
CS367 Programming Assignment 2
Lecture 4, Fall 2017
Due by 11:59 pm on Tuesday, October 24
 In this page: Overview | Specifications | Handing in Related pages: Assignments

Overview
Description

You have no doubt been in situations where you have seen the same sequence of images
repeatedly displayed. For example, in a movie theater, before the previews start there is often a
loop of images (advertisements, trivia questions, famous scenes, etc.) that is projected onto the
movie screen. A screen-saver might cycle through a series of pictures from your last vacation.
Information kiosks show sequence of pictures or instructions in a continuous loop. A series of
drawings shown very quickly (and repeated over and over) results in the never-ending animation in
the corner of a webpage you visit.

A Java program (in Eclipse archive form) that displays a sequence of labeled images may be found
here. A major weakness of this program is that the content of the image sequence is "wired into"
the program. That is, to change any detail of the sequence, the program must be rewritten.

In this assignment we will investigate a better approach. We will implement a simple GUI-based
editor that allows a user to create, edit, save, and load a sequence of images (including the title of
an image and length of time to display it). The control file the editor creates can then be uploaded
and shown in a continuous loop.

It is typical for today's programmers to use ADTs that are already implemented as part of a class
library or an API (e.g., Java's Application Program Interface). Understanding ADT implementations
is still important to be able to make informed choices as to which ADT implementation is best suited
for an application in terms of memory and time efficiencies. For example, knowing the tradeoffs
between array and linked implementations of the List ADT helps us choose between Java's
ArrayList and LinkedList classes. It is also important to be able to implement your own data
structures when pre-built ones are not available or when standard ADTs (and their operations) are
unsuitable for the intended application.

In this assignment we provide you with an interface for a specialized ADT called a Loop. In
addition to the main editor application class, you will write a class that implements a Loop ADT
using a circular doubly-linked chain of nodes, as well as iterator and exception classes needed to
support your Loop ADT implementation.

Goals

The goals of this assignment are to:

Understand and implement a circular, doubly-linked chain of nodes.
Gain experience working with Java references (i.e., pointers).

Gain experience working with Graphical User Interfaces (GUIs).
Gain experience working with advanced Java classes that implement windows and display
image files.

http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/p2.html#Specifications
http://pages.cs.wisc.edu/~fischer/cs367/assignments/assignments.html
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/ImageTest.zip

image files.
Implement an iterator.
Implement an exception.
Gain experience writing classes that implement Java interfaces.
Develop an application that processes input and editing commands.
Get more practice with command-line arguments and I/O.

Program requirements
The Image Class

An Image object contains the name of the file
containing the image, its title (possibly null)
and a positive integer indicating the length of
time (duration) the image should be displayed
(in seconds). The Image class is provided for
you (in the file Image.java). All the fields
that store information about the image are
private. The class has methods to retrieve
and change information about a given
instance of the Image class. It also has a
method displayImage that creates a
window and displays the contents of the
image file. displayImage requires that all
image files be placed in a top-level folder
named images. The javadoc on the Image
class provides the necessary information.
You may not change the interface of Image
class.

GUI-based Image Loop Editor

In the file ImageLoopEditor.java, you
will create an empty LinkedLoop of Images.
The GUI shown to the left will then be

activated. Editing commands are initiated by pressing the appropriate button. Parameters are
entered in a "text box" to the right of the button.

Here is a list of the editor commands you will need to implement. Some commands include a
parameter; others do not. Thus the Load command needs a file name whereas the Help command
does not. For simplicity all parameters are declared to be strings, even in cases where an integer is
actually required.

Command Parameter Description

Help
Display information on available commands. (This
command is already provided; you need not change it.)

http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/Image.java
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/javadocs/Image1.html

Help command is already provided; you need not change it.)

Save filename

If the image loop is empty, display "no images to
save". Otherwise, save all the images to a file named
filename, one image per line starting with the current image
and proceeding forward through the loop. For each image,
save the file name, the duration and the title. A null title
(zero characters) is allowed; see example. If filename
already exists, display "warning: file already
exists, will be overwritten" before saving the
images. If filename cannot be written to, display "unable
to save".

