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Abstract

Variational inequalities (VIs) are a generalization of nonlinear system of equations, so-called

generalized equations. In addition to the system of equations, they subsume geometric

first-order optimality conditions, nonlinear (linear) complementarity problems, and mixed

complementarity problems. Representative applications are equilibrium problems such as

generalized Nash equilibrium problems (GNEPs) and multiple optimization problems with

equilibrium constraints (MOPECs).

This thesis is concerned with algorithms and interfaces for structured variational in-

equalities and their extensions. Algorithms and interfaces are closely related to each other

in a way that interfaces helping identify problem structures can lead to more robust and

efficient algorithms, and structure-exploiting algorithms can guide us to design better

structure-exposing interfaces.

Interfaces exposing problem structures are described based on an extended mathematical

programming (EMP) framework, where the framework allows us to formulate equilibrium

problems in a natural and intuitive way in modeling languages, for example AMPL, GAMS,

or Julia, without requiring the modeler to supply derivatives. Extensions to support some

complicated structures such as shared constraints, shared variables, and quasi-variational
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inequalities (QVIs) are presented. Our interfaces generate a human-readable file from

which we can easily identify high-level structure of the problem.

We present an extension to Path and two general-purpose solvers, PathAVI and Selkie,

each of which utilizes problem structures, such as implicitly defined variables, polyhedral

constraints, and groups of interacting agents, respectively. These structures are identified

through our interfaces. An extension to Path exploits implicitly defined variables by

restoring their feasibility via projection using the implicit function theorem. Projection is

performed in both their primal and dual spaces. PathAVI is a structure-preserving solver

for affine variational inequalities such that it follows a piecewise-linear (PL) path on a

PL-manifold constructed using given polyhedral constraints without applying any reduction.

This is a key contrast to the existing solver Path which is oblivious of those constraints

except for preprocessing purposes and a QR decomposition-based method that performs

a reduction, thus destroying the structure, if there is nontrivial lineality space. Selkie is a

solver for equilibrium problems which enables various decomposition schemes based on

groups of agents information to be instantiated in a flexible and adaptable way. Parallelism

can be achieved either whenever independent groups of agents are detected or per user’s

request. A sub-solver for each sub-model can be chosen so that a highly efficient solver can

be employed tailored to a certain problem type. Examples illustrating the efficiency and

effectiveness of our extension and solvers are given.

All our interfaces and solvers have been implemented and are available within GAM-

S/EMP.
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Chapter 1

Introduction

Variational inequalities (VIs) are a generalization of nonlinear system of equations, so-called

generalized equations. In addition to the system of equations, they subsume geometric

first-order optimality conditions, nonlinear (linear) complementarity problems, and mixed

complementarity problems. Representative applications are equilibrium problems such as

generalized Nash equilibrium problems (GNEPs) and multiple optimization problems with

equilibrium constraints (MOPECs). VIs can be also used to formulate some form of equi-

librium problems with equilibrium constraints (EPECs) when the equilibrium constraints

can be represented as a system of equations in this case.

The theme of this thesis is algorithms and interfaces for structured variational inequali-

ties and their extensions. Algorithms and interfaces are closely related to each other in a

way that interfaces helping identify problem structures can lead to more robust and efficient

algorithms, and structure-exploiting algorithms can guide us to design better structure-

exposing interfaces. We show how our interfaces allow users to expose inherent structures
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of their problems and present the way our algorithms exploit those structures for improved

performance.

On the interface side, we introduce an extended mathematical programming (EMP)

framework in Chapter 2 which enables us to specify and solve equilibrium problems such as

GNEPs [29, 44] and MOPECs [10, 65] in a natural and intuitive way in modeling languages,

for example AMPL [39], GAMS [11], or Julia [6], without requiring the modeler to supply

derivatives. In contrast to the traditional way of specifying a single optimization problem

(a single agent model) in modeling languages, we need information about ownership of

equations and variables of agents in equilibrium problems. As there are multiple agents

in a single equilibrium model, we need to know which variables and equations are owned

by which agents to identify each agent’s problem. This is critical to construct correct first-

order optimality conditions as there could be interactions between agents. Extensions to

support some complicated structures such as shared constraints, shared variables, and quasi-

variational inequalities on the EMP framework are presented. The framework generates

a human-readable file using which we can easily identify a high-level structure of the

problem.

On the algorithmic side, an extension to Path [19, 37] and our two solvers, PathAVI [50]

and Selkie [48], will be introduced where they exploit problem structures such as implicitly

defined variables, polyhedral constraints, and groups of interacting agents, respectively. In

Chapter 2, we introduce an extension to Path, called spacer steps, which restores feasibility

of the primal and dual implicitly defined variables at each major iteration of Path via

the implicit function theorem. We apply our spacer steps to some economic application

formulated as EPEC, where economic state variables are implicitly defined by strategic
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policy variables. We show that performance was improved significantly via our spacer

steps.

In Chapter 3, we introduce PathAVI, a structure-preserving pivotal method for affine

variational inequalities (AVIs). To compute a solution, it solves a normal map [67] by

following a piecewise-linear (PL) path on a PL-manifold constructed using given polyhedral

constraints. As it constructs the manifold, it does not apply a reduction although there is

nontrivial lineality space thus we preserve structure of the original problem, especially

its sparsity. These are a key contrast to the existing approach Path, which is oblivious of

polyhedral constraints except for preprocessing purposes, and a QR decomposition-based

method [14] that performs a reduction if there is nontrivial lineality space. The maximum

number of pieces of the PL path of PathAVI could be significantly smaller than the ones

of Path, and feasibility of constraints is guaranteed during path following. Linear algebra

computations for pivoting could be much cheaper as sparsity is preserved. These make

PathAVI more efficient and robust solver compared to the existing approaches. Examples

comparing performance between PathAVI and Path over friction contact problems, AVIs

defined on compact sets, and Nash equilibrium problems are given. As efficient and stable

linear algebra computations play a significant role in performance of pivotal method, we

implemented block LU update [26] and compare performance between LUSOL [75] and

LUSOL and UMFPACK [18] with block LU update applied. Finally, we briefly describe

our nonlinear extension of PathAVI for nonlinear VIs.

Chapter 4 presents Selkie, a solver for equilibrium problems which enables various de-

composition schemes based on groups of agents information to be instantiated in a flexible

and adaptable way. To achieve this, it transforms a given model into a set of structure-
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exploiting sub-models via structure analysis and taking into account user’s knowledge. A

diagonalization method is then applied to those sub-models possibly with parallel computa-

tions for making full use of computational resources. Depending on the configurations of

sub-model generations and diagonalization method to use, various decomposition schemes

can be implemented. We can choose a sub-solver to use for each sub-model so that a

highly efficient solver can be employed tailored to a certain problem type. For stronger

convergence results and numerical stability, primal and dual proximal perturbations are

implemented. Examples illustrating the flexibility and effectiveness of Selkie are given.

For the rest of this chapter, we introduce basic backgrounds: i) mathematical definition

of complementarity problems and (quasi-) variational inequalities in Section 1.1; ii) GNEPs

and MOPECs described by a set of agents in Section 1.2; iii) the equivalence between

equilibrium problems and their variational forms in Section 1.3. Other backgrounds will be

provided as needed as we proceed.

1.1 Complementarity problems and variational

inequalities

We introduce QVIs, VIs, and MCPs in a finite-dimensional space. For a given continuous

function F : Rn → Rn and a point-to-set mapping K(x) : Rn ⇒ Rn where K(x) is a closed

convex set for each x ∈ Rn, x∗ ∈ K(x∗) is a solution to the QVI(K, F) if

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ K(x∗), (QVI)
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where 〈·, ·〉 is the Euclidean inner product.

If we restrict the point-to-set mapping K(·) to be a fixed closed convex set K ⊂ Rn, then

x∗ ∈ K is a solution to the VI(K, F) if

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ K. (VI)

If we further specialize to the case where the feasible region is a box B = {x ∈ Rn | li ≤

xi ≤ ui, for i = 1, . . . , n} with li ≤ ui and li ∈ R ∪ {−∞} and ui ∈ R ∪ {∞}, the VI(B, F) is

typically termed a mixed complementary problem, and it is easy to see that x∗ ∈ B is a

solution to the MCP(B, F) if one of the following conditions holds for each i = 1, . . . , n:

x∗i = li, Fi(x∗) ≥ 0,

li ≤ x∗i ≤ ui, Fi(x∗) = 0,

x∗i = ui, Fi(x∗) ≤ 0.

(MCP)

In shorthand notation, the above condition is written as l ≤ x∗ ≤ u ⊥ F(x∗). We sometimes

use MCP(x, F) when the feasible region of x is clear from the context.

1.2 Equilibrium problems: GNEPs and MOPECs

A GNEP or MOPEC is defined by a set of agents. Each agent represents either an optimiza-

tion problem or equilibrium conditions, such as market clearing conditions, formulated as

variational inequalities (VI). Mathematically, a typical equilibrium problem is defined as
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follows:
find (x∗1, x

∗
2, . . . , x

∗
N , x

∗
N+1) satisfying,

x∗i ∈ arg min
xi∈Ki(x∗

−i)
fi(xi, x∗−i), for i = 1, . . . ,N,

x∗N+1 ∈ SOL
(
KN+1

(
x∗−(N+1)

)
, F

(
xN+1, x∗−(N+1)

))
,

(1.1)

where xi and x−i represent vectors of decision variables of agent i and all the other agents

except for agent i, respectively, for i = 1, . . . ,N + 1. The function fi(·) : Rn → R is the

objective function of agent i for i = 1, . . . ,N, and a set-valued mapping Ki(·) : Rn−ni ⇒ Rni

defines agent i’s feasible region for i = 1, . . . ,N + 1, where ni is the dimension of its

decision variables with
∑N+1

i=1 ni = n. The notation SOL(K, F) represents a set of solutions

to the variational inequality VI(K, F). Throughout this thesis, we assume that fi’s are twice

continuously differentiable and F is continuously differentiable.

There could be interactions between agents in (1.1) such that decisions made by agents

could affect some other agent’s decision in the form of its feasibility, objective function

value or clearing conditions. For example, x−i could appear in the functional part of agent

i’s problem or its feasible region or both. These interactions make it hard to apply existing

theories and algorithms. Refer to [29, 44] for more details.

Note that if there are no VI agents in (1.1), then the problem is called a GNEP. Otherwise,

it is a MOPEC. For a GNEP, if each optimization agent’s feasible region is a fixed set, that

is Ki(·) ≡ Ki for i = 1, . . . ,N, then it is called a Nash equilibrium problem (NEP).

Throughout this thesis, we assume that equilibrium problems are of the form (1.1), call

it MOPEC, and there are (N + 1) number of agents where the first N agents are optimization

agents, and the (N + 1)th agent is an equilibrium agent. When there is no equilibrium

agent, then the problem becomes a GNEP. If there are no optimization agents but a single
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equilibrium agent, then the problem is a VI.

1.3 Equivalence between equilibrium problems and their

variational forms

The results described below are simple extensions of existing results found in [44]. We first

show the equivalence between the equilibrium problems and their associated QVIs.

Proposition 1.1. If fi(·, ·) is continuously differentiable, fi(·, x−i) is a convex function, and

Ki(x−i) is a closed convex set for each given x−i, then x∗ is a solution to the equilibrium

problem MOPEC if and only if it is a solution to the QVI(K, F) where

K(x) =

N+1∏
i=1

Ki(x−i),

F(x) = (∇x1 fi(x1, x−1)T, . . . ,∇xN fN(xN , x−N)T,G(xN+1, x−(N+1))T)T.

Proof. (⇒) Let x∗ be a solution to the MOPEC. For optimization agents, the first-order

optimality conditions are necessary and sufficient by the given assumption. Therefore we

have

〈∇xi fi(x∗i , x
∗
−i), xi − x∗i 〉 ≥ 0, ∀xi ∈ Ki(x∗−i), for i = 1, . . . ,N.

Also we have

〈G(x∗N+1, x
∗
−(N+1)), xN+1 − x∗N+1〉 ≥ 0, ∀xN+1 ∈ KN+1(x∗−(N+1)).
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The result follows.

(⇐) Let x∗ be a solution to the QVI(K, F). The result immediately follows from the

fact that K(x) is a product space of Ki(x−i)’s for i = 1, . . . ,N + 1. �

If each of the agents i has knowledge of a closed convex set X and use this to define

their feasible region Ki(x−i) using a shared constraint Ki(x−i) := {xi ∈ R
ni | (xi, x−i) ∈ X},

then the QVI(K, F) can be solved using a simpler VI(X, F).

Proposition 1.2. Suppose that Ki(x−i) = {xi ∈ R
ni | (xi, x−i) ∈ X} for i = 1, . . . ,N + 1

with X being a closed convex set. If x∗ is a solution to the VI(X, F) with F defined in

Proposition 1.1, then it is a solution to the QVI(K, F), thus it is a solution to the MOPEC

with the same assumptions on fi(·) given in Proposition 1.1. The converse may not hold.

Proof. (⇒) Let x∗ be a solution to the VI(X, F). Clearly, x∗ ∈ K(x∗). Suppose there exists

x ∈ K(x∗) such that 〈F(x∗), x − x∗〉 < 0. We have xi ∈ Ki(x∗
−i) so that (xi, x∗−i) ∈ X for

i = 1, . . . ,N + 1. There must exist i ∈ {1, . . . ,N + 1} satisfying 〈Fi(x∗), xi − x∗i 〉 < 0. Set

x̃ = (xi, x∗−i). Then x̃ ∈ X, but 〈F(x∗), x̃ − x∗〉 < 0, which is a contradiction.

(:) See the example in Section 3 of [44]. �

When the constraints are explicitly given as equalities and inequalities with a suitable

constraint qualification holding, we can compute a solution to the equilibrium problems

from their associated MCP and vice versa. Throughout this section, by a suitable constraint

qualification we mean a constraint qualification satisfying the Guignard constraint qualifi-

cation [41], for example the Mangasarian-Fromovitz or the Slater constraint qualification.

Also when we say a constraint qualification holds at x, we imply that it holds at xi ∈ Ki(x−i)

for each agent i.
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Proposition 1.3. Suppose that Ki(x−i) = {xi ∈ [li, ui] | hi(xi, x−i) = 0, gi(xi, x−i) ≤ 0} where

hi(·) : Rn → Rvi is an affine function, each gi(·) : Rn → Rmi is continuously differentiable

and a convex function of xi and li ≤ ui, li ∈ R
ni ∪ {−∞}ni , and ui ∈ R

ni ∪ {∞}ni . With the

same assumptions on fi given in Proposition 1.1, x∗ is a solution to the MOPEC if and only

if (x∗, λ∗, µ∗) is a solution to the MCP(B, F), assuming that constraint qualification holds at

x∗ with

B =

N+1∏
i=1

[li, ui] × Rv × Rm
− , v =

N+1∑
i=1

vi, m =

N+1∑
i=1

mi,

F(x, λ, µ) = ((∇x1 f1(x) − ∇x1h1(x)λ1 − ∇x1g1(x)µ1)T, . . . ,

(∇xN fN(x) − ∇xN hN(x)λN − ∇xN gN(x)µN)T,

(G(x) − ∇xN+1hN+1(x)λN+1 − ∇xN+1gN+1(x)µN+1)T,

h1(x)T, . . . , hN+1(x)T,

g1(x)T, . . . , gN+1(x)T)T.

Proof. (⇒) Let x∗ be a solution to the MOPEC. Using the KKT conditions of each op-

timization agent and the VI, and constraint qualification at x∗, there exist (λ∗, µ∗) such

that

∇xi fi(x∗) − ∇xihi(x∗)λ∗i − ∇xigi(x∗)µ∗i ⊥ li ≤ x∗i ≤ ui, for i = 1, . . . ,N,

G(x∗) − ∇xihi(x∗)λ∗i − ∇xigi(x∗)µ∗i ⊥ li ≤ x∗i ≤ ui, for i = N + 1,

hi(x∗) ⊥ λ∗i free, for i = 1, . . . ,N + 1,

gi(x∗) ⊥ µ∗i ≤ 0, for i = 1, . . . ,N + 1.

(1.2)

Thus (x∗, λ∗, µ∗) is a solution to the MCP(B, F).
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(⇐) Let (x∗, λ∗, µ∗) be a solution to the MCP(B, F). Then (x∗, λ∗, µ∗) satisfies (1.2).

Since the constraint qualification holds at x∗, we have NKi(x∗
−i) = {−∇xihi(x∗)λi −∇xigi(x∗)µi |

hi(x∗) ⊥ λi, gi(x∗) ⊥ µi ≤ 0} + N[li,ui](x∗i ) for i = 1, . . . ,N + 1. The result follows from

convexity. �

If the convexity assumptions on the objective functions and the constraints of optimiza-

tion agents’ problems do not hold, then one can easily check that with a suitable constraint

qualification assumption a stationary point to MOPEC is a solution to the MCP model

defined in Proposition 1.3 and vice versa. By a stationary point, we mean that x∗i satisfies

the first-order optimality conditions of each optimization agent i’s problem, and x∗N+1 is a

solution to the equilibrium agent’s problem.

Finally, we present the equivalence between QVIs and MCPs.

Proposition 1.4. For a given QVI(K, F), suppose that K(x) = {l ≤ y ≤ u | h(y, x) =

0, g(y, x) ≤ 0} where h : Rn×n → Rv and g : Rn×n → Rm. Assuming that constraint

qualifications hold, x∗ is a solution to the QVI(K, F) if and only if (x∗, λ∗, µ∗) is a solution

to the MCP(B, F̃) where

B = [l, u] × Rv × Rm
− ,

F̃(x, λ, µ) =


F(x) − ∇yh(x, x)λ − ∇yg(x, x)µ

h(x, x)

g(x, x)



Proof. By applying similar techniques used in the proof of Proposition 1.3, we get the
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desired result. �
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Chapter 2

Solving equilibrium problems using

extended mathematical programming

framework

We introduce an extended mathematical programming framework for specifying equilib-

rium problems and their variational representations, such as generalized Nash equilibrium,

multiple optimization problems with equilibrium constraints, and (quasi-) variational in-

equalities, and computing solutions of them from modeling languages. We define a new set

of constructs with which users annotate variables and equations of the model to describe

the equilibrium and variational problems. Our constructs enable a natural translation of the

model from one formulation to another more computationally tractable form without re-

quiring the modeler to supply derivatives. In the context of many independent agents in the

equilibrium, we facilitate expression of sophisticated structures such as shared constraints
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and additional constraints on their solutions. We define a new concept, shared variables,

and demonstrate its uses for sparse reformulation, equilibrium problems with equilibrium

constraints, mixed pricing behavior of agents, and so on. We give some equilibrium and

variational examples from the literature and describe how to formulate them using our

framework. Experimental results comparing performance of various complementarity

formulations for shared variables are given. Our framework has been implemented and is

available within GAMS/EMP.

2.1 Introduction

In this chapter, we present an extended mathematical programming (EMP) framework

for specifying equilibrium problems and their variational representations and computing

solutions of them in modeling languages such as AMPL, GAMS, or Julia [6, 11, 39].

Equilibrium problems of interest are (generalized) Nash equilibrium problems (GNEP) and

multiple optimization problems with equilibrium constraints (MOPEC), and we consider

quasi-variational inequalities (QVI) as their variational forms. All of these problems have

been used extensively in the literature, see for example [10, 29, 44, 65].

The GNEP is a Nash game between agents with non-disjoint strategy sets. For a given

number of agents N, x∗ = (x∗1, . . . , x
∗
N) is a solution to the GNEP if it satisfies

x∗i ∈ arg min
xi∈Ki(x∗

−i)⊂R
ni

fi(xi, x∗−i), for i = 1, . . . ,N, (GNEP)

where fi(xi, x−i) is the objective function of agent i, and Ki(x−i) is its feasible region. Note

that the objective function and the feasible region of each agent are affected by the decisions
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of other agents, denoted by x−i = (x1, . . . , xi−1, xi+1, . . . , xN). If each agent’s feasible region

is independent of other agents’ decisions, that is, Ki(x−i) ≡ Ki for some nonempty set Ki,

then the problem is called a Nash equilibrium problem (NEP).

In addition to the GNEP or NEP setting, if we have an agent formulating some equilib-

rium conditions, such as market clearing conditions, as a variational inequality (VI), we

call the problem multiple optimization problems with equilibrium constraints (MOPEC).

For example, x∗ = (x∗1, . . . , x
∗
N , x

∗
N+1) is a solution to the MOPEC if it satisfies

x∗i ∈ arg min
xi∈Ki(x∗

−i)⊂R
ni

fi(xi, x∗−i), for i = 1, . . . ,N,

x∗N+1 ∈ SOL(KN+1(x∗−(N+1)), F(xN+1, x∗−(N+1))),

(MOPEC)

where SOL(K, F) denotes the solution set of a variational inequality VI(K, F), assuming

that KN+1(x−(N+1)) is a nonempty closed convex set for each given x−(N+1) and F(x) is a

continuous function. We call agent i for i = 1, . . . ,N an optimization agent and agent

(N + 1) an equilibrium agent.

Solutions of equilibrium problems and their variational forms using modeling languages

are usually obtained by transforming the problem into their equivalent complementarity

forms, such as a mixed complementarity problem (MCP), and then solving the complemen-

tarity problem using a specialized solver for example Path [19]. This implies that users

need to compute the Karush-Kuhn-Tucker (KKT) conditions of each optimization agent

by hand and then manually specify the complementarity relationships within modeling

languages [34, 74]. Similar transformations are needed to formulate equilibrium problems

in their variational forms represented by QVIs as we show in Section 1.3.
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This approach has several drawbacks. It is time-consuming and error-prone because

of the derivative computation. The problem structure becomes lost once it is converted

into the complementarity form: it is difficult to tell what the original model is and which

agent controls what variables and equations (functions and constraints) by just reading the

complementarity form. For QVI formulations, we lose the information about what variables

are used as parameters to define the feasible region. All variables and equations are endoge-

nous in that form. This may restrict opportunities for back-end solvers to detect and make

full use of the problem structure. Modifying the model such as adding/removing variables

and equations may not be easy: it typically involves a lot of derivative recomputation.

For more intuitive and efficient equilibrium programming, that is, formulating GNEP,

MOPEC, or QVI in modeling languages, the paper [33] briefly mentioned that the EMP

framework can be used to specify GNEPs and MOPECs. Its goal is to enable users to

focus on the problem description itself rather than spending time and checking errors on the

complementarity form derivation. Users annotate variables and equations of the problem

in a similar way to its algebraic representation and write them into an empinfo file. The

modeling language reads that file to identify high level structure of the problem such as the

number of agents and agent’s ownership of variables and equations. It then automatically

constructs the corresponding complementarity form and solves it using complementarity

solvers. However, neither detailed explanations about its underlying assumptions and how

to use it are given, nor are the QVI formulations considered in [33].

In this chapter, we present detailed explanation of the existing EMP framework for

equilibrium programming for the first time. We also describe its extensions to incorporate

some new sophisticated structures, such as shared constraints, shared variables, and QVI
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formulations, and their implications with examples from the literature. Our extensions

allow a natural translation of the algebraic formulation into modeling languages while

capturing high level structure of the problem so that the back-end solver can harness the

structure for improved performance.

Specifically, our framework allows shared constraints to be represented without any

replications and makes it easy to switch between different solution types associated with

them, for example variational equilibrium [29, Definition 3.10]. We introduce a new

concept, shared variables, and show their manifestations in the literature. Shared variables

have potential for many different uses: i) they can be used to reduce the density of the model;

ii) they can model some EPECs sharing the same variables and constraints to represent

equilibrium constraints; iii) we can easily switch between price-taking and price-making

agents in economics models; iv) they can be used to model shared objective functions. The

last case opens the door for our framework to be used to model the block coordinate descent

method, where agents now correspond to a block of coordinates. Finally, we define a new

construct that allows QVI formulations to be specified in an intuitive and natural way. The

new features have been implemented and are available within GAMS/EMP. In this case,

we use a problem reformulation solver JAMS, and choose formulations if necessary in an

option file jams.opt.

The rest of the chapter is organized as follows. Section 2.2 presents the underlying

assumptions of the existing framework and shows how we can model equilibrium problems

satisfying those assumptions. For the two subsequent sections, we present sophisticated

structures that violate the assumptions and introduce our modifications to incorporate

them into our framework. Thus, Section 2.3 describes shared constraints and presents
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a new construct to define the type of solutions, either GNEP equilibria or variational

equilibria, associated with them. In Section 2.4, we introduce shared variables and various

complementarity formulations for them. Section 2.5 presents a new construct to specify

QVIs and compares two equivalent ways of specifying equilibrium problems in either GNEP

or QVI form. At the end of each section of Sections 2.2-2.5, we provide examples from

the literature that can be neatly formulated using the feature of our framework. Section 2.6

concludes the chapter, pointing out some areas for future extensions.

2.2 Modeling equilibrium problems using the existing

EMP framework

We now describe how to specify equilibrium problems in modeling languages using the EMP

framework. We first present the underlying assumptions on the specification and discuss

their limitations in Section 2.2.1. Examples from the literature are given in Section 2.2.2.

In Sections 2.3-2.4, we relax these assumptions to take into account more sophisticated

structures.
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2.2.1 Specifying equilibrium problems and underlying assumptions

Standard equilibrium problems can be specified in modeling languages using our framework.

Suppose that we are given the following NEP:

find (x∗1, . . . , x
∗
N) satisfying,

x∗i ∈ arg min
xi

fi(xi, x∗−i),

subject to gi(xi) ≤ 0, for i = 1, . . . ,N.

(2.1)

We need to specify each agent’s variables, its objective function, and constraints. Func-

tions and constraints are given as a closed-form in modeling languages: they are explicitly

written using combinations of mathematical operators such as summation, multiplication,

square root, log, and so on. The EMP partitions the variables, functions, and constraints

among the agents using annotations given in an empinfo file. For example, we may

formulate and solve (2.1) within GAMS/EMP as follows:

Listing 2.1: Modeling the NEP

1 variables obj(i), x(i);

2 equations deff(i), defg(i);

4 ∗ Definitions of deff(i) and defg(i) are omitted for expository

purposes.

6 model nep / deff, defg /;

8 file empinfo / ’%emp.info%’ /;

9 put empinfo ’equilibrium’;
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10 loop(i,

11 put / ’min’, obj(i), x(i), deff(i), defg(i) ;

12 );

13 putclose;

15 solve nep using emp;

Let us explain Listing 2.1. Variable obj(i) holds the value of fi(x), x(i) represents

variable xi, and deff(i) and defg(i) are the closed-form definitions of the objective

function fi(x) and the constraint gi(x), respectively, for i = 1, . . . ,N. Equations listed in the

model statement and variables in those equations constitute the model nep.

