � �e>(Dk)�1jyk � vkjtk�e>Dkjxk � ukjtk � (xk � uk)>(yk � vk):(14) e>Dkjxk � ukj � 0@nxk>yk 1A1=2 jxk � ukj>ykxk>yk ;and e>(Dk)�1jyk � vkj � 0@nxk>yk 1A1=2 jyk � vkj>xkxk>yk :Combining these inequalities,�xk>�yk � �0@nxk>yk 1A1=2 jxk � ukj>yk + jyk � vkj>xkxk>yk tk� (xk�uk)>(yk�vk);which by (12) is equivalent to�xk>�yk � �(xk>yk)1=2�ktk � (xk � uk)>(yk � vk):(15)By Lemma 4.1.4(2) and (11),(xk � uk)>(yk � vk) = (�k)2(x0 � u0)>(y0 � v0)� (�k)2jx0 � u0j>jy0 � v0j(16) � �kxk>ykjx0 � u0j>jy0 � v0jx0>y0 :Now, using identical logic as Zhang,xk>yk[1� 2�k + �2k=]� (tk)2 + 2�xk>�yk(17) � (tk)2 � 2(xk>yk)1=2�ktk � 2(xk � uk)>(yk � vk) (by (15))� (tk)2 � 2(xk>yk)1=2�ktk � 2�kxk>ykjx0 � u0j>jy0 � v0jx0>y0 (by (16)):Thus, from (13), tk2 � 2(xk>yk)1=2�ktk � xk>yk�k � 0:The remainder of the proof is identical to Zhang's proof, except that Lemma 4.1.7is used in place of Zhang (1994, Lemma 6.1).



1114.2 Wright's Algorithm for the Linear Comple-mentarity ProblemIn Wright (1994), a locally Q-subquadratic algorithm is presented for solvingthe LCP which is based on Zhang's algorithm for solving the HLCP. In fact,Wright's algorithm is a special case of Zhang's �rst algorithm. Unfortunately,Wright's convergence results, like Zhang's, su�er from the same restriction on thestarting point (x0; y0) (see Assumption 4.1.3). In this section, we will removethis assumption so that Wright's results will apply to arbitrary strictly positivestarting points.Again, it is desirable to be consistent with the notation used in Wright's paper.We therefore restate the linear complementarity problem as follows:LCP(M;�h): Find (x; y) 2 IRn � IRn such thaty =Mx � h; (x; y) � (0; 0); x>y = 0:Note that this is a special case of HLCP(M;N; h) with N = �I.The calculation of the search direction in Wright's algorithm is exactly thesame as in Zhang's algorithms. By substituting N = �I into (1), we get thefollowing equation for calculating the search direction (�xk;�yk)." M �IY k Xk # " �xk�yk # = " h�Mxk + yk�XkY ke+ �k�ke # :(18)The same substitution into the merit function gives us �(x; y) := x>y +ky �Mx + hk. The de�nitions of �k;Xk; Y k; x(�), and y(�) are unchanged.The di�erence in Wright's algorithm is that the constraints placed on thesteplength are relaxed in order to achieve local Q-subquadratic convergence. Giventhe parameters k 2 (0; 1), and �k 2 [0; 1), the steplength �k is calculated by min-imizing the function �(�) := �(x(�); y(�)) subject to the following constraints:� 2 [0; 1];(19) x(�) > 0; y(�) > 0;(20) x(�)>y(�) � (1 � �k)(1 � �)�kx0>y0;(21) x(�)iy(�)i � (k=n)x(�)>y(�); i = 1; : : : ; n:(22)The condition (21) is a relaxation of the condition (9) enforced by Zhang'ssecond algorithm. Setting �k > 0 allows the reduction in the complementaritygap to exceed the reduction in the feasibility, thereby allowing larger steps. Notethat by setting �k = 0 we get Zhang's algorithm.



112Another notable di�erence is that Wright's algorithm can use a di�erent kat each iteration in condition (22). In fact, the local Q-subquadratic convergenceis dependent on being able to choose successively smaller choices of k at eachiteration.The complete algorithm is given in Figure 11.Figure 11: Wright's AlgorithmGiven  2 (0; 1=2); � 2 (0; 1=2); � 2 (0; ),� > 0, and (x0; y0) > (0; 0); with x0iy0i � 2�0;t0 1; 0  2;for k = 0; 1; 2; : : :if �k := �(xk; yk) � �then Compute a \fast" step by setting �k  �k; �k  tk ,and k  (1 + tk) and solving (18){(19)to calculate (�xk;�yk) and �k;if �(xk + �k�xk; yk + �k�yk) � ��kthen (xk+1; yk+1) (xk; yk) + �k(�xk;�yk)tk+1  tk + 1;go to next k;end ifend ifCompute a \safe" step by setting �k 2 [�; 1=2]; �k = 0,and k = k�1, and solving (18){(19)to calculate (�xk;�yk) and �k;(xk+1; yk+1) (xk; yk) + �k(�xk;�yk)tk+1  tk;go to next k;end for.At each iteration, either a safe step or a fast step is taken. A safe step worksexactly like Zhang's algorithm; we set �k = 0 and hold k constant for the nextiteration. A fast step works by setting �k > 0 and �k = �k. It is these faststeps that allow the algorithm to attain local Q-subquadratic convergence. Un-fortunately, a fast step requires reducing the size of k for subsequent iterations.Therefore, the fast step is only taken if it results in a signi�cant decrease in �. Ifit doesn't, the step is discarded and a \safe step" is taken instead.



113We again will �nd it convenient to refer to the sets S;A, and F de�ned earlier.For convenience we restate their de�nitions here with N = �I:S = f(x; y) 2 IR2n : y =Mx� h; (x; y) � 0; x>y = 0g; i.e., the solution set;A = f(x; y) 2 IR2n : y =Mx� hg;F = f(x; y) 2 A : (x; y) � 0g; i.e., the set of feasible points;Wright proves two convergence results for his algorithm. First, he shows thatthe algorithm has global Q-linear convergence. Second, he shows that the al-gorithm attains local Q-subquadratic convergence. His results are based on thefollowing explicit assumptions:Assumption 4.2.1 M is positive semide�nite.Assumption 4.2.2 LCP(M;�h) has a strictly feasible point (�x; �y).Assumption 4.2.3 The solution set for LCP(M;�h) is nonempty and, more-over, there is a strictly complementary solution (x�; y�).Wright's results, like Zhang's, are also dependent on Assumption 4.1.3. Theseassumptions are more restrictive than Zhang's assumptions. Assumption 4.2.1is equivalent to Assumption 4.1.1 in the case of LCP, but Assumption 4.2.2 isstronger than Assumption 4.1.2. In fact, Zhang's assumptions are su�cient toprove the global Q-linear convergence. However, Wright's more restrictive as-sumptions are used to prove the local Q-subquadratic convergence. We nowproceed to prove global Q-linear convergence of Wright's algorithm using onlyAssumptions 4.1.1{4.1.2.Note that since Wright's algorithm is a special case of Zhang's �rst algorithm,Lemmas 4.1.4{4.1.7 are applicable for it. We shall also need the following resultfrom Wright (1994):Lemma 4.2.4 Let �̂ := Q1k=0(1 � �k) where �k is de�ned in Figure 11, and let�k := xk>yk=n. Then �̂ > 0 and�k � �̂�k�0; andxk>yk � �̂�kx0>y0:Proof (Wright 1994), Lemmas 3.1 and 3.2.



114We now de�ne the quantities �̂k; �̂k, and !̂k, which we use to establish theconvergence rates: �̂k :=  nk!1=2 jxk � ukj>yk + jyk � vkj>xkxk>yk ;�̂k := 1 � 2�k + (�k)2k + 2�kjx0 � u0j>jy0 � v0j�̂x0>y0!̂k := ��̂k +q(�̂k)2 + �̂k�2 :Note the similarity to the de�nitions of �k and �k in, (12), (13). �̂k is identical to�k except that it has k in the denominator instead of . �̂k di�ers from �k onlyby dividing the last term by �̂.Lemma 4.2.5 Let f(xk; yk)g and f(�xk;�yk)g be generated by the algorithm inFigure 11 and let Dk := (Y k)1=2(Xk)�1=2. ThenDk�xk2 + (Dk)�1�yk2 � !̂kxk>yk:(23)Moreover, the sequence f!̂kg is bounded.Proof We can make minor modi�cations to the proof of Lemma 4.1.9 to prove(23). These changes are as follows:1. Replace �k; �k, and !k by �̂k; �̂k, and !̂k, respectively.2. Replace (16) with the inequality(xk � uk)>(yk � vk) � �kxk>ykjx0 � u0j>jy0 � v0j�̂x0>y0 :(24)which we justify by Lemmas 4.1.4(2) and 4.2.4.3. Replace the last line of (17) withxk>yk[1� 2�k + �2k=k]� (tk)2 � 2(xk>yk)1=2�̂ktk � 2�kxk>ykjx0 � u0j>jy0 � v0j�̂x0>y0by (24):