Load filename

If a file named filename does not exist or cannot be read
from, display "unable to load". Otherwise, load the
images from filename in the order they are given and set
the current image to be the first image read from the file.
You may assume that there is one image per line, that there
are no blank lines, and that the file is not empty, i.e., it has
at least one line. Each line contains a filename (a string), a
duration (an integer) and a title (possible null) (see
example). If a filename on a line is not in the images folder
display "Warning: filename is not in images
folder"

Display

If the image loop is empty, display "no images".
Otherwise, display all of the images in the loop, starting with
the current image, one image per line (going forward
through the entire loop). Each line is of the form: title
[duration,filename].

Show
If the image loop is empty, display "no images".
Otherwise, display the current image as a photograph, in a
window with the image's title and for the specified duration.

Test
If the image loop is empty, display "no images".
Otherwise, test the loop, starting with the current image, by
displaying each image as a photograph in a window with
the image's title and for the specified duration.

Move forward
If the image loop is empty, display "no images".
Otherwise, go forward to the next image in the loop and
display the current context (see note below).

Move back
If the image loop is empty, display "no images".
Otherwise, go backwards to the previous image in the loop
and display the current context (see note below).

Jump count

If the image loop is empty, display "no images".
Otherwise, jump count images in the loop (forward if count
> 0, backwards if count < 0) and display the current context
(see note below).

Remove

If the image loop is empty, display "no images".
Otherwise, remove the current image. If the image loop
becomes empty as a result of the removal, display "no
images". Otherwise, make the image after the removed
image the current image and display the current context

http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/inputLoop.txt
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/inputLoop.txt

image the current image and display the current context
(see note below).

Add after filename

If the image loop is empty, add a new image with the given
filename, a null title, and a duration of 5 seconds to the loop
and make it the current image. Otherwise, add the new
image immediately after the current image and make the
new image the new current image. In either case, display
the current context (see note below). If filename is not in the
images folder display "Warning: filename is not in
images folder"

Insert before filename

If the image loop is empty, add a new image with the given
filename, a null title, and a duration of 5 seconds to the loop
and make it the current image. Otherwise, insert the new
image immediately before the current image and make new
image the new current image. In either case, display the
current context (see note below). If filename is not in the
images folder display "Warning: filename is not in
images folder"

Find title

If the image loop is empty, display "no images".
Otherwise, find (by searching forward in the image loop) the
first image whose title contains the given string (which may
be quoted). If no image with a title containing string is
found, display "not found"; otherwise, make that image
the current image and display the current context (see note
below). Comparison is case-sensitive, so "rin tin tin"
does not match "Rin Tin Tin".

Update time
If the image loop is empty, display "no images".
Otherwise, update the duration for current image to the
given time and display the current context (see note below).

Edit tilte
If the image loop is empty, display "no images".
Otherwise, edit the title for current image to the given title
(which may be quoted) and display the current context (see
note below).

Quit Quit execution of the program.

Note on commands:
Displaying the current context means displaying the image (i.e., its title, filename and duration)
immediately before the current image, the current image, and the image immediately after the
current image (one per line). For example, if the current image is "Lassie [dog2.jpg ,10]",
the image before current is "Rin Tin Tin [dog1.jpg, 20]", and the image after current is
"Bruiser [dog3.jpg, 15]", your program should display:

 Rin Tin Tin [dog1.jpg, 20]
--> Lassie [dog2.jpg ,10] <--
 Bruiser [dog3.jpg, 15]

The arrows "--> <--" are displayed to highlight the current image. Since the GUI uses a
variable width font, use a tab to align Image titles (the tab is set to be four characters wide).

However, if there are fewer than three images in the loop, do the following:

If the loop contains only one image, such as "Lassie [dog2.jpg ,10]", then display:

--> Lassie [dog2.jpg ,10] <--

--> Lassie [dog2.jpg ,10] <--

If the loop contains only two images, such as " Lassie [dog2.jpg ,10]" and " Bruiser
[dog3.jpg, 15]", then display showing the current image first:

--> Lassie [dog2.jpg ,10] <--
 Bruiser [dog3.jpg, 15]

 You will need to ensure the following:

For commands that reference a filename, the string must start with at least one non-
whitespace character and must contain only letters (a - z, A - Z), digits (0 - 9), underscores (_
), periods (.), slashes (/) and dashes (-).
For the update command, the time must be an integer.
For the jump command, the count must be an optionally signed integer.

