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I. Abstract

In this document we describe a technique for implementing a digital cash system 
and show how it can be effectively used to handle anonymous purchases between 
entities while preventing misuse. Our technique is equipped to handle multiple 
levels of attacks both those that could exploit the protocol itself and those which 
are inherent to any networked system.

II. Entities

There are three entities in the design, the bank, customer, and merchant:
• Bank = B

The bank manages all of the accounts of customers and merchants, in 
particular their balances.  The bank handles the withdrawal and deposit of 
the digital cash by the customers and merchants.

The bank will need to keep all deposited money orders, a list of the keys to 
open the selected identity strings, and which half of the identity string the 
keys apply to.

• Customer = C
The customer can request digital cash from the bank, and then, use it to pay 
a merchant.

The customer will need to generate money orders. For each money order, 
the customer will then need to store the encryption keys of the money 
orders, the encryption keys of the identity strings, and the blinding factors 
for the hashes of the money orders.

• Merchant = M
The merchant accepts payment from customers and informs the bank to 
credit their account with the correct amount paid by the customer.



The merchant will need to retain the past money orders received from 
customers, along with the keys for the identity strings and which half each 
belong to.  The stored money orders will be used to verify that the customer 
does not attempt to send the same money order to a single merchant twice.

III. Message Flow

To complete a money transfer from a customer to a merchant, a series of eight 
messages are required.  All customers have a random string IC which will be used 

to identify them.  All messages that are sent to the bank will include the user's 
identity and password.  This will allow the bank to verify who the user is.  SSL 
will be used to provide secrecy, authentication, and data integrity.

The following notation is used to describe money orders:
MOi = The i-th money order

= Us || Ii:1 || ... || Ii:n || Amt

Us = A unique string generated by C
Amt = Amount of the money order
Ii:j = The j-th identity string for the i-th money order which is secretly 

split then encrypted with separate keys.  The hash is appended to 
ensure commitment of the two values.
= EKLi:j

 (ILi:j || H(ILi:j)) || EKRi-j
(IRi:j || H(IRi:j))

KLi:j = Unique symmetric encryption key for the j-th identity string for the 

i-th money order
KRi:j = Unique symmetric encryption key for the j-th identity string for the 

i-th money order
ILi:j = Random bit string the same length as the IC
IRi:j = ILi:j ⊕ IC 

Message 1:   C → B:   MOK1 || ... || MOKn || BH1 || .. || BHn 

The customer first generates N money orders which are all encrypted with a 

symmetric key and the hash of the money orders which are blinded.



MOKi= The i-th money order encrypted with KMOi 

= KMOi (MOi)

KMOi= Symmetric key used to encrypt the i-th money order

BHi   = Blinded hash of the i-th money order

=  H(MOi)* (Zi)
e

Zi = A random number generated by C

e = Public key of B for RSA signing

Message 2:   B → C:  i
The bank responds by requesting C to provide the necessary information to 
decrypt the money orders, the identity strings, and unblind the hashes of all 
money orders except for the i-th money order.  The bank uses this 
information to verify that the constructed money orders are legitimate.

i = Index in the range of 1 to N which specifies the money order B 
will sign.  Therefore, C is required to send the values necessary to 
decrypt and unblind all other money orders.  This value is constant 
through the remainder of the protocol.

Message 3:   C → B:   KMO1 || ...  || KMOi-1 || KMOi+1 || ... || KMOn  ||

Z1 || ... || Zi-1 || Zi+1 || ... || Zn ||

KLm:1 || ... || KLm:i-1 || KLm:i+1 || ... || KLm:n || 

KRm:1 || ... || KRm:i-1 || KRm:i+1 || ... || KRm:n
The customer provides the requested symmetric keys for the money orders 
and identity strings, as well as the unblinding factors for the hashes.  The 
bank will use these values to ensure the N-1 money orders are all of the 
same dollar amount, the identity string keys correctly decrypted the identity 
strings based on the appended hash, and money order hashes are correct.

KLm:j = Symmetric encryption key at index j for money order m

KRm:j = Symmetric encryption key at index j for money order m



Message 4:   B → C:   B{ BHi }

If the money orders appear legitimate, the bank signs and returns the i-th 
blinded hash order which was not unblinded by C.

B{ BHi }= Blinded hash for the i-th money order generated by C signed by 

B.