115To show that f!̂g is bounded, observe that f�̂kg is bounded. Moreover, by Lemmas4.1.7 and 4.2.4,j�̂kj =  nk!1=2 jxk � ukj>yk + jyk � vkj>xkxk>yk �  n!1=2K;so f�̂kg is also bounded. Hence, f!̂kg is bounded.We can now state the global Q-linear convergence theorem.Theorem 4.2.6 Under Assumptions 4.1.1{4.1.2, there is a constant � 2 (0; 1)such that �k+1 � (1 � �)�k; k = 0; : : : ;that is, the Wright's algorithm converges globally and Q-linearly.Proof The proof is identical to the proof of Wright (1994, Theorem 4.2) butusing �̂k; �̂k, and !̂k in place of �k; �k, and !k, and also using Lemma 4.2.5 in placeof Wright (1994, Lemma 4.1).We now turn our attention toward proving global Q-subquadratic convergence.We shall need to use Wright's stronger assumptions 4.2.1{4.2.3.We �rst prove two lemmas which place bounds on the iterates (xk; yk). Weneed the following de�nitions:B = fijx�i > 0g; N = fijy�i > 0g:where (x�; y�) is the strictly complementary solution guaranteed by Assump-tion 4.2.3. Note that N SB = f1; 2; : : : ; ng and N TB = ;.Lemma 4.2.7 Let f(xk; yk)g be generated by the algorithm in Figure 11. Thereis a constant C1 > 0 such thati 2 N ) xki � C1�k; yki � =C1;i 2 B ) yki � C1�k; xki � =C1:(25)Proof De�ne ~x := x�� (x0�x�)� and ~y := y�� (y0� y�)�, where (x�; y�) is thestrictly complementary solution guaranteed by Assumption 4.2.3. By applyingLemma 4.1.5 with (x̂; ŷ) = (u0; v0) = (x�; y�), and noting that x�>y� = 0, we get~x>yk + ~y>xk� xk>yk + �k(jx0 � x�j>y� + jy0 � y�j>x� + jx0 � x�j>jy0 � y�j)= xk>yk  1 + �k  jx0 � x�j>y� + jy0 � y�j>x� + jx0 � x�j>jy0 � y�jxk>yk !!� �C1xk>yk; by Lemmas 4.1.4(3) and 4.2.4;



116where �C1 :=  1 + jx0 � x�j>y� + jy0 � y�j>x� + jx0 � x�j>jy0 � y�j�̂x0>y0 ! :Thus, nXi=1 �~x>i yki + xki >~yi� � n �C1�k:(26)Now, ~yi = min(y0i ; y�i ) � 0 and ~xi = min(x0i ; x�i ) � 0. So, each term on the leftside of (26) is nonnegative. Therefore,xki ~yi � n �C1�k; and ~xiyki � n �C1�k:Note further that for i 2 N , ~yi > 0, soxki � n �C1~yi �k;Similarly, for i 2 B; ~xi > 0 and yki � n �C1~xi �k;Finally, we obtain our result by takingC1 := n �C1max maxi2B 1~xi ;maxi2N 1~yi! :Then for i 2 B;xki � C1�k; and by (22)xki yki � k�k ) yki � k�kxki � kC1 � C1 :Similarly, for i 2 N; yki � C1�k and xki � =C1:Lemma 4.2.8 Let f(xk; yk)g be generated by the algorithm in Figure 11. Thereis a constant C2 > 0 such that0 < xki � C2; 0 < yki � C2:(27)



117Proof De�ne �x := �x�(x0��x)� and �y := �y�(y0� �y)�, where (�x; �y) is the strictlyfeasible point guaranteed by Assumption 4.2.2. Note that (�x; �y) > 0. Now, byapplying Lemma 4.1.5 with (x̂; ŷ) = (u0; v0) = (�x; �y), we get�x>yk + �y>xk� �x>�y + xk>yk + �k(jx0 � �xj>�y + jy0 � �yj>�x+ jx0 � �xj>jy0 � �yj)� �x>�y + x0>y0 + jx0 � �xj>�y + jy0 � �yj>�x+ jx0 � �xj>jy0 � �yj=: �C2:Hence, 0 < yki � �C2�xi ; 0 < xki � �C2�yi ; i = 1; 2; : : : ; n:The result is obtained by settingC2 := �C2max maxi=1;:::;n 1�xi ; maxi=1;:::;n 1�yi! :The remainder of Wright's results can now be proved simply by replacing allreferences to Wright (1994, Lemmas 3.4 and 3.5) by references to our Lemmas4.2.7 and 4.2.8.Theorem 4.2.9 Under Assumptions 4.2.1{4.2.3, there is an �̂ > 0 such that if�K is the smallest integer such that � �K � �̂, then1. the algorithm will take fast steps at iteration �K and at all subsequent itera-tions, and2. the sequences f�kg and f�kg converge Q-subquadratically to zero.Proof The proof is identical to the proof of Wright (1994, Theorems 6.3 and6.4), but using Lemmas 4.2.7 and 4.2.8 in place of Wright (1994, Lemmas 3.4 and3.5).Corollary 4.2.10 The algorithm in Figure 11 has local Q-subquadratic conver-gence.Proof Follows immediately from Theorem 4.2.9.



1184.3 Algorithm for Linear MCPWe now turn our attention to the linear mixed complementarity problem. Toemploy the infeasible interior-point methodology, we reformulate the LMCP asfollows: LMCP(M; q; IB): Given M 2 IRn�n; q 2 IRn; �nd a vectortriple (z;w; v) 2 IRn � IRn � IRn such thatw � v =Mz + q;z 2 IB ; w � 0; v � 0hz � l; wi = 0 and hu� z; vi = 0:The algorithm presented in this section makes the additional assumption thatfor each index i, at least one of li and ui is �nite. This restriction was motivated bya desire to avoid complications imposed by a lineality space. Without this restric-tion, an adaptation of our analysis would seem to require an additional assumptionregarding the invertibility of a submatrix over the lineality space. However, Cao &Ferris (1995a) show that such an assumption is unnecessary by using a reductiontechnique to remove the lineality. Unfortunately, the linear algebra involved inthis approach would seem to make it impractical in this context.In the analysis of this section, it will be convenient to de�ne a generalizedinner product h(�; �); �i : IRn � IRn � IRn ! IR, byh(w; v); zi := Xi2fi:li>�1gwi(zi � li) + Xi2fi:ui<1g vi(ui � zi):The �rst step in deriving an algorithm of the LMCP is to reformulate it as anLCP. To do this, we �rst make some observations about LMCP(M; q; IB). Let uspartition the indices according to which bounds are �nite.H := fi : �1 < li; ui <1g; J := fi : ui =1g; K := fi : li = �1g:Note that H;J , and K are disjoint and further that H SJ SK = f1; : : : ; ng.Without loss of generality, we can assume that the rows and columns of M andthe vectors q; l, and u are ordered so that the indices in H occur �rst, those in Joccur second, and those in K occur last. Let p; s, and t be the cardinality of thesets H;J , and K respectively.Note that if (z�; w�; v�) is a solution to LMCP(M; q; IB), then w�K = 0, andv�J = 0. Thus, we can remove wK and vJ from the problem. This motivates thede�nition of the setG1 := f(w; v) 2 IRn � IRn : wK = 0; vJ = 0g:



119We now de�ne an invertible linear map L : G1! IRp+s � IRp+t byL(w; v) := (ŵ; v̂);where ŵ := " wHwJ # and v̂ := " vHvK # :Our plan now is to create an algorithm that generates iterates f(zk; ŵk; v̂k)g suchthat f(zk; wk; vk)g := f(zk; L�1(ŵk; v̂k))g converges to a solution (z�; w�; v�) ofLMCP(M; q; IB). To do this, we exploit the fact that LMCP(M; q; IB) can bereformulated as an LCP with higher dimension.De�ne the mapsX : IRn �G1 ! IRn+p := (z;w; v) 7! (zH � lH; zJ � lJ ; uK � zK; vH);Y : IRn � G1! IRn+p := (z;w; v) 7! (wH ; wJ ; vK; uH � zH):In order to refer to the last p components of X and Y, we de�ne the set of indicesĤ = H + n. For example, if x = X (z;w; v), then xĤ = vH . Now, de�ne the setG2 := f(x; y) 2 IRn+p � IRn+p : xH + yĤ = uH � lHg:We can now de�ne an invertible linear map T : IRn � G1 ! G2 by the relationT (z;w; v) := (X (z;w; v);Y(z;w; v)):Using this mapping, the LMCP can be reformulated as follows:(x; y) := T (z;w; v);(28) M̂ := 26664 MHH MHJ �MHK IMJH MJJ �MJK 0�MKH �MKJ MKK 0�I 0 0 0 37775 ;(29) ĥ := 26664 �qH �MHHlH �MHJ lJ �MHKuK�qJ �MJH lH �MJJ lJ �MJKuKqK +MKH lH +MKJ lJ +MKKuK�uH + lH 37775 ; m := n + p:(30)With these de�nitions, LMCP(M; q; IB) is equivalent to the linear complemen-tarity problem formed by replacingM , h, and n in LCP(M;�h) by M̂ , ĥ, and m,respectively. Thus, given a starting point (z0; w0; v0) 2 ri(IB � G1) we can solveLMCP(M; q; IB) simply by applying Wright's algorithm with the starting point(x0; y0) := T (z0; w0; v0). If the algorithm �nds a solution (x�; y�) of LCP(M;�h)



