
1CS 536 Spring 2015 ©

CS 536

Introduction to
 Programming Languages

and Compilers
Charles N. Fischer

Spring 2015

 http://www.cs.wisc.edu/~fischer/cs536.html

2CS 536 Spring 2015 ©

Class Meets
Tuesdays, 5:30 — 8:30
Beatles Room, Epic Campus

Instructor
Charles N. Fischer
5393 Computer Sciences
Telephone: 608.262.1204
E- mail: fischer@cs.wisc.edu
Office Hours:

5:00 - 7:00, Monday &
Thursday, Dune Room

3CS 536 Spring 2015 ©

Teaching Assistant
Menghui Wang
E- mail: menghui@cs.wisc.edu
Telephone: 608.262.1204
Office Hours:

To be determined

4CS 536 Spring 2015 ©

Key Dates
• February 10: Assignment #1

(Identifier Cross-
Reference Analysis)

• March 3: Assignment #2
 (CSX Scanner)

• March 24: Assignment #3
(CSX Parser)

• April 8: Midterm 1,
 5:30 - 7:30 pm

• April 14: Assignment #4
 (CSX Type Checker)

• April 15: Midterm 2,
 5:00 - 7:00 pm

• May 6: Final Exam 1,
 5:30 pm - 7:30 pm

• May 8: Assignment #5
 (CSX Code Generator)

• May 12: Final Exam 2,
 5:30 pm - 7:30 pm

5CS 536 Spring 2015 ©

Class Text
• Crafting a Compiler

Fischer, Cytron, LeBlanc
ISBN- 10: 0136067050
ISBN- 13: 9780136067054
Publisher: Addison- Wesley

• Handouts and Web- based reading will
also be used.

Reading Assignment
• Chapters 1- 2 of CaC (as background)

Class Notes
• The lecture notes used in each lecture

will be made available prior to that
lecture on the class Web page (under
the “Lecture Nodes” link).

6CS 536 Spring 2015 ©

Piazza
Piazza is an interactive online
platform used to share class-
related information. We
recommend you use it to ask
questions and track course-
related information. If you are
enrolled (or on the waiting list)
you should have already
received an email invitation to
participate (about one week
ago).

7CS 536 Spring 2015 ©

Academic Misconduct Policy
• You must do your assignments—no

copying or sharing of solutions.

• You may discuss general concepts and
Ideas.

• All cases of Misconduct must be
reported to the Dean’s office.

• Penalties may be severe.

8CS 536 Spring 2015 ©

Program & Homework Late
Policy
• An assignment may be handed in up

to one week late.

• Each late day will be debited 3%, up to
a maximum of 21%.

Approximate Grade Weights
Program 1 - Cross- Reference

Analysis 8%
Program 2 - Scanner 12%
Program 3 - Parser 12%
Program 4 - Type Checker 12%
Program 5 - Code Generator 12%
Homework #1 6%
Midterm Exam 19%
Final Exam (non- cumulative) 19%

9CS 536 Spring 2015 ©

Partnership Policy
• Program #1 and the written homework

must be done individually.

• Programs 2 to 5 may be done
individually or by two person teams
(your choice).

10CS 536 Spring 2015 ©

Compilers
Compilers are fundamental to
modern computing.
They act as translators,
transforming human- oriented
programming languages into
computer- oriented machine
languages.
To most users, a compiler can
be viewed as a “black box” that
performs the transformation
shown below.

Programming
Language Machine

Language
Compiler

11CS 536 Spring 2015 ©

A compiler allows programmers
to ignore the machine-
dependent details of
programming.

Compilers allow programs and
programming skills to be
machine- independent and
platform- independent.

Compilers also aid in detecting
and correcting programming
errors (which are all too
common).

12CS 536 Spring 2015 ©

Compiler techniques also help
to improve computer security.
For example, the Java Bytecode
Verifier helps to guarantee that
Java security rules are satisfied.

Compilers currently help in
protection of intellectual
property (using obfuscation)
and provenance (through
watermarking).

Most modern processors are
multi- core or multi- threaded.
How can compilers find hidden
parallelism in serial
programming languages?

13CS 536 Spring 2015 ©

History of Compilers
The term compiler was coined
in the early 1950s by Grace
Murray Hopper. Translation was
viewed as the “compilation” of a
sequence of machine- language
subprograms selected from a
library.

One of the first real compilers
was the FORTRAN compiler of
the late 1950s. It allowed a
programmer to use a problem-
oriented source language.

14CS 536 Spring 2015 ©

Ambitious “optimizations” were
used to produce efficient
machine code, which was vital
for early computers with quite
limited capabilities.

Efficient use of machine
resources is still an essential
requirement for modern
compilers.

15CS 536 Spring 2015 ©

Virtual Machine Code
Code generated by a compiler
can consist entirely of virtual
instructions (no native code at
all). This allows code to run on
a variety of computers.
Java, with its JVM (Java Virtual
Machine) is a great example of
this approach.
If the virtual machine is kept
simple and clean, its interpreter
can be easy to write. Machine
interpretation slows execution
by a factor of 3:1 to perhaps
10:1 over compiled code.
A “Just in Time” (JIT) compiler
can translate “hot” portions of
virtual code into native code to
speed execution.

16CS 536 Spring 2015 ©

Advantages of Virtual
Instructions

Virtual instructions serve a
variety of purposes.
• They simplify a compiler by

providing suitable primitives (such
as method calls, string
manipulation, and so on).

• They aid compiler transportability.

• They may decrease in the size of
generated code since instructions
are designed to match a particular
programming language (for
example, JVM code for Java).

Almost all compilers, to a
greater or lesser extent,
generate code for a virtual
machine, some of whose
operations must be interpreted.

17CS 536 Spring 2015 ©

The Structure of a Compiler
A compiler performs two major
tasks:
• Analysis of the source program

being compiled

• Synthesis of a target program

Almost all modern compilers
are syntax- directed: The
compilation process is driven
by the syntactic structure of the
source program.
A parser builds semantic
structure out of tokens, the
elementary symbols of
programming language syntax.
Recognition of syntactic
structure is a major part of the
analysis task.

18CS 536 Spring 2015 ©

Semantic analysis examines the
meaning (semantics) of the
program. Semantic analysis
plays a dual role.
It finishes the analysis task by
performing a variety of
correctness checks (for
example, enforcing type and
scope rules). Semantic analysis
also begins the synthesis
phase.

The synthesis phase may
translate source programs into
some intermediate
representation (IR) or it may
directly generate target code.

19CS 536 Spring 2015 ©

If an IR is generated, it then
serves as input to a code
generator component that
produces the desired machine-
language program. The IR may
optionally be transformed by an
optimizer so that a more
efficient program may be
generated.

20CS 536 Spring 2015 ©

Type Checker

Optimizer

Code

Scanner

Symbol Tables

Parser

Source
Program

(Character
Stream)

Tokens Syntax
Tree

(AST)

Decorated
AST

Intermediate
Representation

(IR)

IR

Generator

Target Machine
Code

Translator

Abstract

The Structure of a Syntax-Directed Compiler

21CS 536 Spring 2015 ©

Reading Assignment
Read Chapter 3 of
Crafting a Compiler.

22CS 536 Spring 2015 ©

Scanner
The scanner reads the source
program, character by
character. It groups individual
characters into tokens
(identifiers, integers, reserved
words, delimiters, and so on).
When necessary, the actual
character string comprising the
token is also passed along for
use by the semantic phases.
The scanner:
• Puts the program into a compact

and uniform format (a stream of
tokens).

• Eliminates unneeded information
(such as comments).

• Sometimes enters preliminary
information into symbol tables (for

23CS 536 Spring 2015 ©

example, to register the presence
of a particular label or identifier).

• Optionally formats and lists the
source program

Building tokens is driven by
token descriptions defined
using regular expression
notation.
Regular expressions are a
formal notation able to
describe the tokens used in
modern programming
languages. Moreover, they can
drive the automatic generation
of working scanners given only
a specification of the tokens.
Scanner generators (like Lex,
Flex and JLex) are valuable
compiler- building tools.

24CS 536 Spring 2015 ©

Parser
Given a syntax specification (as
a context- free grammar, CFG),
the parser reads tokens and
groups them into language
structures.
Parsers are typically created
from a CFG using a parser
generator (like Yacc, Bison or
Java CUP).
The parser verifies correct
syntax and may issue a syntax
error message.
As syntactic structure is
recognized, the parser usually
builds an abstract syntax tree
(AST), a concise representation
of program structure, which
guides semantic processing.

25CS 536 Spring 2015 ©

Type Checker
(Semantic Analysis)

The type checker checks the static
semantics of each AST node. It
verifies that the construct is legal
and meaningful (that all
identifiers involved are declared,
that types are correct, and so on).
If the construct is semantically
correct, the type checker
“decorates” the AST node, adding
type or symbol table information
to it. If a semantic error is
discovered, a suitable error
message is issued.
Type checking is purely
dependent on the semantic rules
of the source language. It is
independent of the compiler’s
target machine.

26CS 536 Spring 2015 ©

Translator
(Program Synthesis)

If an AST node is semantically
correct, it can be translated.
Translation involves capturing
the run- time “meaning” of a
construct.
For example, an AST for a while
loop contains two subtrees, one
for the loop’s control
expression, and the other for
the loop’s body. Nothing in the
AST shows that a while loop
loops! This “meaning” is
captured when a while loop’s
AST is translated. In the IR, the
notion of testing the value of
the loop control expression,

27CS 536 Spring 2015 ©

and conditionally executing the
loop body becomes explicit.
The translator is dictated by the
semantics of the source
language. Little of the nature of
the target machine need be
made evident. Detailed
information on the nature of
the target machine (operations
available, addressing, register
characteristics, etc.) is reserved
for the code generation phase.
In simple non- optimizing
compilers (like our class
project), the translator
generates target code directly,
without using an IR.
More elaborate compilers may
first generate a high- level IR

28CS 536 Spring 2015 ©

(that is source language
oriented) and then
subsequently translate it into a
low- level IR (that is target
machine oriented). This
approach allows a cleaner
separation of source and target
dependencies.