Once the model is defined, a separate empinfo file is created to specify the equilibrium

problem. In the above case, the empinfo file has the following contents:

equilibrium

min obj(’1’) x(’1’) deff(’1’) defg(’1’)

...

min obj(’N’) x(’N’) deff(’N’) defg(’N’)

The equilibrium keyword informs EMP that the annotations are for an equilibrium

problem. A list of agents’ problem definitions separated by either a min or max keyword

for each optimization agent follows. For each min or max keyword, the objective variable

to optimize and a list of agent’s decision variables are given. After these variables, a list

of equations that define the agent’s objective function and constraints follows. We say

that variables and equations listed are owned by the agent. Note that variables other than

x(’1’) that appear in deff(’1’) or defg(’1’) are treated as parameters to the first
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agent’s problem; that is how we define x−i. The way each agent’s problem is specified

closely resembles its algebraic formulation (2.1), and our framework reconstructs each

agent’s problem by reading the empinfo file.

The framework does not require any special keyword to distinguish between a NEP and

a GNEP. If the function gi is defined using other agents’ decisions, that is, gi(xi, x−i) ≤ 0,

the equilibrium model written in Listing 2.1 becomes a GNEP. The distinction between the

NEP and the GNEP depends only on how the constraints are defined.

Note that in the empinfo file above, each variable and equation is owned exclusively

by a single agent. There is no unassigned variable or equation. In the standard framework,

neither multiple ownership nor missing ownership are allowed; otherwise an error is

generated. Formally, the standard framework assumes the following:

Assumption 2.1. A model of an equilibrium problem described by equations and variables

is assumed to have the following properties in the empinfo file:

• Each equation of the model is owned by a single agent.

• Each variable of the model is owned by a single agent.

An implication of Assumption 2.1 is that the current framework does not allow shared

objective functions, shared constraints, and shared variables. Section 2.3 gives examples

of problems that violate Assumption 2.1 and provides techniques to overcome or relax the

requirements.
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The MOPEC model can be defined in a very similar way. Suppose that we are given the

following MOPEC:

find (x∗1, . . . , x
∗
N , p∗) satisfying,

x∗i ∈ arg min
xi

fi(xi, x∗−i),

subject to gi(xi, x∗−i) ≤ 0, for i = 1, . . . ,N,

p∗ ∈ SOL(K(x∗),H(p, x∗)),

where K(x∗) := {p | w(p, x∗) ≤ 0}

(2.2)

Assuming that p ∈ Rr, we can then formulate (2.2) within GAMS/EMP in the following

way:

Listing 2.2: Modeling the MOPEC

1 variables obj(i), x(i), p(j);

2 equations deff(i), defg(i), defH(j), defw;

4 model mopec / deff, defg, defH, defw /;

6 file empinfo / ’%emp.info%’ /;

7 put empinfo ’equilibrium’ /;

8 loop(i,

9 put ’min’, obj(i), x(i), deff(i), defg(i) /;

10 );

11 put ’vi defH p defw’ /;

12 putclose empinfo;
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In addition to optimization agents, we now have an equilibrium agent defined with the

’vi’ keyword in Listing 2.2. The ’vi’ keyword is followed by variables, function-variable

pairs, and constraints. Functions paired with variables constitute a VI function, and the

order of functions and variables appeared in the pair is used to determine which variable is

assigned to which function when we compute the inner product in the (VI) definition. In

this case, we say that each VI function is matched with each variable having the same order

in the pair, i.e., defH(j) is matched with p(j) for each j = 1, . . . , r. After all matching

information is described, constraints follow. Hence, the VI function is defH, its variable

is p, and defw is a constraint. The functions fi and gi, defined in deff(i) and defg(i)

equations, respectively, may now include the variable p. One can easily verify that the

specification in the empinfo file satisfies Assumption 2.1.

Variables that are used only to define the constraint set, and are owned by the VI agent,

must be specified before any explicit function-variable pairs. In this case, we call those

variables preceding variables. The interface automatically assigns them to a zero function,

that is, a constant function having zero value. For example, if we specify ‘vi z Fy y’

where z and y are variables and Fy is a VI function matched with y, then z is a preceding

variable. In this case, our interface automatically creates an artificial function Fz defined by

F(z) ≡ 0 and match it with variable z.

2.2.2 Examples

Examples of NEP, GNEP, and MOPEC taken from the literature are formulated in the

following sections using the EMP framework.



23

NEP

We consider the following oligopolistic market equilibrium problem [42, 59]:

find (q∗1, . . . , q
∗
5) satisfying,

q∗i ∈ arg max
qi≥0

qi p

 5∑
j=1, j,i

q∗j + qi

 − fi(qi),

where p(Q) := 50001/1.1(Q)−1/1.1,

fi(qi) := ciqi +
βi

βi + 1
K−1/βi

i q(βi+1)/βi
i ,

(ci,Ki, βi) is problem data, for i = 1, . . . , 5.

(2.3)

There are five firms, and each firm provides a homogeneous product with amount qi

to the market while trying to maximize its profit in a noncooperative way. The function

p(·) is the inverse demand function, and its value is determined by the sum of the products

provided by all the firms. The function fi(·) is the total cost of firm i. The problem (2.3) is

a NEP.

Listing 2.3 shows an implementation of (2.3) within GAMS/EMP. As we see, the

empinfo file is a natural translation of the algebraic form of (2.3). Using the same

starting value as in [42, 59], our GAMS/EMP implementation computed a solution q∗ =

(36.933, 41.818, 43.707, 42.659, 39.179)T that is consistent with the one reported in those

papers.

Listing 2.3: Implementation of the NEP (2.3) within GAMS/EMP

1 sets i agents / 1∗5 /;

2 alias(i,j);
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4 parameters

5 c(i) / 1 10, 2 8, 3 6, 4 4, 5 2 /

6 K(i) / 1 5, 2 5, 3 5, 4 5, 5 5 /

7 beta(i) / 1 1.2, 2 1.1, 3 1.0, 4 0.9, 5 0.8 /

8 ;

10 variables obj(i);

11 positive variables q(i);

13 equations

14 objdef(i)

15 ;

17 objdef(i)..

18 obj(i) =e= q(i)∗5000∗∗(1.0/1.1)∗sum(j, q(j))∗∗(−1.0/1.1) − (c(i)∗q(

i) + beta(i)/(beta(i)+1)∗K(i)∗∗(−1/beta(i))∗q(i)∗∗((beta(i)+1)/

beta(i)));

20 model nep / objdef /;

22 file empinfo / ’%emp.info%’ /;

23 put empinfo ’equilibrium’ /;

24 loop(i,

25 put ’max’, obj(i), q(i), objdef(i) /;

26 );

27 putclose empinfo;

29 q.l(i) = 10;
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30 solve nep using emp;

GNEP

We use the following GNEP example derived from the QVI example in [62, page 14]:

find (x∗1, x
∗
2) satisfying,

x∗1 ∈ arg min
0≤x1≤11

x2
1 +

8
3

x1x∗2 −
100
3

x1,

subject to x1 + x∗2 ≤ 15,

x∗2 ∈ arg min
0≤x2≤11

x2
2 +

5
4

x∗1x2 − 22.5x2,

subject to x∗1 + x2 ≤ 20.

(2.4)

In (2.4), each agent solves a strongly convex optimization problem. Not only the objec-

tive functions but also the feasible region of each agent is affected by other agent’s decision.

Hence it is a GNEP. Listing 2.4 shows an implementation of (2.4) within GAMS/EMP. Our

model has computed a solution (x∗1, x
∗
2) = (10, 5) that is consistent with the one reported

in [62]. In Section 2.5.2, we show that (2.4) can be equivalently formulated as a QVI using

our extension to the EMP framework.

Listing 2.4: Implementation of the GNEP (2.4) within GAMS/EMP

1 set i / 1∗2 /;

2 alias(i,j);

4 variable obj(i);

5 positive variable x(i);



26

7 equation defobj(i), cons(i);

9 defobj(i)..

10 obj(i) =E=

11 (sqr(x(i)) + 8/3∗x(i)∗x(’2’) − 100/3∗x(i))$(i.val eq 1) +

12 (sqr(x(i)) + 5/4∗x(’1’)∗x(i) − 22.5∗x(i))$(i.val eq 2);

14 cons(i)..

15 sum(j, x(j)) =L= 15$(i.val eq 1) + 20$(i.val eq 2);

17 x.up(i) = 11;

19 model gnep / defobj, cons /;

21 file empinfo / ’%emp.info%’ /;

22 put empinfo ’equilibrium’ /;

23 loop(i,

24 put ’min’,obj(i),x(i),defobj(i),cons(i);

25 );

26 putclose empinfo;

28 solve gnep using emp;
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MOPEC

We present a general equilibrium example in economics [58, Section 3] and model it as a

MOPEC. While [58] formulated the problem as a complementarity problem by using the

closed form of the utility maximizing demand function, we formulate it as a MOPEC by

explicitly introducing a utility-maximizing optimization agent, the consumer, to compute

the demand.

Let us briefly explain the general equilibrium problem we consider. We use the notations

and explanation from [58]. There are three types of agents: i) profit-maximizing producers;

ii) utility-maximizing consumers; iii) a market determining the price of commodities based

on production and demand. The problem is given with a technology matrix A, an initial

endowment b, and the demand function d(p). The coefficient ai j > 0 (or ai j < 0) of A

indicates output (or input) of commodity i for each unit activity of producer j. For a

given price p, d(p) is the demand of consumers maximizing their utilities within their

budgets, where budgets depend on the price p and initial endowment b. Assuming that y, x,

and p represent activity of producers, demands of consumers, and prices of commodities,
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respectively, we say that (y∗, x∗, p∗) is a general equilibrium if it satisfies the following:

No positive profit for each activity −AT p∗ ≥ 0,

No excess demand b + Ay∗ − x∗ ≥ 0,

Nonnegativity p∗ ≥ 0, y∗ ≥ 0,

No activity for earning negative profit (−AT p∗)Ty∗ = 0,

and positive activity implies balanced profit,

Zero price for excess supply p∗T(b + Ay∗ − x∗) = 0,

and market clearance for positive price,

Utility maximizing demand x∗ ∈ arg max
x

utility(x),

subject to p∗Tx ≤ p∗Tb.

(2.5)

We consider a market where there are a single producer, a single consumer, and three

commodities. To compute the demand function without using its closed form, we introduce

a utility-maximizing consumer explicitly in the model. Our GAMS/EMP model finds a

solution y∗ = 3, x∗ = (3, 2, 0)T, p∗ = (6, 1, 5)T for α = 0.9 that is consistent with the one

in [58].

Listing 2.5: Implementation of the MOPEC within GAMS/EMP

1 set i commodities / 1∗3 /;

3 parameters

4 ATmat(i) technology matrix / 1 1 , 2 −1 , 3 −1 /

5 s(i) budget share / 1 0.9, 2 0.1, 3 0 /

6 b(i) endowment / 1 0 , 2 5 , 3 3 /;
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8 variable u utility of the consumer;

9 positive variables

10 y activity of the producer

11 x(i) Marshallian demand of the consumer

12 p(i) prices;

14 equations

15 mkt(i) constraint on excess demand

16 profit profit of activity

17 udef Cobb−Douglas utility function

18 budget budget constraint;

20 mkt(i)..

21 b(i) + ATmat(i)∗y − x(i) =G= 0;

23 profit..

24 sum(i, −ATmat(i)∗p(i)) =G= 0;

26 udef..

27 u =E= sum(i, s(i)∗log(x(i)));

29 budget..

30 sum(i, p(i)∗x(i)) =L= sum(i, p(i)∗b(i));

32 model mopec / mkt, profit, udef, budget /;

34 file empinfo / ’%emp.info%’ /;



30

35 put empinfo ’equilibrium’ /;

36 put ’max’, u, ’x’, udef, budget /;

37 ∗ We have mkt perp p and profit perp y, the fourth and fifth conditions

of (6).

38 put ’vi mkt p profit y’ /;

39 putclose empinfo;

41 ∗ The second commodity is used as a numeraire.

42 p.fx(’2’) = 1;

43 x.l(i) = 1;

45 solve mopec using emp;

2.3 Modeling equilibrium problems with shared

constraints

This section describes our first extension to model shared constraints and to compute

different types of solutions associated with them.

2.3.1 Shared constraints and limitations of the existing framework

We first define shared constraints in equilibrium problems, specifically when they are

explicitly given as equalities or inequalities.

Definition 2.2. In equilibrium problems, if the same constraint given explicitly as an

equality or an inequality appears multiple times in different agents’ problem definition,
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then it is a shared constraint.

For example, constraint h(x) ≤ 0 (with no subscript i on h) is a shared constraint in the

following GNEP:

Example 2.3. Find (x∗1, . . . , x
∗
N) satisfying

x∗i ∈ arg min
xi

fi(xi, x∗−i),

subject to gi(xi, x∗−i) ≤ 0,

h(xi, x∗−i) ≤ 0, for i = 1, . . . ,N.

Our definition of a shared constraint allows each agent’s feasible region to be defined

with a combination of shared and non-shared constraints. Our definition subsumes the

cases in [28, 29], where each agent’s feasible region is defined by the shared constraint

only: there are no gi(x)’s. In our framework, the shared constraint can also be defined over

some subset of agents. For expository ease throughout this section, we use Example 2.3,

but the extension to the more general setting is straightforward.

Shared constraints are mainly used to model shared resources among agents. In the

tragedy of commons example [61, Section 1.1.2], agents share a capped channel formulated

as a shared constraint
∑N

i=1 xi ≤ 1. Another example is the river basin pollution game

in [45, 52], where the total amount of pollutant thrown in the river by the agents is restricted.

The environmental constraints are shared constraints in this case. More details on how we

model these examples are found in Section 2.3.3.
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There are two types of solutions when shared constraints are present. Assume a suitable

constraint qualification holds for each solution x∗ of Example 2.3. Let µ∗i be a multiplier

associated with the shared constraint h(x) for agent i at the solution x∗. If µ∗1 = · · · = µ∗N ,

then we call the solution a variational equilibrium. The name of the solution stems from

the fact that if there are no gi(x)’s, then x∗ is a solution to the VI(X, F) and vice versa of

Proposition 1.2, where X = {x ∈ Rn | h(x) ≤ 0}. In all other cases, we call a solution a

GNEP equilibrium.

An interpretation from the economics point of view is that, at a variational equilibrium,

agents have the same marginal value on the resources associated with the shared constraint

(as the multiplier values are the same), whereas at a GNEP equilibrium each agent may

have a different marginal value.

A shared constraint may not be easily modeled using the existing EMP framework. As

each equation must be assigned to a single agent, we currently need to create a replica of

the shared constraint for each agent. For Example 2.3, we may model the problem within

GAMS/EMP as follows:

Listing 2.6: Modeling the GNEP equilibrium via replications

1 variables obj(i), x(i);

2 equations deff(i), defg(i), defh(i);

4 model gnep_shared / deff, defg, defh /;

6 file empinfo / ’%emp.info%’ /;

7 put empinfo ’equilibrium’;

8 loop(i,
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9 put / ’min’, obj(i), x(i), deff(i), defg(i), defh(i);

10 );

11 putclose empinfo;

In Listing 2.6, each defh(i) is defined exactly in the same way for all i = 1, . . . ,N:

each of them is a replica of the same equation. This approach is neither natural nor intuitive

compared to its algebraic formulation. It is also difficult to tell if the equation defh is a

shared constraint by just reading the empinfo file. The information that defh is a shared

constraint is lost. This could potentially prevent applying different solution methods such

as [76] tailored for the equilibrium problems containing shared constraints.

Another difficulty lies in modeling the variational equilibrium. To compute it, we need

to have the multipliers associated with the shared constraints the same among the agents.

Additional constraints may be required for such conditions to hold; there is no easy way to

force equality without changing the model in the existing EMP framework.

2.3.2 Extensions to model shared constraints

Our extensions have two new features: i) we provide a syntactic enhancement that enables

shared constraints to be naturally and succinctly specified in a similar way to the algebraic

formulation; ii) we define a new EMP keyword that enables switching between the GNEP

and variational equilibrium without modifying each agent’s problem definition.

To implement shared constraints, we modify Assumption 2.1 as follows:

Assumption 2.4. A model of an equilibrium problem described by equations and variables

is assumed to have the following properties in the empinfo file:
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• Each objective or VI function of the model is owned by a single agent.

• Each constraint of the model is owned by at least one agent. If a constraint appears

multiple times in different agents’ problem definitions, then it is regarded as a shared

constraint, and it is owned by those agents.

• Each variable is owned by a single agent.

Using Assumption 2.4, we define shared constraints by placing the same constraint in

multiple agents’ problems. For example, we can model Example 2.3 without replications

by changing lines 2 and 8-10 of Listing 2.6 into the following:

Listing 2.7: Modeling a shared constraint using a single copy

1 equation deff(i), defg(i), defh;

3 loop(i,

4 put / ’min’, obj(i), x(i), deff(i), defg(i), defh;

5 );

In Listing 2.7, a single instance of an equation, defh, representing the shared constraint

h(x) ≤ 0 is created and placed in each agent’s problem description. Our framework then

recognizes it as a shared constraint. This is exactly the same way as its algebraic formulation

is specified. Also the empinfo file does not lose the problem structure: we can easily

identify that defh is a shared constraint by reading the file, as it appears multiple times

in different agents’ problem definitions. To allow shared constraints, we need to specify

SharedEqu in the option file jams.opt. Otherwise, multiple occurrences of the same
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constraint are regarded as an error. This is simply a safety check to stop non-expert users

creating incorrect models.

In addition to the syntactic extension, we define a new EMP keyword visol to compute

a variational equilibrium associated with shared constraints. By default, a GNEP equilib-

rium is computed if no visol keyword is specified. Hence Listing 2.7 computes a GNEP

equilibrium. If we place the following line in the empinfo file before the agents’ problem

descriptions begin, that is, before line 3 in Listing 2.7, then a variational equilibrium is

computed. The keyword visol is followed by a list of shared constraints for which each

agent owning the constraint must use the same multiplier.

Listing 2.8: Computing a variational equilibrium

1 put / ’visol defh’;

Depending on the solution type requested, our framework creates different MCPs. For a

GNEP equilibrium, the framework replicates the shared constraint and assigns a separate

multiplier for each agent owning it. For Example 2.3, the following MCP(z, F) is generated:

F(z) = ((Fi(z)T)N
i=1)T, z = ((zT

i )N
i=1)T,

Fi(z) =


∇xi fi(x) − ∇xigi(x)λi − ∇xih(x)µi

gi(x)

h(x)

 , zi =


xi

λi ≤ 0

µi ≤ 0

 , for i = 1, . . . ,N.
(2.6)

Note that the same equation h(·) is replicated, and a separate multiplier µi is assigned

in (2.6) for each agent i for i = 1, . . . ,N.

If a variational equilibrium is requested, then our framework creates a single instance
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of the shared constraint, and a single multiplier is used for that constraint among agents.

Accordingly, we construct the following MCP(z, F) for Example 2.3:

F(z) = ((Fi(z)T)N
i=1, Fh(z)T)T, z = ((zT

i )N
i=1, z

T
h )T,

Fi(z) =

∇xi fi(x) − ∇xigi(x)λi − ∇xih(x)µ

gi(x)

 , zi =

 xi

λi ≤ 0

 , for i = 1, . . . ,N,

Fh(z) =

[
h(x)

]
, zh =

[
µ ≤ 0

]
.

(2.7)

In (2.7), a single multiplier µ is assigned to the shared constraint h(x), and h(x) appears

only once in the MCP. If there are no gi(x)’s, then with a constraint qualification the

problem exactly corresponds to VI(X, F) of Proposition 1.2 with the set X defined as

X := {x | h(x) ≤ 0}.

2.3.3 Examples

We present two GNEP examples having shared constraints in the following sections,

respectively. The first example has a unique solution that is a variational equilibrium. Thus,

with or without the visol keyword, our framework computes the same solution. In the

second example, multiple solutions exist. Our framework computes solutions of different

types depending on the existence of the visol keyword in this case.



37

GNEP with a shared constraint: tragedy of the commons

We consider the tragedy of the commons example [61, Section 1.1.2]:

find (x∗1, . . . , x
∗
N) satisfying,

x∗i ∈ arg max
0≤xi≤1

xi

1 −
xi +

N∑
j=1, j,i

x∗j


 ,

subject to xi +

N∑
j=1, j,i

x∗j ≤ 1.

(2.8)

There is a shared channel with capacity 1, represented as a shared constraint
∑N

j=1 x j ≤ 1,

through which each agent i sends xi units of flow. The value agent i obtains by sending

xi units is xi

(
1 −

∑N
j=1 x j

)
, and each agent tries to maximize its value. By the form of the

problem, (2.8) is a GNEP with a shared constraint.

The problem has a unique equilibrium x∗i = 1/(N + 1) for i = 1, . . . ,N. The value of

agent i is then 1/(N + 1)2, and the total value over all agents is N/(N + 1)2 ≈ 1/N. As noted

in [61], if agents choose to use
∑N

i=1 xi = 1/2, then the total value will be 1/4 which is much

larger than 1/N for large enough N. This is why the problem is called the tragedy of the

commons.

We model (2.8) within GAMS/EMP in Listing 2.9. A single constraint cap is defined

for the shared constraint, and the same equation cap appears in each agent’s problem

definition in the empinfo file.

Listing 2.9: Implementation of the GNEP (2.8) within GAMS/EMP

1 $if not set N $set N 5
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3 set i / 1∗%N% /;

5 alias(i,j);

7 variables obj(i);

8 positive variables x(i);

10 equations defobj(i), cap;

12 defobj(i)..

13 obj(i) =E= x(i)∗(1 − sum(j, x(j)));

15 cap..

16 sum(i, x(i)) =L= 1;

18 model m / defobj, cap /;

20 file info / ’%emp.info%’ /;

21 put info ’equilibrium’;

22 loop(i,

23 put / ’max’, obj(i), x(i), defobj(i), cap

24 );

25 putclose;

27 x.up(i) = 1;

29 ∗ Specify SharedEqu option in the jams.opt file to allow shared

constraints.
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30 $echo SharedEqu > jams.opt

31 m.optfile = 1;

33 solve m using emp;

By default, a GNEP equilibrium is computed. If we want to compute a variational

equilibrium, we just need to place the following line between lines 21-22 in Listing 2.9.

1 put ’visol cap’ /;

As the solution is unique x∗i = 1/(N + 1) with multiplier µ∗i = 0 for i = 1, . . . ,N, our

framework computes the same solution in both cases.

GNEP with shared constraints: river basin pollution game

We present another example where we have different solutions for GNEP and variational

equilibria. The example is the river basin example [45, 52] described below:

find (x∗1, x
∗
2, x

∗
3) satisfying,

x∗i ∈ arg min
xi≥0

(c1i + c2ixi)xi −

d1 − d2

 3∑
j=1, j,i

x∗j + xi


 xi,

subject to
3∑

j=1, j,i

(
u jme jx∗j

)
+ uimeixi ≤ Km,

for m = 1, 2, i = 1, 2, 3,

where (c, d, e, u,K) is problem data.

(2.9)

It has two shared constraints, and they are shared by all the three agents.



40

Let us briefly explain the model. There are three agents near a river, each of which

pursues maximum profit by producing some commodities. The term (c1i + c2ixi)xi denotes

the total cost of agent i and (d1 − d2(
∑3

j=1, j,i x∗j + xi))xi the revenue. Each agent can throw

pollutant in the river, but its amount is limited by the two shared constraints in (2.9).

Listing 2.10 shows an implementation of (2.9) within GAMS/EMP. The two shared

constraints are represented in the equations cons(m). We first compute a variational

equilibrium. A solution computed by our framework is x∗ = (21.145, 16.028, 2.726) with

multipliers µ∗cons1 = −0.574 and µ∗cons2 = 0 for the shared constraints cons(’1’) and

cons(’2’), respectively.1

If we compute a GNEP equilibrium by deleting line 42 in Listing 2.10, then we find a

solution x∗ = (0, 6.473, 22.281). In this case, multiplier values associated with the shared

constraints for each agent are as follows:

µ∗cons1,1 = −0.804, µ∗cons1,2 = −1.504, µ∗cons1,3 = −0.459,

µ∗cons2,1 = µ∗cons2,2 = µ∗cons2,3 = 0

Listing 2.10: Implementation of (2.9) within GAMS/EMP

1 sets i / 1∗3 /

2 m / 1∗2 /

3 ;

5 alias(i,j);

1Note that we used the vector form for the constraints when we declare the equation cons for each agent
so that we do not have to loop through the set m.
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7 parameters

8 K(m) / 1 100, 2 100 /

9 d1 / 3 /

10 d2 / 0.01 /

11 e(i) / 1 0.5, 2 0.25, 3 0.75 /;

13 table c(m,i)

14 1 2 3

15 1 0.1 0.12 0.15

16 2 0.01 0.05 0.01;

18 table u(i,m)

19 1 2

20 1 6.5 4.583

21 2 5.0 6.250

22 3 5.5 3.750;

24 variables obj(i);

25 positive variables x(i);

27 equations

28 objdef(i)

29 cons(m)

30 ;

32 objdef(i)..

33 obj(i) =E= (c(’1’,i) + c(’2’,i)∗x(i))∗x(i) − (d1 − d2∗sum(j, x(j)))

∗x(i);
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35 cons(m)..

36 sum(i, u(i,m)∗e(i)∗x(i)) =L= K(m);

38 model m_shared / objdef, cons /;

40 file empinfo / ’%emp.info%’ /;

41 put empinfo ’equilibrium’ /;

42 put ’visol cons’ /;

43 loop(i,

44 put ’min’, obj(i), x(i), objdef(i), ’cons’ /;

45 );

46 putclose empinfo;

48 $echo SharedEqu > jams.opt

49 m_shared.optfile = 1;

51 solve m_shared using emp;

53 ∗ Uncomment the code below to retrieve multipliers when a GNEP solution

is computed.

54 ∗ parameters cons_m(m,i);

55 ∗ execute_load ’%gams.scrdir%/u’, cons_m=cons;

Note that since we only have one constraint cons in the modeling system, the lines

53-55 show how to recover the multiple values for each constraint multiplier for each agent.
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2.4 Modeling equilibrium problems using shared

variables

In this section, we introduce implicit variables and their uses as shared variables. Roughly

speaking, the values of implicit variables are implicitly defined by other variable values.