The Loop ADT

A Loop is essentially a circular List. However, unlike a List, a Loop does not have a beginning or an
end and items within the Loop cannot be accessed using a position. Instead, the Loop has a
current item and the ability to move forward or backwards. A Loop can be modified by removing the
current item or by adding an item before the current item. The Loop ADT is represented in Java by
the LoopADT<E> interface which is provided for you (see LoopADT.java). Complete information
about Loop ADT operations can be found in the javadoc for the LoopADT<E> interface.

The LinkedLoop<E> Class

You will write an LinkedLoop<E> class (in a file named LinkedLoop.java) which implements
the LoopADT<E> interface. In addition to the methods given in the LoopADT<E> interface, your
LinkedLoop<E> class must have a constructor that takes no arguments and creates an empty
loop. You may not add any other public constructors or methods.

The internal data structure used by your LinkedLoop<E> must be a circular, doubly-linked chain
of nodes. You may not use Java's LinkedList class for this assignment. You must implement
your own chain of doubly-linked nodes. To implement the circular, doubly-linked chain of nodes,
you will need to use the DblListnode<E> class (provided for you; see DblListnode.java).
Your LinkedLoop<E> class will have a field of type DblListnode<E> that references the node
representing the current item. You may include other private fields that you find helpful, but no
public fields.

Additional Classes

There are two other classes that you will need to write to go along with your LinkedLoop<E>
class.

The EmptyLoopException class

The EmptyLoopException must be a checked exception. It is thrown by some methods (as
described in the LoopADT<E> interface documentation). Your image loop editor class must handle
them appropriately.

The LinkedLoopIterator<E> class

The LoopADT<E> interface includes an iterator() method that returns an Iterator<E>
object. You must write a specialized iterator class, named LinkedLoopIterator<E>, which will

http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/LoopADT.java
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/javadocs/LoopADT.html
http://pages.cs.wisc.edu/~hasti/cs367-1/readings/Linked-Lists/index.html#circular
http://pages.cs.wisc.edu/~hasti/cs367-1/readings/Linked-Lists/index.html#double
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/DblListnode.java
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/javadocs/LoopADT.html

object. You must write a specialized iterator class, named LinkedLoopIterator<E>, which will
be used as the type of iterator returned by the LinkedLoop<E>'s iterator() method. The
LinkedLoopIterator<E> class must implement the Iterator<E> interface (you do not need
to implement the remove method - just throw an UnsupportedOperationException). You will
need to write a constructor for your LinkedLoopIterator<E>; a package-access constructor
that takes a DblListnode<E> as a parameter is suggested.

Testing

GUI testing interfaces are easy to master and use. But they can be frustrating if you aren't careful
about recording the commands that you've entered. A bug can suddenly occur and you may not
recall the exact sequence of commands needed to reproduce the bug.

A text-based testing interface represents each testing command as a single line of text. These
commands can be grouped into a file. Input files can then be developed that test particular aspects
of the program. These tests are easily repeated by running the tester again on a particular input
file.

The table shown below associates a command name with each GUI command button. Case is
insignificant. Moreover, a command can be abbreviated by any unique prefix. Thus quit can be
abbreviated as q, but f can't be used because either find or forward might have been intended.

Help help Save save Load load Display display

Show show Test test Move forward forward Move back backward

Jump jump Remove remove Add after add Insert before insert

Find find Update update Edit edit Quit quit

Case may be significant in command parameters. Parameters may be quoted to make their content
explicit.

Class TextImageLoopEditor is a subclass of ImageLoopEditor. It implements a text-based
image loop editor. Commands are read, line by line, from the standiard input file. If a single
command-line argument is provided, it is assumed to name a command line file. You may assume
the file contains lines that start with at least one non-whitespace character and that the last line
always is quit.

TextImageLoopEditor executes the same editing commands as the GUI editor (the PushXXX
methods). You may use either editor in testing and debugging your program (sometimes it is easier
to enter text than click GUI buttons). Be sure that command files work properly, since that's how
we'll test your program.