29CS 536 Spring 2015 ©

Optimizer
The IR code generated by the
translator is analyzed and
transformed into functionally
equivalent but improved IR code
by the optimizer.
The term optimization is
misleading: we don’t always
produce the best possible
translation of a program, even
after optimization by the best of
compilers.
Why?
Some optimizations are
impossible to do in all
circumstances because they
involve an undecidable problem.
Eliminating unreachable (“dead”)
code is, in general, impossible.

30CS 536 Spring 2015 ©

Other optimizations are too
expensive to do in all cases.
These involve NP- complete
problems, believed to be
inherently exponential.
Assigning registers to variables
is an example of an NP-
complete problem.
Optimization can be complex; it
may involve numerous
subphases, which may need to
be applied more than once.
Optimizations may be turned off
to speed translation.
Nonetheless, a well designed
optimizer can significantly speed
program execution by
simplifying, moving or
eliminating unneeded
computations.

31CS 536 Spring 2015 ©

Code Generator
IR code produced by the
translator is mapped into target
machine code by the code
generator. This phase uses
detailed information about the
target machine and includes
machine- specific optimizations
like register allocation and code
scheduling.
Code generators can be quite
complex since good target
code requires consideration of
many special cases.
Automatic generation of code
generators is possible. The
basic approach is to match a
low- level IR to target
instruction templates, choosing

32CS 536 Spring 2015 ©

instructions which best match
each IR instruction.
A well- known compiler using
automatic code generation
techniques is the GNU C
compiler. GCC is a heavily
optimizing compiler with
machine description files for
over ten popular computer
architectures, and at least two
language front ends (C and
C+ +).

33CS 536 Spring 2015 ©

Symbol Tables
A symbol table allows
information to be associated
with identifiers and shared
among compiler phases. Each
time an identifier is used, a
symbol table provides access to
the information collected about
the identifier when its
declaration was processed.

34CS 536 Spring 2015 ©

Example
Our source language will be
CSX, a blend of C, C+ + and
Java.
Our target language will be the
Java JVM, using the Jasmin
assembler.

• A simple source line is
 a = bb+abs(c-7);
this is a sequence of ASCII characters
in a text file.

• The scanner groups characters into
tokens, the basic units of a program.

a = bb+abs(c-7);
 After scanning, we have the following
token sequence:
 Ida Asg Idbb Plus Idabs Lparen Idc

Minus IntLiteral7 Rparen Semi

35CS 536 Spring 2015 ©

• The parser groups these tokens into
language constructs (expressions,
statements, declarations, etc.)
represented in tree form:

(What happened to the
parentheses and the
semicolon?)

 Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral

36CS 536 Spring 2015 ©

• The type checker resolves types and
binds declarations within scopes:

 Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

int

intintloc

intloc int

int

intloc
int

method

37CS 536 Spring 2015 ©

• Finally, JVM code is generated for each
node in the tree (leaves first, then
roots):
iload 3 ; push local 3 (bb)
iload 2 ; push local 2 (c)
ldc 7 ; Push literal 7
isub ; compute c-7
invokestatic java/lang/Math/
abs(I)I
iadd ; compute bb+abs(c-7)
istore 1 ; store result into

local 1(a)

38CS 536 Spring 2015 ©

Symbol Tables & Scoping
Programming languages use
scopes to limit the range in
which an identifier is active
(and visible).
Within a scope a name may be
defined only once (though
overloading may be allowed).
A symbol table (or dictionary) is
commonly used to collect all
the definitions that appear
within a scope.
At the start of a scope, the
symbol table is empty. At the
end of a scope, all declarations
within that scope are available
within the symbol table.

39CS 536 Spring 2015 ©

A language definition may or
may not allow forward
references to an identifier.
If forward references are
allowed, you may use a name
that is defined later in the
scope (Java does this for field
and method declarations within
a class).
If forward references are not
allowed, an identifier is visible
only after its declaration. C,
C+ + and Java do this for
variable declarations.
In CSX no forward references
are allowed.
In terms of symbol tables,
forward references require two
passes over a scope. First all

40CS 536 Spring 2015 ©

declarations are gathered.
Next, all references are
resolved using the complete set
of declarations stored in the
symbol table.
If forward references are
disallowed, one pass through a
scope suffices, processing
declarations and uses of
identifiers together.

41CS 536 Spring 2015 ©

Block Structured Languages
• Introduced by Algol 60, includes C,

C+ + , CSX and Java.

• Identifiers may have a non- global
scope. Declarations may be local to a
class, subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained)
scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

42CS 536 Spring 2015 ©

Example (drawn from C):

int x,z;
void A() {
 float x,y;
 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

43CS 536 Spring 2015 ©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside
their scope.

• Nearest Declaration Applies

Using static nesting of scopes.
• Automatic Allocation and Deallocation

of Locals

Lifetime of data objects is
bound to the scope of the
Identifiers that denote them.

44CS 536 Spring 2015 ©

Is Case Significant?
In some languages (C, C+ + ,
Java and many others) case is
significant in identifiers. This
means aa and AA are different
symbols that may have entirely
different definitions.
In other languages (Pascal, Ada,
Scheme, CSX) case is not
significant. In such languages
aa and AA are two alternative
spellings of the same identifier.
Data structures commonly used
to implement symbol tables
usually treat different cases as
different symbols. This is fine
when case is significant in a
language. When case is
insignificant, you probably will

45CS 536 Spring 2015 ©

need to strip case before
entering or looking up
identifiers.
This just means that identifiers
are converted to a uniform case
before they are entered or
looked up. Thus if we choose to
use lower case uniformly, the
identifiers aaa, AAA, and AaA are
all converted to aaa for
purposes of insertion or
lookup.
BUT, inside the symbol table
the identifier is stored in the
form it was declared so that
programmers see the form of
identifier they expect in
listings, error messages, etc.

46CS 536 Spring 2015 ©

How are Symbol Tables
Implemented?

There are a number of data
structures that can reasonably
be used to implement a symbol
table:
• An Ordered List

Symbols are stored in a linked list,
sorted by the symbol’s name. This
is simple, but may be a bit too slow
if many identifiers appear in a
scope.

• A Binary Search Tree
Lookup is much faster than in
linked lists, but rebalancing may be
needed. (Entering identifiers in
sorted order turns a search tree
into a linked list.)

• Hash Tables
The most popular choice.

47CS 536 Spring 2015 ©

Implementing Block-
Structured Symbol Tables

To implement a block
structured symbol table we
need to be able to efficiently
open and close individual
scopes, and limit insertion to
the innermost current scope.
This can be done using one
symbol table structure if we tag
individual entries with a “scope
number.”
It is far easier (but more
wasteful of space) to allocate
one symbol table for each
scope. Open scopes are
stacked, pushing and popping
tables as scopes are opened
and closed.

48CS 536 Spring 2015 ©

Be careful though—many
preprogrammed stack
implementations don’t allow
you to “peek” at entries below
the stack top. This is necessary
to lookup an identifier in all
open scopes.
If a suitable stack
implementation (with a peek
operation) isn’t available, a
linked list of symbol tables will
suffice.

49CS 536 Spring 2015 ©

Scanning
A scanner transforms a character
stream into a token stream.
A scanner is sometimes called a
lexical analyzer or lexer.
Scanners use a formal notation
(regular expressions) to specify
the precise structure of tokens.
But why bother? Aren’t tokens
very simple in structure?
Token structure can be more
detailed and subtle than one
might expect. Consider simple
quoted strings in C, C+ + or Java.
The body of a string can be any
sequence of characters except a
quote character (which must be
escaped). But is this simple
definition really correct?

50CS 536 Spring 2015 ©

Can a newline character appear in
a string? In C it cannot, unless it is
escaped with a backslash.
C, C+ + and Java allow escaped
newlines in strings, Pascal forbids
them entirely. Ada forbids all
unprintable characters.
Are null strings (zero- length)
allowed? In C, C+ + , Java and Ada
they are, but Pascal forbids them.
(In Pascal a string is a packed
array of characters, and zero
length arrays are disallowed.)
A precise definition of tokens can
ensure that lexical rules are
clearly stated and properly
enforced.

51CS 536 Spring 2015 ©

Regular Expressions
Regular expressions specify
simple (possibly infinite) sets of
strings. Regular expressions
routinely specify the tokens
used in programming
languages.
Regular expressions can drive a
scanner generator.
Regular expressions are widely
used in computer utilities:
•The Unix utility grep uses regular

expressions to define search
patterns in files.

•Unix shells allow regular
expressions in file lists for a
command.

52CS 536 Spring 2015 ©

• Most editors provide a “context
search” command that specifies
desired matches using regular
expressions.

•The Windows Find utility allows
some regular expressions.

53CS 536 Spring 2015 ©

Regular Sets
The sets of strings defined by
regular expressions are called
regular sets.
When scanning, a token class will
be a regular set, whose structure
is defined by a regular
expression.
Particular instances of a token
class are sometimes called
lexemes, though we will simply
call a string in a token class an
instance of that token. Thus we
call the string abc an identifier if
it matches the regular expression
that defines valid identifier
tokens.
Regular expressions use a finite
character set, or vocabulary
(denoted Σ).

54CS 536 Spring 2015 ©

This vocabulary is normally the
character set used by a computer.
Today, the ASCII character set,
which contains a total of 128
characters, is very widely used.
Java uses the Unicode character
set which includes all the ASCII
characters as well as a wide
variety of other characters.
An empty or null string is allowed
(denoted λ, “lambda”). Lambda
represents an empty buffer in
which no characters have yet been
matched. It also represents
optional parts of tokens. An
integer literal may begin with a
plus or minus, or it may begin
with λ if it is unsigned.

55CS 536 Spring 2015 ©

Catenation
Strings are built from characters
in the character set Σ via
catenation.
As characters are catenated to a
string, it grows in length. The
string do is built by first
catenating d to λ, and then
catenating o to the string d. The
null string, when catenated with
any string s, yields s. That is, s λ ≡
λ s ≡ s. Catenating λ to a string is
like adding 0 to an integer—
nothing changes.
Catenation is extended to sets of
strings:
Let P and Q be sets of strings.
(The symbol ∈ represents set
membership.) If s1 ∈ P and s2 ∈ Q
then string s1s2 ∈(P Q).