120with M = M̂ , h = ĥ, then (x�; y�) 2 G2 and (z�; w�; v�) := T�1(x�; y�) is asolution of LMCP(M; q; IB).Our plan now is to substitute (28){(30) into Wright's algorithm and to simplifyin order to produce an algorithm that generates iterates f(zk; ŵk; v̂k)g, such thatfor all k, T (zk; L�1(ŵk; v̂k)) = (xk; yk);where f(xk; yk)g are the iterates generated by Wright's algorithm. Throughoutour discussion, we will occasionally �nd it convenient to refer to (wk; vk). In suchcases, we are implying the relationship (wk; vk) = L�1(ŵk; v̂k).We look �rst at the equation used to calculate the search direction. Directsubstitution into (18) yields266666666666664 MHH MHJ �MHK Ip �Ip 0 0 0MJH MJJ �MJK 0 0 �Is 0 0�MKH �MKJ MKK 0 0 0 �It 0�Ip 0 0 0 0 0 0 �IpW kH 0 0 0 RkH 0 0 00 W kJ 0 0 0 RkJ 0 00 0 V kK 0 0 0 SkK 00 0 0 SkH 0 0 0 V kH 377777777777775266666666666664 �xkH�xkJ�xkK�xk̂H�ykH�ykJ�ykK�yk̂H 377777777777775(31) = 266666666666664 wkH � vkH �MH �zk � qHwkJ �MJ �zk � qJvkK +MK�zk + qK0�W kHRkHe+ �k�ke�W kJRkJe+ �k�ke�V kKSkKe+ �k�ke�V kHSkHe+ �k�ke 377777777777775(32)where R := diag(z � l), and S := diag(u� z). By the fourth row of this system,�xkH = ��yk̂H. We can thus replace the last equation of (31) with �V k�xkH +SkH�xk̂H = �V kHSkHe+ �k�ke. Removing, the fourth row and the last column, weget 2666666666664 MHH MHJ MHK Ip �Ip 0 0MJH MJJ MJK 0 0 �Is 0MKH MKJ MKK 0 0 0 ItW kH 0 0 0 RkH 0 00 W kJ 0 0 0 RkJ 00 0 �V kK 0 0 0 SkK�V kH 0 0 SkH 0 0 0 37777777777752666666666664 �xkH�xkJ��xkK�xk̂H�ykH�ykJ�ykK 3777777777775(33)



121= 2666666666664 wkH � vkH �MH �zk � qHwkJ �MH �zk � qJ�vkK �MH �zk � qK�W kHRkHe+ �k�ke�W kJRkJe+ �k�ke�V kKSkKe+ �k�ke�V kHSkHe+ �k�ke 3777777777775 :(34)Finally, moving column 4 to column 6, and switching rows 6 and 7, we obtainthe equation264 M �IW IVŴ k R̂k 0�V̂ k 0 Ŝk 375264 �zk�ŵk�v̂k 375 = 264 �q �Mzk � vk + wk�R̂kŴ ke+ �k�ke�ŜkV̂ ke+ �k�ke 375 ;(35)where �zk := 264 �xkH�xkJ��xkK 375 ; �ŵk := " �ykH�ykJ # ; �v̂k := " �xk̂H�ykK # ;IW := 264 Ip 00 Is0 0 375 ; IV := 264 Ip 00 00 It 375 ;Ŵ k := " W kH 0 00 W kJ 0 # ; V̂ k := " V kH 0 00 0 V kK # ;R̂ := " RH 00 RJ # ; Ŝ := " SH 00 Sk # :We now turn our attention to the equations governing the calculation of thesteplength. Let us de�ne the merit function (z; ŵ; v̂) := �(x; y); where (x; y) = T (z;w; v).Then  (z; ŵ; v̂) = h(w; v); zi+ kw � v �Mz � qk. De�nez(�) := zk + ��zk;ŵ(�) := ŵk + ��ŵk;v̂(�) := v̂k + ��v̂k:Direct substitution into (19) gives the following equations for calculating thesteplength for the LMCP algorithm:



122�k = argmin� (z(�); ŵ(�); v̂(�))(36)subject to � 2 [0; 1];(37) l < z(�) < u; and (ŵ(�); v̂(�)) > 0;(38) h(w(�); v(�)); z(�)i � (1 � �k)(1 � �)h(wk; vk); zki;(39) (z(�)i � li)w(�)i � (k=(n+ p))h(w(�); v(�)); z(�)i; i 2 H SJ;(40) (ui � z(�)i)v(�)i � (k=(n+ p))h(w(�); v(�)); z(�)i; i 2 H SK:(41)Finally, we note that from Figure 11, �k = xk>yk=m = h(wk; vk); zki=(n + p).The complete algorithm is given in Figure 12.By construction, there is a 1-1 correspondence between the iterates f(xk; yk)gof Wright's algorithm and the iterates f(zk; ŵk; v̂k)g of the LMCP algorithm. This1-1 correspondence is given by T (zk; L�1(ŵk; v̂k)) = (xk; yk). Thus, we can proveconvergence results for the iterates f(zk; ŵk; v̂k)g of the LMCP algorithm simplyby analyzing the iterates f(xk; yk)g of Wright's algorithm.We now state several convergence theorems for the LMCP algorithm. Theseresults are based on the following assumptions:Assumption 4.3.1 M is positive semide�nite.Assumption 4.3.2 LMCP(M; q; IB) has a point (�z; �w; �v) 2 I+ := f(z;w; v) : l <z < u;L(w; v) > 0; wK = 0; vJ = 0g and �w � �v =M �z + q.Assumption 4.3.3 The solution set for LMCP(M; q; IB) is nonempty and, more-over, there is a strictly complementary solution (z�; w�; v�), that is z�i = li =)w�i > 0 and z�i = ui =) v�i > 0.The following lemma shows that the above assumptions guarantee the assump-tions for the convergence of Wright's algorithm.Lemma 4.3.4 Given the relationship between LMCP(M; q; IB) and LCP(M;�h)de�ned by equations (28) { (30), (i) Assumption 4.3.1 ) Assumption 4.2.1;(ii) Assumption 4.3.2 ) Assumption 4.2.2; (iii) Assumption 4.3.3 ) Assump-tion 4.2.3;Proof (i)[x>; y>; z>; w>]M̂ [x; y; z;w]= x>MHHx+ x>MHJy + y>MJHx� x>MHKz � z>MKHx+ x>Iw�w>Ix+ y>MJJy � y>MJKz � z>MKJy + z>MKKz= [x>; y>;�z>]M [x; y;�z];
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Figure 12: LMCP AlgorithmGiven  2 (0; 1=2); � 2 (0; 1=2); � 2 (0; ), > 0, and (z0; ŵ0; v̂0) with l < z0 < u, (ŵ0; v̂0) > 0,(zi � li)wi � 2�0 for i 2 H SJ , and vi(ui � zi) � 2�0 for i 2 H SK;t0 1; 0  2;for k = 0; 1; 2; : : :if  k :=  (zk; ŵk; v̂k) �  then Compute a \fast" step by setting �k  �k; �k  tk ,and k  (1 + tk) and solving (35){(37) to calculate(�zk;�ŵk;�v̂k) and �k;if  k(zk + �k�zk; ŵk + �k�ŵk; v̂k + �k�v̂k) � � kthen (zk+1; ŵk+1; v̂k+1) (zk; ŵk; v̂k) + �k(�zk;�ŵk;�v̂k),tk+1  tk + 1;go to next k;end ifend ifCompute the \safe" step by setting �k 2 [�; 1=2]; �k  0; k  k�1and solving (35){(37) to calculate (�zk;�ŵk;�v̂k) and �k;(zk+1; ŵk+1; v̂k+1) (zk; ŵk; v̂k) + �k(�zk;�ŵk;�v̂k),tk+1  tk;(zk+1; ŵk+1; v̂k+1) (z(�k); ŵ(�k); v̂(�k));go to next k;end for.



124so M̂ is positive semide�nite whenever M is positive semide�nite.(ii) If (�z; �w; �v) 2 I+, then we can de�ne (�x; �y) := T (�z; �w; �v). Clearly, (�x; �y) > 0.Moreover,M̂ �x� ĥ = M̂ 26664 �zH � lH�zJ � lJuK � �zK�vH 37775� ĥ = 26664 MH:�z + qHMJ:�z + qJ�MK:�z � qKuH � �zH 37775 = 26664 �wH�wJ�vKu� �zH 37775 = �y:Thus, (�x; �y) is a strictly feasible point for LCP(M;�h).(iii) By a similar argument to (ii), if (z�; w�; v�) is a strictly complemen-tary solution of LMCP(M; q; IB), then (x�; y�) := T (z�; w�; v�) is a solution toLCP(M;�h). It is easy to check from Assumption 4.3.3 and the de�nition of Tthat x�i = 0 implies y�i > 0, so that (x�; y�) is strictly complementary.We can now state the following convergence theorems for the LMCP algorithm.Theorem 4.3.5 Under Assumptions 4.3.1{4.3.3, there is a constant � 2 (0; 1)such that  k+1 � (1� �) k; k = 0; 1; 2; : : : ;that is, the LMCP algorithm converges globally to a solution of LMCP(M; q; IB)at a Q-linear rate.Proof By construction,  k = �k, where �k is as de�ned in Wright's algorithm.The result follows from Theorem 4.2.6.Theorem 4.3.6 Under Assumptions 4.3.1{4.3.3, there is an �̂ > 0 such that ifK is the smallest positive integer such that  K � �̂, then1. the LMCP algorithm will take fast steps at iteration K and at all subsequentiterations, and2. the sequences f�kg and f kg converge Q-subquadratically to zero.Proof Follows directly from the de�nitions of �k and  k and Theorem 4.2.9.