=  (H(MOi) * (Zi)
e)d = H(MOi)

d * Zi
d = Private key of B for RSA signing

Message 5:   C → M:   MOi || B { Hi }

The customer unblinds the hash of the money order and sends it along with 
the corresponding money order to the merchant.

B{ Hi }= The hash for the i-th money order generated by C signed by B.

  =  H(MOi)
d * Zi / Zi =  H(MOi)

d

Message 6:   M → C:   b1 || ... || bn 

The merchant verifies the banks signature along with checking that the hash 
matches the sent money order.  If both of these checks pass the merchant 
requests one of the two keys for each identity string in the money order i.

bj = Value of either 0 or 1.  Indicates which key, KLi:j or KRi:j, must 

be returned by C.

Message 7:   C → M:   Kxi:1 || ... || Kxi:n
The customer provides the keys for the requested halves of all identity 
strings.  The merchant verifies that these keys are correct by decrypting and 
checking the identity string with its hash.

Kxi:j = The left or right symmetric encryption key, based on x, at index j 

for money order i.
x = Either L or R based on the values of bj.  This value is different for 

every j.



Message 8:   M → B:   MOi || B{ Hi } || b1 || ... || bn || Kxi:1 || ... || Kxi:n
The merchant sends the money order to the bank, along with half the keys 
for the identity strings and which half they correspond to.  The bank checks 
to make sure the money order has not been previously spent.  If not, it 
checks that the money order is valid by checking the signed hash and the 
identity keys.  If the money order is accepted, the bank deposits the given 
amount into the merchants account.  If the money order has been spent 
before, the bank checks the identity strings and keys to determine who is to 
blame, the merchant or the customer.

IV. Architecture Diagram

The components are the same as the entities given in part one.  There are no 
subcomponents.  The diagram on the next page shows all necessary messages 
exchanged between the bank, customer, and merchant to withdraw and deposit a 
single money order.





V. Threat Model

Authentication, secrecy, and data integrity are provided by SSL.  This removes 
many potential security threats without any extra work:
   1.  Stealing money orders as they are sent from entity to entity is protected 

through secrecy.

   2.  Impersonating the bank to steal money orders is prevented do to server
authentication.  This also makes it impossible for the user to attempt a man-
in-the-middle attack by acting as a proxy between the client and server.

   3.  Replaying an encrypted money order is prevented by the fact that SSL is 
safe against replay attacks.  This is augmented by the checks made by the 
digital cash protocol.

There are a number of threats within the digital cash protocol as well.  Most of 
these threats are based on the variable N.  In the protocol, the variable N specifies 
both the number of money orders sent to the bank during a request and the 
number of identity strings, which are secretly split, per money order.  Increasing 
the size of N decreases the probability that these attacks will succeed.  In our 
implementation, we set N to 20.  This is a compromise between security and 
performance, as a larger N involves more computation as well as more bandwidth 
usage.  These threats based on the variable N include:
   1.  The customer cheating the bank during a withdraw:

Since the goal of this protocol is to ensure anonymity of the origin of 
money orders deposited by the merchant, the bank does not get to view the 
money order and corresponding hash which will be signed.  Otherwise, the 
bank could identify the money once it is deposited.

To protect against fraudulent withdrawals, the bank requires the customer to 
send N orders.  The bank will be allowed to view N - 1 of those and will 
sign the remaining one if they are all valid.  Consequently, the customer 
could exploit this fact to get the bank to sign a hash which does not belong 
to a money order sent to the bank or sign the correct hash to a invalid 
money order.  An invalid money order could include either a greater 
amount than the checked orders, identity strings which do not identify the 
customer or both.  The security against this attack is based on N.  The 
customer will have a 1/N chance (5% in our implementation) chance of 
cheating the bank.  With the recourse of banning the customer from the 



bank upon the first detection, the customer would be ill-advised to attempt 
this attack.

   2.  Reuse of digital cash:
It is trivial for the bank to detect reuse of a money order by simply keeping 
a record of all the past deposited money orders.  However, it is important 
that the bank bans the correct entity which reused the digital cash, either the 
customer or merchant.  The variable N is used to determine this as well.  
Using the identity encryption keys revealed during deposit, the bank can 
determine the fraudulent entity.