56CS 536 Spring 2015 ©

Alternation
Small finite sets are conveniently
represented by listing their
elements. Parentheses delimit
expressions, and | , the alternation
operator, separates alternatives.
For example, D, the set of the ten
single digits, is defined as
D = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9).
The characters (,), ' , ∗, + , and |
are meta- characters (punctuation
and regular expression
operators).
Meta- characters must be quoted
when used as ordinary characters
to avoid ambiguity.

57CS 536 Spring 2015 ©

For example the expression
('(' | ')' | ; | ,)
defines four single character
tokens (left parenthesis, right
parenthesis, semicolon and
comma). The parentheses are
quoted when they represent
individual tokens and are not
used as delimiters in a larger
regular expression.
Alternation is extended to sets of
strings:
Let P and Q be sets of strings.
Then string s ∈ (P | Q) if and only
if s ∈ P or s ∈ Q.
For example, if LC is the set of
lower- case letters and UC is the
set of upper- case letters, then
(LC | UC) is the set of all letters (in
either case).

58CS 536 Spring 2015 ©

Kleene Closure
A useful operation is Kleene closure
represented by a postfix ∗ operator.

Let P be a set of strings. Then P *
represents all strings formed by
the catenation of zero or more
selections (possibly repeated)
from P.
Zero selections are denoted by λ.

For example, LC* is the set of all
words composed of lower- case
letters, of any length (including
the zero length word, λ).

Precisely stated, a string s ∈ P * if
and only if s can be broken into
zero or more pieces: s = s1 s2 ...
sn so that each si ∈ P (n ≥ 0, 1 ≤ i ≤
n).
We allow n = 0, so λ is always in P.

59CS 536 Spring 2015 ©

Definition of Regular
Expressions

Using catenations, alternation
and Kleene closure, we can
define regular expressions as
follows:
• ∅ is a regular expression denoting

the empty set (the set containing
no strings). ∅ is rarely used, but is
included for completeness.

• λ is a regular expression denoting
the set that contains only the
empty string. This set is not the
same as the empty set, because it
contains one element.

• A string s is a regular expression
denoting a set containing the
single string s.

60CS 536 Spring 2015 ©

• If A and B are regular expressions,
then A | B, A B, and A* are also
regular expressions, denoting the
alternation, catenation, and Kleene
closure of the corresponding
regular sets.

Each regular expression
denotes a set of strings (a
regular set). Any finite set of
strings can be represented by a
regular expression of the form
(s1 | s2 | … | sk). Thus the
reserved words of ANSI C can
be defined as
(auto | break | case | …).

61CS 536 Spring 2015 ©

The following additional
operations useful. They are not
strictly necessary, because their
effect can be obtained using
alternation, catenation, Kleene
closure:

• P + denotes all strings consisting of
one or more strings in P catenated
together:
P* = (P+ | λ) and P+ = P P*.
For example, (0 | 1)+ is the set of
all strings containing one or more
bits.

• If A is a set of characters, Not(A)
denotes (Σ − A); that is, all
characters in Σ not included in A.
Since Not(A) can never be larger
than Σ and Σ is finite, Not(A) must
also be finite, and is therefore
regular. Not(A) does not contain λ
since λ is not a character (it is a
zero- length string).

62CS 536 Spring 2015 ©

For example, Not(Eol) is the set of
all characters excluding Eol (the
end of line character, '\n' in Java or
C).

• It is possible to extend Not to
strings, rather than just Σ. That is,
if S is a set of strings, we define S
to be
(Σ* − S); the set of all strings except
those in S. Though S is usually
infinite, it is also regular if S is.

• If k is a constant, the set Ak
represents all strings formed by
catenating k (possibly different)
strings from A.
That is, Ak = (A A A …) (k copies).
Thus (0 | 1)32 is the set of all bit
strings exactly 32 bits long.

63CS 536 Spring 2015 ©

Examples
Let D be the ten single digits
and let L be the set of all 52
letters. Then
• A Java or C+ + single- line comment

that begins with // and ends with
Eol can be defined as:

Comment = // Not(Eol)* Eol

• A fixed decimal literal (e.g.,
12.345) can be defined as:

Lit = D+. D+

•An optionally signed integer literal
can be defined as:

IntLiteral = ('+' | − | λ) D+

(Why the quotes on the plus?)

64CS 536 Spring 2015 ©

• A comment delimited by ##
markers, which allows single #’s
within the comment body:

Comment2 =
((# | λ) Not(#))*

All finite sets and many infinite sets
are regular. But not all infinite sets
are regular. Consider the set of
balanced brackets of the form

[[[«]]].
This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is known not to be regular.
Any regular expression that tries to
define it either does not get all
balanced nestings or it includes
extra, unwanted strings.

65CS 536 Spring 2015 ©

Finite Automata and Scanners
A finite automaton (FA) can be
used to recognize the tokens
specified by a regular
expression. FAs are simple,
idealized computers that
recognize strings belonging to
regular sets. An FA consists of:
• A finite set of states
• A set of transitions (or moves) from

one state to another, labeled with
characters in Σ

• A special state called the start state

• A subset of the states called the
accepting, or final, states

66CS 536 Spring 2015 ©

These four components of a
finite automaton are often
represented graphically:

Finite automata (the plural of
automaton is automata) are
represented graphically using
transition diagrams. We start at
the start state. If the next input
character matches the label on

eof

is a transition

is the start state

is an accepting state

is a state

67CS 536 Spring 2015 ©

a transition from the current
state, we go to the state it
points to. If no move is
possible, we stop. If we finish in
an accepting state, the
sequence of characters read
forms a valid token; otherwise,
we have not seen a valid token.

In this diagram, the valid
tokens are the strings
described by the regular
expression (a b (c)+)+.

a b c

c

a

68CS 536 Spring 2015 ©

Deterministic Finite
Automata

As an abbreviation, a transition
may be labeled with more than
one character (for example,
Not(c)). The transition may be
taken if the current input
character matches any of the
characters labeling the transition.
If an FA always has a unique
transition (for a given state and
character), the FA is deterministic
(that is, a deterministic FA, or
DFA). Deterministic finite
automata are easy to program and
often drive a scanner.
If there are transitions to more
than one state for some character,
then the FA is nondeterministic
(that is, an NFA).

69CS 536 Spring 2015 ©

A DFA is conveniently represented
in a computer by a transition
table. A transition table, T, is a
two dimensional array indexed by
a DFA state and a vocabulary
symbol.
Table entries are either a DFA
state or an error flag (often
represented as a blank table
entry). If we are in state s, and
read character c, then T[s,c] will be
the next state we visit, or T[s,c]
will contain an error marker
indicating that c cannot extend
the current token. For example,
the regular expression

// Not(Eol)* Eol

which defines a Java or C+ +
single- line comment, might be
translated into

70CS 536 Spring 2015 ©

The corresponding transition
table is:

A complete transition table
contains one column for each
character. To save space, table
compression may be used. Only
non- error entries are explicitly
represented in the table, using
hashing, indirection or linked
structures.

State Character
/ Eol a b «

1 2
2 3
3 3 4 3 3 3
4

Eol/ /

Not(Eol)

1 2 3 4

71CS 536 Spring 2015 ©

All regular expressions can be
translated into DFAs that accept
(as valid tokens) the strings
defined by the regular
expressions. This translation can
be done manually by a
programmer or automatically
using a scanner generator.
A DFA can be coded in:
• Table- driven form

• Explicit control form

In the table- driven form, the
transition table that defines a
DFA’s actions is explicitly
represented in a run- time table
that is “interpreted” by a driver
program.
In the direct control form, the
transition table that defines a DFA’s
actions appears implicitly as the
control logic of the program.

72CS 536 Spring 2015 ©

For example, suppose
CurrentChar is the current input
character. End of file is
represented by a special character
value, eof. Using the DFA for the
Java comments shown earlier, a
table- driven scanner is:
State = StartState
while (true){

if (CurrentChar == eof)
break

NextState =
T[State][CurrentChar]

 if(NextState == error)
break

State = NextState
read(CurrentChar)

}
if (State in AcceptingStates)

// Process valid token
else // Signal a lexical error

73CS 536 Spring 2015 ©

This form of scanner is produced
by a scanner generator; it is
definition- independent. The
scanner is a driver that can scan
any token if T contains the
appropriate transition table.
Here is an explicit- control
scanner for the same comment
definition:
if (CurrentChar == '/'){

read(CurrentChar)
if (CurrentChar == '/')
repeat

read(CurrentChar)
until (CurrentChar in

{eol, eof})
else //Signal lexical error

else // Signal lexical error
if (CurrentChar == eol)
// Process valid token

else //Signal lexical error

74CS 536 Spring 2015 ©

The token being scanned is
“hardwired” into the logic of the
code. The scanner is usually easy
to read and often is more
efficient, but is specific to a single
token definition.

75CS 536 Spring 2015 ©

More Examples
• A FORTRAN- like real literal (which

requires digits on either or both
sides of a decimal point, or just a
string of digits) can be defined as

RealLit = (D+ (λ | .)) | (D* . D+)

This corresponds to the DFA

. D

DD

D .

76CS 536 Spring 2015 ©

• An identifier consisting of letters,
digits, and underscores, which
begins with a letter and allows no
adjacent or trailing underscores,
may be defined as

ID = L (L | D)* (_ (L | D)+)*

This definition includes identifiers
like sum or unit_cost, but
excludes _one and two_ and
grand___total. The DFA is:

L | D

L

L | D

_

77CS 536 Spring 2015 ©

Lex/Flex/JLex
Lex is a well- known Unix scanner
generator. It builds a scanner, in
C, from a set of regular
expressions that define the
tokens to be scanned.
Flex is a newer and faster version
of Lex.
JLex is a Java version of Lex. It
generates a scanner coded in Java,
though its regular expression
definitions are very close to those
used by Lex and Flex.
Lex, Flex and JLex are largely
non- procedural. You don’t need
to tell the tools how to scan. All
you need to tell it what you want
scanned (by giving it definitions
of valid tokens).