1254.4 SummaryIn this chapter, we have extended the convergence results of Zhang and Wright toapply to arbitrary strictly positive starting points. This extension is important be-cause it allows the convergence theory to be applied to cases where the algorithmsare warm-started from points not satisfying Zhang's and Wright's restrictions.The extension also plays an important role in proving the convergence results ofthe LMCP algorithm presented in Section 4.3. Recall that the restriction imposedby Zhang and Wright on the starting point can easily be satis�ed simply by makingthe starting point (x0; y0) large in every component. However, in the analysis ofthe LMCP algorithm, we de�ned (x0; y0) = T (z0; w0; v0) so that (x0; y0) is requiredto lie in the range of T . In particular, xH + yĤ = uH � lH, so increases in thecomponents of xH must be o�set by decreases in the components of yĤ. Thus,for the LMCP(M; q; IB), it may not be possible to �nd a starting point that meetsthe restriction. By removing the restriction from the convergence results, thisdi�culty is eliminated.
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Chapter 5An Algorithm for Solving A�neGeneralized EquationsGiven a maximal monotone multifunction T : IRn!!IRn and a continuously di�er-entiable function F : 
 � dom(T )! IRn, the generalized equation is toGE(F; T ): �nd z 2 dom(T ) such that0 2 F (z) + T (z):If F is an a�ne function, and if T is polyhedral, then we get the a�ne generalizedequation.As was mentioned in the introduction, complementarity problems and �nitedimensional variational inequalities are special cases of the generalized equation.To date, most of the algorithmic development for generalized equations has beenfocused on the special case where T := NC , the normal cone to a convex set C. Apowerful tool for addressing this special case is the normal map (Robinson 1992)given by FC(x) := F (�C(x)) + x� �C(x):(42)In fact, the normal map is the basis for MILES (Rutherford 1993) and PATH(Dirkse & Ferris 1995b), two of the most successful algorithms available for solvingnonlinear MCPs.In this chapter, we use the algorithmic framework of Eaves (1976) to generatean algorithm for determining zeros of coherently oriented piecewise a�ne maps.As special cases of this algorithm, we obtain the a�ne variational inequality al-gorithm of Cao & Ferris (1995b) and an algorithm for solving a�ne generalizedequations. To demonstrate these special cases, we introduce the T -map, a gen-eralization of the normal map, which can be used to solve generalized equations



127involving operators T that do not necessarily correspond to the normal cone toany set.In Section 5.1, we present a path following algorithm for piecewise a�ne mapsand prove that under the assumption of coherent orientation, the algorithm �ndsa zero after a �nite number of steps. In Section 5.2, we de�ne the T -map forgeneral F and T and prove several useful properties regarding this map. Theremainder of the chapter focuses on the case where T is polyhedral and can beviewed as an extension of the special case where T := NC , with C polyhedral.In particular, it is shown that the previously described algorithm is applicable tothis case, and generates an algorithm for a�ne generalized equations. Section 5.4addresses the special case where T is separable. Finally, in Section 5.5 we discusshow the algorithm can be applied to the piecewise linear-quadratic programmingproblem.5.1 Algorithm for Finding Zeros ofM-PA MapsThe theoretical basis for the algorithm of this section is derived from the the-ory of piecewise-linear homotopies given in Eaves (1976). Our motivation wasto generalize the algorithm for solving a�ne variational inequalities over convexpolyhedral sets that was described in Cao & Ferris (1995b).In order to describe the algorithm carefully, some preliminary de�nitions arerequired to set up our framework.De�nition 5.1.1 (cell) A polyhedral convex set � � IRn is called a cell. Ifdim(�) = k then � is called a k-cell. Let � := fxjAx � ag, where A 2 IRp�n, anda 2 IRp, with p a nonnegative integer. Then (p;A; a) is said to represent �. If p isthe smallest number for which a representation of � exists, then (p;A; a) is calleda minimal representation of �. A set � 2 IRn is called a face of � if for some setof indices � � f1; : : : ; pg, � = fx 2 � : A��x = b�g. If dim(� ) = i, then � is calledan i-face of �.Clearly any cell has a minimal representation.De�nition 5.1.2 (piecewise a�ne) Let M be a collection of n-cells and letM := S�2M �. A function F :M ! IRm is said to be piecewise-a�ne with respectto M, denoted M-PA, if for each � 2 M, Fj� (i.e. the restriction of F to �) isa�ne. If F isM-PA for someM satisfying the above assumptions, then we saythat F is piecewise a�ne.



128Note that in the above de�nition, if M is convex, then the function F mustbe continuous on M . Furthermore, in contrast to the work of Eaves (1976),M isnot required to correspond to a subdivided manifold.De�nition 5.1.3 (function representation) Let M be a collection of n-cellsin IRn, let F be aM-PA function, and let � be an n-cell ofM. Let b� 2 IRm andlet B� be an m�n matrix. (B�; b�) is said to represent F on � if F (x) = B�x+b�for all x 2 �.We now describe an algorithm to �nd a zero of an M-PA function G, for agiven collection of cells M. We will assume that representations of the cells ofM and of the map G have already been constructed. The basis of the algorithmis to construct a piecewise a�ne homotopy mapping F (x; �) with the followingproperties1. (x�; 0) is a zero of F if and only if x� is a zero of G.2. A point (x1; �1), and a direction (d1;�1) is known such that �1 � 0 andF (x1 � �d1; �1 + �) = 0 for all � � 0.The algorithm uses a method described by Eaves (1976) to trace the zero curveof F , proceeding in the direction (d1;�1) from the starting point (x1; �1). Toprove that the algorithm �nds a solution in a �nite number of steps, we restrictourselves to the case where G is coherently oriented:De�nition 5.1.4 (coherent orientation) Let G be anM-PA map with repre-sentation (B�; b�) on each � 2 M. We say that G is coherently oriented ifsgn(det(B�))is nonzero and constant for all � inM, wheresgn(x) := 8><>: �1 x < 00 x = 01 x > 0:Since M is �nite and S�2M � = IRn, it follows that IRn = S�2M rec(�), andfurther that there is a � such that int(rec(�)) 6= ;. Choose d such that �d 2int(rec(�)). Then for any x0 in IRn, and for all � su�ciently large, x0��d 2 int(�).In the AVI algorithm described by Cao and Ferris, the cell � and the directiond were constructed by �nding an extreme point xe of the set C. The cell was thengiven by � := xe + NC(xe), and the direction d was chosen such that �d was in



129the interior of NC(xe). For our algorithm, rather than constructing the cell anddirection, we can rely instead on the fact that since IRn = S�2M rec(�), then forany direction d, there will be a cell �d for which�d 2 rec(�d). Note further that foreach cell �, the boundary rec(�)n int(rec(�)) of rec(�) has Lebesgue measure zero.Therefore, since the number of cells is �nite, S�2M rec(�)nint(rec(�)) has measurezero. Thus, for almost all d, there will be a cell �d for which �d 2 int(rec(�d)).Thus, if x0 is any point in IRn, then for all � su�ciently large, x0 � �d will lieinterior to the cell �d. In other words, the cell can be chosen simply by picking anarbitrary d and proceeding in the direction �d until a cell �d is reached for which�d is in the recession cone of �d. For almost all d, �d will be in the interior ofrec(�d). We note, however, that for some special cases, construction of an extremepoint may still be preferable.Once d and �d have been identi�ed, the homotopy map can be constructed.Let (B; b) be the representation of G in �d. De�ne a function F : IRn � IR+ ! IRnby F (x; �) := G(x) + �Bd(43)Note that F (x; 0) = 0 exactly when G(x) = 0. Under the assumption that G iscoherently oriented, B is invertible. Let x0 := �B�1b and de�new(�) = x0 � �d:Then, since �d 2 int(rec(�d))), there exists �0 � 0 such that w(�) 2 int(�d);8� >�0. Thus, for � � �0,F (w(�); �) = G(w(�)) + �Bd= Bw(�) + b+ �Bd= B(x0 � �d) + b+ �Bd= �b� �Bd+ b+ �Bd= 0:(44)By choosing �1 > �0, x1 = w(�1), and d1 = d, we see that F satis�es the con-ditions needed for the homotopy map. We are now ready to state the algorithm,which is given in Figure 13. Note that by normalizing d in the discussion above tobe a unit vector, we can start the algorithm from the point (x1; �1) constructedabove with �1 := �d.Some comments about Algorithm AGE are in order:1. Most of the work in the algorithm is in step 8 where the direction (dk+1; vk+1)is calculated. At the end of this section in Theorem 5.1.13 we show thatBk+1 � Bk is a rank-1 matrix. Thus, an e�cient implementation of thealgorithm can be obtained by keeping the B matrices in factored form andperforming rank-1 updates of the factors at each step of the algorithm.



130Figure 13: Algorithm AGEGiven a �nite collection of n-cells M such that S�2M � = IRn, and an M-PAfunction G on IRn. Let G have representation (Bk; bk) on �k 2 M.1) [Initialization] Determine (x1; �1; �1; d1) satisfyingkd1k = 1;x1 2 int(�1);x1 � �d1 2 int(�1); 8� � 0;B1x1 + �1B1d1 + b1 = 0.2) v1 := �1.Repeat for k = 1; 2; : : :3) �k := supf�jxk + �dk 2 �k; �k + �vk � 0g.If �k = +1, then4) output(\ray termination"); return.Else5) xk+1 := xk + �kdk6) �k+1 := �k + �kvkIf �k+1 = 0 then7) output(\solution found at", xk+1); return.Else8) determine �k+1 (possibly using lexicographic ordering),dk+1, and vk+1 such thatxk+1 2 �k+1,Bk+1dk+1 + vk+1B1d1 = 0,dk+1 = 1,dk+1 points into �k+1 from xk+1,and �k+1 2 M n �k.9) goto next k.