Shared variables are implicit variables whose values are shared by multiple agents. For

example, state variables controlled by multiple agents, but that need to have the same

values across them, could be shared variables. In this case, our framework allows a single

variable to represent such shared variables. This not only improves clarity of the model

and facilitates deployment of different mixed behavior models, but also provides a way of

significantly improving performance with efficient formulations. In Section 2.4.1, implicit

variables and shared variables are defined. Section 2.4.2 presents various MCP formulations

for them. Finally, in Section 2.4.4, we present examples of using shared variables and

experimental results comparing various MCP formulations.

2.4.1 Implicit variables and shared variables

Definition 2.5. We call a variable y an implicit variable if for each x there is at most one y

satisfying (y, x) ∈ X. Here the set X is called the defining constraint of variable y.

Note that Definition 2.5 is not associated directly with equilibrium problems. It states

that there exists one and only one implicit function g(·) such that (g(x), x) ∈ X. A simple

example is X = {(y, x) | y =
∑n

i=1 xi}. We do not check for uniqueness however. Our current

implementation only allows the defining constraint X to be represented as a system of

equations and the implicit variable y to be declared as a free variable. Constraints including
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bounds on variable y can be introduced by explicitly declaring them. This is for allowing

different solution types discussed in Section 2.3 to be associated with them.

Based on Definition 2.5, we define a shared variable.

Definition 2.6. In equilibrium problems, variables yi’s are shared variables if

• The feasible region of agent i is given by

Ki(x−i) := {(yi, xi) ∈ Rny×ni | (yi, xi) ∈ Xi(x−i), (yi, xi, x−i) ∈ X}, for i = 1, . . . ,N.

(2.10)

• yi’s are implicit variables with the same defining constraint X.

Basically, shared variables are implicit variables with an additional condition that they

have the same defining constraint. One can easily verify that if (y1, . . . , yN , x) ∈ K(x) :=∏N
i=1 Ki(x−i), then y1 = · · · = yN , that is, variables yi share their values. An extension to the

case where variables are shared by some subset of agents is straightforward.

An equilibrium in the case in which shared variables yi are present is defined as follows:

find (y∗, x∗1, . . . , x
∗
N , x

∗
N+1) satisfying,

(y∗, x∗i ) ∈ arg min
(y,xi)∈Ki(x∗

−i)
fi(y, xi, x∗−i), for i = 1, . . . ,N,

x∗N+1 ∈ SOL(KN+1(x∗−(N+1)), F(xN+1, x∗−(N+1))).

(2.11)

Example 2.7 presents the use of a shared variable assuming that y is an implicit variable

with its defining constraint X := {(y, x) | H(y, x) = 0}.
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Example 2.7. The variable y is a shared variable of the following equilibrium problem:

find (y∗, x∗1, . . . , x
∗
N) satisfying,

(y∗, x∗i ) ∈ arg min
y,xi

fi(y, xi, x∗−i),

subject to H(y, xi, x∗−i) = 0, for i = 1, . . . ,N,

where H : Rm+n → Rm, y ∈ Rm

Listing 2.11 presents GAMS code to model Example 2.7. We introduce a new keyword

implicit to declare an implicit variable and its defining constraint. The implicit

keyword is followed by a list of variables and constraints, and our framework augments

them to form a single vector of implicit variables and its defining constraint. It is required

that the keyword should come first before any agent’s problem definition. We can identify

that y is a shared variable in this case as it appears multiple times in agents’ problem

definitions. As the defining equation is assumed to belong to the implicit variable, we do

not place H in each agent’s problem definition (informally the variable y owns H).

Listing 2.11: Modeling a shared variable

1 variables obj(i), x(i), y;

2 equations deff(i), defH;

4 model shared_implicit / deff, defH /;

6 file empinfo / ’%emp.info%’ /;

7 put empinfo ’equilibrium’ /;
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8 put ’implicit y defH’ /;

9 loop(i,

10 put ’min’, obj(i), x(i), y, deff(i) /;

11 );

12 putclose empinfo;

Unlike other variables, the value of a shared (more exactly, implicit) variable can be

defined via its defining constraint although it is not owned by any agent. Hence we allow

missing ownership of shared variables, and this is especially useful to model mixed behavior

as described in Section 2.4.4. For missing ownership of shared variables, our framework

treats them as a VI agent: H becomes a VI function, and y is its matching variable in

Example 2.7.

As we now allow shared variables, Assumption 2.4 is modified as follows:

Assumption 2.8. A model of an equilibrium problem described by equations and variables

is assumed to have the following properties in the empinfo file:

• Each VI function of the model is owned by a single agent. Each objective function of

the model is owned by at least one agent. The objective function can be owned by

multiple agents when its objective variable is declared as an implicit variable.

• Each constraint of the model is owned by at least one agent. If a constraint appears

multiple times in different agents’ problem definitions, then it is regarded as a shared

constraint owned by those agents.

• Each variable of the model is owned by at least one agent except for an implicit

variable. If a variable appears multiple times in different agents’ problem definition,
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then it is regarded as a shared variable owned by those agents, and it must be an

implicit variable. If there is a variable not owned by any agent, then it must be an

implicit variable.

2.4.2 Various MCP formulations for shared variables

This section describes various MCP formulations for equilibrium problems containing

shared variables. For clarity, we will use Example 2.7 to demonstrate our formulations

throughout this section. Each formulation described in Sections 2.4.2-2.4.2 shares the

same GAMS code of Listing 2.11. Different formulations can be obtained by specifying an

appropriate value for the option ImplVarModel in the file jams.opt. In Section 2.4.4, we

present experimental results comparing the sizes and performance of these formulations.

Replicating shared variables for each agent

In this reformulation, we replicate each shared variable for each agent owning it and

compute the corresponding MCP. For Example 2.7, our framework creates a variable yi for

agent i, that is a replication of variable y, then computes the KKT conditions. The following

MCP(z, F) is formulated by collecting those KKT conditions:

F(z) =

[
(Fi(z)T)N

i=1

]T
, z =

[
(zT

i )N
i=1

]T
,

Fi(z) =


∇xi fi(x, y) − (∇xi H(y, x))µi

∇yi fi(x, y) − (∇yi H(y, x))µi

H(yi, x)

 , zi =


xi

yi

µi

 .
(2.12)
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The size of (2.12) is (n + 2mN) where the first term is from n =
∑N

i=1 |xi| and the second

one is from N × (|yi| + |µi|) with |yi| = |µi| = m for each i = 1, . . . ,N. Note that the same

constraints H and shared variable y are replicated N times in the MCP form. Table 2.1

summarizes the sizes of the MCP formulations depending on the strategy. (2.12) can be

obtained by specifying an option ImplVarModel=Replication in jams.opt.

Switching shared variables with multipliers

We introduce a switching strategy that can be applied when i) the defining constraint

is given as an equation as in Example 2.7, ii) the dimension of its image space is the

same as the shared variable, and iii) the shared variable is a free variable. The switching

strategy uses the fact that in an MCP we can exchange free variables of the same size in the

complementarity conditions without changing solutions. For example, if an MCP is given

by F1(z)

F2(z)

 ⊥
z1

z2

 ,
where zi’s are free variables, then a solution to the MCP is a solution to the following MCP

and vice versa: F1(z)

F2(z)

 ⊥
z2

z1

 .
Applying the switching technique to shared variables, we switch each shared variable

with the multipliers associated with its defining equations. This is possible because each

shared variable is a free variable and its defining equations are of the same size as the

shared variable. As a by-product, we do not have to replicate the shared variables and their
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Table 2.1: The size of the MCP of equilibrium problems containing shared variables
according to the formulation strategy for Example 2.7

Strategy Size of the MCP
replication (n + 2mN)
switching (n + mN + m)

substitution (implicit) (n + nm + m)
substitution (explicit) (n + m)

defining constraints. Thus we may be able to reduce the size of the resultant MCP.

The MCP(z, F) obtained by applying the switching technique to Example 2.7 is as

follows:

F(z) =

[
(Fi(z)T)N

i=1, Fh(z)T
]T
, z =

[
(zT

i )N
i=1, z

T
h

]T
,

Fi(z) =

∇xi fi(x, y) − (∇xi H(y, x))µi

∇y fi(x, y) − (∇yH(y, x))µi

 , zi =

xi

µi

 ,
Fh(z) =

[
H(y, x)

]
, zh =

[
y
]
.

(2.13)

The size of (2.13) is (n + mN + m). Note that compared to the replication strategy the

size is reduced by (N − 1)m. The number (N − 1)m exactly corresponds to the number

of additional replications of the shared variable y. The formulation can be obtained by

specifying an option ImplVarModel=Switching in jams.opt. This is also a default

value for ImplVarModel.

Substituting out multipliers

We can apply our last strategy when the conditions of Section 2.4.2 are satisfied, and

the implicit function theorem holds for the defining constraints. By the implicit function

theorem, we mean for (ȳ, x̄) satisfying H(ȳ, x̄) = 0 there exists a continuously differentiable
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function h : Rn → Rm such that H(h(x), x) = 0 for all x in some neighborhood of x̄. In

other words, the value of y is implicitly determined by the value of x near x̄.

In a single optimization problem with H taking the special form, H(y, x) = y − h(x), a

similar definition was made in the AMPL modeling system, and the variable y is called a

defined variable in this case [39, See A.8.1].

The basic idea is to regard the shared variable y as a function of other non-shared

variables and apply the total derivative. At each solution (y∗, x∗) to the problem, there

exists a locally defined implicit function hx∗(x) such that y∗ = hx∗(x∗) and H(hx∗(x), x) = 0

for each x in some neighborhood of x∗ by the implicit function theorem. We can then

remove variable y by replacing it with the implicit function hx∗(x) near (y∗, x∗). Thus the

objective function fi(xi, x−i, y) of agent i on the feasible set H(y, x) = 0 near (y∗, x∗) can

be equivalently represented as fi(xi, x−i, hx∗(x)). Consequently, the KKT conditions near

(y∗, x∗) only involve variable x:

d
dxi

fi(xi, x−i, hx∗(x)) = ∇xi fi(xi, x−i, hx∗(x)) + ∇xihx∗(x)∇y fi(xi, x−i, hx∗(x)),

y = hx∗(x),

where d/dxi represents the total derivative with respect to variable xi.

By the implicit function theorem, we have

∇xihx∗(x) = −∇xi H(y, x)∇yH(y, x)−1.

Therefore the KKT conditions of agent i’s problem of Example 2.7 can be represented as
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follows:

0 = ∇xi fi − ∇xi H(∇yH)−1∇y fi ⊥ xi free, for i = 1, . . . ,N,

0 = H(y, x) ⊥ y free,
(2.14)

where we also applied the switching technique in Section 2.4.2.

We can derive the same formulation (2.14) from another perspective. At a solution

(y∗, x∗, µ∗) to the problem, the matrix ∇yH(y∗, x∗) is non-singular by the implicit function

theorem. Thus we have

0 = ∇y fi(x∗i , x
∗
−i, y

∗) − (∇yH(y∗, x∗))µ∗i =⇒ µ∗i = (∇yH(y∗, x∗))−1∇y fi(x∗i , x
∗
−i, y

∗). (2.15)

We can then substitute out every occurrence of µi by the right-hand side of (2.15) and

remove the left-hand side from consideration. The result is the formulation (2.14).

A critical issue with applying the formulation (2.14) is that in general we do not have

the explicit algebraic representation of (∇yH)−1. Computing it explicitly may be quite

expensive and cause numerical issues.

Instead of explicitly computing it, we introduce new variables Λi to replace∇xi H(∇yH)−1

with a system of equations:

Λi∇yH(y, x) = ∇xi H(y, x), for i = 1, . . . ,N.

One can easily verify that for each solution (y∗, x∗) to (2.14) there exists Λ∗i satisfying the
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following and vice versa:

0 = ∇xi fi − Λi∇y fi ⊥ xi free,

0 = Λi∇yH − ∇xi H ⊥ Λi free, for i = 1, . . . ,N

0 = H(y, x) ⊥ y free.

(2.16)

Consequently, the following MCP(z, F) is formulated in this case:

F(z) =

[
(Fi(z)T)N

i=1, Fh(z)T
]T
, z =

[
(zT

i )N
i=1, z

T
h

]T
,

Fi(z) =

∇xi fi(x, y) − Λi∇y fi(x, y)

Λi∇yH(y, x) − ∇xi H(y, x)

 , zi =

 xi

Λi

 ,
Fh(z) =

[
H(y, x)

]
, zh =

[
y
]
.

(2.17)

The size of (2.17) is (n + mn + m). This could be much larger than the one obtained

when we apply the switching strategy, whose size is (n + mN + m), because we usually have

n � N. Comparing the size to the case where we replicate the implicit variables, we have

(n + nm + m) ≤ (n + 2mN) if and only if N ≥ (n + 1)/2.

The size of the substitution strategy can be significantly reduced when the shared vari-

able is explicitly defined, that is, H(y, x) = y−h(x). In this case, the algebraic representation

of (∇yH)−1 is in a favorable form: an identity matrix. We do not have to introduce new

variables and their corresponding system of equations, which caused the significant size

increase. As we know the explicit algebraic formulation of ∇xi H, the following MCP is
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formulated:

F(z) =

[
(Fi(z)T)N

i=1, Fh(z)T
]T
, z =

[
(zT

i )N
i=1, z

T
h

]T
,

Fi(z) =

[
∇xi fi(x, y) − ∇xi H(y, x)∇y fi(x, y)

]
, zi =

[
xi

]
,

Fh(z) =

[
H(y, x)

]
, zh =

[
y
]
.

(2.18)

Note that the size of (2.18) is (n + m). This is a huge saving compared to other

formulations. Our framework automatically detects if a shared variable is given in the

explicit form and substitutes out the multipliers if it is. Otherwise, (2.17) is formulated.

The formulation can be obtained by specifying an option ImplVarModel=Substitution

in jams.opt.

2.4.3 Exploiting the structure of shared variables

We present how Path, our back-end solver for the framework, can exploit the structure of

the problem associated with shared variables when the implicit function theorem holds.

We exploit the fact that the values of shared variables and their associated multipliers are

uniquely determined by the implicit function theorem. Extensions to the cases where there

are more than one implicit variable are straightforward.

Suppose that Path solves one of the MCPs presented in Section 2.4.2. As Path does

not maintain feasibility during iterations, each iterate (xk, yk, µk) may be highly infeasible.

This can in turn lead to a numerically unstable and longer path to a solution. Especially,

the main infeasibility often comes from (yk, µk): it does not satisfy H(yk, xk) = 0 and

the system of equations, either (2.15) or the second equation of (2.16). We may restore
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the feasibility, say (ỹk, µ̃k), by exploiting the uniqueness property of the implicit function

theorem. In many cases, this new point (xk, ỹk, µ̃k) has much smaller residual, that is,

φ(xk, ỹk, µ̃k) � φ(xk, yk, µk), with φ(x, y, µ) being a merit function. This will lead Path to a

more robust and shorter path to a solution.

We therefore introduce spacer steps such that for each given (xk, yk, µk) we compute a

unique feasible pair (ỹk, µ̃k), evaluate the residual at that (xk, ỹk, µ̃k), and choose the point if

it has smaller merit function value than the one of (xk, yk, µk). With those spacer steps, we

were able to find a solution in a more numerically stable fashion and with fewer iterations

as reported in Table 2.5.

2.4.4 Examples

In this section, we introduce three models that use shared variables. Section 2.4.4 describes

an example where we can improve its sparsity significantly by introducing a shared variable.

This enables the problem, previously known as computationally intractable, to be efficiently

solved. Section 2.4.4 presents an EPEC model where each agent tries to maximize its

welfare in the Nash way while trading goods with other agents subject to general equilibrium

conditions. The general equilibrium conditions define a set of state variables that are shared

by all the agents. We can then use the constructs for shared variables to define the model. In

Section 2.4.4, we present an example of modeling mixed pricing behavior of agents. More

examples on using shared variables for shared objective functions can be found at [27].

All experiments were performed on a Linux machine with Intel(R) Core(TM) i5-3340M

CPU@2.70 GHz processor and 8GB of memory. Path was set to use the UMFPACK [18]

as its basis computation engine.
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Improving sparsity using a shared variable

We consider an oligopolistic energy market equilibrium example [55, Section 4] formulated

as a GNEP. We show that its sparsity can be significantly improved by introducing a shared

variable, which makes the problem, known as computationally intractable in [55], solvable.

The example is defined as follows:

find (q∗0, q
∗
1, . . . , q

∗
5) satisfying,

q∗0 ∈ arg max
0≤q0≤U0

p

 5∑
i=1

ni∑
k=1

q∗ik

  5∑
i=1

ni∑
k=1

q∗ik

 − 5∑
i=1

ci(q∗i ) − Pq0,

subject to q0 +

5∑
i=1

ni∑
k=1

q∗ik = d,

q∗i ∈ arg max
0≤qi≤Ui

p

 5∑
j=1, j,i

n j∑
k=1

q∗jk +

ni∑
k=1

qik

 ni∑
k=1

qik − ci(qi),

subject to q∗0 +

5∑
j=1, j,i

n j∑
k=1

q∗jk +

ni∑
k=1

qik = d,

where ci(qi) =
1
2

qT
i Miqi + bT

i qi,

p(Q) :=
(
−P

(1.5d)2 Q2 + P
)
,

(P, d,Mi, bi,Ui, ni) is problem data, for i = 1, . . . , 5.

(2.19)

Let us briefly describe (2.19). There are six agents. The first agent is an ISO agent

which controls variable q0 ∈ R measuring deficit of energy. It tries to maximize the total

profit of all the energy supplying agents less the penalty caused by being unable to meet the

fixed demand d. The parameter P represents how much penalty we put on the deficit q0.

Each agent i, controlling qi = (qi1, . . . , qini) for i = 1, . . . , 5, is a profit-maximizing agent
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that produces homogeneous energy generated from its ni number of plants. Its decision

variable qik denotes the amount of energy produced from its kth plant for k = 1, . . . , ni. The

function p(Q) is a concave inverse demand function, and ci(qi) is the total cost of producing

energy
∑ni

k=1 qik. The matrix Mi is a diagonal matrix having positive diagonal entries, hence

ci(·) is a strongly convex function. All the six agents share the same demand constraint

q0 +
∑5

i=1
∑ni

k=1 qik = d; it is a shared constraint. We use n, n =
∑5

i=1 ni, to denote the total

number of plants, and each energy-producing agent has the same number of plants, ni = n/5

for i = 1, . . . , 5.

In [55], a variational equilibrium was computed by formulating a VI and solving it

using Path. The paper reported that Path started to get much slower for the problem of size

n = 2, 500, and it was not able to solve problems of sizes n = 5, 000 and n = 10, 000 due to

out of memory error.

We have observed that the memory error was due to the high density of the Jacobian

matrix of the MCP: it was almost 100% for all problems. Consequently, the MCP will have

a large number of nonzero entries requiring a huge amount of memory. Also the linear

algebra computation (required by Path for basis computations) time will be much slower in

this case.

The root cause of such a highly dense Jacobian matrix was because of the term∑5
i=1

∑ni
k=1 qik in the price function p(·): for each qik, the term ∂p(·)/∂qik has all the vari-

ables qi′k′ . We can make the problem much sparser by introducing a shared variable

z :=
∑5

i=1
∑ni

k=1 qik as implemented in Listing 2.12. We also used the visol keyword to

compute a variational equilibrium. We formulate each agent’s problem as a minimization

problem by flipping the sign of its objective function. Therefore, each agent i’s objective
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function for i = 1, . . . , 5 is strongly convex, and the ISO agent’s objective function is linear.

Listing 2.12: Implementation of (2.19) using a shared variable within GAMS/EMP

1 $if not set n $set n 100

2 $if not set num_agents $set num_agents 5

3 $eval num_plants %n%/%num_agents%

4 $set P 120

6 sets i / 1∗%num_agents% /

7 k / 1∗%num_plants% /;

9 alias(i,j);

11 variables iso_obj, agent_obj(i), z;

12 positive variables q0, q(i,k);

13 equations iso_defobj, agent_defobj(i), demand, defz;

14 parameters U0, U(i,k), M(i,k), b(i,k), d, a;

16 U0 = 5;

17 U(i,k) = uniform(0,10);

18 M(i,k) = uniform(0.4,0.8);

19 b(i,k) = uniform(30,60);

20 d = 0.8 ∗ sum((i,k), U(i,k));

21 a = −%P% / (1.5 ∗ d)∗∗2;

23 q0.up = U0;

24 q.up(i,k) = U(i,k);

25 q.l(i,k) = 0.8∗U(i,k);
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26 z.l = sum((i,k), q.l(i,k));

28 iso_defobj..

29 iso_obj =E= %P%∗q0

30 + sum(i, 0.5∗sum(k, M(i,k)∗q(i,k)∗q(i,k)) + sum(k, b(i,k)∗q(i,k)))

31 − (a∗sqr(z) + %P%)∗z;

33 agent_defobj(i)..

34 agent_obj(i) =E=

35 0.5∗sum(k, M(i,k)∗q(i,k)∗q(i,k)) + sum(k, b(i,k)∗q(i,k))

36 − (a∗sqr(z) + %P%)∗sum(k, q(i,k));

38 demand..

39 q0 + z =E= d;

41 defz..

42 z =E= sum((i,k), q(i,k));

44 model m_oligop / iso_defobj, agent_defobj, demand, defz /;

46 file empinfo / ’%emp.info%’ /;

47 put empinfo ’equilibrium’ /;

48 put ’implicit z defz’ /;

49 put ’visol demand’ /;

50 put ’min’, iso_obj, q0, iso_defobj, demand /;

51 loop(i,

52 put ’min’, agent_obj(i);

53 loop(k, put q(i,k););
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Size (n) Original Switching Substitution
Size Density (%) Size Density (%) Size Density (%)

2,500 2,502 99.92 2,508 0.20 2,503 20.07
5,000 5,002 99.96 5,008 0.10 5,003 20.04

10,000 10,002 99.98 10,008 0.05 10,003 20.02
25,000 - - 25,008 0.02 - -
50,000 - - 50,008 0.01 - -

(a) MCP model statistics when we have 1 ISO agent and 5 energy-producing agents

Size (n) Original Switching Substitution
(Major,Minor) Time (secs) (Major,Minor) Time (secs) (Major,Minor) Time (secs)

2,500 (2,2639) 57.78 (1,2630) 1.30 (1,2630) 13.18
5,000 (2,5368) 420.92 (1,5353) 5.83 (1,5353) 91.01

10,000 - - (1,10517) 22.01 (1,10517) 652.03
25,000 - - (1,26408) 148.08 - -
50,000 - - (1,52946) 651.14 - -

(b) Performance comparison when we have 1 ISO agent and 5 energy-producing agents

Table 2.2: Model statistics and performance comparison of (2.19) using Path

54 put z, agent_defobj(i), demand /;

55 );

56 putclose empinfo;

58 solve m_oligop using emp;

Tables 2.2 and 2.3 describe the statistics and performance of (2.19) over various sizes

of plants and agents. The ’-’ symbol represents that we were not able to obtain the results

because of memory issue. In Table 2.2, we used the same setup as in [55]. First, note that

the MCP size of the original formulation was the smallest, but it had the highest density.

This resulted in a computationally intractable model for large n ≥ 10, 000. In contrast,

using a shared variable and the switching strategy, we were able to generate much sparser

models and consequently to solve all of them. However, the substitution strategy suffered a
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Size (n) Switching Substitution
Size Density (%) Size Density (%)

2,500 3,753 0.12 2,503 0.20
5,000 7,503 0.06 5,003 0.10

10,000 15,003 0.03 10,003 0.05
25,000 37,503 0.01 25,003 0.02
50,000 75,003 0.01 50,003 0.01

(a) MCP model statistics when we have 1 ISO agent and n/2 energy-producing agents

Size (n) Switching Substitution
(Major,Minor) Time (secs) (Major,Minor) Time (secs)

2,500 (1,2650) 1.43 (1,2650) 0.88
5,000 (1,5359) 5.89 (1,5359) 3.61

10,000 (1,10526) 25.05 (1,10526) 15.70
25,000 (1,26400) 176.94 (1,26400) 107.45
50,000 (1,52950) 800.75 (1,52950) 471.51

(b) Performance comparison when we have 1 ISO agent and n/2 energy-producing agents

Table 2.3: Model statistics and performance comparison with n/2 energy-producing agents
using Path

similar issue: its high density generated computationally intractable models for n = 25, 000

and 50, 000. This was due to the total derivative computation. The term
∑

ik qik remained in

each component of the MCP function Fi ∈ R
ni for each agent i. This resulted in a block

diagonal Jacobian matrix consisting of 5 100% dense blocks of size ni × ni for i = 1, . . . , 5.

To see the effect of many agents, we generated problems where each agent now has

2 plants. Thus for a given n there are n/2 number of energy-producing agents. Table 2.3

reports the model statistics and performance comparison of the switching and substitution

strategies. We did not report experimental results using the original formulation as the

MCP size and the density of its Jacobian matrix were the same as before. In this case,

the substitution strategy showed the best performance. Its Jacobian matrix was still block

diagonal consisting of n/2 blocks, but each block size was just 2 × 2. This improved the

sparsity of the model significantly. The MCP size of the switching strategy was much
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larger than that of the substitution as its size is proportional to the number of agents (see

Table 2.1). This made the strategy two times slower than the substitution strategy.

Modeling equilibrium problems with equilibrium constraints

We construct an EPEC model2 where data was taken from the GTAP (Global Trade Analysis

Project) 9 database [4]. The model is an exchange model having 23 agents (countries) where

each agent tries to maximize its welfare with respect to economic variables (equivalently,

state variables) and its strategic policy variables in the Nash way while trading goods with

other agents subject to the general equilibrium conditions. Mathematically, the model is

represented as follows:

find (w∗, z∗, t∗) satisfying,

(w∗, z∗, t∗i ) ∈ arg max
w,z,ti∈Ti

wi,

subject to H(w, z, t) = 0,

for i = 1, . . . , 23,

(2.20)

where wi is a welfare index variable of agent i, z is a vector of endogenous economic

variables such as prices, quantities, and so on, ti represents a vector of strategic policy

variables of agent i that determine the tariffs on the imports, and H(·) : R253×506 → R253 is a

system of nonlinear equations that represents the general equilibrium conditions.