78CS 536 Spring 2015 ©

This approach greatly simplifies
building a scanner, since most of
the details of scanning (I/O,
buffering, character matching,
etc.) are automatically handled.

79CS 536 Spring 2015 ©

JLex
JLex is coded in Java. To use it,
you enter
java JLex.Main f.jlex
Your CLASSPATH should be set to
search the directories where
JLex’s classes are stored.
(In build files we provide the
CLASSPATH used will includ JLex’s
classes).
After JLex runs (assuming there
are no errors in your token
specifications), the Java source file
f.jlex.java is created. (f stands
for any file name you choose.
Thus csx.jlex might hold token
definitions for CSX, and
csx.jlex.java would hold the
generated scanner).

80CS 536 Spring 2015 ©

You compile f.jlex.java just
like any Java program, using your
favorite Java compiler.
After compilation, the class file
Yylex.class is created.
It contains the methods:
• Token yylex() which is the actual

scanner. The constructor for Yylex
takes the file you want scanned, so
new Yylex(System.in)
will build a scanner that reads from
System.in. Token is the token
class you want returned by the
scanner; you can tell JLex what
class you want returned.

• String yytext() returns the
character text matched by the last
call to yylex.

•

81CS 536 Spring 2015 ©

Input to JLex
There are three sections,
delimited by %%. The general
structure is:
User Code
%%
Jlex Directives
%%
Regular Expression rules

The User Code section is Java
source code to be copied into the
generated Java source file. It
contains utility classes or return
type classes you need. Thus if you
want to return a class
IntlitToken (for integer literals
that are scanned), you include its
definition in the User Code
section.

82CS 536 Spring 2015 ©

JLex directives are various
instructions you can give JLex to
customize the scanner you
generate.
These are detailed in the JLex
manual. The most important are:
• %{
Code copied into the Yylex
class (extra fields or
methods you may want)
%}

• %eof{
Java code to be executed when
the end of file is reached
%eof}

• %type classname
classname is the return type you
want for the scanner method,
yylex()

83CS 536 Spring 2015 ©

Macro Definitions
In section two you may also define
macros, that are used in section
three. A macro allows you to give
a name to a regular expression or
character class. This allows you to
reuse definitions and make
regular expression rule more
readable.
Macro definitions are of the form
name = def
Macros are defined one per line.
Here are some simple examples:
Digit=[0-9]
AnyLet=[A-Za-z]

In section 3, you use a macro by
placing its name within { and }.
Thus {Digit} expands to the
character class defining the digits
0 to 9.

84CS 536 Spring 2015 ©

Regular Expression Rules
The third section of the JLex input
file is a series of token definition
rules of the form
RegExpr {Java code}
When a token matching the given
RegExpr is matched, the
corresponding Java code
(enclosed in “{“ and “}”) is
executed. JLex figures out what
RegExpr applies; you need only
say what the token looks like
(using RegExpr) and what you
want done when the token is
matched (this is usually to return
some token object, perhaps with
some processing of the token
text).

85CS 536 Spring 2015 ©

Here are some examples:
"+" {return new Token(sym.Plus);}

(" ")+ {/* skip white space */}

{Digit}+ {return
new IntToken(sym.Intlit,
new Integer(yytext()).intValue());}

86CS 536 Spring 2015 ©

Regular Expressions in JLex
To define a token in JLex, the user
to associates a regular expression
with commands coded in Java.
When input characters that match
a regular expression are read, the
corresponding Java code is
executed. As a user of JLex you
don’t need to tell it how to match
tokens; you need only say what
you want done when a particular
token is matched.
Tokens like white space are
deleted simply by having their
associated command not return
anything. Scanning continues
until a command with a return in
it is executed.
The simplest form of regular
expression is a single string that
matches exactly itself.

87CS 536 Spring 2015 ©

For example,
if {return new Token(sym.If);}

If you wish, you can quote the
string representing the reserved
word ("if"), but since the string
contains no delimiters or
operators, quoting it is
unnecessary.
For a regular expression operator,
like + , quoting is necessary:

"+" {return
new Token(sym.Plus);}

88CS 536 Spring 2015 ©

Character Classes
Our specification of the reserved
word if, as shown earlier, is
incomplete. We don’t (yet) handle
upper or mixed- case.
To extend our definition, we’ll use
a very useful feature of Lex and
JLex—character classes.
Characters often naturally fall into
classes, with all characters in a
class treated identically in a token
definition. In our definition of
identifiers all letters form a class
since any of them can be used to
form an identifier. Similarly, in a
number, any of the ten digit
characters can be used.

89CS 536 Spring 2015 ©

Character classes are delimited by
[and]; individual characters are
listed without any quotation or
separators. However \, ^,] and -,
because of their special meaning
in character classes, must be
escaped. The character class
[xyz] can match a single x, y, or
z.
The character class [\])] can
match a single] or).
(The] is escaped so that it isn’t
misinterpreted as the end of
character class.)
Ranges of characters are
separated by a -; [x-z] is the
same as [xyz]. [0-9] is the set
of all digits and [a-zA-Z] is the
set of all letters, upper- and
lower- case. \ is the escape
character, used to represent

90CS 536 Spring 2015 ©

unprintables and to escape
special symbols.
Following C and Java conventions,
\n is the newline (that is, end of
line), \t is the tab character, \\ is
the backslash symbol itself, and
\010 is the character
corresponding to octal 10.
The ^ symbol complements a
character class (it is JLex’s
representation of the Not
operation).
[^xy] is the character class that
matches any single character
except x and y. The ^ symbol
applies to all characters that
follow it in a character class
definition, so [^0-9] is the set of
all characters that aren’t digits.
[^] can be used to match all
characters.

91CS 536 Spring 2015 ©

Here are some examples of
character classes:

Character
Class Set of Characters Denoted
[abc] Three characters: a, b and c
[cba] Three characters: a, b and c
[a-c] Three characters: a, b and c
[aabbcc] Three characters: a, b and c
[^abc] All characters except a, b

and c
[\^\-\]] Three characters: ^, - and]
[^] All characters
"[abc]" Not a character class. This

is one five character string:
[abc]

92CS 536 Spring 2015 ©

Regular Operators in JLex
JLex provides the standard regular
operators, plus some additions.
• Catenation is specified by the

juxtaposition of two expressions;
no explicit operator is used.
Outside of character class brackets,
individual letters and numbers
match themselves; other characters
should be quoted (to avoid
misinterpretation as regular
expression operators).

Case is significant.

Regular Expr Characters Matched
a b cd Four characters: abcd
(a)(b)(cd) Four characters: abcd
[ab][cd] Four different strings: ac or

ad or bc or bd
while Five characters: while
"while" Five characters: while
[w][h][i][l][e] Five characters: while

93CS 536 Spring 2015 ©

• The alternation operator is |.
Parentheses can be used to control
grouping of subexpressions.
If we wish to match the reserved
word while allowing any mixture
of upper- and lowercase, we can
use
(w|W)(h|H)(i|I)(l|L)(e|E)
or
[wW][hH][iI][lL][eE]

Regular Expr Characters Matched
ab|cd Two different strings: ab or cd
(ab)|(cd) Two different strings: ab or cd
[ab]|[cd] Four different strings: a or b or

c or d

94CS 536 Spring 2015 ©

• Postfix operators:
* Kleene closure: 0 or more
matches.
(ab)* matches λ or ab or abab or
ababab ...

+ Positive closure: 1 or more
matches.
(ab)+ matches ab or abab or
ababab ...

? Optional inclusion:
expr?

matches expr zero times or once.
expr? is equivalent to (expr) | λ
and eliminates the need for an
explicit λ symbol.

[-+]?[0-9]+ defines an optionally
signed integer literal.

95CS 536 Spring 2015 ©

• Single match:
The character "." matches any
single character (other than a
newline).

• Start of line:
The character ^ (when used outside
a character class) matches the
beginning of a line.

• End of line:
The character $ matches the end of
a line. Thus,
^A.*e$

matches an entire line that begins
with A and ends with e.

96CS 536 Spring 2015 ©

Overlapping Definitions
Regular expressions may overlap
(match the same input sequence).
In the case of overlap, two rules
determine which regular
expression is matched:
• The longest possible match is

performed. JLex automatically
buffers characters while deciding
how many characters can be
matched.

• If two expressions match exactly
the same string, the earlier
expression (in the JLex
specification) is preferred.
Reserved words, for example, are
often special cases of the pattern
used for identifiers. Their
definitions are therefore placed
before the expression that defines
an identifier token.

97CS 536 Spring 2015 ©

Often a “catch all” pattern is
placed at the very end of the
regular expression rules. It is
used to catch characters that
don’t match any of the earlier
patterns and hence are probably
erroneous. Recall that "." matches
any single character (other than a
newline). It is useful in a catch- all
pattern. However, avoid a pattern
like .* which will consume all
characters up to the next newline.
In JLex an unmatched character
will cause a run- time error.

The operators and special
symbols most commonly used in
JLex are summarized below. Note
that a symbol sometimes has one
meaning in a regular expression
and an entirely different meaning

98CS 536 Spring 2015 ©

in a character class (i.e., within a
pair of brackets). If you find JLex
behaving unexpectedly, it’s a
good idea to check this table to
be sure of how the operators and
symbols you’ve used behave.
Ordinary letters and digits, and
symbols not mentioned (like @)
represent themselves. If you’re
not sure if a character is special or
not, you can always escape it or
make it part of a quoted string.

99CS 536 Spring 2015 ©

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

(Matches with) to group sub-
expressions.

Represents itself.

) Matches with (to group sub-
expressions.

Represents itself.

[Represents itself. Begins a character
class.

] Represents itself. Ends a character
class.

{ Matches with } to signal
macro-expansion.

Represents itself.

} Matches with { to signal
macro-expansion.

Represents itself.

" Matches with " to delimit
strings
(only \ is special within
strings).

Represents itself.

\ Escapes individual charac-
ters.
Also used to specify a char-
acter by its octal code.

