
139CS 536 Spring 2006
©

Identifiers vs. Reserved Words
Most programming languages contain
reserved words like if , while ,
switch , etc. These tokens look like
ordinary identifiers, but aren’t.
It is up to the scanner to decide if
what looks like an identifier is really a
reserved word. This distinction is vital
as reserved words have different
token codes than identifiers and are
parsed differently.
How can a scanner decide which
tokens are identifiers and which are
reserved words?
• We can scan identifiers and reserved

words using the same pattern, and
then look up the token in a special
“reserved word” table.

140CS 536 Spring 2006
©

• It is known that any regular
expression may be complemented to
obtain all strings not in the original
regular expression. Thus A, the
complement of A, is regular if A is.
Using complementation we can write
a regular expression for nonreserved

identifiers:
Since scanner generators don’t
usually support complementation of
regular expressions, this approach is
more of theoretical than practical
interest.

• We can give distinct regular
expression definitions for each
reserved word, and for identifiers.
Since the definitions overlap (if will
match a reserved word and the
general identifier pattern), we give

ident if while …()

141CS 536 Spring 2006
©

priority to reserved words. Thus a
token is scanned as an identifier if it
matches the identifier pattern and
does not match any reserved word
pattern. This approach is commonly
used in scanner generators like Lex
and JLex.

142CS 536 Spring 2006
©

Converting Token Values
For some tokens, we may need to
convert from string form into
numeric or binary form.
For example, for integers, we need to
transform a string a digits into the
internal (binary) form of integers.
We know the format of the token is
valid (the scanner checked this), but:
• The string may represent an integer

too large to represent in 32 or 64 bit
form.

• Languages like CSX and ML use a
non-standard representation for
negative values (~123 instead of
-123)

143CS 536 Spring 2006
©

We can safely convert from string to
integer form by first converting the
string to double form, checking
against max and min int, and then
converting to int form if the value is
representable.
Thus d = new Double(str) will
create an object d containing the
value of str in double form. If str is
too large or too small to be
represented as a double, plus or minus
infinity is automatically substituted.
d.doubleValue() will give d’s value
as a Java double, which can be
compared against
Integer.MAX_VALUE or
Integer.MIN_VALUE .

144CS 536 Spring 2006
©

If d.doubleValue() represents a
valid integer,
(int) d.doubleValue()
will create the appropriate integer
value.
If a string representation of an
integer begins with a “~” we can strip
the “~”, convert to a double and then
negate the resulting value.

145CS 536 Spring 2006
©

Scanner Termination
A scanner reads input characters and
partitions them into tokens.
What happens when the end of the
input file is reached? It may be useful
to create an Eof pseudo-character
when this occurs. In Java, for
example, InputStream.read() ,
which reads a single byte, returns -1
when end of file is reached. A
constant, EOF, defined as -1 can be
treated as an “extended” ASCII
character. This character then allows
the definition of an Eof token that
can be passed back to the parser.
An Eof token is useful because it
allows the parser to verify that the
logical end of a program corresponds

146CS 536 Spring 2006
©

to its physical end. Most parsers
require an end of file token.
Lex and Jlex automatically create an
Eof token when the scanner they
build tries to scan an EOF character
(or tries to scan when eof() is true).

147CS 536 Spring 2006
©

Multi Character Lookahead
We may allow finite automata to look
beyond the next input character.
This feature is necessary to implement
a scanner for FORTRAN.
In FORTRAN, the statement

DO 10 J = 1,100
specifies a loop, with index J ranging
from 1 to 100 .
The statement

DO 10 J = 1.100
is an assignment to the variable
DO10J. (Blanks are not significant
except in strings.)
A FORTRAN scanner decides whether
the O is the last character of a DO
token only after reading as far as the
comma (or period).

148CS 536 Spring 2006
©

A milder form of extended lookahead
problem occurs in Pascal and Ada.
The token 10.50 is a real literal,
whereas 10..50 is three different
tokens.
We need two-character lookahead
after the 10 prefix to decide whether
we are to return 10 (an integer
literal) or 10.50 (a real literal).

149CS 536 Spring 2006
©

Suppose we use the following FA.

Given 10..100 we scan three
characters and stop in a non-
accepting state.
Whenever we stop reading in a non-
accepting state, we back up along
accepted characters until an
accepting state is found.
Characters we back up over are
rescanned to form later tokens. If no
accepting state is reached during
backup, we have a lexical error.

.D

D D

D

.
.

150CS 536 Spring 2006
©

Performance Considerations
Because scanners do so much
character-level processing, they can
be a real performance bottleneck in
production compilers.
Speed is not a concern in our project,
but let’s see why scanning speed can
be a concern in production compilers.
Let’s assume we want to compile at a
rate of 1000 lines/sec. (so that most
programs compile in just a few
seconds).
Assuming 30 characters/line (on
average), we need to scan 30,000
char/sec.