A distinguishing feature of the model is that the state variables (w, z) are shared by the

agents, and their values are implicitly determined by the general equilibrium conditions.
2The original model was written by Thomas Rutherford, and was solved by applying the diagonalization

method (Gauss-Seidel) to the nonlinear problem (2.20) by fixing t variable values belonging to other agents.
We modified the model to use our EMP framework, and it was subsequently solved by Path.
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# Agents Replication Switching Substitution
Size Density (%) Size Density (%) Size Density (%)

5 570 1.66 350 3.34 1,230 0.77
10 2,290 0.72 1,300 1.70 10,210 0.14
15 5,160 0.50 2,850 1.28 35,190 0.06
20 9,180 0.40 5,000 1.10 84,420 0.03
23 12,144 0.37 6,578 1.03 129,030 0.02

# Agents Replication Switching Substitution
(Major,Minor) Time (secs) (Major,Minor) Time (secs) (Major,Minor) Time (secs)

5 (18,164) 0.33 (18,173) 0.22 (11,29) 0.38
10 (17,279) 1.52 (17,301) 1.48 (15,436) 8.14
15 (8,22) 1.81 (8,22) 1.68 (129,19806) 814.73
20 (9,28) 4.90 (9,28) 4.73 (13,461) 104.00
23 (9,41) 10.07 (9,41) 8.02 (20,1451) 368.99

Table 2.4: MCP model statistics and performance comparison of the EPEC model

This implies that (w, z) are shared variables, and the function H is their defining constraint.

In this case, (w, z) are not given as an explicit function of t in H.

In Table 2.4, we present experimental results of the three formulations over various

problem sizes by changing the number of agents. The size of H changes accordingly. We

use the replication strategy as a baseline to compare the size and performance of the MCP

models. We do not describe the implementation within GAMS/EMP as the number of lines

is long. Refer to [27] for the implementation.

In all settings, the switching strategy generated the smallest MCP as it did not replicate

or create variables and equations. Also its Jacobian matrix was quite sparse. Consequently,

it showed the best performance in terms of the elapsed time: it was up to 6 times faster than

the replication strategy and 50 times than the substitution strategy. We did not include the

15-agent problem in the comparison as we think the slowest performance of the substitution

strategy is due to some numerical difficulties Path encountered. Although it performed

more number of iterations on the problem having 10 agents, its time was still faster than
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# Agents Substitution
(Major,Minor) Time (secs)

5 (12,49) 1.09
10 (7,18) 8.97
15 (7,21) 45.94
20 (7,26) 141.77
23 (7,29) 263.30

Table 2.5: Performance of the substitution strategy with spacer step

that of the replication strategy. We believe that the smaller problem size led to faster linear

algebra computation.

The substitution strategy was of the largest problem size and showed the slowest elapsed

time. The large size was due to the newly introduced variables and equations as described

in Table 2.1. Although the density of it was the smallest, the number of nonzero entries

was the largest. Hence linear algebra computation became much slower.

The numerical difficulties Path encountered when we used the substitution strategy can

be avoided by using the spacer steps described in Section 2.4.3. The main reason for such

difficulties was the high infeasibility of the newly constructed equations and variables. By

projecting them into feasible region, we were able to compute a solution with much fewer

iterations and in a more robust way as reported in Table 2.5.

Modeling mixed behavior: price-taking and price-making agents

In this example, we show that mixed behavior of firms, switching between price-takers and

price-makers, can be easily modeled using a shared variable. We revisit the oligopolistic

market equilibrium problem in Section 2.2.2. Previously, the market was an oligopolistic

market where all the firms were price-makers: they can directly affect the price by changing

their productions. If they have no control over the price, they become price-takers, that
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is, the price is an exogenous variable for each firm. In this case, the market is perfect

competitive.

Listing 2.13 implements our mixed behavior model. We introduce an implicit variable z

that represents the price p(Q) defined in (2.3). If a firm has ownership of variable z, then it

becomes a price-maker as it has a direct control of it. Otherwise, it is a price-taker. The first

solve on line 36 computes a competitive market equilibrium. As no firms have ownership

of variable z, they are all price-takers in this case. After the first solve, we compute five

different mixed models where firms having indices less than or equal to j are price-makers

at the jth mixed model for j = 1, . . . , 5.

Listing 2.13: Implementation of mixed behavior of agents within GAMS/EMP

1 sets i agents / 1∗5 /;

2 alias(i,j);

4 parameters

5 c(i) / 1 10, 2 8, 3 6, 4 4, 5 2 /

6 K(i) / 1 5, 2 5, 3 5, 4 5, 5 5 /

7 beta(i) / 1 1.2, 2 1.1, 3 1.0, 4 0.9, 5 0.8 /

8 ;

10 variables obj(i), z;

11 positive variables q(i);

13 equations

14 objdef(i),

15 zdef

16 ;
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18 objdef(i)..

19 obj(i) =e= q(i)∗z − (c(i)∗q(i) + beta(i)/(beta(i)+1)∗K(i)∗∗(−1/beta

(i))∗q(i)∗∗((beta(i)+1)/beta(i)));

21 zdef..

22 z =e= 5000∗∗(1.0/1.1)∗sum(i, q(i))∗∗(−1.0/1.1);

24 model mixed / objdef, zdef /;

26 file empinfo / ’%emp.info%’ /;

27 put empinfo ’equilibrium’ /;

28 put ’implicit’, z, zdef /;

29 loop(i,

30 put ’max ’, obj(i), q(i), objdef(i) /;

31 );

32 putclose empinfo;

34 q.l(i) = 10;

35 z.l = sum(i, q.l(i));

37 solve mixed using emp;

39 parameter objval(i,∗), qval(i,∗), pval(∗), totalobjval(∗),

socialwelfare(∗);

41 objval(i,’competitive’) = obj.l(i);

42 qval(i,’competitive’) = q.l(i);
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43 pval(’competitive’) = z.l;

44 totalobjval(’competitive’) = sum(i, objval(i,’competitive’));

45 socialwelfare(’competitive’) = (5000∗∗(1.0/1.1)∗11∗sum(i, q.l(i))

∗∗(0.1/1.1)

46 − z.l∗sum(i, q.l(i))) + totalobjval(’competitive’);

48 set kind / oligo1, oligo12, oligo123, oligo1234, oligo12345 /;

50 loop(kind,

51 put empinfo ’equilibrium’ /;

52 put ’implicit’, z, zdef /;

53 loop(i,

54 if (i.val le ord(kind),

55 put ’max ’, obj(i), q(i), z, objdef(i) /;

56 else

57 put ’max ’, obj(i), q(i), objdef(i) /;

58 );

59 );

60 putclose empinfo;

62 q.l(i) = 10;

63 z.l = sum(i, q.l(i));

64 solve mixed using emp;

66 objval(i,kind) = obj.l(i);

67 qval(i,kind) = q.l(i);

68 pval(kind) = z.l;

69 totalobjval(kind) = sum(i, objval(i,kind));
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70 socialwelfare(kind) = (5000∗∗(1.0/1.1)∗11∗sum(i, q.l(i))∗∗(0.1/1.1)

71 − z.l∗sum(i, q.l(i))) + totalobjval(kind);

72 );

74 option pval:3:0:1, totalobjval:3:0:1, socialwelfare:3:0:1;

75 display objval, qval, pval, totalobjval, socialwelfare;

Table 2.6 presents profits of the firms and social welfare of various mixed models. We

computed social welfare by adding the consumer surplus to the total profit of the firms.

The consumer surplus was computed by integrating the inverse demand function less the

amount paid by the consumer. In columns starting with “Oligo”, indices of firms that are

price-makers are attached to it. Thus Oligo123 implies that firms with indices between 1

and 3 are price-makers, and others are price-takers. As expected, i) the total profit of the

firms was the smallest in the competitive case and the largest in the oligopolistic case; ii)

each firm made more profit as it switched from price-taker to price-maker; iii) the social

welfare was the maximized when all firms were price-takers. Interestingly, switching from

a price-taker to a price-maker of a firm made profits of other firms increase much larger than

the one of itself. Similar observation was made in [43] and was explained as an externality

effect.

2.5 Modeling quasi-variational inequalities

This section introduces a new construct for specifying QVIs within our framework and

presents an example comparing two equivalent ways of defining the equilibrium problems

in either GNEP or QVI form.



68

Profit Competitive Oligo1 Oligo12 Oligo123 Oligo1234 Oligo12345
Firm 1 123.834 125.513 145.591 167.015 185.958 199.934
Firm 2 195.314 216.446 219.632 243.593 264.469 279.716
Firm 3 257.807 278.984 306.174 309.986 331.189 346.590
Firm 4 302.863 322.512 347.477 373.457 376.697 391.279
Firm 5 327.591 344.819 366.543 388.972 408.308 410.357

Total profit 1207.410 1288.273 1385.417 1483.023 1566.621 1627.875
Social welfare 39063.824 39050.191 39034.577 39022.469 39016.373 39015.125

Table 2.6: Profits of the firms and social welfare of various mixed models of Listing 2.13

2.5.1 Specifying quasi-variational inequalities using our framework

Assuming that the feasible region of a QVI(K, F) takes the form K(x) := {y ∈ Rn |

h(y, x) = 0, g(y, x) ≤ 0}, Listing 2.15 shows generic way of specifying the QVI(K, F) using

our framework. In this case, we call x a parameter variable and y a variable of interest.

Parameter variables could appear in the constraints, however, the QVI function F must be

defined by only variables of interest.

Listing 2.14: Modeling the QVI

1 variables x(i), y(i);

2 equations defF(i), defh, defg;

4 ∗ Definitions of defF(i), defh, and defg are omitted for expository

purposes.

6 model qvi / defF, defh, defg /;

8 file empinfo / ’%emp.info%’ /;

9 putclose empinfo ’qvi defF y x defh defg’;

11 solve qvi using emp;
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To specify QVIs, the empinfo file starts with a new keyword qvi. The syntax is

similar to the one for VIs as described in Section 2.2.1 except that additional variables

could follow right after each function-variable pair. In this case, those additional variables

become parameter variables, and the size of them must be the same as the size of variables

of interest in the preceding pair. Our framework then constructs matching information

between parameter variables and variables of interest. The same applies to each preceding

variable that is assigned to a zero function. Therefore, in Listing 2.15, variables y and x

are the variable of interest and the parameter variable, respectively, and each xi is matched

with yi. When our framework formulates the corresponding MCP, for each constraint it

takes the derivative with respect to y, and each occurrence of xi is replaced with yi using the

matching information. Note that if there are no parameter variables, that is, no variables

follow each function-variable pair and each preceding variable, then the problem becomes

a VI. In this case, the feasible region is a fixed set, K(x) := K.

2.5.2 Example

We consider the following QVI(K, F) example in [62, page 14]:

F(y) =

 −
100
3 + 2y1 + 8

3y2

−22.5 + 5
4y1 + 2y2

 ,
K(x) = {0 ≤ y ≤ 11 | y1 + x2 ≤ 15, x1 + y2 ≤ 20}

(2.21)

Listing 2.15 describes an implementation of (2.21). As in (2.21), we use x as a parameter
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variable in the implementation. The implementation is a natural translation of its algebraic

form so that users can focus on the QVI specification itself. Also the empinfo file retains

information about variable types so that we can easily identify which variables are parameter

variables and which are variables of interest. This information can be potentially exploited

for the efficient implementation of solution methods for QVIs. Our framework computes a

solution x∗ = (10, 5) that is consistent with the one reported in [62].

Listing 2.15: Implementation of (2.21) within GAMS/EMP

1 sets i / 1∗2 /;

2 alias(i,j);

4 parameter A(i,j);

5 A(’1’,’1’) = 2;

6 A(’1’,’2’) = 8/3;

7 A(’2’,’1’) = 5/4;

8 A(’2’,’2’) = 2;

10 parameter b(i);

11 b(’1’) = 100/3;

12 b(’2’) = 22.5;

14 parameter Cy(i,j), Cx(i,j);

15 Cy(i,j)$(sameas(i,j)) = 1;

16 Cx(i,j)$(not sameas(i,j)) = 1;

18 parameter rhs(i) / 1 15, 2 20 /;
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20 variables y(j), x(j);

21 equations F(i), g(i);

23 F(i)..

24 sum(j, A(i,j)∗y(j)) − b(i) =N= 0;

26 g(i)..

27 sum(j, Cy(i,j)∗y(j)) + sum(j, Cx(i,j)∗x(j)) − rhs(i) =L= 0;

29 model qvi / F, g /;

31 file empinfo / ’%emp.info%’ /;

32 putclose empinfo ’qvi F y x g’;

34 ∗ If bounds on y and x are different, then an intersection of them is

taken.

35 y.lo(j) = 0; y.up(j) = 11;

36 x.lo(j) = 0; x.up(j) = 11;

38 solve qvi using emp;

One can easily check that the QVI (2.21) is equivalent to the GNEP (2.4) in Section 2.2.2

in terms of solutions. Actually, all the equilibrium examples described in previous sections

can be equivalently formulated as QVIs in the manner of Proposition 1.1.

However, the information provided to our framework could be different depending

on the formulations. The GNEP formulation (2.4) gives us each agent’s information: for

example its objective function and ownership of variables and constraints. It may not be



72

easy to recover this information from the QVI formulation. In general, we can collect

more information from an equilibrium formulation. This could result in different solutions

methods such as spacer steps for the Path solver or a Gauss-Seidel method and its variants,

while it may not be possible to collect similar information from the QVI formulation.

Therefore, for equilibrium problems, it may be better to not use the QVI formulation. Since

our QVI framework is not just limited to QVIs derived from equilibrium problems, it can

be used to explicitly model other types of QVIs with possible specialized algorithms for

solution.

2.6 Conclusions

We have presented an extended mathematical programming framework for equilibrium

programming. The framework defines a new set of constructs that enable equilibrium prob-

lems with shared constraints and shared variables and their variational forms to be specified

in modeling languages. Its syntax is a natural translation of the corresponding algebraic

formulation of the problem that captures high-level structure. This allows more readable and

less error prone models to be specified compared to the traditional complementarity based

models that require the derivative computation of the Lagrangian. Different solution types

such as variational equilibria associated with shared constraints can be easily specified and

computed using our framework. We define shared variables and their associated constructs

that can be used to model sparse formulations, some forms of EPECs, price-taking and

price-making agents, shared objective functions, and so on. Shared variables where the

implicit function theorem holds enable back-end solvers to exploit the problem structure
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for more robust performance and faster computation time. We introduce a new construct

for specifying QVIs.

There is potential for future work. Using the high-level information captured by our

framework, we can design decomposition algorithms to solve large-scale equilibrium

problems that may involve a huge number of agents. We intend to allow implicit variables

defined using nonsmooth equations [69]. We plan to extend our framework to incorporate

equilibrium problems including agents solving stochastic programs, bilevel programming,

other forms of EPECs, all with consideration of shared constraints and shared variables,

and to implement EMP in other modeling systems such as AMPL and Julia.
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Chapter 3

A structure-preserving pivotal method

for affine variational inequalities

Affine variational inequalities (AVI) are an important problem class that subsumes systems

of linear equations, linear complementarity problems and optimality conditions for quadratic

programs. This chapter describes PathAVI, a structure-preserving pivotal approach, that

can efficiently process (solve or determine infeasible) large-scale sparse instances of the

problem with theoretical guarantees and at high accuracy. PathAVI implements a strategy

known to process models with good theoretical properties without reducing the problem to

specialized forms, since such reductions may destroy sparsity in the models and can lead to

very long computational times. We demonstrate formally that PathAVI implicitly follows

the theoretically sound iteration paths, and can be implemented in a large scale setting

using existing sparse linear algebra and linear programming techniques without employing

a reduction. We also extend the class of problems that PathAVI can process. The chapter
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illustrates the effectiveness of our approach by comparison to the Path solver used on a

complementarity reformulation of the AVI in the context of applications in friction contact

and Nash Equilibria. PathAVI is a general purpose solver, and freely available under the

same conditions as Path.

3.1 Introduction

In this chapter, we present PathAVI, a structure-preserving pivotal method for affine

variational inequalities (AVIs) in Rn. An AVI(C, q,M) is defined as follows: given a

polyhedral convex set C, find z ∈ C such that

〈Mz + q, y − z〉 ≥ 0, ∀y ∈ C, (AVI)

where M ∈ Rn×n, q ∈ Rn and 〈·, ·〉 is the usual Euclidean inner product. An AVI is a linear

generalized equations [66] and we refer to [30] for results on existence, uniqueness, and

stability theory for such systems.

PathAVI tries to solve an AVI(C, q,M) by computing a zero of the normal map [67]

associated with the AVI. The normal map MC : Rn → Rn is defined as follows:

MC(x) B M(πC(x)) + q + x − πC(x), (normal map)

with πC(·) denoting the Euclidean projector onto the set C. One can easily see that MC(x∗) =

0 if and only if z∗ = πC(x∗) where x∗ = z∗ − (Mz∗ + q) is a solution to the AVI(C, q,M).

To compute a zero of MC(x), our method employs the complementary pivoting method
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[24, 53] with a ray start: the piecewise-linear (PL) map GC : Rn × R+ → R
n is defined as

GC(x, t) B MC(x) − tr, (3.1)

with r ∈ Rn denoting a covering vector and t an auxiliary variable. A path defined as

G−1
C (0) is followed through complementary pivoting. The algorithm terminates when either

t becomes zero (a solution to the AVI is found) or a secondary ray is generated. Under some

additional assumptions this latter outcome can be interpreted in terms of the feasibility of

the AVI.

The main challenge in applying the complementary pivoting method lies in the starting

phase. For good theoretical properties, a ray start is required, and it is well-defined at an

extreme point. However, when C contains lines there is no extreme point. To tackle this

case, the previous approach [14] performs a reduction, transforming the given AVI(C, q,M)

to a reduced AVI(C̃, q̃, M̃) to eliminate lines in C so that an extreme point is found in C̃,

and it solves the reduced AVI. A similar approach of factoring out lines in C is used in [67,

Proposition 4.1] to show a Lipschitzian homeomorphism of the normal map MC.

A critical disadvantage of solving the reduced AVI(C̃, q̃, M̃) is that we may lose the

original structure in C and M. The matrix M̃ is constructed from a Schur complement

computation and the polyhedral constraints defining C̃ are computed by multiplying with

orthonormal matrices. In particular, if the original AVI is sparse, there is no guarantee that

the resulting reduced AVI would enjoy the same property. We provide an instance where

this happens in Section 3.6.2. In sharp contrast, PathAVI does not require any reduction

at all. Therefore, our method is able to take advantage of a sparse structure, whereas the

method in [14] often needs to perform dense linear algebra computations.
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To perform a ray start in the case where there is no extreme point, PathAVI finds an

implicit extreme point which generalizes the notion of an extreme point when the underlying

feasible region contains lines. Roughly speaking, if we project an implicit extreme point

of C on the subset where all lines are removed, we obtain an extreme point. We show that

there is an implicit extreme point satisfying the sufficient conditions for a ray start. We

explain how phase 1 of the simplex method can be used to find such a point.

We show that PathAVI can process an AVI(C, q,M) whenever M is an L-matrix with

respect to the recession cone of C [14, Definition 4.2]. We also exhibit two new classes of

AVI where PathAVI finds a solution. The first one stems from the study of friction contact

problems from an AVI perspective, and the second one can be seen as a generalization of

a known existence result for LCP for copositive matrices. In contrast with the previous

results in [14], the conditions involve both M and q.

A widely used method for solving an AVI is the Path solver [19], which is considered

one of the most robust and efficient solvers for mixed complementarity problems (MCPs).

It is well known [21, 30] that an AVI can be reformulated as a linear MCP, and Path uses

this approach when it solves an AVI. However, the MCP reformulation does not exploit

the polyhedral structure of the set C, in that complementary pivoting of Path is done

over a different PL-manifold from PathAVI’s. We compare theoretical properties of the

two formulations, and present computational results showing improved performance of

PathAVI.

This chapter is organized as follows. In Section 3.2, we briefly describe how the

complementary pivoting method on a PL-manifold computes a zero of the normal map

associated with a given AVI. Section 3.3 presents our main theoretical results: firstly, we
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discuss sufficient conditions for a ray start, we define the notion of an implicit extreme

point, and prove the existence of such a point satisfying the conditions for a ray start.

Secondly, we show that PathAVI can process L-matrices and we show new types of AVIs

processable by PathAVI. In Section 3.4, we present the computational procedure to start

PathAVI. Section 3.5 introduces the MCP reformulation of the AVI and analyzes worst-case

performance of the two formulations. We present computational results in Section 3.6, and

Section 3.8 concludes this chapter.

A word about our notation is in order. Let S be a convex set in Rn. The lineality

space of S is denoted by lin S . The symbol ri S denotes the relative interior of S . The

affine hull of S is denoted by aff S . By par S , we mean the subspace parallel to aff S such

that aff S = s + par S for each s ∈ S . The identity matrix in Rn is denoted by In and

the zero vector is 0n. When ordered index sets are used as subscripts on a matrix, they

define a submatrix: for ordered index sets α ⊂ {1, . . . ,m} and β ⊂ {1, . . . , n} Mαβ denotes a

submatrix of M consisting of rows and columns of M in the order of α and β, respectively.

When matrices are used as subscripts on a matrix, they define another matrix: for matrices

Q and Q̄ having appropriate dimensions MQQ̄ denotes QT MQ̄. For an AVI(C, q,M), C is

assumed to be the set {z ∈ Rn | Az − b ∈ K, l ≤ z ≤ u} with l j, u j ∈ R ∪ {−∞,∞}, bi ∈ R,

Ai• , 0 for i = 1, . . . ,m and j = 1, . . . , n, and the set K is a Cartesian product of R+, {0}, or

R− to accommodate constraints of the form ≥, =, or ≤, respectively. For a closed convex

cone K, the dual cone of K is denoted by KD := {y | 〈y, k〉 ≥ 0,∀k ∈ K}. For the rest of

this chapter, Q and Q̄ denote orthonormal basis matrices for the lineality space of C and its

orthogonal complement, respectively.
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3.2 Background

In this section, we briefly describe how to compute a zero of the normal map associated

with a given AVI(C, q,M) using the complementary pivoting method with a ray start. We

also introduce some concepts related to processability of AVIs. The reader is referred

to [14, 24, 53, 67] for more details.

The basic procedure of the complementary pivoting method to compute a zero of the

normal map associated with an AVI(C, q,M) is as follows: i) compute an initial solution

(x0, t0) such that GC(x0, t0) = 0, and the point (x0, t0) lies on a ray, called a starting ray,

consisting of points (x(t), t) with GC(x(t), t) = 0 and πC(x(t)) = πC(x0) for all t ≥ t0; then

ii) starting from (x0, t0) follow a path G−1
C (0) = {(x, t) ∈ Rn × R+ | GC(x, t) = 0} using the

complementary pivoting method until t becomes zero or a secondary ray is generated. As

we will see, PathAVI generates a starting ray at an implicit extreme point of C, i.e., πC(x0)

is an implicit extreme point.

Computationally, finding an initial solution (x0, t0) amounts to computing a complemen-

tary basic solution having z = πC(x0) for the following system of equations:

Mz + q − ATλ − w + v = 0,

Az − b = s,
(3.2)
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with complementarity between variables

K 3 s ⊥ λ ∈ KD,

0 ≤ z − l ⊥ w ≥ 0,

0 ≤ u − z ⊥ v ≥ 0.

(3.3)

The complementary basic solution satisfies the sufficient conditions for a ray start as defined

in Section 3.3. Then by adding −tr with r ∈ ri(NC(z)) to the first equation in (3.2) and

pivoting in the t variable, we generate an almost complementary feasible basis and start

complementary pivoting.

Geometrically, the map GC(x, t) is defined over a PL(n + 1)-manifoldMC, where the

definition of a manifold follows from [24, Section 4]. The manifoldMC consists of a pair

(Rn × R+, {σi × R+ | i ∈ I}) such that each σi is a set formed by σi = Fi + NFi , where Fi

is from a collection of the nonempty faces {Fi | i ∈ I} of C, and NFi is a normal cone

having constant value on ri Fi. The manifoldMC is constructed from the normal manifold

NC consisting of a pair (Rn, {σi | i ∈ I}) by doing a Cartesian product each σi with R+.

Note that the collection of the sets {σi | i ∈ I} is a subdivision of Rn. Consequently,

{σi × R+ | i ∈ I} is a subdivision of Rn × R+. The k-dimensional faces of the σi × R+

are called the k-cells ofMC. Similarly, the k-dimensional faces of the σi are called the

k-cells of NC. The map GC coincides with some affine transformation on each (n + 1)-cell

σi × R+ as the normal map MC does on each n-cell σi [67, Proposition 2.5]. Note that

the starting ray (x(t), t) for t ≥ t0 > 0 lies in the interior to some (n + 1)-cell σi × R+ of

MC, where (x0, t0) is a regular point. We call a point inMC a regular point if it doesn’t lie

in any cell σ × τ ofMC with dim(GC(σ × τ)) < n [24, Section 8]. Under lexicographic
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pivoting, each complementary pivoting generates each piece of the 1-manifold G−1(0) such

that it starts from a boundary of a (n + 1)-cell ofMC (except for the first piece containing

the starting ray) and passes through the interior of that cell until it reaches a (different)

boundary. If this does not append, then we say that a secondary ray is generated. The set of

(n + 1)-cells the 1-manifold passes through never repeats [24, Lemma 15.8]. As there is a

finite number of (n + 1)-cells ofMC, either t reaches zero (equivalently we find a solution

to the AVI(C, q,M)) or a secondary ray is generated [24, Lemma 15.13].

Processability is tied to the conditions under which a secondary ray occurs. As with the

LCPs, the answer to this question involves specific matrix classes that we now define.

Definition 3.1 (Definition 4.1 [14]). Let K be a closed convex cone. A matrix M is said to

be copositive with respect to K if 〈x,Mx〉 ≥ 0 for all x ∈ K. If furthermore it holds that for

all x ∈ K 〈x,Mx〉 = 0 implies (M + MT)x = 0, then M is copositive-plus with respect to K.

Definition 3.2. Let K be a closed convex cone. A matrix M is said to be semi-monotone

with respect to K if for every q ∈ ri(KD), the solution set of the generalized complementarity

problem

z ∈ K, Mz + q ∈ KD, zT(Mz + q) = 0 (3.4)

is contained in lin K.

Remark 3.3. This definition is consistent with the existing semi-monotone property in the

LCP literature, as given in [16, Definition 3.9.1]. In this case K = Rn
+ and lin K = {0}.

Then the condition (3.4) is equivalent to 0 being the solution set of LCP(M, q) for all

q > 0, which by Theorem 3.9.3 in [16] is equivalent to the standard definition of M being

semi-monotone.
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Definition 3.4 (Definition 4.2 [14]). Let K be a closed convex cone. A matrix M is said to

be an L-matrix with respect to K if both

(a) M is semi-monotone with respect to K

(b) For any z , 0 satisfying

z ∈ K, Mz ∈ KD, zTMz = 0, (3.5)

there exists z′ , 0 such that z′ is contained in every face of K containing z and −MTz′

is contained in every face of KD containing Mz.