Escapes individual
characters.
Also used to spec-
ify a character by
its octal code.

. Matches any one character
except \n.

Represents itself.

| Alternation (or) operator. Represents itself.

100CS 536 Spring 2015 ©

* Kleene closure operator (zero
or more matches).

Represents itself.

+ Positive closure operator
(one or more matches).

Represents itself.

? Optional choice operator
(one or zero matches).

Represents itself.

/ Context sensitive matching
operator.

Represents itself.

^ Matches only at beginning of
a line.

Complements
remaining
characters in the
class.

$ Matches only at end of a line. Represents itself.
- Represents itself. Range of charac-

ters operator.

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

101CS 536 Spring 2015 ©

Potential Problems in Using
JLex

The following differences from
“standard” Lex notation appear in
JLex:
• Escaped characters within quoted

strings are not recognized. Hence
"\n" is not a new line character.
Escaped characters outside of
quoted strings (\n) and escaped
characters within character classes
([\n]) are OK.

• A blank should not be used within a
character class (i.e., [and]). You
may use \040 (which is the
character code for a blank).

• A doublequote must be escaped
within a character class. Use [\"]
instead of ["].

102CS 536 Spring 2015 ©

• Unprintables are defined to be all
characters before blank as well as
the last ASCII character.
Unprintables can be represented
as:[\000-\037\177]

103CS 536 Spring 2015 ©

JLex Examples
A JLex scanner that looks for five
letter words that begin with “P”
and end with “T”.

This example is in
www.cs.wisc.edu/~fischer/
cs536.s15/course/proj2/
startup/Jlex_test/

104CS 536 Spring 2015 ©

The JLex specification file is:
class Token {

String text;
Token(String t){text = t;}

}
%%
Digit=[0-9]
AnyLet=[A-Za-z]
Others=[0-9’&.]
WhiteSp=[\040\n]
// Tell JLex to have yylex() return a
Token
%type Token
// Tell JLex what to return when eof of
file is hit
%eofval{
return new Token(null);
%eofval}
%%
[Pp]{AnyLet}{AnyLet}{AnyLet}[Tt]{WhiteSp}+

{return new Token(yytext());}

({AnyLet}|{Others})+{WhiteSp}+
{/*skip*/}

105CS 536 Spring 2015 ©

The Java program that uses the
scanner is:
import java.io.*;

class Main {

public static void main(String args[])
throws java.io.IOException {

Yylex lex = new Yylex(System.in);
Token token = lex.yylex();

while (token.text != null) {
System.out.print("\t"+token.text);
token = lex.yylex(); //get next token

}
}}

106CS 536 Spring 2015 ©

In case you care, the words that
are matched include:
Pabst
paint
petit
pilot
pivot
plant
pleat
point
posit
Pratt
print

107CS 536 Spring 2015 ©

An example of CSX token
specifications. This example is in
www.cs.wisc.edu/~fischer/
cs536.s15/course/proj2/
startup/java

108CS 536 Spring 2015 ©

The JLex specification file is:
import java_cup.runtime.*;

/* Expand this into your solution for
project 2 */

class CSXToken {
int linenum;
int colnum;
CSXToken(int line,int col){
linenum=line;colnum=col;};

}

class CSXIntLitToken extends CSXToken {
int intValue;
CSXIntLitToken(int val,int line,
int col){
super(line,col);intValue=val;};

}
class CSXIdentifierToken extends
CSXToken {
String identifierText;
CSXIdentifierToken(String text,int line,

int col){
super(line,col);identifierText=text;};

}

109CS 536 Spring 2015 ©

class CSXCharLitToken extends CSXToken {
char charValue;

CSXCharLitToken(char val,int line,
int col){
super(line,col);charValue=val;};

}

class CSXStringLitToken extends CSXToken
{

String stringText;
CSXStringLitToken(String text,
int line,int col){

super(line,col);
stringText=text; };

}
// This class is used to track line and
column numbers
// Feel free to change to extend it
class Pos {
static int linenum = 1;
/* maintain this as line number current

token was scanned on */
static int colnum = 1;
/* maintain this as column number

current token began at */
static int line = 1;
/* maintain this as line number after

scanning current token */

110CS 536 Spring 2015 ©

static int col = 1;
/* maintain this as column number

after scanning current token */
static void setpos() {
//set starting pos for current token
linenum = line;
colnum = col;}

}

%%
Digit=[0-9]

// Tell JLex to have yylex() return a
Symbol, as JavaCUP will require

%type Symbol

// Tell JLex what to return when eof of
file is hit
%eofval{
return new Symbol(sym.EOF,

new CSXToken(0,0));
%eofval}

111CS 536 Spring 2015 ©

%%
"+" {Pos.setpos(); Pos.col +=1;

 return new Symbol(sym.PLUS,
new CSXToken(Pos.linenum,

Pos.colnum));}
"!=" {Pos.setpos(); Pos.col +=2;

return new Symbol(sym.NOTEQ,
new CSXToken(Pos.linenum,

Pos.colnum));}
";" {Pos.setpos(); Pos.col +=1;

return new Symbol(sym.SEMI,
new CSXToken(Pos.linenum,

Pos.colnum));}
{Digit}+ {// This def doesn’t check

// for overflow
Pos.setpos();
Pos.col += yytext().length();

 return new Symbol(sym.INTLIT,
new CSXIntLitToken(

new Integer(yytext()).intValue(),
 Pos.linenum,Pos.colnum));}

\n {Pos.line +=1; Pos.col = 1;}
" " {Pos.col +=1;}

112CS 536 Spring 2015 ©

The Java program that uses this
scanner (P2) is:

class P2 {
public static void main(String args[])

throws java.io.IOException {
if (args.length != 1) {

System.out.println(
"Error: Input file must be named on

command line.");
System.exit(-1);

}
java.io.FileInputStream yyin = null;
try {
yyin =
new java.io.FileInputStream(args[0]);

} catch (FileNotFoundException
notFound){

System.out.println(
"Error: unable to open input file.”);
System.exit(-1);

}

// lex is a JLex-generated scanner that
// will read from yyin

 Yylex lex = new Yylex(yyin);

System.out.println(
"Begin test of CSX scanner.");

113CS 536 Spring 2015 ©

/**********************************
 You should enter code here that
thoroughly test your scanner.

Be sure to test extreme cases,
like very long symbols or lines,
illegal tokens, unrepresentable
integers, illegals strings, etc.
The following is only a starting point.

***********************************/
Symbol token = lex.yylex();

while (token.sym != sym.EOF) {
 System.out.print(

((CSXToken) token.value).linenum
+ ":"
+ ((CSXToken) token.value).colnum
+ " ");

switch (token.sym) {
 case sym.INTLIT:
 System.out.println(

"\tinteger literal(" +
 ((CSXIntLitToken)

token.value).intValue + ")");
break;

 case sym.PLUS:
 System.out.println("\t+");

break;

114CS 536 Spring 2015 ©

 case sym.NOTEQ:
 System.out.println("\t!=");
 break;

 default:
 throw new RuntimeException();
}

token = lex.yylex(); // get next token
}

System.out.println(

"End test of CSX scanner.");
}}}

115CS 536 Spring 2015 ©

Other Scanner Issues
We will consider other practical
issues in building real scanners
for real programming languages.
Our finite automaton model
sometimes needs to be
augmented. Moreover, error
handling must be incorporated
into any practical scanner.

116CS 536 Spring 2015 ©

Identifiers vs. Reserved
Words

Most programming languages
contain reserved words like if,
while, switch, etc. These tokens
look like ordinary identifiers, but
aren’t.
It is up to the scanner to decide if
what looks like an identifier is
really a reserved word. This
distinction is vital as reserved
words have different token codes
than identifiers and are parsed
differently.
How can a scanner decide which
tokens are identifiers and which
are reserved words?

117CS 536 Spring 2015 ©

• We can scan identifiers and
reserved words using the same
pattern, and then look up the token
in a special “reserved word” table.

• It is known that any regular
expression may be complemented
to obtain all strings not in the
original regular expression. Thus
A, the complement of A, is regular
if A is. Using complementation we
can write a regular expression for
nonreserved

identifiers:
Since scanner generators don’t
usually support complementation
of regular expressions, this
approach is more of theoretical
than practical interest.

ident if while …()

118CS 536 Spring 2015 ©

• We can give distinct regular
expression definitions for each
reserved word, and for identifiers.
Since the definitions overlap (if
will match a reserved word and the
general identifier pattern), we give
priority to reserved words. Thus a
token is scanned as an identifier if
it matches the identifier pattern
and does not match any reserved
word pattern. This approach is
commonly used in scanner
generators like Lex and JLex.

119CS 536 Spring 2015 ©

Converting Token Values
For some tokens, we may need to
convert from string form into
numeric or binary form.
For example, for integers, we
need to transform a string a digits
into the internal (binary) form of
integers.
We know the format of the token
is valid (the scanner checked this),
but:
• The string may represent an

integer too large to represent in 32
or 64 bit form.

• Languages like CSX and ML use a
non- standard representation for
negative values (~123 instead of
-123)

120CS 536 Spring 2015 ©

We can safely convert from string
to integer form by first converting
the string to double form,
checking against max and min int,
and then converting to int form if
the value is representable.
Thus d = new Double(str) will
create an object d containing the
value of str in double form. If
str is too large or too small to be
represented as a double, plus or
minus infinity is automatically
substituted.
d.doubleValue() will give d’s
value as a Java double, which can
be compared against
Integer.MAX_VALUE or
Integer.MIN_VALUE.

121CS 536 Spring 2015 ©

If d.doubleValue() represents a
valid integer,
(int) d.doubleValue()
will create the appropriate integer
value.
If a string representation of an
integer begins with a “~” we can
strip the “~”, convert to a double
and then negate the resulting
value.

122CS 536 Spring 2015 ©

Scanner Termination
A scanner reads input characters
and partitions them into tokens.
What happens when the end of
the input file is reached? It may be
useful to create an Eof pseudo-
character when this occurs. In
Java, for example,
InputStream.read(), which
reads a single byte, returns - 1
when end of file is reached. A
constant, EOF, defined as - 1 can
be treated as an “extended” ASCII
character. This character then
allows the definition of an Eof
token that can be passed back to
the parser.
An Eof token is useful because it
allows the parser to verify that the
logical end of a program
corresponds to its physical end.

