Scanning

A scanner transforms a character stream into a token stream. A scanner is sometimes called a **lexical analyzer** or **lexer**. Scanners use a formal notation (**regular expressions**) to specify the precise structure of tokens. But why bother? Aren’t tokens very simple in structure? Token structure can be more detailed and subtle than one might expect. Consider simple quoted strings in C, C++ or Java. The body of a string can be any sequence of characters except a quote character (which must be escaped). But is this simple definition really correct?

Can a newline character appear in a string? In C it cannot, unless it is escaped with a backslash. C, C++ and Java allow escaped newlines in strings, Pascal forbids them entirely. Ada forbids all unprintable characters. Are null strings (zero-length) allowed? In C, C++, Java and Ada they are, but Pascal forbids them. (In Pascal a string is a packed array of characters, and zero length arrays are disallowed.) A precise definition of tokens can ensure that lexical rules are clearly stated and properly enforced.

Regular Expressions

Regular expressions specify simple (possibly infinite) sets of strings. Regular expressions routinely specify the tokens used in programming languages.

Regular expressions can drive a **scanner generator**.

Regular expressions are widely used in computer utilities:

- The Unix utility **grep** uses regular expressions to define search patterns in files.
- Unix shells allow regular expressions in file lists for a command.

- Most editors provide a “context search” command that specifies desired matches using regular expressions.
- The Windows Find utility allows some regular expressions.
Regular Sets

The sets of strings defined by regular expressions are called regular sets.

When scanning, a token class will be a regular set, whose structure is defined by a regular expression.

Particular instances of a token class are sometimes called lexemes, though we will simply call a string in a token class an instance of that token. Thus we call the string abc an identifier if it matches the regular expression that defines valid identifier tokens.

Regular expressions use a finite character set, or vocabulary (denoted Σ).

This vocabulary is normally the character set used by a computer. Today, the ASCII character set, which contains a total of 128 characters, is very widely used. Java uses the Unicode character set which includes all the ASCII characters as well as a wide variety of other characters.

An empty or null string is allowed (denoted λ, “lambda”). Lambda represents an empty buffer in which no characters have yet been matched. It also represents optional parts of tokens. An integer literal may begin with a plus or minus, or it may begin with λ if it is unsigned.

Catenation

Strings are built from characters in the character set Σ via catenation.

As characters are catenated to a string, it grows in length. The string do is built by first catenating d to λ, and then catenating o to the string d. The null string, when catenated with any string s, yields s. That is, s λ ≡ λ s ≡ s. Catenating λ to a string is like adding 0 to an integer—nothing changes.

Catenation is extended to sets of strings:

Let P and Q be sets of strings. (The symbol ∈ represents set membership.) If s₁ ∈ P and s₂ ∈ Q then string s₁s₂ ∈ (P Q).

Alternation

Small finite sets are conveniently represented by listing their elements. Parentheses delimit expressions, and |, the alternation operator, separates alternatives.

For example, D, the set of the ten single digits, is defined as

D = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9).

The characters (,), ' , *, +, and | are meta-characters (punctuation and regular expression operators).

Meta-characters must be quoted when used as ordinary characters to avoid ambiguity.
For example the expression
\((\ '(' | ')' | ';' | ',')\)
defines four single character
tokens (left parenthesis, right
parenthesis, semicolon and
comma). The parentheses are
quoted when they represent
individual tokens and are not
used as delimiters in a larger
regular expression.

Alternation is extended to sets of
strings:
Let \(P\) and \(Q\) be sets of strings.
Then string \(s \in (P \mid Q)\) if and only
if \(s \in P\) or \(s \in Q\).
For example, if \(LC\) is the set of
lower-case letters and \(UC\) is the
set of upper-case letters, then
\((LC \mid UC)\) is the set of all letters (in
either case).

Kleene Closure

A useful operation is *Kleene
Closure* represented by a postfix * operator.

Let \(P\) be a set of strings. Then \(P^*\)
represents all strings formed by
the catenation of zero or more
selections (possibly repeated)
from \(P\).

Zero selections are denoted by \(\lambda\).
For example, \(LC^*\) is the set of all
words composed of lower-case
letters, of any length (including
the zero length word, \(\lambda\)).

