
66CS 536 Spring 2007©

How are Symbol Tables
Implemented?

There are a number of data
structures that can reasonably
be used to implement a symbol
table:
• An Ordered List

Symbols are stored in a linked list,
sorted by the symbol’s name. This is
simple, but may be a bit too slow if
many identifiers appear in a scope.

• A Binary Search Tree
Lookup is much faster than in a
linked list, but rebalancing may be
needed. (Entering identifiers in sorted
order can turn a search tree into a
linked list.)

67CS 536 Spring 2007©

• Hash Tables
The most popular choice.

Implementing Block-
Structured Symbol Tables

To implement a block
structured symbol table we
need to be able to efficiently
open and close individual
scopes, and limit insertion to
the innermost current scope.
This can be done using one
symbol table structure if we tag
individual entries with a “scope
number.”
It is far easier (but more
wasteful of space) to allocate
one symbol table for each

68CS 536 Spring 2007©

scope. Open scopes are
stacked, pushing and popping
tables as scopes are opened
and closed.
Be careful though—many
preprogrammed stack
implementations don’t allow
you to “peek” at entries below
the stack top. This is necessary
to lookup an identifier in all
open scopes.
If a suitable stack
implementation (with a peek
operation) isn’t available, a
linked list of symbol tables will
suffice.

69CS 536 Spring 2007©

More on Hashtables
Hashtables are a very useful
data structure. Java provides a
predefined Hashtable class.
Python includes a built-in
dictionary type.
Every Java class has a hashCode
method, which allows any
object to be entered into a Java
Hashtable.
For most objects, hash codes
are pretty simple (the address
of the corresponding object is
often used).
But for strings Java uses a much
more elaborate hash

function: ci 37× i

i 0=

n 1–

∑

70CS 536 Spring 2007©

n is the length of the string, ci
is the i-th character and all
arithmetic is done without
overflow checking.
Why such an elaborate hash
function?
Simpler hash functions can
have major problems.

Consider (add the

characters).
For short identifiers the sum
grows slowly, so large indices
won’t often be used (leading to
non-uniform use of the hash
table).

ci
i 0=

n 1–

∑

71CS 536 Spring 2007©

We can try (product of

characters), but now
(surprisingly) the size of the
hash table becomes an issue.
The problem is that if even one
character is encoded as an even
number, the product must be
even.
If the hash table is even in size
(a natural thing to do), most
hash table entries will be at
even positions. Similarly, if
even one character is encoded
as a multiple of 3, the whole
product will be a multiple of 3,
so hash tables that are a
multiple of three in size won’t
be uniformly used.

ci
i 0=

n 1–

∏

72CS 536 Spring 2007©

To see how bad things can get,
consider a hash table with size
210 (which is equal to 2×3×5×7).
This should be a particularly
bad table size if a product hash
is used. (Why?)
Is it? As an experiment, all the
words in the Unix spell
checker’s dictionary (26000
words) where entered. Over
50% (56.7% actually) hit
position 0 in the table!

Why such non-uniformity?
If an identifier contains
characters that are multiples of
2, 3, 5 and 7, then their hash
will be a multiple of 210 and
will map to position 0.

73CS 536 Spring 2007©

For example, in Wisconsin, n
has an ASCII code of 110 (2×55)
and i has a code of 105
(7×5×3).
If we change the table size ever
so slightly, to 211, no table
entry gets more than 1% of the
26000 words hashed, which is
very good.
Why such a big difference? Well
211 is prime and there is a bit a
folk-wisdom that states that
prime numbers are good
choices for hash table sizes.
Now our product hash will
cover table entries far more
uniformly (small factors in the
hash don’t divide the table size
evenly).

74CS 536 Spring 2007©

Now the reason for Java’s more
complex string hash function
becomes evident—it can
uniformly fill a hash table
whose size isn’t prime.

75CS 536 Spring 2007©

How are Collisions Handled?
Since identifiers are often
unlimited in length, the set of
possible identifiers is infinite.
Even if we limit ourselves is
short identifiers (say 10 of
fewer characters), the range of
valid identifiers is greater than
2610.
This means that all hash tables
need to contend with collisions,
when two different identifiers
map to the same place in the
table.
How are collisions handled?
The simplest approach is linear
resolution. If identifier id
hashes to position p in a hash

76CS 536 Spring 2007©

table of size s and position p is
already filled, we try (p+1) mod
s, then (p+2) mod s, until a free
position is found.
As long as the table is not too
filled, this approach works well.
When we approach an almost-
filled situation, long search
chains form, and we
degenerate to an unordered
list.
If the table is 100% filled, linear
resolution fails.
Some hash table
implementations, including
Java’s, set a load factor
between 0 and 1.0. When the
fraction of filled entries in the
table exceeds the load factor,

77CS 536 Spring 2007©

table size is increased and all
entries are rehashed.
Note that bundling of a
hashCode method within all Java
objects makes rehashing easy
to do automatically. If the hash
function is external to the
symbol table entries, rehashing
may need to be done manually
by the user.
An alternative to linear
resolution is chained
resolution, in which symbol
table entries contain pointers
to chains of symbols rather
than a single symbol. All
identifiers that hash to the
same position appear on the
same chain. Now overflowing
table size is not catastrophic—

78CS 536 Spring 2007©

as the table fills, chains from
each table position get longer.
As long as the table is not too
overfilled, average chain length
will be small.