1312. At step 8 in the algorithm, there may be more than one possible choice ofcells �k+1. However, a lexicographic ordering, as described by Eaves (1976,Section 15), can be used to resolve any ambiguity concerning which cell tochoose. The use of such a lexicographic ordering will be assumed in theconvergence proof, and will be presented in more detail in the discussionpreceding Lemma 5.1.9.3. The requirement that dk+1 = 1 is arbitrarily chosen to force the choice ofdk+1 to be unique.4. The requirement that x1 � �d1 2 int(�1); 8� � 0 guarantees that the zerocurve of F (x; �) := G(x) + �Bd1 contains a ray, and therefore assures usthat it will not have any loops. This fact will be useful in our convergenceproof. However, we shall also show that, under the assumption of coherentorientation, vk is always negative, which by itself guarantees that no loopsoccur. Thus, under the assumption of coherent orientation, it is not neces-sary to �nd a ray start. However, in future work, we will prove convergencefor a broader class of problems, in which case the ray start requirement willbe useful.The next few pages are devoted to proving the following convergence theorem:Theorem 5.1.5 LetM be a �nite collection of n-cells whose relative interiors aredisjoint and whose union is IRn. Let G be a coherently oriented,M-PA function.Algorithm AGE, using lexicographic ordering, terminates after �nitely many stepswith a zero x� of G.Proof (Outline) There are three main parts to the proof. First, we will showthat the algorithm terminates at a solution ifM is a subdivision of IRn (see Def-inition 5.1.6). This result is given in Lemma 5.1.9. Second, we will show thateven ifM is not a subdivision of IRn, there is a re�nement (see De�nition 5.1.10)N ofM that is a subdivision. This result is given in Lemma 5.1.11. Finally, weshow in Lemma 5.1.12 that if a subdivision N is a re�nement ofM, then runningthe algorithm using N will generate exactly the same path as would be generatedby usingM. Thus, the fact that the algorithm terminates at a solution using Nguarantees that it will terminate at a solution usingM.We now set about proving the three lemmas mentioned above. At this point,we recommend that the impatient reader skip ahead to Theorem 5.1.13.Our proof technique is based on the work of Eaves (1976). Eaves' analysisrelies heavily on the notion of a subdivided manifold:



132De�nition 5.1.6 (subdivided manifold) Let N be a set in some Euclideanspace, and let N be a �nite or countable collection of n-cells in that space suchthat N = S�2N �. Let ~N be the collection of all faces of elements of N . (N; ~N )is a subdivided n-manifold if1. any two n-cells of N are either disjoint or meet in a common face;2. each point of N has a neighborhood meeting only �nitely many n-cells of N ;3. each (n� 1)-cell of ~N lies in at most two n-cells;If (N; ~N ) is a subdivided n-manifold for some subdivision N , we call N an n-manifold and we call N a subdivision of N .The following lemma shows that when N = IRn, item 3 in De�nition 5.1.6 isredundant. This result was proved by Robinson (1992) in the proof of Proposition2.4. While Robinson's proposition is stated for the normal manifold, his proof isvalid for general subdivisions of IRn.Lemma 5.1.7 If N is a collection of cells whose union is IRn and if N satis�es1 and 2 of De�nition 5.1.6, then N is a subdivision of IRn.The next step in our analysis is to prove that the algorithm works wheneverM is a subdivision of IRn. In this case, by de�ning S := f�� IR+j� 2 Mg, we seethat S is a subdivision of IRn� IR+ and further that F is S-PA. The starting point(x1; �1) of the algorithm lies interior to the cell �1 := �1 � IR+ of S. Further, theray f(x1; �1)��(d1;�1)j� � 0g lies within �1. Let ~S be the collection of all facesof elements of S. Algorithm AGE is then seen to be equivalent to the algorithmdescribed by Eaves (1976, Section 10.2), with the following relationships betweenthe algorithms: Eaves' Algorithm Algorithm AGEM ~SF (x) F (x; �) := G(x) + �B1d1xk (xk; �k)�k �kvk (dk; vk)To discuss the behavior of this algorithm in more detail, we need some de�ni-tions from Eaves (1976).



133De�nition 5.1.8 (regularity) Let (N; ~N ) be a subdivided (n + 1)-manifold, letN be the collection of n-cells in ~N , and let F : N ! IRn be a N -PA map. A pointx in N is said to be degenerate (otherwise regular) if x lies in a cell � of ~N withdim(F (�)) < n. A value y in F (N) is said to be a degenerate value (otherwise aregular value) if F�1(y) contains a degenerate point.Note that if y is a regular value, then F�1(y) cannot intersect any k-cells of Swith k < n.By the assumption of coherent orientation, G is one-to-one in every n-cell ofM. Thus, dim(F (�)) = n for all (n + 1)-cells � of S. Since the starting point(x1; �1) of the algorithm is interior to �1, it is a regular point of F . According toEaves (1976, Theorem 15.13), since S is �nite, the algorithm generates, in �nitelymany steps, either a point (x�; ��) in the boundary of IRn� IR+, or a ray in F�1(0)di�erent from the starting ray. In the �rst case, we know that �� = 0, since theboundary of IRn�IR+ is IRn�f0g. It then follows, from our earlier remarks that x�satis�es G(x�) = 0. Therefore, to guarantee that the algorithm �nds a solution,we need only show that it cannot produce a ray di�erent from the starting ray.We �rst consider the case when 0 is a regular value of F . In this case, byEaves (1976, Theorem 9.1), F�1(0) is a 1-manifold which is subdivided by setsof the form �TF�1(0). Further, since F�1(0) cannot intersect any k-cells withk < n, each point on F�1(0) is in at most two (n+1)-cells of S. Thus, in step 8 ofthe algorithm, the choice of �k+1 is well-de�ned. (The only di�culty would be if(xk+1; �k+1) lies in only one (n+1)-cell �k so that no �k+1 could be selected. Butin this case, (xk+1; �k+1) would be a boundary point of IRn� IR+. Thus, �k+1 = 0,so the algorithm would have terminated in step 5.)Let (dk; vk) be the direction of the path within the (n + 1)-cell �k of S, andlet G have representation (Bk; bk) on the n-cell �k of M. Then by Eaves (1976,Lemma 12.3), the curve index, given by(sgnvk)(sgn detBk)is constant everywhere along the path. Since v1 = �1 for the starting direction(d1; v1), and since G is coherently oriented, it follows that vk is negative in eachcell that the path enters. But this means that the parameter � decreases strictlyin each cell. Thus, after �nitely many steps, we must have � = 0.When 0 is a degenerate value of F , F�1(0) may intersect a k-cell of S withk < n. Thus, in step 8 of the algorithm, there may be multiple choices for whichcell �k+1 to enter next. To address this problem, a lexicographic ordering canbe used to resolve ambiguities concerning which cell the path will enter. Such ascheme is conceptually equivalent to solving a perturbed problem, which we nowdescribe.



134Let X = [�1; : : : ; �n] be an (n+1)� n matrix such that [X; d1] is of rank (n+1). De�ne the vector [�] := (�1; �2; : : : ; �n)> (note: the superscripts here referto exponentiation). De�ne (x1(�);�1(�)) := (x1;�1) + X[�]. Since (x1;�1) inAlgorithm AGE is interior to �1, then (x1(�);�1(�)) 2 int(�1) for small enough�. Further, since (�d1; 1) 2 int(rec(�1)), (x1(�); �1(�)) + �(�d1; 1) 2 int(�1), forall � � 0. Thus, x1(�); �1(�); �1, and d1 satisfy the starting conditions needed toapply the algorithm to the perturbed problem given by0 = F (x; �)� p(�);where p(�) := F (x1(�); �1(�)). Observe thatp(�) = F (x1; �1) + [B1; B1d1]X[�]= [B1; B1d1]X[�]= Y [�];(45)where Y := [B1; B1d1]X. Y is an invertible n � n matrix, so that by Eaves(1976, Lemma 14.2), p(�) is a regular value for all � su�ciently small. Thus, bythe arguments given above for regular values, using Algorithm AGE to solve theperturbed problem will, after a �nite number of steps J , produce a point (xJ(�))such that G(xJ(�)) = p(�).Let (xk(�); �k(�)) be the sequence of points generated by the algorithm forthe perturbed problem. By the discussion in Eaves (1976, Section 15), there is asequence of matrices Xk 2 IR(n+1)�n and a sequence of points (xk; �k) such that(xk(�);�k(�)) := (xk;�k) + Xk[�] for all small �. The points (xk; �k) are exactlythe sequence of points generated by the algorithm for solving the unperturbedproblem using the lexicographic ordering. Since the algorithm terminates after Jsteps for all small �, we see that �J (�) = 0 and G(xJ (�)) = p(�). It follows that�J = 0 and further that G(xJ) = 0. Thus, using a lexicographic ordering, thealgorithm �nds a solution after a �nite number of steps.We have proved the following lemma:Lemma 5.1.9 Let M be a subdivision of IRn and AT be a coherently oriented,M-PA function. Algorithm AGE, using lexicographic ordering, terminates after�nitely many steps with a zero x� of G.We now address the case whereM is not a subdivision of IRn. We begin byproving thatM can be re�ned to produce a subdivision.De�nition 5.1.10 (re�nement) Let M and N be �nite collections of n-cells.N is said to be a re�nement of M if each cell � of M is the union of a �nitecollection of cells �i of N , and if each cell of N is contained in some cell ofM.



