Error Tokens

Certain lexical errors require special care. In particular, runaway strings and runaway comments ought to receive special error messages.

In Java strings may not cross line boundaries, so a runaway string is detected when an end of a line is read within the string body. Ordinary recovery rules are inappropriate for this error. In particular, deleting the first character (the double quote character) and restarting scanning is a *bad* decision.

It will almost certainly lead to a cascade of “false” errors as the string text is inappropriately scanned as ordinary input.
One way to handle runaway strings is to define an *error token*. An error token is *not* a valid token; it is never returned to the parser. Rather, it is a *pattern* for an error condition that needs special handling. We can define an error token that represents a string terminated by an end of line rather than a double quote character.

For a valid string, in which internal double quotes and backslashes are escaped (and no other escaped characters are allowed), we can use

```
" ( Not( " | Eol | \ ) | " | \ )* "
```

For a runaway string we use

```
" ( Not( " | Eol | \ ) | " | \ )* Eol
```

(Eol is the end of line character.)
When a runaway string token is recognized, a special error message should be issued. Further, the string may be “repaired” into a correct string by returning an ordinary string token with the closing Eol replaced by a double quote.

This repair may or may not be “correct.” If the closing double quote is truly missing, the repair will be good; if it is present on a succeeding line, a cascade of inappropriate lexical and syntactic errors will follow. Still, we have told the programmer exactly what is wrong, and that is our primary goal.
In languages like C, C++, Java and CSX, which allow multiline comments, improperly terminated (runaway) comments present a similar problem.

A runaway comment is not detected until the scanner finds a close comment symbol (possibly belonging to some other comment) or until the end of file is reached. Clearly a special, detailed error message is required.

Let’s look at Pascal-style comments that begin with a { and end with a }. Comments that begin and end with a pair of characters, like /* and */ in Java, C and C++, are a bit trickier.
Correct Pascal comments are defined quite simply:

\{ Not(})* \}

To handle comments terminated by \texttt{Eof}, this error token can be used:

\{ Not(})* Eof

We want to handle comments unexpectedly closed by a close comment belonging to another comment:

\{... missing close comment
... \{ normal comment \}...

We will issue a \textit{warning} (this form of comment is lexically legal).

Any comment containing an open comment symbol in its body is most probably a missing \} error.
We split our legal comment definition into two token definitions.

The definition that accepts an open comment in its body causes a warning message ("Possible unclosed comment") to be printed.

We now use:

\[
\{ \text{Not}(\{ | \})^* \} \quad \text{and} \quad \\
\{ (\text{Not}(\{ | \})^* \{ \text{Not}(\{ | \})^* \})^+ \}
\]

The first definition matches correct comments that do not contain an open comment in their body.

The second definition matches correct, but suspect, comments that contain at least one open comment in their body.
Single line comments, found in Java, CSX and C++, are terminated by Eol.

They can fall prey to a more subtle error—what if the last line has no Eol at its end?

The solution?

Another error token for single line comments:

```
// Not(Eol)*
```

This rule will only be used for comments that don’t end with an Eol, since scanners always match the longest rule possible.
Regular Expressions and Finite Automata

Regular expressions are fully equivalent to finite automata. The main job of a scanner generator like JLex is to transform a regular expression definition into an equivalent finite automaton.

It first transforms a regular expression into a *nondeterministic finite automaton* (NFA). Unlike ordinary deterministic finite automata, an NFA need not make a unique (deterministic) choice of a successor state to visit. As shown below, an NFA is allowed to have a state that has two transitions (arrows) coming out of it, labeled by the same
symbol. An NFA may also have transitions labeled with λ.

Transitions are normally labeled with individual characters in Σ, and although λ is a string (the string with no characters in it), it is definitely not a character. In the above example, when the automaton is in the state at the left and the next input character is a, it may choose to use the transition labeled a or first follow
the λ transition (you can always find λ wherever you look for it) and \emph{then} follow an a transition. FAs that contain no λ transitions and that always have unique successor states for any symbol are \emph{deterministic}.
Building Finite Automata From Regular Expressions

We make an FA from a regular expression in two steps:

1. Transform the regular expression into an NFA.
2. Transform the NFA into a deterministic FA.

The first step is easy. Regular expressions are all built out of the *atomic* regular expressions a (where a is a character in Σ) and λ by using the three operations $A B$ and $A | B$ and A^*.
Other operations (like A^+) are just abbreviations for combinations of these.

NFAs for a and λ are trivial:

Suppose we have NFAs for A and B and want one for $A \mid B$. We construct the NFA shown below:
The states labeled A and B were the accepting states of the automata for A and B; we create a new accepting state for the combined automaton.

A path through the top automaton accepts strings in \(A \), and a path through the bottom automation accepts strings in \(B \), so the whole automaton matches \(A \mid B \).

