
97CS 536 Spring 2007©

These four components of a
finite automaton are often
represented graphically:

Finite automata (the plural of
automaton is automata) are
represented graphically using
transition diagrams. We start at
the start state. If the next input
character matches the label on

is a transition

is the start state

is an accepting state

is a state

98CS 536 Spring 2007©

a transition from the current
state, we go to the state it
points to. If no move is
possible, we stop. If we finish
in an accepting state, the
sequence of characters read
forms a valid token; otherwise,
we have not seen a valid token.

In this diagram, the valid
tokens are the strings
described by the regular
expression (a b (c)+)+.

a b c

c

a

99CS 536 Spring 2007©

Deterministic Finite Automata
As an abbreviation, a transition
may be labeled with more than
one character (for example,
Not(c)). The transition may be
taken if the current input
character matches any of the
characters labeling the transition.
If an FA always has a unique
transition (for a given state and
character), the FA is deterministic
(that is, a deterministic FA, or
DFA). Deterministic finite
automata are easy to program
and often drive a scanner.
If there are transitions to more
than one state for some character,
then the FA is nondeterministic
(that is, an NFA).

100CS 536 Spring 2007©

A DFA is conveniently represented
in a computer by a transition
table. A transition table, T, is a
two dimensional array indexed by
a DFA state and a vocabulary
symbol.
Table entries are either a DFA
state or an error flag (often
represented as a blank table
entry). If we are in state s, and
read character c, then T[s,c] will
be the next state we visit, or T[s,c]
will contain an error marker
indicating that c cannot extend
the current token. For example,
the regular expression

// Not(Eol)* Eol

which defines a Java or C++
single-line comment, might be
translated into

101CS 536 Spring 2007©

The corresponding transition
table is:

A complete transition table
contains one column for each
character. To save space, table
compression may be used. Only
non-error entries are explicitly
represented in the table, using
hashing, indirection or linked
structures.

State Character
/ Eol a b …

1 2
2 3
3 3 4 3 3 3
4

eof

Eol/ /

Not(Eol)

1 2 3 4

102CS 536 Spring 2007©

All regular expressions can be
translated into DFAs that accept
(as valid tokens) the strings
defined by the regular
expressions. This translation can
be done manually by a
programmer or automatically
using a scanner generator.
A DFA can be coded in:
• Table-driven form
• Explicit control form
In the table-driven form, the
transition table that defines a
DFA’s actions is explicitly
represented in a run-time table
that is “interpreted” by a driver
program.
In the direct control form, the
transition table that defines a
DFA’s actions appears implicitly as
the control logic of the program.

103CS 536 Spring 2007©

For example, suppose
CurrentChar is the current input
character. End of file is
represented by a special character
value, eof. Using the DFA for the
Java comments shown earlier, a
table-driven scanner is:
State = StartState
while (true){
if (CurrentChar == eof)

break
NextState =

T[State][CurrentChar]
 if(NextState == error)

break
State = NextState
read(CurrentChar)

}
if (State in AcceptingStates)

// Process valid token
else // Signal a lexical error

104CS 536 Spring 2007©

This form of scanner is produced
by a scanner generator; it is
definition-independent. The
scanner is a driver that can scan
any token if T contains the
appropriate transition table.
Here is an explicit-control scanner
for the same comment definition:
if (CurrentChar == '/'){

read(CurrentChar)
if (CurrentChar == '/')
repeat
read(CurrentChar)

until (CurrentChar in
{eol, eof})

else //Signal lexical error
else // Signal lexical error
if (CurrentChar == eol)

// Process valid token
else //Signal lexical error

105CS 536 Spring 2007©

The token being scanned is
“hardwired” into the logic of the
code. The scanner is usually easy
to read and often is more
efficient, but is specific to a single
token definition.

106CS 536 Spring 2007©

More Examples
• A FORTRAN-like real literal (which

requires digits on either or both sides
of a decimal point, or just a string of
digits) can be defined as

RealLit = (D+ (λ | .)) | (D* . D+)

This corresponds to the DFA

. D

DD

D .

107CS 536 Spring 2007©

• An identifier consisting of letters,
digits, and underscores, which begins
with a letter and allows no adjacent
or trailing underscores, may be
defined as

ID = L (L | D)* (_ (L | D)+)*

This definition includes identifiers
like sum or unit_cost, but
excludes _one and two_ and
grand___total. The DFA is:

L | D

L

L | D

_

108CS 536 Spring 2007©

Lex/Flex/JLex
Lex is a well-known Unix scanner
generator. It builds a scanner, in
C, from a set of regular
expressions that define the
tokens to be scanned.
Flex is a newer and faster version
of Lex.
Jlex is a Java version of Lex. It
generates a scanner coded in
Java, though its regular
expression definitions are very
close to those used by Lex and
Flex.
Lex, Flex and JLex are largely non-
procedural. You don’t need to tell
the tools how to scan. All you
need to tell it what you want
scanned (by giving it definitions
of valid tokens).

109CS 536 Spring 2007©

This approach greatly simplifies
building a scanner, since most of
the details of scanning (I/O,
buffering, character matching,
etc.) are automatically handled.

110CS 536 Spring 2007©

JLex
JLex is coded in Java. To use it,
you enter
java JLex.Main f.jlex

Your CLASSPATH should be set to
search the directories where JLex’s
classes are stored.
(The CLASSPATH we gave you
includes JLex’s classes).
After JLex runs (assuming there
are no errors in your token
specifications), the Java source
file
f.jlex.java is created. (f stands
for any file name you choose.
Thus csx.jlex might hold token
definitions for CSX, and
csx.jlex.java would hold the
generated scanner).

111CS 536 Spring 2007©

You compile f.jlex.java just
like any Java program, using your
favorite Java compiler.
After compilation, the class file
Yylex.class is created.
It contains the methods:
• Token yylex() which is the actual

scanner. The constructor for Yylex
takes the file you want scanned, so
new Yylex(System.in)
will build a scanner that reads from
System.in. Token is the token
class you want returned by the
scanner; you can tell JLex what class
you want returned.

• String yytext() returns the
character text matched by the last call
to yylex.

112CS 536 Spring 2007©

A simple example of the use of
JLex is in
~cs536-1/pubic/jlex
Just enter
make test

113CS 536 Spring 2007©

Input to JLex
There are three sections,
delimited by %%. The general
structure is:
User Code

%%

Jlex Directives

%%

Regular Expression rules

The User Code section is Java
source code to be copied into the
generated Java source file. It
contains utility classes or return
type classes you need. Thus if you
want to return a class
IntlitToken (for integer literals
that are scanned), you include its
definition in the User Code
section.

114CS 536 Spring 2007©

JLex directives are various
instructions you can give JLex to
customize the scanner you
generate.
These are detailed in the JLex
manual. The most important are:

• %{
Code copied into the Yylex
class (extra fields or
methods you may want)
%}

• %eof{
Java code to be executed when
the end of file is reached
%eof}

• %type classname
classname is the return type you
want for the scanner method,
yylex()

115CS 536 Spring 2007©

Macro Definitions
In section two you may also
define macros, that are used in
section three. A macro allows you
to give a name to a regular
expression or character class.
This allows you to reuse
definitions and make regular
expression rule more readable.
Macro definitions are of the form
name = def

Macros are defined one per line.
Here are some simple examples:
Digit=[0-9]

AnyLet=[A-Za-z]

In section 3, you use a macro by
placing its name within { and }.
Thus {Digit} expands to the
character class defining the digits
0 to 9.