135The following lemma is proved by Hudson (1969, Lemma 1.5), however, usingdi�erent nomenclature. In particular, the term \subdivision" is used in place ofour term \re�nement".Lemma 5.1.11 Let M := fCig be a collection of J < 1 n-cells which coversIRn. There exists a subdivision N of IRn such that N is a re�nement ofM.We now show that using N , the algorithm follows the same path as it wouldby usingM.Lemma 5.1.12 Let G be an M-PA function, where M is a �nite collection ofrelatively disjoint n-cells whose union is IRn. Let N be a re�nement of M suchthat N is a subdivision of IRn. Then Algorithm AGE, using lexicographic ordering,will �nd a solution x� to G(x) = 0 in a �nite number of steps. Furthermore, thesequence of points generated by the algorithm using M is a subsequence of thepoints that would be generated using N .Proof Consider �rst running the algorithm using N instead ofM. ByLemma 5.1.9, the algorithm will terminate after some �nite number of steps J .The algorithm will visit a sequence of n-cells f�kg � N , and will generate asequence of points f(xk; �k)g and directions f(dk; vk)g, for k = 1; : : : ; J .Let j1 := 1 and let �1 be the unique cell in M that contains �1. Then fori = 2; : : :, let ji be the smallest index greater than ji�1 such that �ji 6� �i�1, andif ji � J , let �i be the unique cell in M that contains �ji . Let K be such thatjK = J . This process de�nes a sequence of cells f�ig; i = 1; : : : ;K and indicesfjig; i = 1; : : : ;K + 1 such that �k � �i whenever ji � k < ji+1.We will show that if the algorithm is run usingM, then the sequence of pointsf(�i; �i)g generated by the algorithm satis�es the equation (�i; �i) = (xji; �ji), foreach i. Thus, (�K ; �K) = (xJ ; �J), so the algorithm �nds a solution after a �nitenumber of steps.Let f(�i; �i)g be the sequence of directions chosen by the algorithm usingM.Clearly, since the algorithm is started at the point (x1; �1) in the direction (d1;�1),the following is true: (�1; �1) = (xj1 ; �j1), (�1; �1) = (dj1 ; vj1), and the �rst cellvisited by the algorithm is �1.We now proceed by induction: Assume that (�i; �i) = (xji ; �ji), (�i; �i) =(dji ; vji), and that, usingM, the ith cell visited by the algorithm is �i. We shallprove that (�i+1; �i+1) = (xji+1 ; �ji+1), (�i+1; �i+1) = (dji+1 ; vji+1), and that the(i+ 1)st cell visited by the algorithm is �i+1.Let (Bi; bi) be the representation of G on �i. This is also the representationof G on �k whenever ji � k < ji+1. Thus, in step 8 of the algorithm using N , the



136direction (dk+1; vk+1) chosen when entering cell �k+1 must satisfyBidk+1 + vk+1B1d1 = 0for ji � k < ji+1. Since G is coherently oriented, Bi is invertible. Further,dk+1 = 1 and, by our earlier discussion, vk+1 is negative. Thus, the direc-tion is uniquely determined by the representation. In particular, (dji ; vji) =(dji+1; vji+1) = � � � = (dji+1 ; vji+1) = (�i; �i). From this it is clear that xji+1 lies onthe ray f�i(�)j� � 0g, where �i(�) := �i + ��i. Further, xji+1 is on the boundaryof �i.If the ray f�i(�)j� � 0g contains a point in the interior of �i, then the raycannot be extended past xji+1 without exiting �i. Thus, xji+1 = �i(�i) where�i := supf�j�i(�) 2 �ig. In other words, (xji+1; �ji+1 ) = (�i+1; �i+1).If the ray f�i(�)j� � 0g does not contain an interior point of �i, then wemust resort to the lexicographic ordering to prove that xji+1 = �i(�i). Since �iand �ji+1 are relatively disjoint convex sets, there exists a separating hyperplaneHi de�ned by a vector ci, and a scalar �i such that ci>x < �i; 8x 2 int(�i),and ci>x � �i; 8x 2 �ji+1 . Suppose we run the algorithm using N to solve theperturbed problem G�(x) := G(x)�p(�) = 0, where p(�) is de�ned by (45). Then,for � small enough, the algorithm will visit the same sequence of cells f�kg as itvisits in the unperturbed problem. Also, by our earlier discussion, the algorithmwill generate the sequence of points f(xk(�);�k(�))g = f(xk;�k) + Xk[�]g, wherefXkg is a �xed sequence of matrices.Since 0 is a regular value of G�, dim(G�(�k T �k+1)) � n � 1 for any k. Thus,G�1� (0) contains only one point in �k T �k+1, namely xk+1. Therefore, the directiondk+1 must point into the interior of �k+1.By similar arguments as before, xji+1 lies on the ray f�i�(�)j� � 0g, where�i�(�) := xji(�) + �(dji). But, since dk+1 points into the interior of �ji, this raymust contain a point x̂ in the interior of �i. Thus, ci>x̂ < �i. But ci>xji+1 � �isince xji+1 is in �ji+1 . It follows that ci>dji > 0. Thus, even for the unperturbedproblem, the ray �i(�) cannot be extended past the point xji+1 without crossingthe hyperplane Hi, and thereby exiting �i. Thus, xji+1 = �i(�i), and as before,(xji+1 ; �ji+1) = (�i+1; �i+1).Finally, note that for all small �, the point xji+1(�) is a regular point, so �(ji+1�1)and �ji+1 are the only n-cells of N that contain xji+1(�). Thus, �i and �i+1 arethe only n-cells of M that contain xji+1(�). Thus, for all small �, the algorithm,using M will enter cell �i+1 at the next iteration. But this means that usinglexicographic ordering the algorithm will enter cell �i+1 next when solving theunperturbed problem. Finally, since the representation of G on �i+1 is identicalto the representation of G on �ji+1 , we must have (�i+1; �i+1) = (dji+1 ; vji+1).



137The lemma is now proved by induction.This completes the proof of Theorem 5.1.5. Our �nal task in this section is toestablish the claim made in Comment 1 following Algorithm AGE.Theorem 5.1.13 Under the hypothesis of Theorem 5.1.5, let f�kg be the sequenceof cells chosen in Step 8 of Algorithm AGE using lexicographic ordering, and let(Bk; bk) represent AT on �k. Then Bk+1 �Bk has rank 1.Proof Using lexicographical ordering, the algorithm will choose the same cell�k+1 in step 8 as it would when solving the perturbed problem for small �. How-ever, 0 is a regular value for the perturbed problem, so �k := �k T�k+1 must havedimension n� 1. Now, for any two points x1; x2 2 �kBk+1(x1 � x2) = Bk(x1 � x2) =) (x1 � x2) 2 ker(Bk+1 �Bk)Thus, dimker(Bk+1 �Bk) = n� 1 so rank(Bk+1 �Bk) = 1.5.2 The T -mapThe T -map, denoted FT , is a generalization of the normal map that is formedby replacing the projection operator �C in (42) by the resolvent operator PT :=(I + T )�1. Speci�cally, the T -map is given byFT (x) := F (PT (x)) + x� PT (x):(46)Minty (1962) showed that PT is a continuous, single-valued, nonexpansive functionde�ned on all of IRn. Since the image of PT is dom(T ), it follows that FT is asingle-valued function de�ned on all of IRn.By Br�ezis (1973, Example 2.1.2), I + T is monotone, and therefore PT ismonotone. We now show that solving GE(F; T ) is equivalent to �nding a zero ofFT .Theorem 5.2.1 Given a maximal monotone multifunction T : IRn!!IRn, and afunction F : 
 � IRn ! IRn, let FT be de�ned by (46). If x is a zero of FT , thenz := PT (x) solves GE(F; T ). Conversely, if z solves GE(F; T ), then x := z�F (z)is a zero of FT :Proof Suppose FT (x) = 0 and let z := PT (x). Then 0 = FT (x) = F (z) + x� z,and �F (z) = x� z2 (I + T )(I + T )�1(x)� z= (I + T )(z)� z= T (z):