Lemma 3.5 (Lemma 4.5 [14]). If a matrix M is copositive-plus with respect to a closed

convex cone K, then it is an L-matrix with respect to K.

The main existing result on the processability using a path following method is the

following.

Theorem 3.6 (Theorem 4.4 [14]). Suppose that C is a polyhedral convex set, and M is an

L-matrix with respect to rec C which is invertible on the lineality space of C. Then exactly

one of the following occurs:

• The method of [14] solves the AVI(C, q,M).

• The following system has no solution

Mz + q ∈ (rec C)D.
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3.3 Theoretical results

In this section, we show that an implementation of PathAVI in the original space enjoys

the same properties as Theorem 3.6. We first identify sufficient conditions to allow a ray

start. We define an implicit extreme point, which is a generalization of an extreme point

when the lineality space is nontrivial, and show that there exists an implicit extreme point

satisfying these sufficient conditions. A computational method for finding such an implicit

extreme point is described in Section 3.4. Our conditions generalize those required for

existing pivotal methods [14, 19, 53] for LCP, MCP, and AVI.

PathAVI can process L-matrices with respect to the recession cone of the feasible set of

the AVI. To this end, we show that a 1-manifold (the path G−1
C (0)) generated by PathAVI

with a ray start at an implicit extreme point corresponds to a 1-manifold generated by the

same pivotal method with a ray start at an extreme point in the reduced space. The reduced

space is formed by projecting out the lineality space. This one-to-one correspondence is

derived from the structural correspondence of the faces and the normal cones between the

original space and the reduced one. Then by applying the existing processability result to

the 1-manifold in the reduced space, we obtain the desired result.

3.3.1 Sufficient conditions for a ray start and processability of

PathAVI

We first identify sufficient conditions to perform a ray start at a point.

Proposition 3.7. Let an AVI(C, q,M) be given. If the following conditions are satisfied at

a point z̄ ∈ C with z̄ + lin C being a face of C, then we can perform a ray start at z̄.
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• Mz̄ + q ∈ aff(NC(z̄)).

• Every point in the interior of the (n + 1)-cell ((z̄ + lin C) + NC(z̄))×R+ is regular. (See

Section 2 for the definition of a regular point.)

• There exists a complementary basis at z̄ such that aff(NC(z̄)) is spanned by columns

of the basic variables in (λ,w, v).

Proof. Pick a vector r ∈ ri(NC(z̄)). Let (z, λ,w, v, s) be the complementary basic solution to

(3.2) and (3.3) corresponding to the given complementary basis. Note that z = z̄, thus s is

feasible. Therefore, only basic variables in (λ,w, v) might be infeasible. The first and third

conditions say that we have Mz + q − ATλ − w + v = 0. By the third condition, for each

t ≥ 0 we have a unique (λ(t),w(t), v(t)) satisfying Mz + q− ATλ(t)−w(t) + v(t)− tr = 0. As

r ∈ ri(NC(z̄)), there exists t0 ≥ 0 such that for all t ≥ t0 we have Mz + q − ATλ(t) − w(t) +

v(t) − tr = 0 and (λ(t),w(t), v(t)) are feasible variables. Then for all t ≥ t0 (x(t), t) with

x(t) := z̄ − ATλ(t) − w(t) + v(t) lies in the cell ((z̄ + lin C) + NC(z̄)) × R+ with πC(x(t)) = z̄

and GC(x(t), t) = 0. By the second condition, the ray (x(t), t) is generated at a regular point.

By pivoting the t variable into the complementary basis, we see that we can perform a ray

start at z̄. �

Note that the sufficient conditions are satisfied at an extreme point. If z is an extreme

point, then aff(NC(z)) ≡ Rn thus the first condition is trivially satisfied. Each extreme point

has a corresponding basic feasible solution (BFS) to Ax − b = s [60, Section 3.4], and with

that BFS we can construct a complementary basis satisfying the third condition as shown

in Proposition 3.23 later in this chapter. The second condition is also satisfied as proved
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in Proposition 3.11. As the existing pivotal methods [14, 19, 53] for LCP, MCP, and AVI

perform a ray start at an extreme point, we see that the sufficient conditions generalize the

existing result.

We now define an implicit extreme point, which is a generalization of an extreme point

when the lineality space is nontrivial.

Definition 3.8. Let C be a convex set in Rn. A point z ∈ C is called an implicit extreme

point of C if z = λz1 + (1 − λ)z2 for any z1, z2 ∈ C and λ ∈ (0, 1) implies that z − z1 ∈ lin C

and z − z2 ∈ lin C.

Note that if the lineality space of C is trivial, that is, lin C = {0}, then the definition of

an implicit extreme point coincides with definition of an extreme point.

In the following four propositions, we provide some properties of implicit extreme

points, which are generalization of the ones enjoyed by extreme points. They are used

as a tool for showing the existence of an implicit extreme point satisfying the sufficient

conditions and for structural analysis later in this section. We start with faces consisting of

only implicit extreme points. This generalizes 0-dimensional faces that are equivalent to

extreme points. As the proof is elementary, we omit it.

Proposition 3.9. Let C be a nonempty convex set in Rn and ` = dim(lin C). Then every

point in an `-dimensional face of C is an implicit extreme point of C. Also, for each implicit

extreme point z of C we have F = z + lin C is an `-dimensional face of C.

We prove next that the affine hull of the normal cone to C at an implicit extreme point

is the orthogonal complement of the lineality space of C. This generalizes the fact that the

normal cone to C at an extreme point is full-dimensional.
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Proposition 3.10. A point z ∈ C is an implicit extreme point of a nonempty polyhedral

convex set C in Rn if and only if aff(NC(z)) = (lin C)⊥.

Proof. (only-if) Suppose that z is an implicit extreme point of C. Using Proposition 3.9,

F = z + lin C is a face of C. We then have par F = lin C. By [67, Proposition 2.1],

par F = (aff NF)⊥, where NF represents the normal cone having the same value for all

ẑ ∈ ri F, i.e., NC(ẑ1) = NF = NC(ẑ2) for all ẑ1, ẑ2 ∈ ri F. As z ∈ ri F, it follows that

aff(NC(z)) = (lin C)⊥.

(if) Suppose that z ∈ C and aff(NC(z)) = (lin C)⊥. Pick a face F of C such that z ∈ ri F.

Such a face exists by [71, Theorem 18.2]. Then NC(z) = NF , where NF is the normal

cone having constant value on ri F. As par F = (aff NF)⊥, we then have par F = lin C and

F = z + lin C. By Proposition 3.9, z is an implicit extreme point of C. �

Next we show that the second condition in Proposition 3.7 is satisfied at an implicit

extreme point. Note that in the proposition below we show dim(MC(σ)) = n, which implies

that dim(GC(σ × R+)) = n.

Proposition 3.11. Let z be an implicit extreme point of a nonempty polyhedral convex set

C in Rn and σ be the cell ((z + lin C) + NC(z)) in the normal manifold of C. Then for an

AVI(C, q,M) with M invertible on the lineality space of C, we have dim(MC(σ)) = n.

Proof. By [67, Proposition 2.5], MC coincides with some affine transformation Aσ on σ.

In the basis Z = (Q Q̄), we can represent the matrix Aσ(·) − Aσ(z) as follows:

Q
TMQ 0

Q̄TMQ I

 .
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As QTMQ is invertible, the matrix Aσ(·) − Aσ(z) is invertible. As σ is n-dimensional, the

result follows. �

Finally, let us consider a `-dimensional face F with ` = dim(lin C) (hence consisting

of only implicit extreme points by Proposition 3.9). Then there exists an implicit extreme

point z ∈ F such that Mz + q ∈ aff(NC(z)). This generalizes the fact that at each extreme

point z̄ we have Mz̄ + q ∈ aff(NC(z̄)) = Rn.

Proposition 3.12. Let an AVI(C, q,M) problem be given and z ∈ C be an implicit extreme

point of C. Assume that M is invertible on the lineality space of C. Then there exists

ẑ ∈ z + lin C such that Mẑ + q ∈ aff(NC(ẑ)).

Proof. For any implicit extreme point ẑ of C, Mẑ + q ∈ aff(NC(ẑ)) if and only if πlin C(Mẑ +

q) = 0 by Proposition 3.10. By the assumption, MQQ is invertible. Set

ẑ = z + Qy where y = −M−1
QQ(QTq + MQQ̄Q̄Tz) − QTz.

Then ẑ ∈ z + lin C thus ẑ is an implicit extreme point of C by Proposition 3.9, and

QT(Mẑ + q) = QT

M
[
Q Q̄

] Q
T

Q̄T

 ẑ + q

 ,
= MQQ(QTẑ) + MQQ̄(Q̄Tẑ) + QTq,

= MQQ(QTz + y) + MQQ̄(Q̄Tz) + QTq,

= 0.

It follows that πlin C(Mẑ + q) = 0. �
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By Propositions 3.11 and 3.12, there exists an implicit extreme point satisfying the

first two sufficient conditions for a ray start. We postpone checking the third condition to

Section 3.4 as it requires a constructive proof. For the rest of this section, we assume that

we have an implicit extreme point satisfying the sufficient conditions.

We now turn our attention to the processability of PathAVI. Assume that we perform

a ray start at an implicit extreme point and generate a 1-manifold in the original space

Rn. Our basic idea of deriving processability is that this 1-manifold corresponds to a

1-manifold generated by the same pivotal method with a ray start at an extreme point

defined in the reduced space having possibly smaller dimension. We can then apply the

existing processability result [14, Theorem 4.4]. To establish the correspondence, we prove

that there is a one-to-one correspondence between the faces, the normal cones, and the

full-dimensional cells of the original space and reduced space.

Proposition 3.13. Let C be a nonempty polyhedral convex set in Rn and C̃ be the set

C̃ = Q̄TC = {z̃ | z̃ = Q̄Tz for some z ∈ C} defined in Rn−` where ` = dim(lin C). Then the

followings hold.

(a) z is an implicit extreme point of C if and only if z̃ = Q̄Tz is an extreme point of C̃.

(b) F is a face of C if and only if F̃ = Q̄TF is a face of C̃.

(c) v ∈ NC(z) if and only if v = Q̄ṽ for some ṽ ∈ NC̃(z̃) where z̃ = Q̄Tz.

(d) σ is an n-cell of the normal manifoldNC of C if and only if σ̃ = Q̄Tσ is an (n−`)-cell

of the normal manifold NC̃.



89

Proof. We prove in sequence. (a) (only-if) Let z be an implicit extreme point of C. Set

z̃ = Q̄Tz. We prove by contradiction. Suppose that ∃z̃1, z̃2 ∈ C̃ and λ ∈ (0, 1) such that

z̃ = λz̃1 + (1 − λ)z̃2 with z̃ , z̃i for i = 1, 2. By definition of C̃, we have z1, z2 ∈ C

such that z̃i = Q̄Tzi for i = 1, 2. As C = lin C ⊕ ((lin C)⊥ ∩ C) [71, page 65] and

Q̄Tz = Q̄T(λz1 + (1 − λ)z2), there exists a ∈ lin C such that z = λ(a + z1) + (1 − λ)(a + z2).

As Q̄T(z − (a + zi)) = z̃ − z̃i , 0, we have z − (a + zi) < lin C for i = 1, 2, which contradicts

our assumption that z is an implicit extreme point of C.

(if) Using similar proof technique, we can show that for an extreme point z̃ ∈ C̃ z is an

implicit extreme point of C when z̃ = Q̄Tz.

(b) (only-if) Let F be a face of C. Set F̃ = Q̄TF. Clearly, F̃ is a convex subset of C̃. Let

z̃1, z̃2 ∈ C̃ and λ ∈ (0, 1) satisfying λz̃1 + (1 − λ)z̃2 ∈ F̃. From C = lin C ⊕ ((lin C)⊥ ∩ C),

we have Q̄z̃i ∈ C for i = 1, 2. Then Q̄(λz̃1 + (1 − λ)z̃2) ∈ F so that Q̄z̃1 ∈ F and Q̄z̃2 ∈ F.

This shows that z̃i ∈ F̃ for i = 1, 2.

(if) Let F̃ = Q̄TF be a face of C̃. By the definition of F̃, F is a convex subset of C. Let

z1, z2 ∈ C and λ ∈ (0, 1) such that λz1 + (1 − λ)z2 ∈ F. We have Q̄Tzi ∈ C̃ for i = 1, 2 and

Q̄T(λz1 + (1−λ)z2) ∈ F̃. Thus, Q̄Tzi ∈ F̃, hence zi ∈ F + lin C for i = 1, 2. Therefore, zi ∈ F

for i = 1, 2.

(c) For a vector v ∈ Rn, we represent components of v in lin C and (lin C)⊥ in the basis[
Q Q̄

]
by vQ and vQ̄, respectively, so that v = QvQ + Q̄vQ̄. If either z < C or z̃ < C̃,

then we have nothing to prove. Therefore, we assume that z ∈ C and z̃ ∈ C̃ in the proof.

(only-if) Let v ∈ NC(z). By the definition of the normal cone, for each a ∈ lin C we have

〈v, (z + a) − z〉 ≤ 0 and 〈v, (z − a) − z〉 ≤ 0. Thus, 〈v, a〉 = 0 for all a ∈ lin C. Whence
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NC(z) ⊂ (lin C)⊥ so that vQ = 0 and v = Q̄vQ̄. We then have

0 ≥ 〈v, y − z〉, ∀y ∈ C

= 〈Q̄vQ̄,QyQ + Q̄yQ̄ − (QzQ + Q̄zQ̄)〉

= 〈Q̄vQ̄, Q̄(yQ̄ − zQ̄)〉

= 〈vQ̄, yQ̄ − zQ̄〉

By setting ṽ = vQ̄, v = Q̄ṽ and ṽ ∈ NC̃(z̃).

(if) Let ṽ ∈ NC̃(z̃) and set v = Q̄ṽ. We have z̃ = Q̄Tz if and only if z ∈ lin C + Q̄z̃. Let

z ∈ lin C + Q̄z̃. Then

〈v, y − z〉 = 〈ṽ, yQ̄ − zQ̄〉 ≤ 0, y ∈ C

and the result follows.

(d) The conclusion follows from (b), (c), and the definition of the full-dimensional cells

of the normal manifold. �

A similar result holds for the 1-manifold G−1
C (0).

Proposition 3.14. Let an AVI(C, q,M) problem be given. Suppose that the matrix M is

invertible on the lineality space of C, and GC(x∗, t∗) = 0 with r ∈ NC(πC(x0)) for some

x0 ∈ Rn. Then the PL function G̃C̃(x̃, t) := M̃πC̃(x̃) + q̃ + x̃ − πC̃(x̃) − tr̃ has value zero at
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(x̃∗, t∗), where

x̃∗ = Q̄Tx∗

Z =

[
Q Q̄

]
,

M̃ = (ZTMZ/MQQ) = MQ̄Q̄ − MQ̄QM−1
QQMQQ̄,

C̃ = Q̄TC, x̃0 = Q̄Tx0, q̃ = (Q̄T − MQ̄QM−1
QQQT)q,

r̃ = Q̄Tr ∈ NC̃(πC̃(x̃0)).

Conversely, if G̃C̃(x̃∗, t∗) = 0 then GC(x∗, t∗) = 0 with x∗ = Q̄x̃∗ + Qy∗ and

y∗ = −M−1
QQ

(
MQQ̄πC̃(x̃∗) + QTq

)
.

Proof. Let (x∗, t∗) satisfying GC(x∗, t∗) = 0 with r ∈ NC(πC(x0)) for some x0 be given. Then

MπC(x∗) + q + x∗ − πC(x∗) − t∗r = 0,

(⇒)

Q
T

Q̄T

 M
[
Q Q̄

] Q
T

Q̄T

 πC(x∗) +

Q
T

Q̄T

 (q + x∗ − πC(x∗) − t∗r) = 0,

(⇒)

MQQ MQQ̄

MQ̄Q MQ̄Q̄


Q

TπC(x∗)

Q̄TπC(x∗)

 +

 QTq

Q̄T(q + x∗ − πC(x∗) − t∗r)

 = 0,

(⇒) M̃Q̄TπC(x∗) + q̃ + Q̄T(x∗ − πC(x∗)) − t∗r̃ = 0,

using QTπC(x∗) = −M−1
QQ(MQQ̄Q̄TπC(x∗) + QTq),

(⇒) M̃πC̃(x̃∗) + q̃ + x̃∗ − πC̃(x̃∗) − t∗r̃ = 0.

The second (⇒) holds because NC(z) ⊂ (lin C)⊥,∀z ∈ C as shown in the proof of Proposi-
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tion 3.13(c). The last (⇒) holds because Q̄TπC(x) = πQ̄TC(Q̄Tx) by [13, Lemma 2.1]. Also,

r̃ ∈ NC̃(πC̃(x̃0)) by Proposition 3.13(d).

Conversely, let G̃C̃(x̃∗, t∗) = 0. Set x∗ = Q̄x̃∗+Qy∗ with y∗ as specified in the proposition.

Then
πC(x∗) = πC∩(lin C)⊥(x∗) + πlin C(x∗)

= Q̄πC̃(x̃∗) + Qy∗.

Therefore, QTπC(x∗) = y∗. By the definition of y∗, all the converse directions also hold. �

Note that the AVI(C̃, q̃, M̃) with C̃, q̃, and M̃ as in Proposition 3.14 is the same problem

obtained by applying the stage 1 reduction [14, page 49] to the AVI(C, q,M). Also, G̃C̃ is

the PL function defined on the (n − dim(lin C) + 1)-manifoldMC̃ of C̃ to find a zero of the

normal map associated with the AVI(C̃, q̃, M̃).

An implication of Proposition 3.14 is that if GC(x + θ∆x, t + θ∆t) = 0 with (x + θ∆x, t +

θ∆t) ∈ σ ×R+ for all θ ∈ [0, ν] with ν > 0 (possibly ν = ∞) and σ ×R+ is an (n + 1)-cell of

MC, then we have G̃C̃(x̃+θ∆x̃, t +θ∆t) = 0 with (x̃+θ∆x̃, t +θ∆t) ∈ σ̃×R+ for all θ ∈ [0, ν],

where σ̃ = Q̄Tσ and ∆x̃ = Q̄T∆x. The converse also holds by setting ∆x = Q̄∆x̃ + Q∆y with

∆y = −M−1
QQMQQ̄Hσ̃∆x̃, where Hσ̃ is an orthogonal projector onto par F̃ with σ̃ = F̃ + NF̃

[67, see the proof of Proposition 2.5].

Therefore, the projection of each piece of G−1
C (0) ontoMC̃ corresponds to each piece

of G̃−1
C̃

(0) and vice versa. As a consequence, if G−1
C (0) contains a ray, i.e., there exists

(∆x,∆t) , 0 with ν = ∞ on some (n + 1)-cell σ × R+ ofMC, and the corresponding value

(∆x̃,∆t) is not zero, then the corresponding piece of G̃−1
C̃

(0) is also a ray. The following

proposition shows that whenever there is a ray in G−1
C (0) with ∆x , 0, then we have ∆x̃ , 0

so that the corresponding piece of G̃−1
C̃

(0) is also a ray. Note that the converse automatically
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holds as ∆x , 0 for each ∆x̃ , 0.

Proposition 3.15. For an AVI(C, q,M), suppose that PathAVI generates G−1
C (0) with a ray

start at an implicit extreme point. For each ray in G−1
C (0) in the direction of (∆x,∆t) , 0,

if ∆x , 0 then ∆x̃ := Q̄T∆x is a ray in G̃−1
C̃

(0) that is nonzero under the assumption that

either 0 is a regular value or we perform lexicographic pivoting.

Proof. Let z be an implicit extreme point at which PathAVI performs a ray start. By

construction, ∆x̃ = 0 if and only if ∆x ∈ lin C. For the starting ray we have ∆x ∈ NC(z) so

that ∆x < lin C by Proposition 3.10. Thus, ∆x̃ , 0.

We now assume that there is a ray in G−1
C (0) other than the starting ray. Suppose that

∆x ∈ lin C. We proceed by contradiction. Let us assume that the ray is generated at

the (k + 1)th iteration of complementary pivoting, and that it starts from (xk+1, tk+1). We

know that (xk+1, tk+1) ∈ (σk+1 × R+) ∩ (σk × R+), where σk × R+ is the (n + 1)-cell ofMC

PathAVI passes through at the kth complementary pivoting iteration. As lin C ⊂ linσ

for each (n + 1)-cell σ × R+ ofMC, xk+1 + θ∆x ∈ σk for all θ ≥ 0. This contradicts the

fact that G−1
C (0) is a 1-manifold neat in MC [24, Theorem 9.1 or Lemma 15.5], that is,

G−1(0) ∩ (σk × R+) must be expressed as an intersection of σk × R+ with a line. Therefore,

∆x < lin C and the result follows. �

From Lemma 3.26 (in the Appendix), if M is semi-monotone with respect to rec C and

invertible on lin C, we have ∆t = 0 whenever PathAVI generates a ray in the direction of

(∆x,∆t). Matrix classes having the property ∆t = 0 include the L-matrix class and the

new matrix classes defined in Section 3.3.2. Therefore, whenever PathAVI generates a ray
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in G−1
C (0) for those classes of matrices the corresponding piece in G̃−1

C̃
(0) is also a ray by

Proposition 3.15.

Equipped with Propositions 3.13–3.15, we now show that PathAVI can process L-

matrices. In contrast to [14], we do not resort to a reduction to show the result.

Theorem 3.16. Suppose that C is a polyhedral convex set, and M is an L-matrix with

respect to rec C which is invertible on the lineality space of C. Then exactly one of the

following occurs:

• PathAVI solves the AVI(C, q,M).

• The following system has no solution

Mz + q ∈ (rec C)D.

Proof. By Propositions 3.13–3.14, for a 1-manifold G−1
C (0) generated by PathAVI there

corresponds to a 1-manifold G̃−1
C̃

(0) in the reduced space generated by the same pivotal

method with a ray start at an extreme point of C̃ with M̃ an L-matrix with respect to rec C̃.

If there is a secondary ray in G−1
C (0), then so is in G̃−1

C̃
(0) by Proposition 3.15. Therefore,

there exists directions (∆x̃,∆z̃,∆λ̃,∆s̃,∆t) in the reduced space satisfying

∆x̃ − ∆z̃ = −M̃∆z̃ + r̃∆t,

AA•∆z̃ = 0,

AĀ•∆z̃ − ∆s̃Ā = 0,

∆x̃ − ∆z̃ = −AT
A•∆λ̃A

(3.6)
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where we have included bound constraints in the matrix A for clarity, andA and Ā denote

the active and inactive sets, respectively. We then apply Theorem 3.6 to (3.6) to get the

desired result. �

3.3.2 Additional processability results

Let us now extend the classes of AVIs that PathAVI is able to process. The results in

Lemmas 3.17–3.19 consider the structure of the whole AVI, not only M and C. As stated in

the paragraph following Proposition 3.14, a 1-manifold generated inMC corresponds to

another one inMC̃. Hence, in the following we denote by AVI(C̃, q̃, M̃) the AVI correspond-

ing to AVI(C, q,M) with the lineality space projected out as explained in Proposition 3.14.

If M is invertible on lin C, the results can then be applied to the original AVI by noticing

that the projections of the directions of the rays on G−1
C (0) are solution to the system of

equations (3.6) in the reduced space.

In Section 3.6.1, we present a friction contact problem where Theorem 3.16 cannot be

applied but the following lemma is appropriate.

Lemma 3.17. Consider an AVI(C̃, q̃, M̃) with lin C̃ = {0}. Suppose that M̃ is semi-

monotone with respect to rec C̃ and that for any solution z , 0 of the problem

z ∈ rec C̃, M̃z ∈ (rec C̃)D, zTM̃z = 0, (3.7)

it holds that

zT(M̃z′ + q̃) ≥ 0, ∀z′ ∈ C̃. (3.8)

Then PathAVI solves the AVI(C̃, q̃, M̃).
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Proof. The pivotal method used in PathAVI fails if an unbounded ray is generated at some

iterate (xk, tk), k > 0. Now suppose that the method generates an unbounded ray. From

Lemma 3.26, we know that ∆t = 0, and ∆z , 0 is a solution to (3.7). This means that for

any point xk+1 on the ray, we have G̃C̃(xk+1, tk+1) = 0, implying that

〈∆z, G̃C̃(xk+1, tk)〉 = 〈∆z, M̃zk+1 + q̃〉 + 〈∆z, xk+1 − zk+1〉 + 〈∆z,−tkr〉 = 0. (3.9)

The first term is non-negative by our assumption, as well as the second one by the normal

cone definition. The third one is strictly positive since −tkr ∈ int(rec C̃)D. Hence, we

reached a contradiction. �

An additional property on M̃ allows easier checking of condition (3.8) of Lemma 3.17.

Corollary 3.18. If for any solution z of (3.7) we have 〈z′, M̃Tz〉 ≥ 0, for all z′ ∈ C̃, then the

condition (3.8) reduces to zTq̃ ≥ 0 whenever z is a solution to (3.7).

We introduce an additional problem class PathAVI can process.

Lemma 3.19. Consider an AVI(C̃, q̃, M̃) with lin C̃ = {0}. Suppose that C̃ is a proper cone,

M̃ is copositive with respect to C̃ and that the following implication holds:

z ∈ rec C̃, M̃z ∈ (rec C̃)D, zTM̃z = 0 ⇒ zTq̃ ≥ 0. (3.10)

Then the AVI(C̃, q̃, M̃) has a solution and PathAVI finds it.

Proof. Recall from [14, Lemma 4.3], that a copositive matrix is also semi-monotone. This

implies that ∆t = 0 and that ∆z , 0 satisfies the left-hand side of (3.10). Now let us suppose
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that at the current iterate xk, there exists an unbounded ray. Letting zk+1 = zk + θ∆z and

computing the inner product 〈zk+1, G̃C̃(xk+1, tk)〉 yields

0 = 〈zk+1, G̃C̃(xk+1, tk)〉 = 〈zk+1, M̃zk+1〉+ 〈zk+1, q̃〉+ 〈zk+1, xk+1 − zk+1〉+ 〈zk+1,−tkr〉. (3.11)

Note that since C̃ is pointed, 〈zk+1, xk+1 − zk+1〉 ≥ 0 by the definition of the normal cone.