151CS 536 Spring 2006
©

On a 30 SPECmark machine (30
million instructions/sec.), we have
1000 instructions per character to
spend on all compiling steps.
If we allow 25% of compiling to be
scanning (a compiler has a lot more
to do than just scan!), that’s just 250
instructions per character.
A key to efficient scanning is to
group character-level operations
whenever possible. It is better to do
one operation on n characters rather
than n operations on single
characters.
In our examples we’ve read input one
character as a time. A subroutine call
can cost hundreds or thousands of
instructions to execute—far too much
to spend on a single character.

152CS 536 Spring 2006
©

We prefer routines that do block
reads, putting an entire block of
characters directly into a buffer.
Specialized scanner generators can
produce particularly fast scanners.
The GLA scanner generator claims
that the scanners it produces run as
fast as:
while(c != Eof) {

c = getchar();

}

153CS 536 Spring 2006
©

Lexical Error Recovery
A character sequence that can’t be
scanned into any valid token is a
lexical error.
Lexical errors are uncommon, but
they still must be handled by a
scanner. We won’t stop compilation
because of so minor an error.
Approaches to lexical error handling
include:
• Delete the characters read so far and

restart scanning at the next unread
character.

• Delete the first character read by the
scanner and resume scanning at the
character following it.

154CS 536 Spring 2006
©

Both of these approaches are
reasonable.
The first is easy to do. We just reset
the scanner and begin scanning anew.
The second is a bit harder but also is a
bit safer (less is immediately deleted).
It can be implemented using scanner
backup.
Usually, a lexical error is caused by
the appearance of some illegal
character, mostly at the beginning of
a token.
(Why at the beginning?)
In these case, the two approaches are
equivalent.

155CS 536 Spring 2006
©

The effects of lexical error recovery
might well create a later syntax error,
handled by the parser.
Consider

...for$tnight.. .
The $ terminates scanning of for .
Since no valid token begins with $, it
is deleted. Then tnight is scanned as
an identifier. In effect we get

...for tnight.. .
which will cause a syntax error. Such
“false errors” are unavoidable, though
a syntactic error-repair may help.

156CS 536 Spring 2006
©

Error Tokens
Certain lexical errors require special
care. In particular, runaway strings
and runaway comments ought to
receive special error messages.
In Java strings may not cross line
boundaries, so a runaway string is
detected when an end of a line is read
within the string body. Ordinary
recovery rules are inappropriate for
this error. In particular, deleting the
first character (the double quote
character) and restarting scanning is
a bad decision.
It will almost certainly lead to a
cascade of “false” errors as the string
text is inappropriately scanned as
ordinary input.

157CS 536 Spring 2006
©

One way to handle runaway strings is
to define an error token.
An error token is not a valid token; it
is never returned to the parser.
Rather, it is a pattern for an error
condition that needs special handling.
We can define an error token that
represents a string terminated by an
end of line rather than a double
quote character.
For a valid string, in which internal
double quotes and back slashes are
escaped (and no other escaped
characters are allowed), we can use
" (Not(" | Eol | \) | \" | \\)* "
For a runaway string we use
" (Not(" | Eol | \) | \" | \\)* Eol
(Eol is the end of line character.)

158CS 536 Spring 2006
©

When a runaway string token is
recognized, a special error message
should be issued.
Further, the string may be “repaired”
into a correct string by returning an
ordinary string token with the closing
Eol replaced by a double quote.
This repair may or may not be
“correct.” If the closing double quote
is truly missing, the repair will be
good; if it is present on a succeeding
line, a cascade of inappropriate
lexical and syntactic errors will
follow.
Still, we have told the programmer
exactly what is wrong, and that is our
primary goal.

159CS 536 Spring 2006
©

In languages like C, C++, Java and
CSX, which allow multiline comments,
improperly terminated (runaway)
comments present a similar problem.
A runaway comment is not detected
until the scanner finds a close
comment symbol (possibly belonging
to some other comment) or until the
end of file is reached. Clearly a
special, detailed error message is
required.
Let’s look at Pascal-style comments
that begin with a { and end with a }.
Comments that begin and end with a
pair of characters, like /* and */ in
Java, C and C++, are a bit trickier.

160CS 536 Spring 2006
©

Correct Pascal comments are defined
quite simply:

{ Not(})* }
To handle comments terminated by
Eof , this error token can be used:

{ Not(})* Eof
We want to handle comments
unexpectedly closed by a close
comment belonging to another
comment:
{... missing close comment
... { normal comment }...

We will issue a warning (this form of
comment is lexically legal).
Any comment containing an open
comment symbol in its body is most
probably a missing } error.

161CS 536 Spring 2006
©

We split our legal comment definition
into two token definitions.
The definition that accepts an open
comment in its body causes a warning
message ("Possible unclosed
comment") to be printed.
We now use:
{ Not({ | })* } and
{ (Not({ | })* { Not({ | })*)+ }
The first definition matches correct
comments that do not contain an
open comment in their body.
The second definition matches
correct, but suspect, comments that
contain at least one open comment in
their body.

162CS 536 Spring 2006
©

Single line comments, found in Java,
CSX and C++, are terminated by Eol.
They can fall prey to a more subtle
error—what if the last line has no Eol
at its end?
The solution?
Another error token for single line
comments:

// Not(Eol) *

This rule will only be used for
comments that don’t end with an Eol,
since scanners always match the
longest rule possible.