The construction for \(AB \) is even easier. The accepting state of the combined automaton is the same state that was the accepting state of B. We must follow a path through \(A \)'s automaton, then through \(B \)'s automaton, so overall \(A \ B \) is matched.

We could also just merge the accepting state of A with the initial state of B. We chose not to
only because the picture would be more difficult to draw.
Finally, let’s look at the NFA for A^*. The start state reaches an accepting state via λ, so λ is accepted. Alternatively, we can follow a path through the FA for A one or more times, so zero or more strings that belong to A are matched.
Creating Deterministic Automata

The transformation from an NFA N to an equivalent DFA D works by what is sometimes called the \textit{subset construction}.

Each state of D corresponds to a set of states of N.

The idea is that D will be in state \{x, y, z\} after reading a given input string if and only if N could be in \textit{any} one of the states x, y, or z, depending on the transitions it chooses. Thus D keeps track of \textit{all} the possible routes N might take and runs them simultaneously.

Because N is a \textit{finite} automaton, it has only a finite number of states. The number of subsets of N's states is also finite, which makes
tracking various sets of states feasible.

An accepting state of D will be any set containing an accepting state of N, reflecting the convention that N accepts if there is any way it could get to its accepting state by choosing the “right” transitions.

The start state of D is the set of all states that N could be in without reading any input characters—that is, the set of states reachable from the start state of N following only λ transitions. Algorithm \texttt{close} computes those states that can be reached following only λ transitions.

Once the start state of D is built, we begin to create successor states:
We take each state S of D, and each character c, and compute S’s successor under c.

S is identified with some set of N’s states, \{n$_1$, n$_2$,\ldots\}.

We find all the possible successor states to \{n$_1$, n$_2$,\ldots\} under c, obtaining a set \{m$_1$, m$_2$,\ldots\}.

Finally, we compute

$$T = \text{CLOSE(\{ m$_1$, m$_2$,\ldots\})}.$$

T becomes a state in D, and a transition from S to T labeled with c is added to D.

We continue adding states and transitions to D until all possible successors to existing states are added.

Because each state corresponds to a finite subset of N’s states, the
process of adding new states to D must eventually terminate.

Here is the algorithm for λ-closure, called close. It starts with a set of NFA states, S, and adds to S all states reachable from S using only λ transitions.

```plaintext
void close(NFASet S) {
    while (x in S and x $\xrightarrow{\lambda}$ y and y notin S) {
        S = S U {y}
    }
}
```

Using close, we can define the construction of a DFA, D, from an NFA, N:
DFA MakeDeterministic(NFA N) {
 DFA D; NFASet T
 D.StartState = { N.StartState }
close(D.StartState)
 D.States = { D.StartState }
 while (states or transitions can be added to D) {
 Choose any state S in D.States and any character c in Alphabet
 T = {y in N.States such that $x \xrightarrow{c} y$ for some x in S}
close(T);
 if (T notin D.States) {
 D.States = D.States \cup {T}
 D.Transitions =
 D.Transitions \cup
 {the transition $S \xrightarrow{c} T$}
 }
 }
 D.AcceptingStates =
 { S in D.States such that an accepting state of N in S}
}
Example

To see how the subset construction operates, consider the following NFA:

We start with state 1, the start state of N, and add state 2 its λ-successor.
D’s start state is \{1,2\}.
Under a, \{1,2\}’s successor is \{3,4,5\}.
State 1 has itself as a successor under b. When state 1’s \(\lambda \)-successor, 2, is included, \{1,2\}’s successor is \{1,2\}. \{3,4,5\}’s successors under a and b are \{5\} and \{4,5\}.

\{4,5\}’s successor under b is \{5\}. Accepting states of D are those state sets that contain N’s accepting state which is 5.

The resulting DFA is:
It is not too difficult to establish that the DFA constructed by `MakeDeterministic` is equivalent to the original NFA.

The idea is that each path to an accepting state in the original NFA has a corresponding path in the DFA. Similarly, all paths through the constructed DFA correspond to paths in the original NFA. What is less obvious is the fact that the DFA that is built can sometimes be much larger than the original NFA. States of the DFA are identified with sets of NFA states.

If the NFA has n states, there are 2^n distinct sets of NFA states, and hence the DFA may have as many as 2^n states. Certain NFAs actually
exhibit this exponential blowup in size when made deterministic. Fortunately, the NFAs built from the kind of regular expressions used to specify programming language tokens do not exhibit this problem when they are made deterministic.

As a rule, DFAs used for scanning are simple and compact. If creating a DFA is impractical (because of size or speed-of-generation concerns), we can scan using an NFA. Each possible path through an NFA is tracked, and reachable accepting states are identified. Scanning is slower using this approach, so it is used only when construction of a DFA is not practical.