Precisely stated, a string \(s \in P^*\) if
and only if \(s\) can be broken into
zero or more pieces: \(s = s_1 s_2 ... s_n\)
so that each \(s_i \in P\) \((n \geq 0, 1 \leq i \leq n)\).
We allow \(n = 0\), so \(\lambda\) is always in \(P\).

**Definition of Regular
Expressions**

Using catenations, alternation
and Kleene closure, we can
define *regular expressions* as
follows:

- \(\emptyset\) is a regular expression denoting
 the empty set (the set containing
 no strings). \(\emptyset\) is rarely used, but is
 included for completeness.
- \(\lambda\) is a regular expression denoting
 the set that contains only the
 empty string. This set is not the
 same as the empty set, because it
 contains one element.
- A string \(s\) is a regular expression
 denoting a set containing the
 single string \(s\).

- If \(A\) and \(B\) are regular expressions,
 then \(A \mid B\), \(A \cdot B\), and \(A^*\) are also
 regular expressions, denoting the
 alternation, catenation, and Kleene
 closure of the corresponding
 regular sets.

Each regular expression
denotes a set of strings (a
regular set). Any finite set of
strings can be represented by a
regular expression of the form
\((s_1 \mid s_2 \mid ... \mid s_k)\). Thus the
reserved words of ANSI C can be defined as
\((auto \mid break \mid case \mid ...).\)
The following additional operations useful. They are not strictly necessary, because their effect can be obtained using alternation, catenation, Kleene closure:

- \(P^+ \) denotes all strings consisting of one or more strings in \(P \) catenated together:
 \[P^+ = \lambda + P \cdot P^+ \]
 For example, \((0 | 1)^+ \) is the set of all strings containing one or more bits.

- If \(A \) is a set of characters, \(\text{Not}(A) \) denotes \((\Sigma - A) \); that is, all characters in \(\Sigma \) not included in \(A \). Since \(\text{Not}(A) \) can never be larger than \(\Sigma \) and \(\Sigma \) is finite, \(\text{Not}(A) \) must also be finite, and is therefore regular. \(\text{Not}(A) \) does not contain \(\lambda \) since \(\lambda \) is not a character (it is a zero-length string).

Examples

Let \(D \) be the ten single digits and let \(L \) be the set of all 52 letters. Then

- A Java or C++ single-line comment that begins with // and ends with Eol can be defined as:
 \[\text{Comment} = // \text{Not}(\text{Eol})^* \text{Eol} \]

- A fixed decimal literal (e.g., \(12.345 \)) can be defined as:
 \[\text{Lit} = D^+. \]

- An optionally signed integer literal can be defined as:
 \[\text{IntLiteral} = (\text{'}+\text{'} | \text{'}-\text{'} | \lambda) D^+ \]
 (Why the quotes on the plus?)

For example, \(\text{Not} \)(Eol) is the set of all characters excluding Eol (the end of line character, `\n` in Java or C).

- It is possible to extend \(\text{Not} \) to strings, rather than just \(\Sigma \). That is, if \(S \) is a set of strings, we define \(S \) to be \((\Sigma^* - S) \); the set of all strings except those in \(S \). Though \(S \) is usually infinite, it is also regular if \(S \) is.

- If \(k \) is a constant, the set \(A^k \) represents all strings formed by catenating \(k \) (possibly different) strings from \(A \).
 That is, \(A^k = (A A A \ldots) \) (\(k \) copies).
 Thus \((0 | 1)^{32} \) is the set of all bit strings exactly 32 bits long.

- A comment delimited by ## markers, which allows single #'s within the comment body:
 \[\text{Comment2} = \]
 \[## ((\# | \lambda) \text{Not}(\#))^* ## \]

All finite sets and many infinite sets are regular. But not all infinite sets are regular. Consider the set of balanced brackets of the form \([[[\ldots]] \) .
This set is defined formally as \(\{ \lfloor m \rfloor^m | m \geq 1 \} \).
This set is known not to be regular. Any regular expression that tries to define it either does not get all balanced nestings or it includes extra, unwanted strings.