123CS 536 Spring 2015 ©

Most parsers require an end of file
token.
Lex and Jlex automatically create
an Eof token when the scanner
they build tries to scan an EOF
character (or tries to scan when
eof() is true).

124CS 536 Spring 2015 ©

Multi Character Lookahead
We may allow finite automata to
look beyond the next input
character.
This feature is necessary to
implement a scanner for
FORTRAN.
In FORTRAN, the statement
DO 10 J = 1,100

specifies a loop, with index J
ranging from 1 to 100.
The statement
DO 10 J = 1.100

is an assignment to the variable
DO10J. (Blanks are not significant
except in strings.)
A FORTRAN scanner decides
whether the O is the last character
of a DO token only after reading as
far as the comma (or period).

125CS 536 Spring 2015 ©

A milder form of extended
lookahead problem occurs in
Pascal and Ada.
The token 10.50 is a real literal,
whereas 10..50 is three different
tokens.
We need two- character lookahead
after the 10 prefix to decide
whether we are to return 10 (an
integer literal) or 10.50 (a real
literal).

126CS 536 Spring 2015 ©

Suppose we use the following FA.

Given 10..100 we scan three
characters and stop in a non-
accepting state.
Whenever we stop reading in a
non- accepting state, we back up
along accepted characters until an
accepting state is found.
Characters we back up over are
rescanned to form later tokens. If
no accepting state is reached
during backup, we have a lexical
error.

.D

D D

D

.
.

127CS 536 Spring 2015 ©

Performance Considerations
Because scanners do so much
character- level processing, they
can be a real performance
bottleneck in production
compilers.
Speed is not a concern in our
project, but let’s see why
scanning speed can be a concern
in production compilers.
Let’s assume we want to compile
at a rate of 5000 lines/sec. (so
that most programs compile in
just a few seconds).
Assuming 30 characters/line (on
average), we need to scan
150,000 char/sec.

128CS 536 Spring 2015 ©

A key to efficient scanning is to
group character- level operations
whenever possible. It is better to
do one operation on n characters
rather than n operations on single
characters.
In our examples we’ve read input
one character as a time. A
subroutine call can cost hundreds
or thousands of instructions to
execute—far too much to spend
on a single character.
We prefer routines that do block
reads, putting an entire block of
characters directly into a buffer.
Specialized scanner generators
can produce particularly fast
scanners.
The GLA scanner generator claims
that the scanners it produces run
as fast as:

129CS 536 Spring 2015 ©

while(c != Eof) {

c = getchar();
}

130CS 536 Spring 2015 ©

Lexical Error Recovery
A character sequence that can’t
be scanned into any valid token is
a lexical error.
Lexical errors are uncommon, but
they still must be handled by a
scanner. We won’t stop
compilation because of so minor
an error.
Approaches to lexical error
handling include:
• Delete the characters read so far

and restart scanning at the next
unread character.

• Delete the first character read by
the scanner and resume scanning
at the character following it.

Both of these approaches are
reasonable.

131CS 536 Spring 2015 ©

The first is easy to do. We just
reset the scanner and begin
scanning anew.
The second is a bit harder but
also is a bit safer (less is
immediately deleted). It can be
implemented using scanner
backup.
Usually, a lexical error is caused
by the appearance of some illegal
character, mostly at the beginning
of a token.
(Why at the beginning?)
In these case, the two approaches
are equivalent.
The effects of lexical error
recovery might well create a later
syntax error, handled by the
parser.

132CS 536 Spring 2015 ©

Consider
...for$tnight...

The $ terminates scanning of for.
Since no valid token begins with
$, it is deleted. Then tnight is
scanned as an identifier. In effect
we get
...for tnight...

which will cause a syntax error.
Such “false errors” are
unavoidable, though a syntactic
error- repair may help.

133CS 536 Spring 2015 ©

Error Tokens
Certain lexical errors require
special care. In particular,
runaway strings and runaway
comments ought to receive
special error messages.
In Java strings may not cross line
boundaries, so a runaway string is
detected when an end of a line is
read within the string body.
Ordinary recovery rules are
inappropriate for this error. In
particular, deleting the first
character (the double quote
character) and restarting scanning
is a bad decision.
It will almost certainly lead to a
cascade of “false” errors as the
string text is inappropriately
scanned as ordinary input.

134CS 536 Spring 2015 ©

One way to handle runaway
strings is to define an error token.
An error token is not a valid
token; it is never returned to the
parser. Rather, it is a pattern for
an error condition that needs
special handling. We can define an
error token that represents a
string terminated by an end of
line rather than a double quote
character.
For a valid string, in which
internal double quotes and back
slashes are escaped (and no other
escaped characters are allowed),
we can use

" (Not(" | Eol | \) | \" | \\)* "
For a runaway string we use

" (Not(" | Eol | \) | \" | \\)* Eol
(Eol is the end of line character.)

135CS 536 Spring 2015 ©

When a runaway string token is
recognized, a special error
message should be issued.
Further, the string may be
“repaired” into a correct string by
returning an ordinary string token
with the closing Eol replaced by a
double quote.
This repair may or may not be
“correct.” If the closing double
quote is truly missing, the repair
will be good; if it is present on a
succeeding line, a cascade of
inappropriate lexical and syntactic
errors will follow.
Still, we have told the programmer
exactly what is wrong, and that is
our primary goal.

136CS 536 Spring 2015 ©

In languages like C, C+ + , Java
and CSX, which allow multiline
comments, improperly terminated
(runaway) comments present a
similar problem.
A runaway comment is not
detected until the scanner finds a
close comment symbol (possibly
belonging to some other
comment) or until the end of file
is reached. Clearly a special,
detailed error message is
required.
Let’s look at Pascal- style
comments that begin with a { and
end with a }. Comments that
begin and end with a pair of
characters, like /* and */ in Java,
C and C+ + , are a bit trickier.

137CS 536 Spring 2015 ©

Correct Pascal comments are
defined quite simply:

{ Not(})* }
To handle comments terminated
by Eof, this error token can be
used:

{ Not(})* Eof
We want to handle comments
unexpectedly closed by a close
comment belonging to another
comment:
{... missing close comment
... { normal comment }...

We will issue a warning (this form
of comment is lexically legal).
Any comment containing an open
comment symbol in its body is
most probably a missing } error.

138CS 536 Spring 2015 ©

We split our legal comment
definition into two token
definitions.
The definition that accepts an
open comment in its body causes
a warning message ("Possible
unclosed comment") to be
printed.
We now use:

{ Not({ | })* } and
{ (Not({ | })* { Not({ | })*)+ }
The first definition matches
correct comments that do not
contain an open comment in their
body.
The second definition matches
correct, but suspect, comments
that contain at least one open
comment in their body.

139CS 536 Spring 2015 ©

Single line comments, found in
Java, CSX and C+ + , are
terminated by Eol.
They can fall prey to a more
subtle error—what if the last line
has no Eol at its end?
The solution?
Another error token for single line
comments:

// Not(Eol)*
This rule will only be used for
comments that don’t end with an
Eol, since scanners always match
the longest rule possible.

140CS 536 Spring 2015 ©

Regular Expressions and
Finite Automata

Regular expressions are fully
equivalent to finite automata.
The main job of a scanner
generator like JLex is to transform
a regular expression definition
into an equivalent finite
automaton.
It first transforms a regular
expression into a
nondeterministic finite automaton
(NFA).
Unlike ordinary deterministic
finite automata, an NFA need not
make a unique (deterministic)
choice of a successor state to
visit. As shown below, an NFA is
allowed to have a state that has
two transitions (arrows) coming

141CS 536 Spring 2015 ©

out of it, labeled by the same
symbol. An NFA may also have
transitions labeled with λ.

Transitions are normally labeled
with individual characters in Σ,
and although λ is a string (the
string with no characters in it), it
is definitely not a character. In the
above example, when the
automaton is in the state at the
left and the next input character
is a, it may choose to use the

a

a

a

λ
a

142CS 536 Spring 2015 ©

transition labeled a or first follow
the λ transition (you can always
find λ wherever you look for it)
and then follow an a transition.
FAs that contain no λ transitions
and that always have unique
successor states for any symbol
are deterministic.

143CS 536 Spring 2015 ©

Building Finite Automata
From Regular Expressions

We make an FA from a regular
expression in two steps:
• Transform the regular expression

into an NFA.

• Transform the NFA into a
deterministic FA.

The first step is easy.
Regular expressions are all built
out of the atomic regular
expressions a (where a is a
character in Σ) and λ by using the
three operations
A B and A | B and A*.

144CS 536 Spring 2015 ©

Other operations (like A+) are just
abbreviations for combinations of
these.
NFAs for a and λ are trivial:

Suppose we have NFAs for A and
B and want one for A | B. We
construct the NFA shown below:

a

λ

A

B

Finite
Automaton

for A

Finite
Automaton

for B

λ

λ

λ

λ

145CS 536 Spring 2015 ©

The states labeled A and B were
the accepting states of the
automata for A and B; we create a
new accepting state for the
combined automaton.
A path through the top automaton
accepts strings in A, and a path
through the bottom automation
accepts strings in B, so the whole
automaton matches A | B.
The construction for A B is even
easier. The accepting state of the
combined automaton is the same
state that was the accepting state
of B. We must follow a path
through A’s automaton, then
through B’s automaton, so overall
A B is matched.
We could also just merge the
accepting state of A with the
initial state of B. We chose not to

146CS 536 Spring 2015 ©

only because the picture would be
more difficult to draw.

A
Finite

Automaton
for A

Finite
Automaton

for B

λ

147CS 536 Spring 2015 ©

Finally, let’s look at the NFA for
A*. The start state reaches an
accepting state via λ, so λ is
accepted. Alternatively, we can
follow a path through the FA for A
one or more times, so zero or
more strings that belong to A are
matched.