138Conversely, suppose �F (z) 2 T (z) and let x := z�F (z). Then x 2 z+T (z) = (I+T )(z), so PT (x) = (I+T )�1(x) = z. Thus FT (x) = F (z)+x�z = F (z)�F (z) = 0.So far, we have not made any assumptions on T other than that it is maximalmonotone. We now focus on the case where T is polyhedral.De�nition 5.2.2 (polyhedral) A multifunction T is polyhedral if its graph isthe union of �nitely many polyhedral convex sets.Our �rst task will be to show that, for polyhedral T , the resolvent operatorPT := (I + T )�1 is a piecewise-a�ne map.Lemma 5.2.3 A single-valued multifunction T : IRn!!IRm whosegraph is a convex polyhedron is a�ne on dom(T ).Proof Assume dom(T ) 6= ;. (Otherwise the lemma is true vacuously). Since thegraph of T is a polyhedron, T can be written as T = f(x; y)jAx+ By � cg forsome A 2 IRp�n; B 2 IRp�m, and c 2 IRp, where p is some nonnegative integer. LetK := fijAi�x + Bi�y = ci;8(x; y) 2 Tg. In words, K is the set of row indices forwhich the corresponding constraint is active for all points in T .We �rst establish the fact that kerBK� = f0g. To do this, let H := fiji 62Kg. Then for each i 2 H;9(xi; yi) 2 T with Ai�xi + Bi�yi > ci. Let (~x; ~y) =Pi2H(xi; yi)=jHj, where jHj is the cardinality of the index set H. Note that(~x; ~y) is a convex combination of points in T and is therefore also in T . Further,Ai�~x + Bi�~y > ci;8i 2 H. Now, if ŷ 2 kerBK�, then for � > 0 small enough,A~x+ B(~y + �ŷ) � c. Thus, (~x; ~y + �ŷ) 2 T . But since T is single-valued, ŷ = 0.Thus, kerBK� = f0g.Now, by the de�nition of K, we have (x; y) 2 T ) AK�x + BK�y = cK. Con-versely, suppose (x; y) satis�es AK�x + BK�y = cK. If x 2 dom(T ), then 9ŷ suchthat (x; ŷ) 2 T . But this means that AK�x + BK�ŷ = cK, which implies thatŷ � y 2 kerBK� = f0g. That is ŷ = y. We have thus shown that(x; y) 2 T , x 2 dom(T ) and AK�x+BK�y = cK:Finally, since kerBK� = f0g, BK� has a left inverse R 2 IRm�p. Thus, for x 2dom(T ), (x; y) 2 T , AK�x+BK�y = cK, y = RcK �RAK�x:So T is an a�ne function on dom(T ).



139Theorem 5.2.4 Given a maximal monotone polyhedral multifunctionT : IRn!!IRn, the resolvent operator PT := (I + T )�1 is a piecewise a�ne functionon all of IRn.Proof Since T is polyhedral, I + T is also polyhedral (Robinson 1979a) andtherefore so is PT = (I + T )�1. Thus, PT = S�i, where f�ig is a �nite collectionof polyhedral convex sets. Let Ci be the projection of �i onto the domain of PT(i.e., Ci = �1(�i), where �1 := (x; y) 7! x). De�neM := fCijdim(Ci) = ng.Since PT is de�ned on all of IRn, SCi = IRn. Let M := SCi2MCi. Since M isclosed, its complement, nM := IRn nM , is open. Thus, nM is either the empty set,or it has nonempty interior. But nM � Sdim(Ci)<n Ci. Thus, nM has no interior.In other words nM = ; and thus, M := IRn.To show that PT isM-PA, all that is needed is to show that for each Ci 2 M,the restriction of PT to Ci is a�ne. However, since PT is single-valued, the graphof PT restricted to Ci is simply the convex polyhedral set �i. By Lemma 5.2.3,PT is a�ne on Ci.Corollary 5.2.5 If T is polyhedral and F is a�ne, then the T -map, FT , de�nedby (46) is piecewise a�ne.5.3 A�ne Generalized EquationsWe now show how to apply the algorithm of Section 5.1 to construct an algorithmto solve the a�ne generalized equation:0 2 Ax� a+ T (x);(47)where A 2 IRn�n, a 2 IRn, and T is a maximal monotone polyhedral multifunction.For this problem, the T -map is given byAT := APT (x) + x� PT (x)� a:(48)As was shown in Section 5.2, for polyhedral T , AT is piecewise a�ne withrespect to some �nite collectionM of n-cells whose union is IRn. Thus, to completethe description of the algorithm for a�ne generalized equations, it remains to showhow to generate the representations.The task of constructingM is dependent upon how T is described. For exam-ple, in Robinson (1992), T is taken as the normal cone NC to a polyhedral convexset C. M is then chosen to be the normal manifold, which is de�ned in terms



140of the nonempty faces Fi of C. Speci�cally, the cells of the normal manifold arede�ned by �i := Fi +NFi;where NFi is the common value of NFi for x 2 ri(Fi). This particular choice ofcells leads to the algorithm given in (Cao & Ferris 1995b).For more general T , we assume that T is described as the union of a �nitecollection of polyhedral convex sets Ci. We can then describe PT as the union ofthe sets Si := f(x+ y; x) j (x; y) 2 Cig. By projecting each Si onto the domain ofPT , we produce a collection of sets�i := fx+ y j (x; y) 2 Cig :Further, since we know dom(PT ) = IRn, it follows that S�i = IRn. We then letM := f�i j int(�i) 6= ;g :To provide an example of this process, we return to the case where T = NC.Observe that NC = [Fi [x2Fifxg �NF = [Fi Fi �NFi:Thus, we see that NC is the union of the polyhedral convex setsCi := fx+ y j (x; y) 2 Fi �NFi g = Fi +NFi:It follows that the process described above yields the normal manifold.Robinson (1992, Proposition 2.4) proves that the normal manifold is a sub-division of IRn. However, in general, the collection of cells M generated by theabove process is not a subdivision. This can be demonstrated by the followingexample. Let C1 := n(x; 0) 2 IR2 � IR2 j x1 � 0oC2 := n(x; 0) 2 IR2 � IR2 j x1 � 0; x2 � 0oC3 := n(x; 0) 2 IR2 � IR2 j x1 � 0; x2 � 0oand let T := S3i=1Ci. Observe that T is simply the zero mapping, and is thusa maximal monotone multifunction. However, employing our procedure for con-structingM, we obtain �1 = nx 2 IR2 j x1 � 0o, �2 = nx 2 IR2 j x1 � 0; x2 � 0o,�3 = nx 2 IR2 j x1 � 0; x2 � 0o. Since �1T�2 is not a face of �1, we see thatM := f�1; �2; �3g is not a subdivision of IRn.Since PT is single-valued, then by Lemma 5.2.3, PT is a�ne on each cell �i 2M. A representation of AT on each cell is then given by (48). In order to havea workable description of these a�ne maps, it would appear necessary to exploitthe underlying structure of T . One such case is the subject of the next section.



1415.4 Separable TA particularly important class of a�ne variational inequalities is that for whichthe set C is rectangular, i.e., C is de�ned by the constraintsl � z � uwhere l and u are vectors in IRn, with li 2 [�1;1) and ui 2 (�1;1] for1 � i � n. This problem class has a number of features that are very attractive forpivotal algorithms similar to Algorithm AGE. In particular, the cells of linearity ofthe normal map are rectangular, and furthermore the normal map itself takes ona very simple form. Speci�cally, for an a�ne function F (z) := Az+ b, the matrixused to represent the normal map on any cell is formed simply by replacing someof the columns of A by the corresponding columns of the identity matrix.Rectangular variational inequalities are also attractive from a theoreticalstandpoint. In particular, if at least one of li and ui is �nite for each i, then thenormal map is coherently oriented with respect to C if and only if A is a P -matrix.De�nition 5.4.1 (Cottle et al. (1992)) A matrix A is said to be a P -matrixif all its principal minors are positive.Note that when C is rectangular, then NC(z) = N[l;u](z) = Qni=1N[li;ui ](zi).This suggests that we can extend the notion of rectangularity to generalized equa-tions by requiring that the multifunction T be separable, i.e., it is of the formT (z) = 266664 T1(z1)T2(z2)...Tn(zn) 377775 :where for each i, Ti is a maximal monotone polyhedral multifunction from IR toIR. With such a T , we shall see that the cells of linearity of the T -map AT arerectangular.We begin by looking at the resolvent operator PT = (I + T )�1. Note thatPT (x) = 266664 PT1(x1)PT2(x2)...PTn(xn) 377775 ;where for each i, PTi = (1 + Ti)�1. Since PT is a continuous piecewise a�nefunction, it follows that PTi is a a continuous piecewise a�ne function from IR



142into IR. Let ki be the number of breakpoints of PTi . Then, for some strictlyincreasing sequence of breakpoints f�ijg; j = 1; : : : ; ki and some set of coe�cientsfdij ; bijg; j = 0; : : : ; ki,PTi(x) = 8><>: di0x+ bi0 x � �i1dijx+ bij �ij � x � �i(j+1); 1 � j < kidikix+ biki �iki � x:Note that since PT is monotonic and nonexpansive, 0 � dij � 1.The breakpoint sequence de�nes a subdivision of IR given by Mi = Skij=0 �ij,where �ij = 8><>:x ������� x � �i1 j = 0�ij � x � �i(j+1) 0 < j < ki�iki � x j = ki 9>=>; :We then de�ne a subdivision of IRn by M = Qni=1Mi with n-cells de�ned by�[j1;j2;:::;jn] = �1j1 � �2j2 � : : :� �njn .Clearly, PT (and therefore AT ) isM-PA. This establishes our earlier statementthat the cells of linearity of AT are rectangular. For each cell �[j1;j2;:::;jn] of M,de�ne a diagonal matrix D[j1 ;j2;:::;jn ] by D[j1;j2;:::;jn](i; i) = diji . Further, de�ne thevector b[j1;j2;:::;jn] = [b1j1; b2j2; : : : ; bnjn ]. Then on �[j1;j2;:::;jn], PT is represented by(D[j1;j2;:::;jn ]; b[j1;j2;:::;jn]). Thus, on �[j1;j2;:::;jn], the T -map is given byAT (x) = A(PT (x)) + a+ x� PT (x)= (AD[j1;j2;:::;jn ] + I �D[j1;j2;:::;jn ])x+ (A� I)b[j1;j2;:::;jn] + a= [d1j1A�1 + (1� d1j1)I:1; d2j2A�2 + (1 � d2j2)I:2; : : : ; dnjnA�n+(1 � dnjn )I:n]x+ (A� I)b[j1;j2;:::;jn] + a=:M[j1;j2;:::;jn]x+ b̂[j1;j2;:::;jn]Thus, we see that the matrix M[j1;j2;:::;jn ] which represents AT on �[j1;j2 ;:::;jn] hascolumns which are convex combinations of columns of A and the correspondingcolumns of I.We now set about proving the main result of this section. Namely, if A is aP -matrix, then AT is coherently oriented for any separable polyhedral maximalmonotone multifunction T . We �rst need to prove two technical lemmas.Lemma 5.4.2 If A and B are n � n matrices where B is rank-1 such thatdet(A) > 0 and det(A+B) > 0, then det(A+ �B) > 0 for all � 2 [0; 1].Proof det(A+ �B) = X(j1;:::;jn)det[Cj1; : : : ; Cjn ];