How to proceed

After you have carefully read this assignment page and given thought to the problem we suggest
the following steps:

1. The class collaboration policy allows you to do this program alone or with one partner. Make

http://java.sun.com/javase/6/docs/api/java/util/Iterator.html
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/TextImageLoopEditor.java

1. The class collaboration policy allows you to do this program alone or with one partner. Make
your choice!

2. Review these style and commenting standards that are used to evaluate your program's style.

3. You may use the Java programming environment of your choice, but we recommend Eclipse.
You may want to review the Eclipse tutorial to learn the basics.

4. Download these provided files:
DblListnode.java
Image.java
LoopADT.java
ImageLoopEditor.java
TextImageLoopEditor.java
images (a folder containing 7 jpg photos)
inlist.txt

5. Write the EmptyLoopException class (one or two lines).

6. Incrementally implement and test the methods in the LinkedLoop<E> class (leaving the
iterator() method until the end). You might want to use a driver program for your tests.

7. Implement and test the LinkedLoopIterator<E> class and the iterator() method of
the LinkedLoop<E> class.

8. Complete the implementation of the ImageLoopEditor class, as described above, using a
LoopADT<Image> object.

9. Test your editor using either the GUI-based editor (ImageLoopEditor) or the text-based editor
(TextImageLoopEditor).

10. Develop test files for your editor as described in the testing section above. Try this sample
input file, test.txt and make sure your program produces the same output as testOutput.txt.
You can check if your program is producing the expected output using a file comparison utility.
At the command line level, diff (or diff3) are often used. The command

java TextImageLoopEditor test.txt | diff - testOutput.txt

will run the TextImageLoopEditor using test.txt as input. The output produced will be fed
to diff and compared againt the expected output, testOutput.txt. The diff utility
compares the two files character by character and displays any lines that differ. If anything
gets displayed as a result of executing the diff command, then your program is not
producing the expected output. No output means the the output is exactly as expected. ("No
news is good news.")

A variety of full-screen file comparsion utilities are also available (Mac, PC). You can capture
the program output in the Eclipse Console window and enter it into a file. Then run your
chosen file comparison utility.

11. For grading purposes, all class assignments will be run on a Unix/Linux box (using javac
and java). You should verify that your program compiles and runs in this environment. If you
are using a Mac this is easy -- use the terminal app located in the utilities folder. On
Windows you can use the cmd app to obtain a command line and prompt. You can compile
your Java source files using javac in a terminal window as in this example:

http://pages.cs.wisc.edu/~cs302/resources/guides/style.html
http://pages.cs.wisc.edu/~cs302/resources/guides/commenting.html
http://www.eclipse.org/
http://pages.cs.wisc.edu/~fischer/cs367/resources/EclipseTutorial/index.html
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/DblListnode.java
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/Image.java
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/LoopADT.java
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/student.ImageLoopEditor.java
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/TextImageLoopEditor.java
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/images
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/inlist.txt
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/test.txt
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/files/testOutput.txt
https://www.git-tower.com/blog/diff-tools-mac/
http://www.ghacks.net/2014/09/16/the-best-free-file-comparison-programs-for-windows/
http://pages.cs.wisc.edu/~fischer/cs367/assignments/p2/command.html

your Java source files using javac in a terminal window as in this example:
 javac *.java

and the run your program using java as in:
 java TextImageLoopEditor test.txt

12. Submit your work for grading.

Handing in
What should be handed in?

Make sure your code follows the style and commenting standards used in CS 302 and CS 367.

Electronically submit the following files to the Program 2 Dropbox on Learn@UW:

"ImageLoopEditor.java" containing your image display editor main program,
"LinkedLoop.java" containing your circular, doubly-linked loop class,
"EmptyLoopException.java" containing the checked exception used by the
LinkedLoop<E> class,
"LinkedLoopIterator.java" containing your LinkedLoop<E> iterator class, and
"*.java" only if you implemented additional classes for your program

Please turn in only the file named above. There is no need to clutter your handin folder with files
that are exactly the same as what we provided.

Last Updated: 8/11/2017 © 2008-2017 Charles Fischer and CS367 Instructors

http://pages.cs.wisc.edu/~cs302/resources/guides/style.html
http://pages.cs.wisc.edu/~cs302/resources/guides/commenting.html
http://pages.cs.wisc.edu/~fischer/cs367/assignments/assignments.html#HandIn