The first term is quadratic in θ while the second and third are linear in θ. Therefore, if

〈∆z, M̃∆z〉 > 0, then 〈zk+1, G̃C̃(xk+1, tk)〉 > 0 for θ large enough and we reach a contradiction.

We are left with the case 〈∆z, M̃∆z〉 = 0:

0 = 〈zk, q̃〉 − 〈zk, tkr〉 + 〈zk+1, xk+1 − zk+1〉 + 〈zk+1, M̃zk+1〉 + θ(〈∆z, q̃〉 + 〈∆z,−tkr〉). (3.12)

The sum multiplied by θ is positive since −tkr ∈ int(rec C̃)D. Now the first two terms

are constant and the third and fourth ones are nonnegative. Whence for θ large enough,

〈zk+1, G̃C̃(xk+1, tk)〉 is positive, which concludes the proof. �

Remark 3.20. Lemma 3.19 was already known for the LCP case (that is C̃ = Rn
+): the

existence of a solution is given in [16, Theorem 3.8.6]. Here we are able to provide a

constructive proof for an AVI(C̃, q̃, M̃) over a proper cone.

Let us present an AVI(C, q,M) that satisfies the conditions of Lemma 3.19 where M

is not an L-matrix. Suppose that C ⊆ Rn+1
+ is a polyhedral solid cone, M =

 In 0

1T
n 0

,
with 1n the vector of ones of size n and q = (0n, 1)T. The solution set of the system

x ∈ C, Mx = 0 and xTMx = 0 is {(0n, α)T, α ≥ 0}. Note that if x = (0n, α)T, α > 0,

then Mx = 0 and xTMx = 0. However, for any nonzero vector x′ = (x′T1 , α
′)T in C,
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−MTx′ = (−Inx′T1 − α
′1T, 0)T < CD. Therefore, condition (b) of the L-matrix fails to hold.

On the other hand, we can readily check that M is copositive with respect to C and that for

any x = (0n, α)T, α ≥ 0, xTq = α ≥ 0, so that Lemma 3.19 can be used.

3.4 Computing an implicit extreme point for a ray start

In this section, we describe how to compute an implicit extreme point satisfying the

sufficient conditions for a ray start and the complementary basis associated with it so that

we can start complementary pivoting at that implicit extreme point. The overall procedure is

as follows: i) we first compute an initial basic feasible solution using a linear programming

(LP) solver, i.e., CPLEX or GUROBI; ii) as the initial solution might not be an implicit

extreme point, we may perform additional pivoting to move to an implicit extreme point; iii)

using the basis information associated with the implicit extreme point, we then construct a

complementary system of equations such that a unique solution to that system of equations

is an implicit extreme point satisfying the sufficient conditions for a ray start. The use of the

existing LP solver, which has a fast sparse linear algebra engine and pivoting method, as

well as the use of sparse linear algebra engine for complementary pivoting enables PathAVI

to fully exploit the sparse representation of the given AVI. This makes our method efficient

for large-scale AVI problems as illustrated by the examples in Section 3.6.2. More details

on the overall computational procedure are given in the Appendix as Algorithm 2.

We start with an introduction to some terminology and notational conventions for

describing a basic solution of an LP problem. We follow notation used in [9]. Suppose

that we run an LP solver over an LP problem: minimize cTz subject to Az − b ∈ K and
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l ≤ z ≤ u. Without loss of generality, we assume that we have eliminated all fixed variables.

For each solution z obtained from the LP solver, we have four index sets, B,Nl,Nu, and N f r,

for variables and two index sets,A and Ā, for constraints described by A and b1. Table 3.1

lists the properties of the index sets and the solution z. In Table 3.1, if lB ≤ zB ≤ uB, we say

that z is a basic feasible solution. Otherwise, we say that z is a basic solution. Note that we

have |A| = |B| in Table 3.1 as the basis matrix B is invertible. Hence, the submatrix AAB of

B is square and invertible.

We first describe how to compute an implicit extreme point of C. For a given AVI(C, q,M),

we formulate and solve the following LP problem using an LP solver:

minimize 0Tz

subject to Az − b ∈ K

l ≤ z ≤ u

(LP)

We put zero objective coefficients in the (LP) so that the (LP) returns whenever it finds a

basic feasible solution. If we have an intuition about where to start complementary pivoting,

then we could try to solve the (LP) with different objective coefficients.

Assuming that the (LP) is feasible, a basic feasible solution z0 from the LP solver with

the corresponding index sets is an extreme point if N f r = ∅. When N f r , ∅, z0 might not

be an implicit extreme point. In this case, we move from z0 to an implicit extreme point by

doing additional pivoting in a way that forces as many nonbasic free variables to become

basic variables. Algorithm 1 in the Appendix describes the pivoting procedure. After

applying Algorithm 1, for each j ∈ N f r and d j = A−1
ABAA, j if there exists k such that d j

k , 0,
1These index sets can be obtained using CPXgetbase() for CPLEX, for example.
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Table 3.1: Index sets and a basis matrix describing a basic solution z of an LP problem.
Assume that z ∈ Rn, A ∈ Rm×n, and b ∈ Rm

B ∪ Nl ∪ Nu ∪ N f r = {1, . . . , n} and B,Nl,Nu, and N f r are mutually exclusive.
B := a set of basic variables indices
Nl := a set of nonbasic variables indices at their finite lower bounds
Nu := a set of nonbasic variables indices at their finite upper bounds
N f r := a set of nonbasic free variables indices
A∪ Ā = {1, . . . ,m} with A∩ Ā = ∅
A := a set of active constraints indices, i.e., AA•z = bA
Ā := a set of inactive constraints indices

B =

[
AAB 0
AĀB ±IĀ

]
is an invertible basis matrix where IĀ is an identity matrix of size |Ā| × |Ā|

zB = A−1
AB (bA − AANzN) , zNl = lNl , zNu = uNu , zN f r = 0, N = Nl ∪ Nu ∪ N f r

then the basic variable corresponding to the kth position in B is a free variable. Otherwise,

the variable z j must have been pivoted in by Algorithm 1. Also, note that Algorithm 1

doesn’t change the properties described in Table 3.1. Using Algorithm 1, we obtain the

following result.

Proposition 3.21. Suppose that we have applied Algorithm 1. Then the new point, denoted

by z̄0, constructed from z0 through Algorithm 1 is an implicit extreme point of C. We have

dim(lin C) = |N f r| and the following set of vectors is a basis for the lineality space of C:

⋃
j∈N f r

{v j}, v j
k =



(A−1
ABAA, j)k if k ∈ B,

0 if k ∈ Nl ∪ Nu,

0 if k ∈ N f r, k , j,

1 if k = j.

Proof. Clearly, z̄0 ∈ C as we do a ratio test to move the point. We first show that lin C =

|N f r| and {v j} j∈N f r is a basis for the lineality space of C. For each j ∈ N f r, if v j
k , 0 for
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k ∈ B, then we have lk = −∞ and uk = ∞ as discussed in the previous paragraph. It

follows that z̄0 + λv j ∈ C for all λ ∈ R. By [71, Theorem 8.3], v j ∈ rec C ∩ (− rec C). Thus

v j ∈ lin C. By construction of v j, we see that v j’s are linearly independent. This implies that

dim(lin C) ≥ |N f r|. As dim(NC(z̄0)) ≥ |B| + |Nl| + |Nu| and NC(z̄0) ⊂ (lin C)⊥ as shown in

Proposition 3.13(d), it follows that dim(lin C) = |N f r| and {v j} j∈N f r is a basis for the lineality

space of C.

We now prove that z̄0 is an implicit extreme point of C. Suppose that z̄0 = λz1 + (1−λ)z2

for some z1, z2 ∈ C and λ ∈ (0, 1). Define dk =
∑

j∈N f r
(−zk

jv
j) and set z̃k = zk +dk for k = 1, 2.

We then have z̃k
j = 0 for j ∈ N f r and z̃k ∈ C as dk ∈ lin C for k = 1, 2. As z̄0 = λz1 + (1−λ)z2,

z̄0 = λz̃1+(1−λ)z̃2−(λd1+(1−λ)d2). We have λd1+(1−λ)d2 =
∑

j∈N f r

(
−(λz1

j + (1 − λ)z2
j)v

j
)
.

As z̄0
N f r

= z̃1
N f r

= z̃2
N f r

= 0, v j
j = 1, and v j

h = 0 for h ∈ N f r, h , j, we see that λd1 + (1−λ)d2 =

0. Therefore, z̄0 = λz̃1 + (1 − λ)z̃2. It follows that z̄0 = z̃1 = z̃2. Thus, z̄0 − zk = dk ∈ lin C

for k = 1, 2, which implies that z̄0 is an implicit extreme point of C. �

Using the implicit extreme point z̄0 of C and the index sets (B,Nl,Nu,N f r,A, Ā) associ-

ated with it, we construct an initial complementary basis and compute an implicit extreme

point satisfying the sufficient conditions for a ray start from that complementary basis. To

prove the invertibility of our initial complementary basis, we first introduce the following

technical result derived from [54, Lemma 3.6].

Corollary 3.22. Suppose that we have index sets (B,Nl,Nu,N f r,A, Ā) associated with an

AVI(C, q,M) with a nonempty N f r. Then Z is invertible if and only if W̃TM̃W̃ is invertible,
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where

Z =


MBB MBN f r −AT

AB

MN f r B MN f rN f r −AT
AN f r

AAB AAN f r 0A

 , M̃ =

 MBB MBN f r

MN f r B MN f rN f r

 , W̃ =

−A−1
ABAAN f r

IN f r

 .

Proof. As AAB is square and invertible, ker
[
AAB AAN f r

]
= im W̃. The result follows from

[54, Lemma 3.6]. �

We are now ready to present our initial complementary basis and an implicit extreme

point satisfying the sufficient conditions for a ray start.

Proposition 3.23. For a given AVI(C, q,M), suppose that we have an implicit extreme

point z̄0 and the index sets (B,Nl,Nu,N f r,A, Ā) associated with z̄0. Then the matrix on

the left-hand side of the following system of equations is invertible if and only if M is

invertible on the lineality space of C. Also z = (zB, zN f r , z̄
0
Nl
, z̄0

Nu
) in a solution to the system

of equations satisfies z ∈ z̄0 + lin C, i.e., z is an implicit extreme point of C by Proposition 3.9

in Section 3.3, and Mz + q ∈ aff(NC(z)).



MBB MBN f r −AT
AB 0 0 0

MNlB MNlN f r −AT
ANl

−INl 0 0

MNuB MNuN f r −AT
ANu

0 INu 0

MN f r B MN f rN f r −AT
AN f r

0 0 0

AAB AAN f r 0 0 0 0

AĀB AĀN f r 0 0 0 −IĀ





zB

zN f r

λA

wNl

vNu

sĀ



=



−qB − MBN z̄0
N

−qNl − MNlN z̄0
N

−qNu − MNuN z̄0
N

−qN f r − MN f rN z̄0
N

bA − AAN z̄0
N

bĀ − AĀN z̄0
N



.
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Proof. The matrix on the left-hand side of the system of equations is invertible if and only if

the matrix Z defined in Corollary 3.22 is invertible. This is because of the identity submatri-

ces of it, −INl , INu , and−IĀ. The columns of the matrix W = (−A−1
ABAAN f r IN f r 0Nl 0Nu)

T

form a basis of the lineality space of C. Note that WTMW = W̃TM̃W̃ where W̃ and M̃ are

the matrices defined in Corollary 3.22. Therefore, the matrix is invertible if and only if M

is invertible on the lineality space of C.

We now show that the z constructed from the solution to the linear system satisfies

z ∈ z̄0 + lin C. The fifth equation gives us

zB = −A−1
ABAAN f r zN f r + A−1

AB(bA − AAN z̄0
N).

If zN f r = 0, then zB = z̄0
B and z = z̄0. For zN f r , 0, we have z = z̄0 + WzN f r . As W is

a basis for the lineality space of C, it follows that z ∈ z̄0 + lin C. Since z̄0 is an implicit

extreme point, z enjoys the same property by Proposition 3.9.

From the first four equations of the given system, we see that Mz + q ∈ aff(NC(z)). �

3.5 Worst-case performance comparison: AVI vs MCP

reformulation

In this section, we introduce the MCP reformulation of an AVI and analyze worst-case per-

formance of the two formulations in Sections 3.5.1 and 3.5.2, respectively. We assume that

both problems are solved using the same complementary pivoting method. Computational
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results comparing the two formulations are presented in Section 3.6, and demonstrate the

effectiveness of working on the original manifoldMC (see Tables 3.2–3.4 and Fig. 3.3).

3.5.1 MCP reformulation

A linear MCP is defined as follows: for an affine function F(z) = Mz + q and a box

constraint B1 := Πn
j=1[l j, u j], z is a solution to the MCP(B1, q,M) if Mz + q = w − v with

z ∈ B1,w, v ∈ Rn
+, (z − l)Tw = 0, and (u − z)Tv = 0.

It is well known [20, page 4] that an AVI(C, q,M) can be reformulated as an MCP(B1 ×

B2, q̃, M̃), where

B1 = Πn
j=1[l j, u j], B2 = {λ ∈ Rm | λ ∈ KD},

M̃ =

M −AT

A 0

 , q̃ =

 q

−b

 .
(MCP-reform)

By [30, Proposition 1.2.1], z∗ is a solution to the AVI(C, q,M) if and only if there exists

λ∗ such that (z∗, λ∗) is a solution to the MCP(B1 × B2, q̃, M̃). Therefore, we can solve an

AVI(C, q,M) by solving its MCP(B1 × B2, q̃, M̃) reformulation and vice versa. The solver

Path [19], one of the most efficient MCP solvers, uses this MCP reformulation when it

processes an AVI.

Although the two formulations are equivalent, they do not share the same theoretical

properties. This is mainly because they look at different feasible regions, which also results

in different PL manifolds on which the complementary pivoting is performed. For the

MCP(B1 × B2, q̃, M̃) reformulation, a PL (n + m + 1)-manifoldMB1×B2 is built where the

full-dimensional cells are defined by the nonempty faces and the normal cones of the set
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B1×B2, which doesn’t consider the polyhedral constraints Az−b ∈ K. For the AVI(C, q,M)

formulation, a PL (n + 1)-manifoldMC is constructed based on the nonempty faces and

normal cones of C, which includes the polyhedral constraints Az − b ∈ K explicitly.

3.5.2 Worst-case performance analysis

In the worst case, the complementary pivoting method ends up going through all the full-

dimensional cells of the underlying PL manifold. As each iteration of the complementary

pivoting method corresponds to the traversal of one full-dimensional cell assuming nonde-

generacy or lexicographic pivoting, the maximum number of iterations is the total number

of the full-dimensional cells, which is finite but could be exponential in the number of

constraints. Therefore, we compare worst-case performance of the two formulations by

counting the number of the full-dimensional cells of the PL manifold that each formulation

generates.

By construction, the number of the full-dimensional cells is equivalent to the number of

the nonempty faces of the polyhedral convex set being considered [67, page 6]. Thus, we

count the number of the nonempty faces of both B1 × B2 and C.

Let NNF(S ) denote the number of the nonempty faces of a polyhedral convex set S . To

count the number of the nonempty faces, we start with building blocks defining a polyhedral

convex set: intervals [l, u] in R and linear constraints aTz − b ∈ K. For a closed interval
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[l, u] in R, the number of the nonempty faces is as follows:

NNF([l, u]) =


1 if −∞ = l < u = ∞ or −∞ < l = u < ∞,

2 if −∞ = l < u < ∞ or −∞ < l < u = ∞,

3 if −∞ < l < u < ∞.

(3.13)

For a halfspace or a hyperplane defined by a linear constraint aTz − b ∈ K where a , 0

and b ∈ R, the number of the nonempty faces is as follows:

NNF({z ∈ Rn | aTz − b ∈ K}) =


2 if K = R+ or K = R−,

1 if K = {0}.
(3.14)

Based on (3.13) and (3.14), we can compute an upper bound on the number of the

nonempty faces of a polyhedral convex set.

Lemma 3.24. Let C be a polyhedral convex set defined by C = {z ∈ Rn | Az − b ∈ K, l ≤

z ≤ u}. Then

NNF(C) ≤ Πn
j=1NNF([l j, u j]) × Πm

i=1NNF({z ∈ Rn | AT
i•z − bi ∈ Ki}), (3.15)

where the symbol Π j denotes multiplication over indexed terms.

Proof. Let C j = {z ∈ Rn | z j ∈ [l j, u j]} for j = 1, . . . , n and Cn+i = {z ∈ Rn | AT
i,:z − bi ∈ Ki}

for i = 1, . . . ,m. Then C = ∩n+m
i=1 Ci. By [70, Corollary 4.2.15], F is a face of C if and only

if F = ∩n+m
i=1 Fi where Fi is a face of Ci for i = 1, . . . , n + m. The result follows. �

In Lemma 3.24, there could be a large gap between NNF(C) and its upper bound. The
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upper bound counts all the possible combinations of the faces of each constraint regardless

of their feasibility. When C has only box constraints, i.e., C = {z ∈ Rn | l ≤ z ≤ u}, then

equality holds in (3.15). But, in other cases, the upper bound could be much larger than

NNF(C) as not every combination corresponds to a nonempty face of C. For example, if

C = {z ∈ R2 | z1 + z2 ≥ −1,−z1 + z2 ≥ −1, z1 − z2 ≥ −1,−z1 − z2 ≥ −1,−1 ≤ z1, z2 ≤ 1},

we have NNF(C) = 9. However, the upper bound is 144. It turns out that there are many

infeasible combinations, i.e., all the combinations having z1 = −1 and z2 = 1.

Using Lemma 3.24, we prove that the maximum number of cells for the AVI(C, q,M)

manifold is smaller or equal to the cells in the MCP(B1 × B2, q̃, M̃) manifold.

Proposition 3.25. Let an AVI(C, q,M) formulation and its MCP(B1 × B2, q̃, M̃) reformula-

tion defined in (MCP-reform) be given. Then the number of the full-dimensional cells of

the PL (n + 1)-manifoldMC is less than or equal to the number of the full-dimensional

cells of the PL (n + m + 1)-manifoldMB1×B2 .

Proof. By [70, Proposition 4.2.12], NNF(B1×B2) = NNF(B1)×NNF(B2). By applying the

same proposition, we have NNF(B1) = Πn
j=1NNF([l j, u j]) and NNF(B2) = Πm

i=1NNF([lλi , u
λ
i ])

where lλi and uλi are lower and upper bounds on λi variable. Using (3.13) and (3.14), we

see that Πm
i=1NNF({z ∈ Rn | AT

i•z − bi ∈ Ki}) = Πm
i=1NNF([lλi , u

λ
i ]). By Lemma 3.24, the result

follows. �

Based on Proposition 3.25, we expect that PathAVI will take fewer iterations than Path,

which solves the MCP reformulation, since in the worst case both may visit every cell in

the manifold. This is confirmed by the computational results in Sections 3.6.3–3.6.5.
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3.6 Computational results

In this section, we present computational results of PathAVI highlighting its computational

benefits of preserving the problem structure and its robustness and efficiency compared to

Path version 4.7 [19, 37], an established solver for AVIs which uses the MCP reformulation.

The majority of the examples are based on friction contact models, which we briefly

describe in Section 3.6.1. Section 3.6.2 shows improved performance of PathAVI using the

original AVI formulation containing nontrivial lineality space over its equivalent reduced

form that does not contain lines. Sections 3.6.3–3.6.5 compare performance of PathAVI

and Path over friction contact problems, compact sets, and Nash equilibrium problems,

respectively and demonstrate the advantages of the stronger theory associated with PathAVI.

All experiments were performed on a Linux machine with Intel Xeon(R) E7-4850

2.00GHz processor and 256GB of memory. PathAVI was compiled using GNU gcc version

4.4.7 and its interfaces were linked to GAMS. All problem instances were written in GAMS

using the EMP syntax for variational inequalities [33]. We set the time limit to 1 hour and

major/minor iteration limits to 20 and 105, respectively.

3.6.1 Friction contact problem

Coulomb or dry friction is a ubiquitous phenomenon when mechanical systems interact via

contact with each other. Consider a mechanical system with ndof degrees of freedom, nd

bodies and nc contacts. The number of degrees of freedom depends on the type of system we

consider, i.e., if we have rigid bodies, ndof = 6nd. However, if we have deformable bodies,

then this number is typically larger and depends on the modeling used for the bodies. For
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each two bodies in contact at a single point, we denote by u(k) B (u(k)
n , u

(k)
t )T ∈ R+ × R

2 the

relative (or local) velocity between them and the reaction force is given by r(k) = (r(k)
n , r(k)

t ).

One of the numerous ways (see [2] for a list of them) to model the dynamics of a system

with Coulomb friction is:

−u(k)
n ∈ NR+

(r(k)
n ) k = 1, . . . , nc and Mv = Hr + f

−u(k)
t ∈ Nr(k)

n µ(k)D(r(k)
t ) u = HT v + w,

(3.16)

with M ∈ Rndof×ndof , H ∈ Rndof×3nc , R3nc 3 r B [r(1)
n , r(1)

t , . . . , r(nc)
n , r(nc)

t ]T and R3nc 3 u B

[u(1)
n , u(1)

t , . . . , u(nc)
n , u(nc)

t ]T , see Fig. 3.1 for an example. It is shown in [46] that (3.16) is

equivalent to the following complementarity problem over a second order cone:

0 ∈


M −H 0

HT 0 E

H̄T 0 E




v

r

y

 +


− f

w

w̄

 + NX


v

r

y

 X B Rndof × K × K, (3.17)

where K B Π
nc
k=1Kµk and Kµk B {(t, tx) | t ∈ R+, x ∈ µkD}, D being the unit disk in R2.

If we split H as [H1,n,H1,t, . . . ,Hi,n,Hi,t, . . . ,Hnc,n,Hnc,t] with Hk,n ∈ R
ndof ,Hk,t ∈ R

ndof×2,

then H̄ B [0n,H1,t, . . . , 0n,Hk,t, . . . , 0n,Hnc,t]. Similarly, letting (wk,n,wk,t) ∈ R × R2 we

have w = [w1,n,w1,t, . . . ,wnc,n,wnc,t] and w̄ B [0,w1,t, . . . , 0,wnc,t]. Finally, the diagonal

matrix E ∈ R3nc×3nc is based on the vector (1, 0, 0)T repeated nc times. The variable

y B [y1,n, y1,t, . . . , ync,n, ync,t]
T with (yk,n, yk,t) ∈ R × R2, is introduced to ensure that the

modified local velocity u + Ey belongs to KD. Since the cone K is not polyhedral, we need

to approximate K to get an AVI from (3.17). Then, we have to solve a sequence of AVIs until

one of the solutions also satisfies (3.17) up to the specified tolerance. Computationally, the
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most demanding step is the solution of the first AVI in the sequence. Furthermore, we focus

here on the case where it makes sense to perform a ray start. Hence, we solve the AVI that

would correspond to the first iteration and with an “anisotropic” approximation of K. For

each contact we construct a finitely representable polyhedral approximation Dk
p of the disk

µkD. Then, the cone K is approximated by Kp B ΠkKk
p, with Kk

p B {(t, tx) | t ∈ R+, x ∈ Dk
p}.

Finally, with a slight abuse of notation, we redefine X B Rndof × Kp × Kp and refer to (3.17)

as an AVI. It can be verified that PathAVI processes the AVI (3.17) if w ∈ (ker H ∩ K)D

by applying Lemma 3.17. It is noteworthy that this condition is exactly the one given

in [51] for the existence of solution to the complementarity problem over a second order

cone (3.17). If we solely rely on the L-matrix property, we need to assume that ker H = {0},

which fails in many instances, for example when a 4-legged chair is in contact with flat

ground.

3.6.2 Computational benefits of preserving the problem structure

The problem data (M,H, f ,w) for the following numerical results were obtained from

simulations of deformable bodies with the LMGC90 [23] software and using a solver from

Siconos [3]. In the following, we focus on a simple example where 2 deformable cubes

are on top of another. During the simulation, the number of contacts varies between 80

and 120. The shape of M and H is given in Fig. 3.1. It is noteworthy that if we have to

remove the lineality space, that is to compute W, then the sparse structure of the problem

is destroyed (see Fig. 3.1(c)): the number of nonzero elements is increased by a factor

of 5. It is expected that the linear algebra computations will be more expensive in the

reduced space formulation than in the original one because of this large increase of nonzero
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Figure 3.1: Nonzero patterns of the matrices M (size: 1452 × 1452, nnz: 11330), H (size:
1452 × 363, nnz: 1747) and W B HT M−1H (size: 363 × 363, nnz: 56770).

entries. This has been verified on instances that have the same kind of structure as the

matrices depicted in Fig. 3.1. Both problems are AVIs, but as shown on Fig. 3.2, PathAVI

working in the original space is always faster and most of the time is at least twice as fast

as PathAVI working in the reduced space. The time in the reduced space does not even

take into account the transformation of the problem data, that is the computation of the W

matrix.
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Figure 3.2: Comparison in terms of speed between the resolution in the original space and
the reduced one. The number of iteration was the same for all the 209 instances.

3.6.3 Multibody friction contact problems

When the bodies are rigid, it is common in the contact mechanic community to eliminate the

velocity v. The problem is formulated in a reduced space Kp × Kp (defined in Section 3.6.1)

and the AVI is

0 ∈

W E

W̄ E


r

y

 +

ωω̄
 + NKp×Kp

r

y

 , (3.18)

where W B HTM−1H and W̄ B H̄TM−1H, ω B w + HTM−1 f and ω̄ B w̄ + H̄TM−1 f . The

lineality space is then trivial in this formulation.

We present computational results using the problem data (W, µ and q) from the FCLIB

collection2 [1], which aims at providing challenging instances of the friction contact

problem. Let us highlight a few facts based on the data presented in Table 3.2:

- PathAVI can solve all the instances with the linear algebra package UMFPACK [18]

(“pathavi/UMFPACK”) and is generally faster than Path.
2The collection of problem can be freely downloaded by visiting http://fclib.gforge.inria.fr

http://fclib.gforge.inria.fr
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- Some problems are numerically challenging and the behavior of the solver changes

with the linear algebra routines. Specifically, on those problems using LUSOL

(“pathavi/default”) leads to 20 failures. That can be reduced by using the block-LU

updates [26] (“pathavi/LUSOL-blu”). These errors are caused by some numerical

issues in the linear algebra package. This illustrates the importance of being able to

change the linear algebra engine in PathAVI.

- Path is unable to perform a ray start in many instances (whenever ker W is not trivial);

in these cases, PathAVI significantly outperforms Path (with or without the crash

method).

Table 3.2: Statistics for 4579 friction contact problems of the form (3.18).

