
153CS 536 Spring 2006
©

Lexical Error Recovery
A character sequence that can’t be
scanned into any valid token is a
lexical error.
Lexical errors are uncommon, but
they still must be handled by a
scanner. We won’t stop compilation
because of so minor an error.
Approaches to lexical error handling
include:
• Delete the characters read so far and

restart scanning at the next unread
character.

• Delete the first character read by the
scanner and resume scanning at the
character following it.

154CS 536 Spring 2006
©

Both of these approaches are
reasonable.
The first is easy to do. We just reset
the scanner and begin scanning anew.
The second is a bit harder but also is a
bit safer (less is immediately deleted).
It can be implemented using scanner
backup.
Usually, a lexical error is caused by
the appearance of some illegal
character, mostly at the beginning of
a token.
(Why at the beginning?)
In these case, the two approaches are
equivalent.

155CS 536 Spring 2006
©

The effects of lexical error recovery
might well create a later syntax error,
handled by the parser.
Consider

...for$tnight.. .
The $ terminates scanning of for .
Since no valid token begins with $, it
is deleted. Then tnight is scanned as
an identifier. In effect we get

...for tnight.. .
which will cause a syntax error. Such
“false errors” are unavoidable, though
a syntactic error-repair may help.

156CS 536 Spring 2006
©

Error Tokens
Certain lexical errors require special
care. In particular, runaway strings
and runaway comments ought to
receive special error messages.
In Java strings may not cross line
boundaries, so a runaway string is
detected when an end of a line is read
within the string body. Ordinary
recovery rules are inappropriate for
this error. In particular, deleting the
first character (the double quote
character) and restarting scanning is
a bad decision.
It will almost certainly lead to a
cascade of “false” errors as the string
text is inappropriately scanned as
ordinary input.

157CS 536 Spring 2006
©

One way to handle runaway strings is
to define an error token.
An error token is not a valid token; it
is never returned to the parser.
Rather, it is a pattern for an error
condition that needs special handling.
We can define an error token that
represents a string terminated by an
end of line rather than a double
quote character.
For a valid string, in which internal
double quotes and back slashes are
escaped (and no other escaped
characters are allowed), we can use
" (Not(" | Eol | \) | \" | \\)* "
For a runaway string we use
" (Not(" | Eol | \) | \" | \\)* Eol
(Eol is the end of line character.)

158CS 536 Spring 2006
©

When a runaway string token is
recognized, a special error message
should be issued.
Further, the string may be “repaired”
into a correct string by returning an
ordinary string token with the closing
Eol replaced by a double quote.
This repair may or may not be
“correct.” If the closing double quote
is truly missing, the repair will be
good; if it is present on a succeeding
line, a cascade of inappropriate
lexical and syntactic errors will
follow.
Still, we have told the programmer
exactly what is wrong, and that is our
primary goal.

159CS 536 Spring 2006
©

In languages like C, C++, Java and
CSX, which allow multiline comments,
improperly terminated (runaway)
comments present a similar problem.
A runaway comment is not detected
until the scanner finds a close
comment symbol (possibly belonging
to some other comment) or until the
end of file is reached. Clearly a
special, detailed error message is
required.
Let’s look at Pascal-style comments
that begin with a { and end with a }.
Comments that begin and end with a
pair of characters, like /* and */ in
Java, C and C++, are a bit trickier.

160CS 536 Spring 2006
©

Correct Pascal comments are defined
quite simply:

{ Not(})* }
To handle comments terminated by
Eof , this error token can be used:

{ Not(})* Eof
We want to handle comments
unexpectedly closed by a close
comment belonging to another
comment:
{... missing close comment
... { normal comment }...

We will issue a warning (this form of
comment is lexically legal).
Any comment containing an open
comment symbol in its body is most
probably a missing } error.

161CS 536 Spring 2006
©

We split our legal comment definition
into two token definitions.
The definition that accepts an open
comment in its body causes a warning
message ("Possible unclosed
comment") to be printed.
We now use:
{ Not({ | })* } and
{ (Not({ | })* { Not({ | })*)+ }
The first definition matches correct
comments that do not contain an
open comment in their body.
The second definition matches
correct, but suspect, comments that
contain at least one open comment in
their body.

162CS 536 Spring 2006
©

Single line comments, found in Java,
CSX and C++, are terminated by Eol.
They can fall prey to a more subtle
error—what if the last line has no Eol
at its end?
The solution?
Another error token for single line
comments:

// Not(Eol) *

This rule will only be used for
comments that don’t end with an Eol,
since scanners always match the
longest rule possible.

163CS 536 Spring 2006
©

Regular Expressions and Finite
Automata

Regular expressions are fully
equivalent to finite automata.
The main job of a scanner generator
like JLex is to transform a regular
expression definition into an
equivalent finite automaton.
First it transforms a regular
expression into a nondeterministic
finite automaton (NFA).
Unlike an ordinary deterministic finite
automaton, an NFA need not make a
unique (deterministic) choice of a
successor state to visit. For example,
as shown below, an NFA is allowed to
have a state that has two transitions
(arrows) coming out of it, labeled by

164CS 536 Spring 2006
©

the same symbol. An NFA may also
have transitions labeled with λ.

Transitions are normally labeled with
individual characters in Σ, and
although λ is a string (the string with
no characters in it), it is definitely not
a character. In the above example,
when the automaton is in the state at
the left and the next input character
is a, it may choose to use the

a

a

a

λ
a

165CS 536 Spring 2006
©

transition labeled a or first follow the
λ transition (you can always find λ
wherever you look for it) and then
follow an a transition. FAs that
contain no λ transitions and that
always have unique successor states
for any symbol are deterministic.

166CS 536 Spring 2006
©

Building Finite Automata From
Regular Expressions

We make an FA from a regular
expression in two steps:
• Transform the regular expression into

an NFA.

• Transform the NFA into a
deterministic FA.

The first step is easy.
Regular expressions are all built out
of the atomic regular expressions a
(where a is a character in Σ) and λ by
using the three operations
A B and A | B and A*.

167CS 536 Spring 2006
©

Other operations (like A+) are just
abbreviations for combinations of
these.
NFAs for a and λ are trivial:

a

λ

168CS 536 Spring 2006
©

Suppose we have NFAs for A and B
and want one for A | B. We construct
the NFA shown below:

The states labeled A and B were the
accepting states of the automata for
A and B; we create a new accepting
state for the combined automaton.
A path through the top automaton
accepts strings in A, and a path
through the bottom automation
accepts strings in B, so the whole
automaton matches A | B .

A

B

Finite
Automaton

for A

Finite
Automaton

for B

λ

λ

λ

λ

169CS 536 Spring 2006
©

As shown below, the construction for
A B is even easier. The accepting
state of the combined automaton is
the same state that was the accepting
state of B. We must follow a path
through A’s automaton, then through
B’s automaton, so overall A B is
matched.
We could also just merge the
accepting state of A with the initial
state of B. We chose not to only
because the picture would be more
difficult to draw.

A
Finite

Automaton
for A

Finite
Automaton

for B

λ

170CS 536 Spring 2006
©

Finally, let’s look at the NFA for A*.
The start state reaches an accepting
state via λ, so λ is accepted.
Alternatively, we can follow a path
through the FA for A one or more
times, so zero or more strings that
belong to A are matched.

A
Finite

Automaton
for A

λ

λ

λ

λ

