
CS 536 — Spring 2015

Programming Assignment 5
CSX Code Generator

Due: Friday, May 8, 2015

Not accepted after Midnight, Tuesday, May 12, 2015

Your final assignment is to write methods in the class CodeGenerating that walk the AST for
a CSX program and generate JVM assembler code. Your main program will call the CSX parser. If
the parse is successful, the type checker is called. If the program contains no type errors, the code
generator is called.

The CSX source program to be compiled is named on the compiler’s command line or entered
through a GUI. Error messages are written to standard output, and the JVM code generated is placed
in file name.j where name is the identifier that names the CSX class. A complete code generator
for CSX-lite may be found found at www.cs.wisc.edu/~fischer/cs536.s15/course/proj5/
startup/eclipse/.

The Code Generator
You will generate assembler code for the Java Virtual Machine (JVM). This is the same target
machine that Java compilers assume. You will assemble the symbolic JVM instructions your
compiler generates using the Jasmin assembler. Jasmin documentation is available on its
homepage, which is linked to the class homepage (under “Useful Programming Tools”). The JVM
instruction set (often called “bytecodes”) is also described in the Jasmin documentation. Jasmin
produces a standard format “.class” file, which can be executed using java, just as compiled
Java programs are.

You will initiate code generation by creating an instance of class CodeGenerating by calling
the constructor

new CodeGenerating(PrintStream asmFile)

The file parameter is the file into which JVM instructions are to be written. You then call the
boolean-valued method startCodeGen(root) where root is the root of the AST built by the
parser. This method will begin traversal of the AST, generating JVM code into asmFile.

Your code generator is only expected to handle type-correct programs; don’t worry about
translating type-incorrect programs. If any errors are detected during code generation,
startCodeGen should return false; the contents of asmFile need not be valid. If no errors
are detected by the code generator, true is returned and the contents of asmFile should be a
valid JVM assembly program that can be assembled using jasmin.

2 of 6

Consider the following simple CSX program:

class simple{
void main() {

int a;
read(a);
print("Answer = ", 2*a+1, '\n');

} }

This program might be translated into the following JVM assembler code:

.class public simple ; This is a public class named simple

.super java/lang/Object ; The superclass is Object

; JVM interpreters start execution at main(String[])
.method public static main([Ljava/lang/String;)V
invokestatic simple/main()V ; call main()
return ; then return
.limit stack 2 ; Max stack depth needed
.end method ; End of body of main(String[])

.method public static main()V ; Beginning of main()
invokestatic CSXLib/readInt()I ; Call CSXLib.readInt()
istore 0 ; Store int read into local 0 (a)
ldc "Answer = " ; Push string literal onto stack
; Call CSXLib.printString(String)
invokestatic CSXLib/printString(Ljava/lang/String;)V
ldc 2 ; Push 2 onto stack
iload 0 ; Push local 0 (a) onto stack
imul ; Multiply top two stack values
ldc 1 ; Push 1 onto stack
iadd ; Add top two stack values
invokestatic CSXLib/printInt(I)V ; Call CSXLib.printInt(int)
ldc 10 ; Push 10 ('\n') onto stack
invokestatic CSXLib/printChar(C)V ; Call CSXLib.printChar(char)
return ; return from main()

.limit stack 25 ; Max stack depth needed(overestimate)

.limit locals 1 ; Number of local variables used

.end method ; End of body of main()

This program would be written into file simple.j, since the name of the CSX class is simple.
The following command could be used to assemble the program into simple.class:

jasmin simple.j

simple.class would then be executed using the command
java simple

3 of 6

Translating AST Nodes
The following table outlines what your code generator is expected to do for each kind of AST node.
Details of the translation process will be discussed in class and in handouts. Further information
may also be found in the class notes.

Kind of AST Node Code Generator Action
classNode Generate beginning of class;

generate body of main(String[]);
translate members.

memberDeclsNode Translate fields, then methods.
fieldDeclsNode Translate thisField, then moreFields.
methodDeclsNode Translate thisMethod, then moreMethods.
varDeclNode Allocate a field or local variable index for varName.

If initValue is non-null, translate it and generate code to store
initValue into varName.

constDeclNode Allocate a field or local variable index for constName;
translate constValue;
generate code to store constValue into constName.

arrayDeclNode Allocate a field or local variable index for arrayName;
generate code to allocate an array of type elementType whose
size is arraySize; generate code to store a reference to the
array in arrayName’s field or local variable.

methodDeclNode Generate the method’s prologue;
translate args;
translate decls;
translate stmts;
generate the method’s epilogue.

argDeclsNode Translate thisDecl, then moreDecls.
valArgDeclNode Allocate a local variable index to hold the value of a scalar param-

eter.
refArrayDeclNode Allocate a local variable index to hold a reference to an array

parameter.
stmtsNode Translate thisStmt, then moreStmts.
asgNode If source is an array, generate code to clone it and save a refer-

ence to the clone in target.
If source is a string literal, generate code to convert it to a char-
acter array and save a reference to the array in target.
If target is an indexed array, generate code to push a reference
to the array (using varName), then translate target.sub-
scriptVal.
Translate source;
generate code to store source’s value in target.

4 of 6

incrementNode

decrementNode

If target.subscriptVal is null generate code to push tar-
get.varName’s value onto stack. Push the integer 1 and gener-
ate an iadd or isub. Then store stack top into
target.varName.