A
Finite

Automaton
for A

λ

λ

λ

λ

148CS 536 Spring 2015 ©

Creating Deterministic
Automata

The transformation from an NFA
N to an equivalent DFA D works by
what is sometimes called the
subset construction.
Each state of D corresponds to a
set of states of N.
The idea is that D will be in state
{x, y, z} after reading a given input
string if and only if N could be in
any one of the states x, y, or z,
depending on the transitions it
chooses. Thus D keeps track of all
the possible routes N might take
and runs them simultaneously.
Because N is a finite automaton, it
has only a finite number of states.
The number of subsets of N’s
states is also finite, which makes

149CS 536 Spring 2015 ©

tracking various sets of states
feasible.
An accepting state of D will be any
set containing an accepting state
of N, reflecting the convention
that N accepts if there is any way
it could get to its accepting state
by choosing the “right”
transitions.
The start state of D is the set of all
states that N could be in without
reading any input characters—
that
is, the set of states reachable
from the start state of N following
only λ transitions. Algorithm
close computes those states that
can be reached following only λ
transitions.
Once the start state of D is built,
we begin to create successor
states:

150CS 536 Spring 2015 ©

We take each state S of D, and
each character c, and compute S’s
successor under c.
S is identified with some set of
N’s states, {n1, n2,...}.

We find all the possible successor
states to {n1, n2,...} under c,
obtaining a set {m1, m2,...}.

Finally, we compute
T = CLOSE({ m1, m2,...}).
T becomes a state in D, and a
transition from S to T labeled with
c is added to D.
We continue adding states and
transitions to D until all possible
successors to existing states are
added.
Because each state corresponds
to a finite subset of N’s states, the

151CS 536 Spring 2015 ©

process of adding new states to D
must eventually terminate.
Here is the algorithm for λ-
closure, called close. It starts
with a set of NFA states, S, and
adds to S all states reachable from
S using only λ transitions.
void close(NFASet S) {

while (x in S and x →
λ

y
and y notin S) {
S = S U {y}

}}

Using close, we can define the
construction of a DFA, D, from an NFA,
N:

152CS 536 Spring 2015 ©

DFA MakeDeterministic(NFA N) {
DFA D ; NFASet T
D.StartState = { N.StartState }
close(D.StartState)
D.States = { D.StartState }
while (states or transitions can be

added to D) {
Choose any state S in D.States

and any character c in Alphabet
T = {y in N.States such that

x →c y for some x in S}
close(T);
if (T notin D.States) {

D.States = D.States U {T}
D.Transitions =

D.Transitions U
{the transition S →c T}

 } }
D.AcceptingStates =
{ S in D.States such that an

accepting state of N in S}
}

153CS 536 Spring 2015 ©

Example
To see how the subset
construction operates, consider
the following NFA:

We start with state 1, the start
state of N, and add state 2 its λ-
successor.
D’s start state is {1,2}.
Under a, {1,2}’s successor is
{3,4,5}.

aλ
1 2

3 4

5

b

a

b

a

a | b

154CS 536 Spring 2015 ©

State 1 has itself as a successor
under b. When state 1’s λ-
successor, 2, is included, {1,2}’s
successor is {1,2}. {3,4,5}’s
successors under a and b are {5}
and {4,5}.
{4,5}’s successor under b is {5}.
Accepting states of D are those
state sets that contain N’s
accepting state which is 5.

The resulting DFA is:

b
1,2

5

4,5

b

a

a | b

a
3,4,5

5

155CS 536 Spring 2015 ©

It is not too difficult to establish
that the DFA constructed by
MakeDeterministic is equivalent to
the original NFA.
The idea is that each path to an
accepting state in the original NFA
has a corresponding path in the
DFA. Similarly, all paths through
the constructed DFA correspond
to paths in the original NFA.
What is less obvious is the fact
that the DFA that is built can
sometimes be much larger than
the original NFA. States of the
DFA are identified with sets of
NFA states.
If the NFA has n states, there are
2n distinct sets of NFA states, and
hence the DFA may have as many
as 2n states. Certain NFAs actually

156CS 536 Spring 2015 ©

exhibit this exponential blowup in
size when made deterministic.
Fortunately, the NFAs built from
the kind of regular expressions
used to specify programming
language tokens do not exhibit
this problem when they are made
deterministic.
As a rule, DFAs used for scanning
are simple and compact.
If creating a DFA is impractical
(because of size or speed- of-
generation concerns), we can scan
using an NFA. Each possible path
through an NFA is tracked, and
reachable accepting states are
identified. Scanning is slower
using this approach, so it is used
only when construction of a DFA
is not practical.

157CS 536 Spring 2015 ©

Optimizing Finite Automata
We can improve the DFA created
by MakeDeterministic.
Sometimes a DFA will have more
states than necessary. For every
DFA there is a unique smallest
equivalent DFA (fewest states
possible).
Some DFA’s contain unreachable
states that cannot be reached
from the start state.
Other DFA’s may contain dead
states that cannot reach any
accepting state.
It is clear that neither unreachable
states nor dead states can
participate in scanning any valid
token. We therefore eliminate all
such states as part of our
optimization process.

158CS 536 Spring 2015 ©

We optimize a DFA by merging
together states we know to be
equivalent.
For example, two accepting states
that have no transitions at all out
of them are equivalent.
Why? Because they behave exactly
the same way—they accept the
string read so far, but will accept
no additional characters.
If two states, s1 and s2, are
equivalent, then all transitions to
s2 can be replaced with
transitions to s1. In effect, the two
states are merged together into
one common state.

How do we decide what states to
merge together?

159CS 536 Spring 2015 ©

We take a greedy approach and
try the most optimistic merger of
states. By definition, accepting
and non- accepting states are
distinct, so we initially try to
create only two states: one
representing the merger of all
accepting states and the other
representing the merger of all
non- accepting states.
This merger into only two states
is almost certainly too optimistic.
In particular, all the constituents
of a merged state must agree on
the same transition for each
possible character. That is, for
character c all the merged states
must have no successor under c
or they must all go to a single
(possibly merged) state.
If all constituents of a merged
state do not agree on the

160CS 536 Spring 2015 ©

transition to follow for some
character, the merged state is
split into two or more smaller
states that do agree.
As an example, assume we start
with the following automaton:

Initially we have a merged non-
accepting state {1,2,3,5,6} and a
merged accepting state {4,7}.
A merger is legal if and only if all
constituent states agree on the
same successor state for all
characters. For example, states 3
and 6 would go to an accepting
state given character c; states 1, 2,
5 would not, so a split must occur.

a

b

b c

c
d

1 2 3 4

5 6 7

161CS 536 Spring 2015 ©

We will add an error state sE to the
original DFA that is the successor
state under any illegal character.
(Thus reaching sE becomes
equivalent to detecting an illegal
token.) sE is not a real state; rather
it allows us to assume every state
has a successor under every
character. sE is never merged with
any real state.
Algorithm Split , shown below,
splits merged states whose
constituents do not agree on a
common successor state for all
characters. When Split
terminates, we know that the
states that remain merged are
equivalent in that they always
agree on common successors.

162CS 536 Spring 2015 ©

Split(FASet StateSet) {
repeat
for(each merged state S in StateSet) {

Let S correspond to {s1,...,sn}
for(each char c in Alphabet){
Let t1,...,tn be the successor
states to s1,...,sn under c

if(t1,...,tn do not all belong to
the same merged state){
Split S into two or more new
states such that si and sj
remain in the same merged
state if and only if ti and tj
are in the same merged state}

}
until no more splits are possible

}

163CS 536 Spring 2015 ©

Returning to our example, we
initially have states {1,2,3,5,6} and
{4,7}. Invoking Split , we first
observe that states 3 and 6 have a
common successor under c, and
states 1, 2, and 5 have no
successor under c (equivalently,
have the error state sE as a
successor).
This forces a split, yielding {1,2,5},
{3,6} and {4,7}.
Now, for character b, states 2 and
5 would go to the merged state
{3,6}, but state 1 would not, so
another split occurs.
We now have: {1}, {2,5}, {3,6} and
{4,7}.
At this point we are done, as all
constituents of merged states
agree on the same successor for
each input symbol.

164CS 536 Spring 2015 ©

Once Split is executed, we are
essentially done.
Transitions between merged
states are the same as the
transitions between states in the
original DFA.
Thus, if there was a transition
between state si and sj under
character c, there is now a
transition under c from the
merged state containing si to the
merged state containing sj. The
start state is that merged state
containing the original start state.
Accepting states are those
merged states containing
accepting states (recall that
accepting and non- accepting
states are never merged).

165CS 536 Spring 2015 ©

Returning to our example, the
minimum state automaton we
obtain is

a | d b c
1 2,5 3,6 4,7

166CS 536 Spring 2015 ©

Properties of Regular
Expressions and Finite
Automata
• Some token patterns can’t be defined

as regular expressions or finite
automata. Consider the set of
balanced brackets of the form [[[«]]].
This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is not regular.
No finite automaton that recognizes
exactly this set can exist.
Why? Consider the inputs [, [[, [[[, ...
For two different counts (call them i
and j) [i and [j must reach the same
state of a given FA! (Why?)
Once that happens, we know that if [i]i
is accepted (as it should be), the [j]i
will also be accepted (and that should
not happen).

167CS 536 Spring 2015 ©

• R = V* - R is regular if R is.
Why?
Build a finite automaton for R. Be
careful to include transitions to an
“error state” sE for illegal characters.
Now invert final and non- final states.
What was previously accepted is now
rejected, and what was rejected is now
accepted. That is, R is accepted by the
modified automaton.

• Not all subsets of a regular set are
themselves regular. The regular
expression [+]+ has a subset that isn’t
regular. (What is that subset?)

168CS 536 Spring 2015 ©

• Let R be a set of strings. Define Rrev as
all strings in R, in reversed (backward)
character order.
Thus if R = {abc, def}
then Rrev = {cba, fed}.
If R is regular, then Rrev is too.
Why? Build a finite automaton for R.
Make sure the automaton has only one
final state. Now reverse the direction
of all transitions, and interchange the
start and final states. What does the
modified automation accept?