143where the summation is taken over all possible choices of (j1; : : : ; jn) such thatCji is either A�i or �B�i. Since B is rank-1, the determinants in the above sum arezero for all choices that include at least two columns of �B. Thus,det(A+ �B) = detA+Pni=1 det[A�1; : : : ; �B�i; : : : ; A�n]= detA+ � (Pni=1 det[A�1; : : : ; B�i; : : : ; A�n])Thus, det(A+�B) is an a�ne function of �, which is positive at � = 0 and � = 1.Thus, it is positive for all � 2 [0; 1].Lemma 5.4.3 Let A be an n � n matrix and let fB1; : : : ; Bkg be a collection ofrank-1 n�n matrices. If det(A+�1B1+ � � �+�kBk) > 0 for all choices of �i = 0or 1, then det(A+ �1B1 + � � �+ �kBk) > 0 for all choices of �i 2 [0; 1].Proof (By induction). The lemma is true for k = 1 by Lemma 5.4.2. Now,suppose the lemma is true for all k < m, we shall prove the lemma true fork = m.Suppose fB1; : : : ; Bmg is a collection of rank-1 n�nmatrices such that det(A+�1B1 + � � � + �mBm) > 0 for all choices of �i = 0 or 1. Let Â := A + Bm. ThenÂ and fB1; : : : ; Bm�1g satisfy the conditions of the lemma for k = m� 1. Thus,if �i 2 [0; 1]; 8i, thendet((A+Bm) + �1B1 + � � �+ �m�1Bm�1) > 0:Similarly, with Â := A, we havedet(A+ �1B1 + � � �+ �m�1Bm�1) > 0:From these two results, we see that if we let ~A := A + �1B1 + � � � + �m�1Bm�1,then ~A and Bm satisfy the hypotheses for Lemma 5.4.2. Thus, for �m 2 [0; 1]0 < det( ~A+ �mBm);= det(A+ �1B1 + � � �+ �mBm):Theorem 5.4.4 If A is a P -matrix, then for any separable maximal monotonepolyhedral multifunction T , the T -map AT de�ned by (48) has the property thatin any cell of linearity, the matrix representing AT has positive determinant. Inparticular, AT is coherently oriented.



144Proof Let AT have the representation (Â; b) in the n-cell �. By the our earlierdiscussion, Â can be formed by replacing columns of A by a convex combinationof columns of A and the corresponding columns of the identity matrix. Thus, thematrix is of the form̂A = A+ �1B1 + � � �+ �nBn; �i 2 [0; 1]where Bi := (I�i �A�i)I>�i . Observe that Bi is a rank-1 matrix.Since A is a P -matrix, the matrix formed by replacing an arbitrary set ofcolumns of A by corresponding columns of the identity matrix has positive deter-minant. Thus, the matrices A;B1; : : : ; Bn satisfy the hypotheses of Lemma 5.4.3.Thus, by Lemma 5.4.3, det(Â) > 0.Corollary 5.4.5 If A is a P -matrix and T is a separable maximal monotonepolyhedral multifunction, then using lexicographic ordering, Algorithm AGE will�nd a solution to AT (x) = 0 in a �nite number of steps.5.5 Piecewise Linear-Quadratic ProgrammingWe conclude by giving an example of a well known problem in mathematicalprogramming that can be solved using the technique we have presented. Thepiecewise linear-quadratic programming problem (PLQP) is given bymin h(x) = f(x) + �(Ax);(49)where A 2 IRm�n, and f : IRn ! IRSf1g and � : IRm ! IRSf1g are convexpiecewise linear-quadratic functions.De�nition 5.5.1 A function f : IRn ! IRSf1g is piecewise linear-quadratic ifdomf is closed and convex and there exists a �nite subdivisionM of dom(f) suchthat for each � 2 M, fj� is a quadratic function.Note that domf is polyhedral, and further that since the cells in the subdivisionare closed, f is a continuous function on domf .The optimality conditions for PLQP are stated by the relation0 2 @h(x);where @ is the convex subdi�erential operator de�ned by@f(x) := fzjf(w) � f(x) + z>(w � x);8w 2 dom(f)g:



145Under appropriate constraint quali�cations (i.e. ri(A(dom(f)))T ri(dom(�)) 6= ;),then @h(x) = @f(x) +A>@�(Ax):Thus, for the optimality conditions to be satis�ed, there must be an x 2 dom(f)and y 2 @�(Ax) such that �A>y 2 @f(x). By Rockafellar (1970, Theorem 23.5),it follows that Ax 2 @��(y);where �� is the conjugate of �. The optimality conditions are then�A>y 2 @f(x)Ax 2 @��(y):Thus, if we let Â := " 0 A>�A 0 # ; T (x; y) := " @f(x)@��(y) # ;then the optimality conditions for PLQP can stated as the generalized equation� Â(x; y) 2 T (x; y):(50)The fact that T is polyhedral was shown in Sun (1986). Thus, the optimalityconditions for the piecewise linear-quadratic program can be expressed as an a�negeneralized equation, which can then be solved using our algorithm.
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Chapter 6ConclusionsIn this thesis we have developed a number of algorithmic techniques aimed atsolving mixed complementarity problems and a�ne generalized equations. First,we developed the proximal perturbation strategy, a useful tool for enhancing therobustness of descent-based algorithms for mixed complementarity problems. Weestablished the e�ectiveness of this strategy both theoretically and practically.On the theoretical side, we proved several strong global convergence results thatguarantee convergence based upon a pseudomonotonicity assumption at a solu-tion. An important characteristic of this pseudomonotonicity assumption is thatit does not preclude functions for which the associated merit function has localminima that are not global minima.On the practical side, we implemented three algorithms using the proximalperturbation strategy. All three algorithms are signi�cantly more robust than theunderlying descent-based algorithms upon which they are based. Moreover, thisincrease in robustness is achieved at virtually no cost in e�ciency. Indeed, allthree algorithms maintain the fast local convergence properties of the underlyingalgorithms. Two of these algorithms, PROXI and SEMICOMP rival PATH andSMOOTH (the current state-of-the-art) in terms of e�ciency and robustness.Therefore, we believe that the thesis demonstrates the e�ectiveness of the proximalperturbation strategy in convincing fashion.Our computational results indicate that the best algorithm using the prox-imal perturbation, PROXI, was based upon the least robust basic algorithm,NE/NEWT. This suggests a very promising approach for improving the capa-bilities of complementarity solvers for large scale problems is to use a simple (andpossibly not very robust) basic solver, and enhance its robustness using the prox-imal perturbation strategy.In addition to developing the proximal perturbation strategy, we have pro-posed and implemented extensions of several algorithms to more general problem



147classes. Of particular practical importance are the generalizations of NCP algo-rithms to produce algorithms that solve the MCP. Such generalizations are im-portant because many practical problems are more naturally formulated using theMCP framework rather than the NCP framework. Among the NCP algorithmsgeneralized in this thesis are the NE/SQP algorithm of Pang & Gabriel (1993),the semismooth equations approach of De Luca et al. (1995), and the infeasibleinterior-point algorithm of Wright (1994).The �nal algorithm presented in the thesis is a path-following algorithm that�nds zeros of piecewise a�ne maps. In particular, the algorithm can be used tosolve a�ne generalized equations. This algorithm is a generalization of the pivotalalgorithm for a�ne variational inequalities due to Cao & Ferris (1995b), and isbased in large part upon the piecewise linear homotopy theory of Eaves (1976).We showed that the algorithm generates a solution in a �nite number of iterationsassuming that the piecewise a�ne map is coherently oriented.There are several areas in which the ideas developed in this thesis warrant ad-ditional research. In particular, because the PROXI and SEMICOMP algorithmshave demonstrated computational success, it appears worthwhile to develop con-vergence results for these algorithms comparable to what we proved for the QP-COMP algorithm. Further, additional work is needed to understand how bestto control the perturbation parameter used in forming the perturbed subprob-lems. Finally, additional computational testing and experimentation are neededto develop these algorithmic techniques into mature computer codes, which willthoroughly exploit the inherent strengths of the proximal perturbation strategy.
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