Otherwise push the array reference stored at target.varName.
Translate target.subscriptVal. Duplicate top two stack
values using dup2. Generate an iaload or caload. Then push
integer 1 and generate iadd or isub. Finally, generate an ias-
tore or castore

ifThenNode Translate condition;
generate code to conditionally branch around thenPart; trans-
late thenPart;
generate a jump past elsePart;
translate elsePart.

whileLoopNode Create assembler labels for head-of-loop and loop-exit.
If label is non-null store head-of-loop and loop-exit in label’s
symbol table entry.
Generate head-of-loop label;
translate condition;
generate a conditional branch to loop-exit label;
translate loopBody;
generate a jump to head-of-loop;
generate loop-exit label.

readNode Generate a call to CSXLib.readInt() or CSXLib.read-
Char() depending on the type of targetVar;
generate a store into targetVar;
translate moreReads.

printNode Translate outputValue; generate a call to
CSXLib.printString(String) or CSX-
Lib.printInt(int) or CSXLib.printChar(char) or
CSXLib.printBool(boolean) or CSXLib.print-
CharArray(char[]), depending on the type of out-
putValue;
translate morePrints.

callNode Translate procArgs;
generate a static call to procName.

returnNode If returnVal is non-null then
translate it and generate an ireturn;
otherwise generate a return.

breakNode Generate a jump to the loop-exit label stored in label’s symbol
table entry.

continueNode Generate a jump to the head-of-loop label stored in label’s sym-
bol table entry.

blockNode Translate decls;
translate stmts;

Kind of AST Node Code Generator Action

5 of 6

How to Proceed
Start with simple constructs like read, print and assignment statements and simple expressions.
Implement harder constructs like ifs, loops and methods after the simpler constructs are working.
For each construct you implement, you have two things to do. First, you must decide what JVM
code you want to generate. Try out the code you selected by creating (by hand) simple Jasmin
assembler programs. Run them to verify that the code you selected really works.

argsNode Translate argVal;
translate moreArgs.

binaryOpNode Translate leftOperand;
translate rightOperand;
generate JVM instruction corresponding to operatorCode.

unaryOpCode Translate operand;
generate JVM instruction corresponding to operatorCode.

fctCallNode Translate functionArgs;
generate a static call to procName.

castNode If resutltType is bool and operand is an int or char
then if operand is non-zero generate code to convert it to 1
(which represents true).
If resutltType is char and operand is an int then gener-
ate code to extract the rightmost 7 bits of operand.

name If subscriptVal is null
generate code to push value at varName’s field name or local
variable index.
Otherwise, generate code to push the array reference stored at
varName’s field name or local variable index;
translate subscriptVal;
generate an iaload or baload or caload based on var-
Name’s element type.

intLitNode Generate code to push intval onto the stack.
charLitNode Generate code to push charval onto the stack.
trueNode Generate an iconst_1.
falseNode Generate an iconst_0.
strLitNode Push strval onto stack using ldc instruction.
nullNode Do nothing.
intTypeNode Do nothing.
boolTypeNode Do nothing.
charTypeNode Do nothing.
identNode Do nothing (name or index of identifier is used by parent nodes

based on context).

Kind of AST Node Code Generator Action

6 of 6

Once you know the code you selected is viable, modify your code generator to generate that code.
Look at the output of your code generator (the name.j file) to verify that what is generated looks
correct. If the output looks correct, run it through Jasmin and java to verify that it is correct.

Once you’ve implemented a few simple constructs, you’ll see how it all works. You can then add
additional features until all of CSX is supported.

If you’re in doubt as to what JVM code to generate, here’s a useful trick. CSX programs closely
correspond to Java classes (with all fields and methods declared static). Create a Java program that’s
equivalent to a particular CSX program. Compile the Java program using your favourite Java
compiler (perhaps javac). Then run

javap -c file

where file.class is the class file created by javac. This will show you the JVM instructions
selected by the Java compiler (in a slightly different format than that used by Jasmin). In most cases
these instructions could be generated by your compiler to translate the CSX program in question.

Be careful that the JVM instructions that you generate don’t try to access operands that aren’t on the
stack. Such instructions are illegal and can cause the Java interpreter (java) to crash.

What to hand in

As was the case for Project 4, your program should expect the name of a CSX program to be
compiled on its command line (if no program name is found, a GUI will prompt you to enter
one). If the CSX program is invalid, appropriate error messages should be written to standard out-
put. Otherwise a translation of the CSX program should be placed in name.j where name is the
program’s class name. name.j should be executable using jasmin and then java.

Create a folder (directory) and name it using your first and last name (e.g., CharlesFischer).
Copy into this folder a README file, a build.xml file and all source files necessary to build an
executable version of your program (.java source files, a csx.jlex file and a csx.cup file).
Do not hand in any.class files. Name the class that contains your main method CSX.java.
Upload this handin folder to the cs 536 project 5 Dropbox folder in learn@uw (https:/
/learnuw.wisc.edu). You may compress your handin folder into a single file using zip if you
wish.

Test your CSX compiler using the test programs in www.cs.wisc.edu/~fischer/cs536.s15/
course/proj5/tests/. These programs are named test-00.csx, test-01.csx,.... Create
a file named CSXtests that contains the results produced by compiling, assembling and running
each of these programs.We’ll also run your type checker on a variety of our own test programs.

If you wish to claim extra credit, clearly state (in the README file) what you’ve added and include
examples of its operation.