Solver/profile # Failed
Failure type

Solver error Stalled Time Iteration
pathavi/UMFPACK 0 0 0 0 0
pathavi/default 20 0 0 0 20
pathavi/LUSOL-blu 3 0 0 0 3
path/default 2060 535 1525 0 0
path/no crash 108 99 0 8 1

Let us explain the failure types: “Solver error” means that the first basis matrix could

not be factorized, despite the use of artificial variables to overcome the rank deficiency.

“Stalled” means that a solver tried various strategies but failed to find a solution at the

requested accuracy and consequently gave up. Note that this never occurred with PathAVI

on this set of problems. “Time” (or “Iteration”) signals that the time (or iteration) limit has

been reached. The convergence tolerance is set to a low value:
√

N · 10−9, where N is the
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number of contacts. This value is lower than the default tolerance of Path (that is already

considered quite demanding).

The default behavior of Path (“path/default”) leads to many failures: the crash method

is inappropriate for such models. However, even without the crash procedure (“path/no

crash”), Path still fails at a higher rate than PathAVI. We further compare Path and PathAVI

on their default settings on the subset of problems solved by both. The results are presented

in Fig. 3.3 in terms of time ratios. First note that PathAVI is faster than Path in the majority

of cases, and that it usually finds a solution in less than half the time of Path. The spike on

the right plot, when Path finds the solution faster than PathAVI, is explained by the fact that

the crash procedure in Path performed well in those instances (< 10% of the examples).
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PathAVI is better 2165 times
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Figure 3.3: Time comparison between Path and PathAVI

3.6.4 AVIs over compact sets

One strong implication of Theorem 3.16 is that when C is compact (so that rec C = {0})

PathAVI can process an AVI(C, q,M) with arbitrary M and q. In contrast, this does not

hold for the MCP reformulation as the underlying feasible region [B1 × B2] of it may not

be compact although C is compact. This is because whenever the AVI contains polyhedral
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constraints the associated λ variables in the MCP reformulation are only constrained to lie

in the unbounded set B2.

We construct 5 AVI instances by taking compact feasible regions from [57] having

finite lower and upper bounds and by randomly generating M and q such that the resultant

AVI has an M with negative eigenvalues.

Table 3.3 presents some computational results. As expected, PathAVI is able to solve all

the instances, whereas Path fails to solve three of them. Also, on the two problem instances

where both solvers are able to solve, PathAVI shows 10–30 times fewer iterations, and a

similarly decreased elapsed time. These properties hold for a wide selection of instances

and the above table is just provided for expository purposes.

Table 3.3: Performance of PathAVI and Path over compact sets

(a) Statistics of the compact sets

Name (#constrs,#vars) (nnz(A),nnz(M))
CVXQP1_M (500, 1000) (2495, 999)
CVXQP2_M (250, 1000) (1746, 999)
CVXQP3_M (750, 1000) (3244, 999)

CONT-050 (2401, 2597) (14597, 6407)
CONT-100 (9801,10197) (59197,98875)

(b) Performance of PathAVI and Path

Name
Number of iterations Elapsed time (secs)
PathAVI Path PathAVI Path

CVXQP1_M 3119 fail 0.459 fail
CVXQP2_M 33835 fail 2.827 fail
CVXQP3_M 360 3603 0.105 1.992

CONT-050 11 382 2.753 272.429
CONT-100 3 fail 174.267 fail
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3.6.5 Nash equilibrium problems

Another application of AVIs is to Nash equilibrium problems. In a Nash equilibrium

problem, there are multiple agents each of which minimizing its own objective function,

and each agent’s objective function not only depends on the agent’s decision but also other

agents’ decisions. For example, a typical Nash equilibrium problem computes a solution

satisfying

x∗i ∈ arg min
xi∈Xi

hi(xi, x∗−i), for i = 1, . . . ,N, (NEP)

where we note that each ith agent’s objective function hi takes its own decision, denoted by

xi, and other agents’ decisions, denoted by x−i.

We generated 6 instances of Nash equilibrium problems, where each Xi is a polyhedral

convex set and hi is continuously differentiable in x and convex quadratic in xi for each

fixed x−i. Specifically, hi takes the following form:

hi(xi, x−i) =
1
2

xT
i Qixi + xT

i Q−ix−i + cT
i xi + dT

i x−i,

where Qi is symmetric positive definite.

In this case, x is a solution to (NEP) if and only if it is a solution to the AVI(C, q,M)

where Mx + q = (∇xihi(x))N
i=1 and C = ΠN

i=1Xi. The number of agents ranges from 10 to 300.

Table 3.4 presents performance of PathAVI and Path over the NEPs. The number of

iterations of PathAVI is up to 11 times fewer than Path. Elapsed time shows similar results

except for the last three instances. In those instances, LUSOL has a great difficulty in

computing PathAVI’s intermediate basis matrices. If we change the linear algebra engine to

UMFPACK, the computation time significantly reduces. Regarding Path’s performance on
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Table 3.4: Performance of PathAVI and Path over the NEPs

(a) Statistics of the NEPs

Name (#constrs,#vars) (nnz(A),nnz(M))
vimod1 ( 554,1138) (4744,22577)
vimod2 ( 910,1723) (7935,46137)
vimod3 (1101,2226) (9117,67634)
vimod4 ( 870,1828) (62056,154332)
vimod5 (1327,2586) (133527,274004)
vimod6 (2210,4359) (207408,417810)

(b) # Iterations and elapsed time of PathAVI and Path on the NEPs

Name
Number of iterations Elapsed time (secs)

PathAVI Path
PathAVI/

PathAVI Path
PathAVI/

UMFPACK UMFPACK
vimod1 367 2087 367 0.372 4.129 0.437
vimod2 319 3570 319 1.098 24.134 0.645
vimod3 590 4278 590 3.208 60.553 1.639
vimod4 1343 6146 1343 127.194 66.427 18.319
vimod5 2167 2768 2167 327.970 325.558 40.285
vimod6 3522 4222 3522 2341.193 1841.642 109.960

the last three instances, we would like to point out that the proximal perturbation technique

of Path, which solves a sequence of perturbed MCPs by adding εkI with εk → 0 as k → ∞

to the matrix M̃ in (MCP-reform), plays a significant role in its performance. Adding

positive diagonals elements changes the elimination sequence and makes linear algebra

computations much faster and more stable. When we turn off the proximal perturbation,

Path either gets much slower than PathAVI or fails to solve the instance.
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3.7 PathVI: a nonlinear extension of PathAVI for

nonlinear VIs

We briefly describe our nonlinear extension of PathAVI for nonlinear VI(C, F)s where

F : Rn → Rn is a nonlinear function and C is a polyhedral convex set. Similar to

AVI(C, q,M), we define a normal map FC : Rn → Rn such that FC(x) := F(πC(x))+x−πC(x).

It can be easily verified that FC(x∗) = 0 if and only if z∗ := πC(x∗) with x∗ = z∗ − F(z∗) is a

solution to the VI(C, F). By using the following linear approximation Ak(·) of FC at a point

xk [68, Section 4] (or equivalently linearizing the generalized equation 0 ∈ F(x)+ NC(z) [47,

Definition 5]),

Ak(x) = F(πC(xk)) + F′(πC(xk))(πC(x) − πC(xk)) + x − πC(x), (3.19)

we apply the Newton’s method with a sub-problem at iteration k being an AVI(C, qk,Mk)

where qk = F(πC(xk)) − F′(πC(xk))πC(xk) and Mk = F′(πC(xk)). PathAVI is used to

solve each AVI(C, qk,Mk). Similar to Path, we apply non-monotone stabilization scheme

combined with Fischer-Burmeister type merit function [38] for global convergence of the

Newton’s method. We have implemented PathVI and is available within GAMS.

One caveat is that Path and PathVI will take an identical path after the first iteration

of the Newton’s method unless Path perturbs the problem using proximal perturbation.

This is because the feasible region C is defined by linear constraints, and the linearization

performed over those constraints does not change them. Thus a solution to the first Newton

step will be in C. After that, the Newton step will maintain feasibility throughout the
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iterations. For example, Path computes a linearization over the following function:

F̃(z, λ) =

F(z) − A>λ

Az − b

 . (3.20)

Then the row corresponding Az − b would not change by the linearization, and complemen-

tarity will guarantee feasibility of all iterates after the first iteration.

3.8 Conclusions

We have presented PathAVI, a structure-preserving pivotal method for affine variational

inequalities. Compared to existing methods, PathAVI can process an AVI without apply-

ing any reduction or transformation to the problem data even if the underlying feasible

region contains lines. PathAVI can process some newly generated problem classes from

applications in friction contact as well as the existing problem class (L-matrices [14]). A

computational method for finding a point satisfying sufficient conditions for a ray start is

detailed. Through worst-case analysis, we have shown that exploiting polyhedral structure

for solving affine variational inequalities is expected to show better performance than

using a mixed complementarity problem reformulation. Computational results over friction

contact and Nash equilibrium problems illustrate that PathAVI compares favorably with

Path both in terms of robustness and efficiency.
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Appendix

Lemma 3.26 (Theorem 4.4 [14]). Consider an AVI(C, q,M) with lin C = {0} and let M be

semi-monotone with respect to rec C. Suppose that an unbounded ray occurs. Then the

value of the auxiliary variable t is constant on that ray and ∆z, the variation in z, is nonzero

and satisfies

∆z ∈ rec C, M∆z ∈ (rec C)D, and ∆zTM∆z = 0. (3.21)

Proof. The fact that t is constant and that ∆z is a solution to (3.21) follows from the first

part of the proof of Theorem 4.4 in [14]. To see that the direction ∆z is nonzero, we proceed

by contradiction: at the current iterate (xk, tk) we have

GC(xk, tk) = Mzk + q + xk − zk − tkr = 0.

Let xk+1 belong to the unbounded ray and suppose that ∆z = 0:

GC(xk+1, tk) = Mzk + q + xk+1 − zk − tkr = 0.

It immediately follows that xk+1 = xk. �
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Algorithm 1 Pivoting to make as many nonbasic free variables as basic variables

Input: a basic feasible solution z0 and its index sets (B0,N0
l ,N

0
u ,N

0
f r,A

0, Ā0)
Output: a basic feasible solution z̄0 and its index sets (B,Nl,Nu,N f r,A, Ā)

1: Set z̄0 ← z0.
2: Set (B,Nl,Nu,N f r,A, Ā)← (B0,N0

l ,N
0
u ,N

0
f r,A

0, Ā0).
3: Set changed← true.
4: while changed is true do
5: Set changed← false.
6: for each j ∈ N f r do
7: Do a ratio test on the nonbasic column j over basic variables that are not free

variables.
8: if the ratio is finite then
9: Pivot in the jth column into basis.

10: Update z̄0 and its index sets (B,Nl,Nu,N f r,A, Ā). . |N f r| ← |N f r| − 1
11: Set changed← true.
12: end if
13: end for
14: end while
15: return z̄0 and its index sets (B,Nl,Nu,N f r,A, Ā)
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Algorithm 2 Overall computation procedure of PathAVI
Input: AVI(C, q,M)
Output: One of the following: emptiness of C, a solution z∗ to the AVI(C, q,M), or a

secondary ray
1: Construct and solve the LP problem defined in (LP) using an LP solver.
2: if the LP solver determines that C is empty then
3: return C is empty
4: end if
5: Let z0 be the basic feasible solution returned by the LP solver.
6: Run Algorithm 1 with z0 and its index sets to compute an implicit extreme point z̄0.
7: Construct and solve the complementary system of equations defined in Proposition 3.23

using z̄0 and its index sets.
8: if (z̄0, λ,w, v, s) is feasible then
9: Set z∗ ← z̄0.

10: return z∗.
11: else
12: Choose r ∈ ri(NC(z̄0)) by referring to the active constraint set at z̄0.
13: Augment a column (r, 0)T with a t variable to the complementary system of equa-

tions.
14: Compute an almost complementary feasible basis by pivoting in the t variable.
15: Do complementary pivoting until either we find a solution z∗ or a secondary ray is

generated.
16: return z∗ if we have found a solution or a secondary ray otherwise.
17: end if
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Chapter 4

Selkie: a model transformation and

distributed solver for structured

equilibrium problems

We introduce Selkie, a general-purpose solver for equilibrium problems described by

a set of agents. It exploits problem structures, such as block structure and cascading

dependency of interacting agents, in a flexible and adaptable way to achieve a more

robust and faster solution path. To accomplish this, it transforms a given model into a set

of structure-exploiting sub-models via structure analysis and taking into account user’s

knowledge. A diagonalization method is then applied to those sub-models possibly with

parallel computations for making full use of computational resources. Depending on

the configurations of sub-model generations and diagonalization method to use, various

decomposition schemes can be instantiated. We can choose a sub-solver to use for each
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sub-model so that a highly efficient solver can be employed tailored to a certain problem

type. For stronger convergence results and numerical stability, primal and dual proximal

perturbations are implemented. Examples illustrating the flexibility and effectiveness of

Selkie are given. Selkie has been implemented and is available within GAMS/EMP.

4.1 Introduction

This chapter is concerned with a general-purpose solver, called Selkie, for structured

equilibrium problems. Equilibrium problems of interest are generalized Nash equilib-

rium problems (GNEP) and multiple optimization problems with equilibrium constraints

(MOPEC) [10, 29, 44, 65]. Selkie is suitable for large-scale and block-structured equilib-

rium problems as well as equilibrium problems in general.

While the framework discussed in Chapter 2 makes it much easier to access and model

equilibrium problems, its main solution method was limited to the MCP formulation. As

the formulation is oblivious of the original problem in this case, it does not fully exploit

its structure such as independent groups of agents and cascading dependency between

interacting agents. These structures allow us to decompose a given model into smaller

sub-models, possibly amenable to parallel computations, thus to find a more robust and

faster solution path. This motivates us to develop Selkie.

Selkie distinguishes itself by its adaptability and flexibility in transforming a model,

applying parallelism, and choosing a sub-solver to use. It transforms a given equilibrium

model into several different structure-exploiting sub-models to solve the problem. The

way a model is transformed is determined by either our automatic structure detection
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mechanism or user-supplied information. Different sub-models can be easily generated by

adapting user’s knowledge provided in an option file selkie.opt. This adaptability allows

Selkie to exploit problem structure to a great extent. Parallelism can be achieved whenever

the transformed models are independently solvable so that we can make full use of the

underlying resources on a machine. Finally, we can choose a sub-solver to use for each

sub-model of the same type such as linear, nonlinear, quadratic constrained programming,

and so on. This allows us to apply a highly efficient solver tailored to certain problem types.

All of these features have been implemented to work with the EMP framework so that we

can use Selkie in modeling languages as a solver for equilibrium problems.

Our main approach to transforming a model is a mixture of grouping and decomposing

agents. It transforms a given initial set of agents obtained from the empinfo file into

another set of agents by grouping and decomposing them based on structure analysis

and user-supplied information. Selkie then applies its solution method to those newly

constructed agents. This approach is quite flexible as it generalizes the existing MCP

approach (by grouping all the agents) while allowing various decomposition schemes to be

applied.

As a solution method, we use diagonalization [17, 42, 63]. Diagonalization is an

iterative method that repeatedly solves each agent while other agents’ variable values

are kept fixed until convergence. It not only fits well with our abstraction of a problem

being a set of agents, but also can generalize many iterative methods such as Dantzig-

Wolfe decomposition, Benders decomposition, dynamic programming, and so on. Five

variants including nonlinear Gauss-Seidel and Jacobi are implemented. We also allow

our diagonalization to work in a recursive manner: for a group of agents we can apply
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diagonalization for each agent in the group while it is also applied to groups of agents. This

feature is especially useful when we solve some dynamic programming applications in

economics.

Finally, Selkie provides proximal perturbations to transform the model for stronger

convergence properties and to resolve some practical issues on applying diagonalization

such as unbounded and infeasible solutions. It can perturb primal or dual or both parts

where they correspond to the objective/VI functions and the constraints, respectively. Primal

perturbation prevents from having an unbounded solution or infeasible VI function and

dual perturbation is for avoiding infeasible constraints. They can help us find a more robust

solution path.

The rest of the chapter is organized as follows. Section 4.2 presents the architecture of

Selkie. The overall data flow together with its three major components are described. In

Section 4.3, we introduce Selkie’s solution method, diagonalization, with its five different

variants. We discuss some practical issues on applying them such as unbounded and

infeasible solutions. Section 4.4 introduces our two main model transformation methods,

agent grouping and proximal perturbations, with examples showing their effectiveness. In

Sections 4.3-4.4, we show how we can use the functions mentioned in those sections using

an option file. We conclude this chapter in Section 4.5.

4.2 Architecture of Selkie

In this section, we present the overall process of Selkie together with its basic components

to solve an equilibrium problem described using the EMP framework [49]. As Selkie (and
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the EMP framework) is currently implemented to work with GAMS, we assume that the

model is written in GAMS/EMP, that is, GAMS using the EMP framework. This will be

extended to support other algebraic modeling languages such as AMPL and Julia.

Figure 4.1 depicts the architecture of Selkie. Selkie is basically composed of three

components: i) model I/O, ii) model transformations, and iii) solution methods. Model

I/O unit takes an equilibrium model written in GAMS/EMP, parses its empinfo file to

identify each agent’s problem description such as agent’s ownership of equations and

variables, and generates an in-memory representation of the original model. By an in-

memory representation, we mean a set of opcodes for each equation.1 These opcodes

enable us to compute derivatives of an equation (a symbolic differentiation is employed)

quite efficiently in transformations unit. It also has the ability to transform opcodes into an

expression tree using which we can recover a printable form of algebraic terms. This can

be used to generate a new model file that corresponds to each individual agent’s or a group

of agents’ problem.

Once we identify the structure of the problem through model I/O unit, transformations

unit is subsequently called and performs transformations of the original model: depending

on the option it formulates each individual agent’s problem, problems for groups of agents,

or perturbed version of those problems. To facilitate transformations, we have basic

building blocks such as differentiating opcodes with respect to a variable, constructing the

Lagrangian function, and adding proximal terms to an equation. These building blocks are

applied to the equations of the original model to build new formulations we want. A list
1In general, algebraic modeling languages including GAMS internally generate a compact representation

for each equation in the form of opcodes, similar to assembly language, instructing what operations need to
be done to evaluate an equation at a given point.
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Modeling languages’ APIs

m

Solution methods: diagonalization

Solvers (BARON, CONOPT, CPLEX, GUROBI, PATH, ...)

Model transformations

Figure 4.1: Architecture of Selkie

of agents’ problems (Selkie creates a new agent for a group of agents) is generated as an

output of transformations unit. By default, each individual agent’s problem specified in the

empinfo file is created. This can be changed using agent_group option as described in

Section 4.4.1.

Problems in the form of a list of agents are then passed onto solution methods unit to

compute a solution. Selkie’s main solution method is diagonalization which repeatedly

solves each agent until convergence. It has five variants, and details are described in
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Method Next agent to solve Other agents’ variables
Gauss-Seidel cyclic the most recent values
Gauss-Seidel random random the most recent values
Gauss-Seidel random sweep random-permutations cyclic the most recent values
Gauss-Southwell highest residual the most recent values
Jacobi cyclic iteration starting values

Table 4.1: Selkie’s diagonalization methods and their differences

Section 4.3. A problem type is defined for each agent, and we can choose one of the

appropriate solvers supported by the underlying modeling languages. For instance, we

could use BARON [77], CONOPT [22] or IPOPT [79] and so on in GAMS for agents

defining nonlinear programming problems. For a group of agents, the default problem

type is MCP. In this case, we solve the group in one-shot by considering changes of all

the agents’ variable values in the group simultaneously. Other group solve method can be

specified via agent_group option. For MCPs, Path [19] is used.

4.3 Solution methods: diagonalization

This section introduces Selkie’s five different variants of diagonalization method. Basically,

diagonalization is an iterative method: for a given list of agents it repeatedly solves each

agent in the list while fixing other agents’ variable values until convergence. Details

about each method are described in Section 4.3.2. Section 4.3.3 presents some theoretical

results on convergence. We discuss some practical issues on applying these methods such

as infeasible and unbounded solutions of sub-problems in Section 4.3.4. We start with

convergence criteria that are shared by all of the methods in Section 4.3.1.
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4.3.1 Convergence criteria

At each major iteration, Selkie checks its convergence criteria to see if it finds a solution.

It has two criteria: i) the absolute maximum change of variable values of all the agents

(in other term the absolute deviation) is less than a tolerance; ii) the residual is less than

a tolerance. In general, the second criteria is much more accurate than the first one as it

checks if the current point satisfies each agent’s KKT conditions. If one of those criteria is

satisfied, Selkie concludes that it has found a solution and terminates the iterations.

The tolerance for the first criterion is determined by deviation_convergence_tolerance

option. By default, it is set to 10−10. The reason for somewhat such a strict value is that

values larger than 10−10 sometimes give high residual, say larger than 10−6. With such a

large residual, the current point may not be a solution.

To compute the residual, we either evaluate the normal map [67] or Fischer-Burmeister

type merit function [36] at the current point. The tolerance for the residual is defined by

convergence_tolerance option. By default, it is set to 10−6 which is same as Path.

Note that computing a residual is usually much more expensive than computing the

absolute deviation. Sometimes this could even slow down the iteration process much. To

avoid such a case, Selkie has options to delay residual computation until deviation reaches

a tolerance. For example, we can set options as follows:

delay_residual_check=yes

deviation_delay_convergence=1e-8

With those options, Selkie will not compute residual until deviation becomes less than

10−8. By default, delayed residual computation is disabled.
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Algorithm 3 Gauss-Seidel method
Input: a list of N agents’ problems
Output: a solution if successful or a status otherwise

1: Let x0 = (x0
1, . . . , x

0
N) be an initial point where xi represents agent i’s variable.

2: Let probi(xi, x−i) be agent i’s problem.
3: for k = 1 to iteration limit do
4: for i = 1 to N do
5: Set status← solve probi(xk

1, . . . , x
k
i−1, x

k−1
i , xk−1

i+1 , . . . , x
k−1
N ).

6: if status is successful then
7: Set xk

i to the solution of agent i’s problem.
8: else
9: return an error with status

10: end if
11: end for
12: Set status← check the convergence criteria.
13: if status is converged then
14: return a solution xk

15: end if
16: end for
17: return an error with status “iteration limit reached”

4.3.2 Diagonalization methods

Basic principle of diagonalization method is to repeatedly solve each agent at a time while

fixing other agents’ variable values appeared in that agent’s problem until convergence.

As an example, our Gauss-Seidel method is illustrated in Algorithm 3. At each major

iteration, numbered by k, it sequentially solves each agent one at a time while other agents’

variable values are kept fixed to the most recent ones. Hence in line 5 of Algorithm 3, agent

i uses xk
j for j = 1, . . . , i − 1 (solutions of agents that are solved before it) while it uses

xk−1
j for j = i, . . . ,N. In general, the use of the most recent values helps achieve a better

convergence result than Jacobi method.

Variants of diagonalization method differ by the way they choose the next agent to solve
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and how they fix other agents’ variable values. Table 4.1 shows the five variants and their

differences implemented in Selkie. Note that Gauss-Southwell chooses the next agent that

violates the KKT conditions the most. Compared to other Gauss type methods, Jacobi uses

starting values of each major iteration when it needs to fix them so it can be run in parallel.

To enable parallelism, we need to set parallel_jacobi to yes.

We can choose which method to use using diagonalization_method option by

specifying one of the following:

gauss_seidel

gauss_seidel_random

gauss_seidel_random_sweep

gauss_southwell

jacobi

4.3.3 Convergence theory

A diagonalization method is more like a computational method without strong convergence

properties. Convergence results of Gauss-Seidel or Jacobi method for equilibrium problems

is either usually not known or very restrictive [29, see page 198]. For Nash equilibrium

problems, when Jacobi method is applied with primal proximal perturbation described in

Section 4.4.2, convergence results including existence and uniqueness of a solution [31,

see page 481] exist under P-matrix property of the Jacobian matrix. For GNEPs, the

authors [32] defined a generalized potential game and showed that under appropriate

assumptions if there exists an accumulation point generated by Gauss-Seidel method with
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primal proximal perturbation, then it is a solution.

4.3.4 Practical issues on applying diagonalization

To apply diagonalization, each sub-problem (agent’s problem) needs to be well-defined: a

solution is found at each iteration. However, in practice sub-problems could be infeasible

or unbounded, which prohibits us from proceeding the iteration. For example, if we run

Gauss-Seidel over the pure trade market problem (4.4) in Section 4.4.1, the clearing agent

(the VI) that couples all the other agents’ variables will have an infeasible solution at the

first iteration as demand becomes larger than supply. This occurs because each utility

maximizing agent decides its demand subject to the budget constraint, not including the

market clearing conditions that are seen only by the clearing agent. In other cases, if the

clearing agent chooses to set the price of a good to zero because of an excess supply, then it

could result in an unbounded solution of some utility maximizing agent’s problem.

The main reason for such difficulties with diagonalization is that information, repre-

sented by functions and constraints, is not shared by all agents; only partial information is

available to each agent when it makes a decision. We could make it shared by formulating

an MCP, in which all the variables are endogenous, but this will restrict us to work on only

a relatively large formulation compared to smaller sub-problems. In some favorable case

where the feasible region of each agent is represented by the same shared constraint, we can

guarantee at least feasibility of each sub-problem as shown in [32]. However, in general it

is not easy to have such guarantee.

To overcome these difficulties, Selkie provides two approaches. The first is grouping of

agents as described in Section 4.4.1. It automatically detects independent groups of agents
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via Jacobian analysis. Agents that have interactions with each other are grouped together,

and there is no interaction between groups. Diagonalization is then applied to those groups,

possibly in parallel. By considering all the inter-related agents together, we can avoid the

issues mentioned above while achieving a faster computation time. Selkie also offers an

option for users to form their own groups of agents. This could be helpful if they know how

to group agents to avoid difficulties.

The second approach is primal and dual proximal perturbation strategies introduced in

Section 4.4.2. By perturbing objective and VI functions, called primal proximal perturbation,

we can prevent unbounded and infeasible solutions. Here the infeasibility is due to the

VI function. Under some assumptions, the sequence generated by the perturbed problems

will converge to a solution to the original problem. For infeasible constraints, we expand

their feasible region by perturbing those constraints using dual variables, called dual

proximal perturbation. We present each strategy and examples showing their effectiveness

in Sections 4.4.2-4.4.2, respectively.

