
10CS 536 Spring 2008©

Compilers
Compilers are fundamental to
modern computing.
They act as translators,
transforming human-oriented
programming languages into
computer-oriented machine
languages.
To most users, a compiler can
be viewed as a “black box” that
performs the transformation
shown below.

Programming
Language Machine

Language
Compiler

11CS 536 Spring 2008©

A compiler allows
programmers to ignore the
machine-dependent details of
programming.

Compilers allow programs and
programming skills to be
machine-independent.

Compilers also aid in detecting
programming errors (which are
all too common).

Compiler techniques also help
to improve computer security.
For example, the Java Bytecode
Verifier helps to guarantee that
Java security rules are satisfied.

12CS 536 Spring 2008©

Compilers currently help in
protection of intellectual
property (using obfuscation)
and provenance (through
watermarking).

13CS 536 Spring 2008©

History of Compilers
The term compiler was coined
in the early 1950s by Grace
Murray Hopper. Translation was
viewed as the “compilation” of
a sequence of machine-
language subprograms selected
from a library.

One of the first real compilers
was the FORTRAN compiler of
the late 1950s. It allowed a
programmer to use a problem-
oriented source language.

14CS 536 Spring 2008©

Ambitious “optimizations” were
used to produce efficient
machine code, which was vital
for early computers with quite
limited capabilities.

Efficient use of machine
resources is still an essential
requirement for modern
compilers.

15CS 536 Spring 2008©

Compilers Enable
Programming Languages

Programming languages are
used for much more than
“ordinary” computation.
• TeX and LaTeX use compilers to

translate text and formatting
commands into intricate
typesetting commands.

• Postscript, generated by text-
formatters like LaTeX, Word, and
FrameMaker, is really a
programming language. It is
translated and executed by laser
printers and document previewers
to produce a readable form of a
document. A standardized
document representation language
allows documents to be freely
interchanged, independent of how

16CS 536 Spring 2008©

they were created and how they
will be viewed.

• Mathmatica is an interactive system
that intermixes programming with
mathematics; it is possible to solve
intricate problems in both symbolic
and numeric form. This system
relies heavily on compiler
techniques to handle the
specification, internal
representation, and solution of
problems.

• Verilog and VHDL support the
creation of VLSI circuits. A silicon
compiler specifies the layout and
composition of a VLSI circuit mask,
using standard cell designs. Just as
an ordinary compiler understands
and enforces programming
language rules, a silicon compiler
understands and enforces the
design rules that dictate the
feasibility of a given circuit.

17CS 536 Spring 2008©

• Interactive tools often need a
programming language to support
automatic analysis and
modification of an artifact.
How do you automatically filter or
change a MS Word document? You
need a text-based specification that
can be processed, like a program,
to check validity or produce an
updated version.

18CS 536 Spring 2008©

When do We Run a Compiler?
• Prior to execution

This is standard. We compile a
program once, then use it repeatedly.

• At the start of each execution
We can incorporate values known at
the start of the run to improve
performance.
A program may be partially complied,
then completed with values set at
execution-time.

• During execution
Unused code need not be compiled.
Active or “hot” portions of a program
may be specially optimized.

• After execution
We can profile a program, looking for
heavily used routines, which can be
specially optimized for later runs.

19CS 536 Spring 2008©

What do Compilers Produce?
Pure Machine Code
Compilers may generate code
for a particular machine, not
assuming any operating system
or library routines. This is “pure
code” because it includes
nothing beyond the instruction
set. This form is rare; it is
sometimes used with system
implementation languages, that
define operating systems or
embedded applications (like a
programmable controller). Pure
code can execute on bare
hardware without dependence
on any other software.

20CS 536 Spring 2008©

Augmented Machine Code
Commonly, compilers generate
code for a machine architecture
augmented with operating
system routines and run-time
language support routines.
To use such a program, a
particular operating system
must be used and a collection
of run-time support routines
(I/O, storage allocation,
mathematical functions, etc.)
must be available. The
combination of machine
instruction and OS and run-time
routines define a virtual
machine—a computer that
exists only as a hardware/
software combination.

21CS 536 Spring 2008©

Virtual Machine Code
Generated code can consist
entirely of virtual instructions
(no native code at all). This
allows code to run on a variety
of computers.
Java, with its JVM (Java Virtual
Machine) is a great example of
this approach.
If the virtual machine is kept
simple and clean, its interpreter
can be easy to write. Machine
interpretation slows execution
by a factor of 3:1 to perhaps
10:1 over compiled code.
A “Just in Time” (JIT) compiler
can translate “hot” portions of
virtual code into native code to
speed execution.

22CS 536 Spring 2008©

Advantages of Virtual
Instructions

Virtual instructions serve a
variety of purposes.
• They simplify a compiler by

providing suitable primitives (such
as method calls, string
manipulation, and so on).

• They aid compiler transportability.
• They may decrease in the size of

generated code since instructions
are designed to match a particular
programming language (for
example, JVM code for Java).

Almost all compilers, to a
greater or lesser extent,
generate code for a virtual
machine, some of whose
operations must be interpreted.