When the bank sees a money order deposited twice, it can check the identity 
encryption keys that are sent.  If all of the keys sent are the same, the bank 
can infer that the merchant tried to cheat the bank.  This is due to the fact 
the merchant cannot create the missing keys.  Since the merchant sent the 
same identity encryption keys to correctly decrypt the identity strings, the 
merchant must be depositing the same money order twice.  There is an 
outside chance that the customer is at fault in this case though.  This could 
only happen if two separate merchants asked the customer to reveal the 
exact same identity encryption keys.  The chance of this situation is 

extremely low with a probability of 1/2N (approximately 0% in our 
implementation).  Consequently, the bank will ban the merchant.

If the keys are different, it is sure that the customer tried to spent the same 
money twice since the merchants would not have access to the different 
keys.  In this case, the bank can decrypt both halves of the identity string 
for the keys that are different and determine the identity of the customer.

The other threats to this protocol is the chance of a customer or merchant to 
construct a valid money order without the money being withdrawn from their 
account.  This could be attempted in two ways:
   1.  Finding a hashing collision between money orders:

If the customer can find two money orders of different amounts which hash 
to the same value, the customer could send the smaller money order to the 
bank to sign and then use the signed hash to spend the larger amount.  This 
prevention of this attack will be based on collision resistance of SHA-1.  
Strong collision resistance will prevent the user from finding two money 
orders which result in the same hash.  Weak collision resistance will prevent 
the user from generating a money order which has a specific hash.  In this 
case, even if a user could find a bit stream that produces a specific hash, the 



user would also have to determine the encryption keys to produce the 
correct identity strings.  As a result, it is infeasible to find a collision among 
money orders, as the attacker would have to revert to a brute force method.

   2.  Constructing a valid signed hash without the bank:
The user could also attempt to find a valid hash without the help of the 
bank.  The user could unsign a random bit stream with the bank's public 
key to produce the hash.  However, the user could not create a money order 
for the specific hash based on the reasoning above.  The user will also not 
be able to sign a hash due to the security of RSA signing.  The user would 
have to have the bank's private key to sign the hash.  Brute force could 
again be attempted, but is infeasible due to time constraints.

Finally, the user could attempt to send an money order with a signed hash that does 
not correspond to the money order.  This will quickly be revealed by verifying the 
bank's signature with the hash of the money order.

VI. XML DTD

A single DTD is used to send all messages in the XML format.  The format of the DTD 
is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT message (header, item*)>

<!ELEMENT header (msgNum, customerID?, password?)>
<!ELEMENT msgNum EMPTY>
<!ATTLIST msgNum number CDATA #REQUIRED>

<!ELEMENT customerID EMPTY>
<!ATTLIST customerID id CDATA #REQUIRED>

<!ELEMENT password EMPTY>
<!ATTLIST password text CDATA #REQUIRED>

<!ELEMENT item EMPTY>
<!ATTLIST item tag CDATA #REQUIRED>
<!ATTLIST item index CDATA #REQUIRED>
<!ATTLIST item value CDATA #REQUIRED>

Each XML message will contain a message node which contains a header and 
multiple items.  The header is comprised of a mandatory message number 
corresponding to the message order described in the architecture flow section.  The 
customer ID and password will be used on all the messages from the customer or 
merchant to the bank to identify the user.



The item elements includes three attributes: the tag, index, and value.  The tag is used 
to specify what is contained in this element, such as a money order string, encryption 
key, blinding factors, etc.  The index is used to indicate different elements which 
contain the same tag.  The value attribute is used to store the data of the element.

This format was chosen for its simplicity and expandability.  This makes constructing 
and parsing intuitive for both the server and clients without requiring a bloated 
message format.  For instance, message 3 contains N - 1 money order encryption 
keys, 2 * N * (N - 1) identity string encryption keys, and N - 1 blinding factors.  If all of 
these elements were individually mapped in the DTD, the number of elements would 
increase significantly.  This also allows the protocol to change the number of elements 
sent without rewriting the DTD.

VII. Future Extensions and Known Bugs

Albeit minor, there is one known issue in our implementation.  Our hash function 
manually sets the most significant byte of the digest to be 1.  This was necessary to for 
correct functioning when converting between bytes and BigInteger objects.  The 
BigInteger object is required since the hash needs to be multiplied by a blinding factor.  
For unknown reasons, if the most significant bit of this byte becomes one, the 
BigInteger will not return the correct bytes after it is created, even when it is explicitly 
initialized as a positive number.

Therefore, this solution was chosen and ensures the BigInteger object behaves as 
expected.  While this may make finding a collision between hashes easier, it is still 
unlikely. 