4.4 Model transformations

This section introduces Selkie’s two main model transformation features, agent grouping

and proximal perturbation, in Sections 4.4.1-4.4.2, respectively. These features can be

used to find a more robust and faster solution path compared to the naive approach, either

diagonalization over given agents in the empinfo file or its MCP formulation. Agent

grouping allows us to create groups of agents considering interactions between them and

to apply diagonalization to those groups. Proximal perturbations are for avoiding logical
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or numerical issues occurring during iterations. They can also be used to expand problem

classes amenable to diagonalization by strengthening their convergence properties.

4.4.1 Agent grouping

Selkie either can automatically detect structurally independent groups of agents or allows

users to provide group information via agent_group option. We detail each in subsequent

sections with examples showing their effectiveness.

Detecting independent groups of agents via Jacobian analysis

Some equilibrium problems can be partitioned into independent groups of agents so that we

can find a solution by solving those groups in parallel. By independent groups of agents,

we mean that agents belonging to different groups do not affect each other in computing

a solution. For example, [25] showed that some pure trade markets with Cobb-Douglas

utilities can be decomposed into submarkets each of which defines an independent group

of agents. Another example is the friction contact problems of capsules in [50] where

independent groups can be formed by grouping capsules that have contacts each other either

directly or indirectly through other capsules.

Computationally, independent groups can provide a faster and more robust solution path:

i) we can achieve a faster computation time by decomposing the problem into smaller ones

and solving them in parallel; ii) we can avoid some numerical or infeasibility issues arising

from solving the problem as a whole or decomposing it without considering feasibility,

respectively. We demonstrate these two points using the pure trade market example in [25]

at the end of this section.
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Selkie has two options for detecting and exploiting independent groups. The first option

is to let users explicitly specify those groups in its option file. Users describe information

about the groups in agent_group option. Selkie then reads it, constructs a list of agents

each of which represents each group, and solves these agents using one of its solution

methods. This will be detailed in Section 4.4.1. The second option is for Selkie to perform

an analysis of the nonzero pattern of the Jacobian matrix to automatically identify those

groups, where the Jacobian is from the MCP function of the problem.

The nonzero pattern of the Jacobian matrix contains dependency information between

agents; by analyzing it we can identify what agents would be affected by the decisions

made by some other agent. Proposition 4.1 presents our theoretical background for this. It

shows that the pattern can be used to identify independent groups of functions and variables

inside a function.

Proposition 4.1. A function F(x) : Rn → Rm can be partitioned into k independent func-

tions and variables such that F(x) = P
(
Fr1(xc1), . . . , Frk(xck)

)>, where P is a permutation

matrix of size m, xci ∈ R
ni , Fri : Rni → Rmi for i = 1, . . . , k and

∑k
i=1 mi = m,

∑k
i=1 ni =

n, ri ∩ r j = ci ∩ c j = ∅ for each i , j, if and only if the Jacobian entry JF(x)pq = 0 for all x

for each pair (p, q) with p ∈ ri and q ∈ c j where i , j. Here ri and ci are ordered index sets

for each i = 1, . . . , k.

Proof. (⇒) Suppose that F can be partitioned into k independent functions and variables

as stated in the proposition. Let (p, q) be given with p ∈ ri and q ∈ c j where i , j. Then

JF(x)pq =
(
∂Fp/∂xq

)
(x) = 0 for all x as xq < xci and Fp is a function of xci only.

(⇐) Assume that we are given a partition pair (R,C) with R = {r1, . . . , rk} and C =

{c1, . . . , ck} for functions and variables, respectively, such that JF(x)pq = 0 for all x for
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each pair (p, q) with p ∈ ri and q ∈ c j where i , j. We show that Fri is a function of xci for

each i = 1, . . . , k by contradiction. Suppose that we have i ∈ {1, . . . , k} where Fri is not a

function of xci . There exists q, q < ci such that xq contributes to the function value of Fp

for some p ∈ ri. Then we must have
(
∂Fp/∂xq

)
(x) , 0 for some x, which contradicts our

assumption. �

To apply Proposition 4.1 to our case where we want to detect independent sub-MCPs

inside an MCP, we need to consider not only the function values but also complementarity

relationship between functions and variables. We first define what we mean by independent

sub-MCPs.

Definition 4.2. An MCP(x, F) has k independent sub-MCPs if there exist a permutation

matrix P and a partition C = {c1, . . . , ck} of variable indices with each ci being an ordered

index set such that F(x) = P
(
Fc1(xc1), . . . , Fck(xck)

)>.

Note that we have used the same index sets for functions and variables in Definition 4.2.

We apply a symmetric permutation to the functions and variables. Complementarity

relationship is then preserved at a solution so that solving an MCP is equivalent to solving

sub-MCPs independently and vice versa as shown in Proposition 4.3.

Proposition 4.3. Assume that an MCP(x, F) with F : Rn → Rn has k independent sub-

MCPs with a partition C = {c1, . . . , ck}. Then x∗ is a solution to the MCP(x, F) if and only

if x∗ci
is a solution to the MCP(xci , Fci) for each i = 1, . . . , k.

Proof. (⇒) Suppose that x∗ is a solution to the MCP(x, F). For ci ∈ C and j ∈ ci, we

have F j(x∗) ⊥ x∗j. As F j(x∗) ≡ F j(x∗ci
) and ci is an ordered set, x∗ci

is a solution to the

MCP(xci , Fci).
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(⇐) Assume that x∗ci
is a solution to the MCP(xci , Fci) for each i = 1, . . . , k. As ci is an

ordered set, the result follows. �

We now prove the relationship between sub-MCPs and the nonzero pattern of the

Jacobian matrix.

Proposition 4.4. An MCP(x, F) with F : Rn → Rn has k independent sub-MCPs with a

partition C = {c1, . . . , ck} if and only if JF(x)pq = 0 for all x for each pair (p, q) with p ∈ ci

and q ∈ c j where i , j.

Proof. The result follows from Proposition 4.1. �

As an example of using the nonzero pattern analysis, consider the following having two

optimization agents:

find (x∗1, x
∗
2) satisfying,

x∗i ∈ arg min
z≥0

1
2

(z − 1)2, for i = 1, 2.
(4.1)

It is easy to see that (4.1) has two independent agents; agent 1’s decision does not affect

agent 2’s decision. In this case, we can compute a solution by solving each agent’s problem

independently. The corresponding MCP(R2
+, F(x)) and the nonzero pattern of the Jacobian

matrix JF are then

F(x) =

x1 − 1

x2 − 1

 , nnz(JF(x)) =

x 0

0 x

 , (4.2)

where we have marked x if the corresponding entry in JF could be nonzero at some point.

By setting C = {{1}, {2}}, agents 1 and 2 are independent of each other by Proposition 4.4.
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Algorithm 4 Detecting independent sub-MCPs
Input: a nonzero pattern of a square Jacobian matrix J of size n
Output: a set of independent sub-MCPs

1: Construct a bipartite graph G(J) with the pair (V, E) such that V = R ∪ C,R =

(r1, . . . , rn),C = (c1, . . . , cn) and (ri, c j) ∈ E if ri ∈ R, c j ∈ C, and Ji j could be nonzero,
where ri and c j represent row i and column j, respectively. Add (r j, c j) ∈ E for each
j = 1, . . . , n if it is not already in E. This is to consider complementarity relationship.

2: Allocate an array colgid of size n and initialize its elements with value -1.
3: Set gid← 0.
4: for j = 1 to n do
5: if colgid[j] not equal to −1 then
6: continue
7: end if
8: Set gid← gid + 1.
9: S ← connected component with node c j.

10: for each ck in S do
11: Set colgid[k]← gid.
12: end for
13: end for
14: return colgid.

As the pattern also contains dependency of variable values of each agent’s problem, it

could be further used to decompose an agent into a set of independent smaller sub-agents,

which was not specified explicitly in the empinfo file. For instance, suppose that we have

the following agent:

minimize
x:=(x1,x2)≥0

1
2

2∑
i=1

(xi − 1)2. (4.3)

The corresponding MCP and the nonzero pattern of its Jacobian matrix will be the same as

in (4.2). Therefore we can identify that the agent actually has two independent sub-agents

inside.

We are now left with two issues: i) how to obtain the nonzero pattern of the Jacobian ma-

trix of a given problem; ii) how to identify a partition C in Proposition 4.4 that corresponds
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to the independent groups from the nonzero pattern. For i), we formulate an MCP and use

modeling languages’ APIs for the Jacobian structure identification. For example, GAMS

has gmoGetRowJacInfoOne() function which provides information about the nonzero

Jacobian entries of an equation.

For ii), we construct a bipartite graph similar to [35, 40] that corresponds to the nonzero

pattern and search for the connected components of it as described in Algorithm 4. We

create two types of nodes for rows and columns of the Jacobian matrix J, denoted by ri and

c j, respectively. An edge (ri, c j) is created if Ji j could be nonzero. We also create an edge

(r j, c j) for j = 1, . . . , n if it is not already added as we need to consider complementarity.

By computing the connected components of the graph, for example using BFS (breadth-first

search) algorithm, we can easily identify independent sub-MCPs.

For the rest of this section, we demonstrate benefits of our independent group detection

in terms of its efficiency and robustness using the pure trade market example [25]. We

briefly introduce the problem first. The pure trade market consists of five agents and eight

goods. Each agent goes to the market with its initially endowed goods and sells them all.

With the budget at hand obtaining from selling the goods, the agent then tries to buy goods

that maximize its utility. Mathematically, the problem can be formulated in the following

way:
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find (x1,∗, . . . , x5,∗, π∗) satisfying,

xt,∗ ∈ arg max
xt≥0

8∏
i=1

(xt
i)

At
i ,

subject to
8∑

i=1

π∗i xt
i ≤

8∑
i=1

π∗i W t
i , for t = 1, . . . , 5,

π∗ ∈ SOL(R8
+, F(π; xt,∗)),

where Fi(π; xt,∗) =

5∑
t=1

W t
i −

5∑
t=1

xt,∗
i , for i = 1, . . . , 8,

(
At

i,W
t
i
)

is data.

(4.4)

Note that At
i ≥ 0 represents how much agent t desires good i, and W t

i ≥ 0 denotes how

many agent t possesses good i prior to trade. Zero values of these parameters represent

no desire and no possession prior to trade, respectively. Each agent t tries to maximize its

utility subject to its budget constraint. The VI agent plays the role of a perfect competitive

market. At a solution to the problem, the market is cleared as Fi(π∗; xt,∗) ≥ 0 for each

i = 1, . . . , 8, that is, supply of a good should be larger than or equal to demand. Also by

complementarity, if there is an excess supply, then the corresponding price should be free.

Formulation of (4.4) using GAMS/EMP is available on [27]. Note that we take the log of

the utility maximizing objective functions and do not include variables whose At
i’s are zero

in the formulation.

We detect independent groups of (4.4) using Selkie. As noted in [25], the model has

two submarkets. The first submarket consists of agents (1, 4, 5) with goods (1, 3, 4, 6, 7, 8),

and the second one has agents (2, 3) with goods (2, 5). As independent group detection is

turned off by default, we turn it on by setting the following in the option file:
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Figure 4.2: Nonzero patterns of the Jacobian matrix of the pure trade market (4.4)

detect_independent_groups=yes

Figures 4.2(a) and 4.2(b) show a nonzero pattern of the Jacobian matrix of (4.4) and

its symmetrically permuted version based on the groups, respectively. Two sub-MCPs

were detected that correspond to the two submarkets described before. Furthermore, our

independent group detection found that the VI agent is composed of 8 sub-VI agents. This

can be easily verified by the fact that F is independent of the price π for a fixed xt.

Computationally, independent group detection enables us to find a solution in a more

robust and faster way. A direct application of diagonalization without grouping will give us

an infeasible solution of the VI agent because of an excess demand thus we cannot proceed

the iteration. On the other hand, formulating an MCP by grouping the entire agents will

help us avoid the infeasible solution, but it takes more iterations, 92 major iterations of
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Path, than solving those two groups independently, 36 and 22 major iterations of Path,

respectively.

Static grouping

This section introduces how we can specify groups of agents along with their solution

methods in agent_group option and present an example in which we use the group

information to obtain improved performance. Note that once the groups are defined, they

stay fixed during the solution process, that is, group membership does not change. In this

sense, we call it static grouping. We plan to allow dynamic grouping in the future.

We first describe how to specify the group information in agent_group option. Assume

that we have five agents described in the empinfo file. We would like to form two groups,

the first group with the first two agents and the second with the rest of them. Each agent in

the empinfo file is assigned a unique ID of a positive integer starting from 1. IDs follow the

order in which agents are specified in the empinfo file. Thus a unique number in {1, . . . , 5}

is assigned to each agent according to its order in this case.

Using those IDs, the group information can be specified in agent_group option as

follows:

agent_group={{1,2},{3,4,5}} or agent_group={{1,2},{3..5}}

We use the set notation to define each group of agents. Thus {1, 2} defines the first

group consisting of the first two agents, and {3, 4, 5} the second group with the rest of

them. As a list of groups is another set, we enclose it with braces again. The second format

{3..5} is for preventing a tedious listing of group members. In general, {a..b} means all the

agents with IDs between a and b inclusive. In this case, Selkie will create two groups, and
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diagonalization will be applied to these groups. The order in which the groups are specified

determines the execution order of diagonalization on them. For example, if we use the

Gauss-Seidel or Jacobi method, group {1, 2} is solved first and then the second one at each

major iteration. Note that no spaces are allowed in the group definition unless the entire

group definition is enclosed by double quotation marks.

The option also allows each group to have a specialized solution method. By default, an

MCP is formulated for a group containing more than two agents, and Path is used to solve

it. This default behavior can be changed by defining a solution method after each group’s

definition. Using the same example above, we can change the second group’s solution

method to Jacobi by specifying in the following way:

agent_group={{1,2},{3,4,5}:jacobi} or agent_group={{1,2},{3..5}:jacobi}

Selkie will now use Path to solve the first group and Jacobi for the second. It creates

two agents corresponding to the groups, and they are solved using Gauss-Seidel. For the

second group, it is like Selkie applies diagonalization recursively to it: each agent in the

group is solved in the Jacobi way at each major iteration until convergence. Basically,

any of the five variants of diagonalization in addition to the default MCP can be used as a

group’s solution method. Table 4.2 shows a list of those methods and their abbreviations

that can be specified in agent_group option.

We conclude this section with a dynamic programming (DP) example in economics

that shows a significant performance improvement via our static grouping. For clarity, we

omit detailed explanation of the mathematical terms of the problem. Refer to [12] for more

details.

The example consists of one fitting agent and 625 Bellman optimization agents. The
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Group solve method name Abbreviation
Gauss-Seidel gs
Gauss-Seidel random gsr
Gauss-Seidel random sweep gsrs
Gauss-Southwell gsw
Jacobi jacobi
MCP mcp

Table 4.2: Group solve method and its abbreviation for use in agent_group option

fitting problem is relatively much easier than Bellman optimization problems, thus a

significant time is needed to solve Bellman agents. However, it has a special structure that

enables a parallel computation: Bellman agents are independent of each other once fitting

parameters are fixed by the fitting agent. In Figure 4.3(b), we permuted rows and columns

of the Jacobian matrix by agents. The fitting agent comes first and Bellman agents follow.

The arrowhead shape pattern indicates that Bellman agents have interactions only with the

fitting agent. In this case, we can achieve parallelism in Selkie by specifying two groups of

agents according to their type and setting a solution method for the Bellman group to use

parallel Jacobi as follows:

agent_group={{1},{2..626}:jacobi}

parallel_jacobi=yes

Computational results show that parallel Jacobi with 625 threads achieved two times

faster computation time: it took about 10 minutes whereas 20 minutes were needed if we

use sequential version of Jacobi for the Bellman group on Intel Core i5-3340M@2.70 GHz

machine having 2 physical cores (logically it has 4 cores, two for each physical core). We

expect that we would have achieved a much better computation time if we experimented on
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Figure 4.3: Nonzero patterns of the Jacobian matrix of the DP example

a machine with many more cores.

4.4.2 Proximal perturbations

As discussed in Section 4.3.4, diagonalization could suffer some practical issues such

as infeasibility or unboundedness of sub-problems during iterations. To overcome these

difficulties, we introduce primal and dual proximal perturbation strategies that perturb

the sub-problems in a controlled fashion so that we can find a way to a solution. Primal

proximal strategy is for preventing unbounded optimal values or infeasible VI problems,

and dual is for making infeasible constraints feasible by expanding their feasible region.

Our proximal strategy is based on the proximal point algorithm for (pseudo) monotone
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operators [7, 8, 73]. Suppose that we have the following convex problem:

minimize
x

f (x),

subject to c(x) ≥ 0
(4.5)

where f : Rn → R1 and c : Rn → Rm are differentiable convex and concave functions,

respectively. With appropriate constraint qualifications, the KKT conditions of (4.5) will

give us a monotone operator F(x, y) over y ≥ 0:

F(x, y) :=

∇ f (x) − ∇c(x)y

c(x)

 , (4.6)

Note that an operator T defined by T (x, y) := F(x, y)+NRn×Rm
+
(x, y) for y ≥ 0 and T (x, y) := ∅

otherwise is a maximal monotone operator [72], and 0 ∈ T (x∗, y∗) implies that x∗ is a

solution to (4.5) with y∗ being the multiplier of c(x∗).

Proximal perturbation strategy perturbs F(x, y) by adding a proximal term as follows:

F̃(x, y; x̃, ỹ) =

∇ f (x) − ∇c(x)y

c(x)

 + γ

x − x̃

y − ỹ

 , for some γ > 0. (4.7)

In the context of equilibrium problems, the operator F constructed by concatenating the

KKT conditions and the VI functions of agents could be non-monotone thus theoretical

results may not be applicable. However, in practice we still find the strategy useful. Refer

to [29, 31, 32, 64] for convergence results of the proximal perturbation strategy in the

context of equilibrium problems.
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Our strategy allows different parameter values to be used for the primal and dual

variables such that γ = (µ, λ) where µ and λ are proximal parameters for the primal and

dual proximal terms (x − x̃) and (y − ỹ), respectively. This is similar to [56] where different

regularization parameters are applied to the primal and dual parts. Each strategy is described

in detail in Sections 4.4.2-4.4.2, respectively, with examples illustrating their effectiveness.

Selkie allows agent-wise control of these perturbation strategies: i) we can decide

whether and which strategy (either primal or dual or primal-dual) to use for an agent; ii) we

can have different initial values for the primal and dual proximal parameters for each agent.

These are controlled by proximal_use option. We start with how to use it in Section 4.4.2.

By default, no proximal perturbations are activated.

Enabling proximal perturbation

Proximal perturbation strategies can be enabled by proximal_use option. It takes a list of

groups2 of agents where agents in the same group will have the same strategy with the same

initial parameter value. By default, the strategy is set to use primal proximal perturbation

with perturbation parameter value of 0. Like agent_group option, this default behavior

can be changed by annotating the strategy and the initial values to use for each group.

For example, suppose that we have five agents. We want to use primal proximal

perturbation for the first three agents with initial parameter value of 50 and primal-dual

perturbations for the fourth agent with initial values of 50 and 10, respectively. The fifth

one has no perturbations. This can be specified as follows:
2The group here is to denote the set of agents sharing the same proximal strategies, not the same group as

described in Section 4.4.1.
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proximal_use={{1,2,3}:primal(50),{4}:primaldual(50,10)} or

proximal_use={{1..3}:primal(50),{4}:primaldual(50,10)}

For a proximal strategy, one of the following can be specified:

primal

dual

primaldual

fixedprimal

fixeddual

fixedprimaldual

Note that for the first three strategies proximal parameter values could be changed

during iterations. Depending on the sub-problem status, Selkie chooses to either increase

or decrease them in a controlled fashion. For the last three, the parameter values are fixed

throughout the iterations, that is, we use µ = µk and λ = λk for all k.

Primal proximal perturbation

For an optimization problem, we implement primal proximal perturbation strategy by

penalizing a large departure from a proximal point, say x̃k. For example, if f is a minimizing

(or a maximizing) objective function, then the strategy perturbs it by adding (or subtracting)

a quadratic term:

f (x) +
µk

2
‖x − x̃k‖22, (4.8)
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where µk > 0 is a perturbation parameter. Taking a derivative will give us the desired

term (∇ f (x) + µk(x − x̃k)). The proximal point x̃k is usually set to the last solution of the

perturbed problem. We used superscript k to emphasize that values could be changed during

iterations.

For a convex function f , the strategy guarantees resulting function is strongly convex.

The problem will then have a unique solution so that unboundedness cannot occur. This

makes each convex sub-problem well-defined, assuming that it is feasible. Theoretical

results on convergence and its relationship with methods of multipliers are described

in [5, 73].

For a VI function F, we perturb it by adding a proximal term:

F(x) + µk(x − x̃k). (4.9)

As in the case of a convex f , the strategy turns a monotone F into a strongly monotone

operator so that we have a unique solution.

We demonstrate the effectiveness of the strategy using the pure trade market exam-

ple (4.4) in Section 4.4.1. If we run Gauss-Seidel over it, then the VI agent will be infeasible

at the first iteration: supply of goods 4, 5, and 8 was less than demand. An intuitive approach

in this case is that we increase the price for those goods so that agents would demand less

at the next iteration. In other case where there is an excess supply, we decrease the price so

that agents would demand more. The approach is similar to the way a perfect competitive

market works.

This basic intuition can be implemented using primal proximal perturbation strategy. By

perturbing the VI function like (4.9), price would be increased (or decreased) when there is
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an excess demand (or an excess supply). Here the VI function F is a constant representing

a net supply of each iteration in this case. If it is negative, the case where an excess demand

occurs, then the price needs to be larger than the current one x̃k so that the perturbed value

is nonnegative. Otherwise, it needs to be less than x̃k. With proximal_use option below

perturbing the VI agent only, we were able to solve the problem without difficulties.

proximal_use={{6}:fixedprimal(50)}

Other examples of using primal proximal perturbation can be found on [27].

Dual proximal perturbation

Compared to the primal proximal perturbation strategy where objective and VI functions

are perturbed, dual proximal perturbation perturbs constraints so that it can make infeasible

constraints feasible. For example, suppose that we have a constraint c(x) ≥ 0 and y ≥ 0 is

its dual variable. We perturb c(x) as follows:

c(x) + λk(y − ỹk) ≥ 0, (4.10)

where λk > 0 is a perturbation parameter. We can easily see that for some infeasible x, i.e.,

c(x) < 0, we can make it feasible by choosing a large enough y ≥ 0.

For an optimization problem, we have two different ways of implementing dual per-

turbation. The first is to perturb the original problem directly by introducing an auxiliary
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variable y. For example, we perturb in the following way:

minimize
y≥0,x

f (x) +
λk

2
‖y‖22,

subject to c(x) + λk(y − ỹk) ≥ 0.
(4.11)

By checking the KKT conditions, it can be easily verified that variable y implicitly plays

the role of a dual variable: it will have the same value with the multiplier at a solution,

while allowing us to remedy some infeasible solutions during iterations.

The second option is to convert the optimization problem into its MCP(Rn × Rm
+ , F)

formulation and perturb the dual part of F. Hence we will have the following in this case:

F̃(x, y) =

∇ f (x) − ∇c(x)y

c(x)

 +

 0

λk(y − ỹk)

 (4.12)

Currently, Selkie supports only the second option. Note that for a VI agent the second

option is automatically applied.

We present an example where the dual proximal strategy is effective. Suppose that we

are given the following equilibrium problem having two optimization agents:

minimize
x1

1
2

x2
1 − x1x2 − 4x1,

subject to x1 + x2 = 1,

minimize
x2

1
2

x2
2 − x1x2 − 3x2.

(4.13)

If we start at (x1, x2) = (0, 0), then all variants of diagonalization fail to converge. It

generates a cyclic sequence that does not contain a solution. In fact, the associated MCP
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function F is non-monotone. This can be verified that (1, 1,−1)J(1, 1,−1)> = −1 where J

is the Jacobian of F defined below.

F(x1, x2, y) =


x1 − x2 − y − 4

−x1 + x2 − 3

x1 + x2 − 1

 , J =


1 −1 −1

−1 1 0

1 1 0

 (4.14)

In this case, we recover strong monotonicity using primal-dual proximal perturbation.

If we perturb J using primal-dual proximal perturbation, then we will have

[
x1 x2 y

]

1 + µ1 −1 −1

−1 1 + µ2 0

1 1 λ




x1

x2

y

 = (1 + µ1)x2
1 − 2x1x2 + (1 + µ2)x2

2 + x2y + λy2,

= x2
1 + x2

2 + y2 + (x1 − x2)2 + (x2 +
1
2

y)2 +
3
4

y2,

≥ ‖(x1, x2, y)‖22, for (µ1, µ2, λ) = (1, 2, 2).
(4.15)

Thus the perturbed Jacobian is strongly monotone. This cannot be achieved if we just

applied primal proximal perturbation: if λ = 0, we can choose some y that makes the result

negative. With strong monotonicity, it is guaranteed that we have a unique solution for each

proximal point.

With the option below, we found a solution (x∗1, x
∗
2, y
∗) = (−1, 2,−7).

proximal_use={{1}:fixedprimaldual(1,2),{2}:fixedprimal(2)}
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4.5 Conclusions

Selkie is a general-purpose solver for equilibrium problems that exploits block-structure

and cascading dependency of the problem. It transforms a given equilibrium problem into a

set of structure-exploiting sub-problems via its automatic structure detection mechanism

and using user’s knowledge. It then applies diagonalization on those sub-problems to find a

solution. Sub-problems can be arranged to be solved in a user-defined order so that we can

make full use of cascading dependency between them. Parallelism can be achieved on sub-

problems when they are block-structured, that is, independently solvable. A sub-solver for

each sub-problem of the same type can be chosen so that we can employ a highly efficient

solver tailored to the problem. Using proximal perturbations, we can achieve stronger

convergence results and avoid unbounded and infeasible solutions of diagonalization. These

flexibility and adaptability of Selkie allows us to find a more robust and faster solution path

and to easily extend it to accommodate a new decomposition scheme.

There is potential for future work. For very large-scale problems such as [12], there

could be a massive number of sub-problems, and solving them on a personal computer will

take a huge amount of time. It may be better to use a grid computing facility such as [78]

in this case. We plan to extend Selkie to be able to run its sub-problems on a computational

grid without requiring users to implement APIs for accessing such a facility. This allows

users to focus on modeling itself thus to improve their productivity. Such a large problem

could also incur a significant amount of model generation time. We plan to study a new

construct in modeling languages, possibly combined with the EMP framework, for parallel

model generations similar to [15]. We intend to extend Selkie to take bilevel programming,

equilibrium problems with equilibrium constraints, and stochastic programming, all with
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consideration of the EMP framework.
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