169CS 536 Spring 2015 ©

• If R1 and R2 are both regular, then

R1 ∩ R2 is also regular. We can show
this two different ways:

1. Build two finite automata, one
for R1 and one for R2. Pair
together states of the two
automata to match R1 and R2
simultaneously. The paired-
state automaton accepts only if
both R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2

is = We already know

union and complementation are
regular.

R1 R2∪

170CS 536 Spring 2015 ©

Reading Assignment
• Read Chapter 4 of

Crafting a Compiler

171CS 536 Spring 2015 ©

Context Free Grammars
A context- free grammar (CFG) is
defined as:
• A finite terminal set Vt;

these are the tokens produced by
the scanner.

• A set of intermediate symbols,
called non- terminals, Vn.

• A start symbol, a designated non-
terminal, that starts all derivations.

• A set of productions (sometimes
called rewriting rules) of the form

A → X1 ... Xm
X1 to Xm may be any
combination of terminals and
non- terminals.

If m = 0 we have A → λ
which is a valid production.

172CS 536 Spring 2015 ©

Example
Prog → { Stmts }
Stmts →Stmts ; Stmt
Stmts →Stmt
Stmt →id = Expr
Expr →id
Expr →Expr + id

173CS 536 Spring 2015 ©

Often more than one production
shares the same left- hand side.
Rather than repeat the left hand
side, an “or notation” is used:

Prog → { Stmts }
Stmts →Stmts ; Stmt

| Stmt
Stmt →id = Expr
Expr →id

| Expr + id

174CS 536 Spring 2015 ©

Derivations
Starting with the start symbol,
non- terminals are rewritten using
productions until only terminals
remain.
Any terminal sequence that can
be generated in this manner is
syntactically valid.
If a terminal sequence can’t be
generated using the productions
of the grammar it is invalid (has
syntax errors).
The set of strings derivable from
the start symbol is the language
of the grammar (sometimes
denoted L(G)).

175CS 536 Spring 2015 ©

For example, starting at Prog we
generate a terminal sequence, by
repeatedly applying productions:
Prog
{ Stmts }
{ Stmts ; Stmt }
{ Stmt ; Stmt }
{ id = Expr ; Stmt }
{ id = id ; Stmt }
{ id = id ; id = Expr }
{ id = id ; id = Expr + id}
{ id = id ; id = id + id}

176CS 536 Spring 2015 ©

Parse Trees
To illustrate a derivation, we can
draw a derivation tree (also called
a parse tree):

Prog

{ Stmts }

 Stmts ; Stmt

 Stmt

 id = Expr

 id

 id = Expr

 Expr + id

 id

177CS 536 Spring 2015 ©

An abstract syntax tree (AST)
shows essential structure but
eliminates unnecessary delimiters
and intermediate symbols:

Prog

 Stmts

 Stmts =

 =

 id id

 id +

 id id

178CS 536 Spring 2015 ©

If A → γ is a production then
αAβ ⇒ αγβ

where ⇒ denotes a one step
derivation (using production
A → γ).

We extend ⇒ to ⇒+ (derives in
one or more steps), and ⇒*
(derives in zero or more steps).
We can show our earlier derivation
as
Prog ⇒
{ Stmts } ⇒
{ Stmts ; Stmt } ⇒
{ Stmt ; Stmt } ⇒
{ id = Expr ; Stmt } ⇒
{ id = id ; Stmt } ⇒
{ id = id ; id = Expr } ⇒
{ id = id ; id = Expr + id} ⇒
{ id = id ; id = id + id}

Prog ⇒+ { id = id ; id = id + id}

179CS 536 Spring 2015 ©

When deriving a token sequence,
if more than one non- terminal is
present, we have a choice of
which to expand next.
We must specify, at each step,
which non- terminal is expanded,
and what production is applied.
For simplicity we adopt a
convention on what non- terminal
is expanded at each step.
We can choose the leftmost
possible non- terminal at each
step.
A derivation that follows this rule
is a leftmost derivation.
If we know a derivation is
leftmost, we need only specify
what productions are used; the
choice of non- terminal is always
fixed.

180CS 536 Spring 2015 ©

To denote derivations that are
leftmost,
we use ⇒L, ⇒

+
L , and ⇒*

L

The production sequence
discovered by a large class of
parsers (the top- down parsers) is
a leftmost derivation, hence these
parsers produce a leftmost parse.
Prog ⇒L

{ Stmts } ⇒L

{ Stmts ; Stmt } ⇒L
{ Stmt ; Stmt } ⇒L

{ id = Expr ; Stmt } ⇒L

{ id = id ; Stmt } ⇒L

{ id = id ; id = Expr } ⇒L

{ id = id ; id = Expr + id} ⇒L

{ id = id ; id = id + id}

Prog ⇒L
+ { id = id ; id = id + id}

181CS 536 Spring 2015 ©

Rightmost Derivations
A rightmost derivation is an
alternative to a leftmost
derivation. Now the rightmost
non- terminal is always expanded.
This derivation sequence may
seem less intuitive given our
normal left- to- right bias, but it
corresponds to an important class
of parsers (the bottom- up
parsers, including CUP).
As a bottom- up parser discovers
the productions used to derive a
token sequence, it discovers a
rightmost derivation, but in
reverse order.
The last production applied in a
rightmost derivation is the first
that is discovered. The first
production used, involving the
start symbol, is discovered last.

182CS 536 Spring 2015 ©

The sequence of productions
recognized by a bottom- up
parser is a rightmost parse.
It is the exact reverse of the
production sequence that
represents a rightmost derivation.
For rightmost derivations, we use
the notation ⇒R, ⇒+

R , and ⇒*
R

Prog ⇒R

{ Stmts } ⇒R

{ Stmts ; Stmt } ⇒R
{ Stmts ; id = Expr } ⇒R
{ Stmts ; id = Expr + id } ⇒R

{ Stmts ; id = id + id } ⇒R

{ Stmt ; id = id + id } ⇒R

{ id = Expr ; id = id + id } ⇒R

{ id = id ; id = id + id}
Prog ⇒+ { id = id ; id = id + id}

183CS 536 Spring 2015 ©

You can derive the same set of
tokens using leftmost and
rightmost derivations; the only
difference is the order in which
productions are used.

184CS 536 Spring 2015 ©

Ambiguous Grammars
Some grammars allow more than
one parse tree for the same token
sequence. Such grammars are
ambiguous. Because compilers
use syntactic structure to drive
translation, ambiguity is
undesirable—it may lead to an
unexpected translation.
Consider

E → E - E
| id

When parsing the input a- b- c
(where a, b and c are scanned as
identifiers) we can build the
following two parse trees:

185CS 536 Spring 2015 ©

The effect is to parse a- b- c as
either (a- b)- c or a- (b- c). These
two groupings are certainly not
equivalent.
Ambiguous grammars are usually
voided in building compilers; the
tools we use, like Yacc and CUP,
strongly prefer unambiguous
grammars.
To correct this ambiguity, we use

E → E - id
| id

E
E - E

E - E

id id id

E
E - E

E - E

id id id

186CS 536 Spring 2015 ©

Now a- b- c can only be parsed as:

E
E -

E -

id id id

187CS 536 Spring 2015 ©

Operator Precedence
Most programming languages
have operator precedence rules
that state the order in which
operators are applied (in the
absence of explicit parentheses).
Thus in C and Java and CSX,
a+b*c means compute b*c, then
add in a.
These operators precedence rules
can be incorporated directly into a
CFG.
Consider
E → E + T

| T
T → T * P

| P
P → id

| (E)

188CS 536 Spring 2015 ©

Does a+b*c mean (a+b)*c or
a+(b*c)?
The grammar tells us! Look at the
derivation tree:

The other grouping can’t be
obtained unless explicit
parentheses are used.
(Why?)

E
E + T

T T * P

P P
id id id

189CS 536 Spring 2015 ©

Java CUP
Java CUP is a parser- generation
tool, similar to Yacc.
CUP builds a Java parser for
LALR(1) grammars from
production rules and associated
Java code fragments.
When a particular production is
recognized, its associated code
fragment is executed (typically to
build an AST).
CUP generates a Java source file
parser.java. It contains a class
parser, with a method
Symbol parse()

The Symbol returned by the parser
is associated with the grammar’s
start symbol and contains the AST
for the whole source program.

190CS 536 Spring 2015 ©

The file sym.java is also built for
use with a JLex- built scanner (so
that both scanner and parser use
the same token codes).
If an unrecovered syntax error
occurs, Exception() is thrown by
the parser.
CUP and Yacc accept exactly the
same class of grammars—all LL(1)
grammars, plus many useful non-
LL(1) grammars.
CUP is called as
java java_cup.Main < file.cup

191CS 536 Spring 2015 ©

Java CUP Specifications
Java CUP specifications are of the
form:
• Package and import specifications

• User code additions

• Terminal and non- terminal
declarations

• A context- free grammar,
augmented with Java code
fragments

Package and Import Specifications
You define a package name as:
package name ;
You add imports to be used as:
import java_cup.runtime.*;

192CS 536 Spring 2015 ©

User Code Additions
You may define Java code to be
included within the generated
parser:
action code {: /*java code */ :}
This code is placed within the
generated action class (which
holds user- specified production
actions).
parser code {: /*java code */ :}
This code is placed within the
generated parser class .
init with{: /*java code */ :}
This code is used to initialize the
generated parser.
scan with{: /*java code */ :}
This code is used to tell the
generated parser how to get
tokens from the scanner.

193CS 536 Spring 2015 ©

Terminal and Non-terminal
Declarations

You define terminal symbols you
will use as:
terminal classname name1, name2, ...

classname is a class used by the
scanner for tokens (CSXToken,
CSXIdentifierToken, etc.)

You define non- terminal symbols
you will use as:
non terminal classname name1, name2, ...

classname is the class for the
AST node associated with the
non- terminal (stmtNode,
exprNode, etc.)

194CS 536 Spring 2015 ©

Production Rules
Production rules are of the form
name ::= name1 name2 ... action ;

or
name ::= name1 name2 ...
action1

| name3 name4 ... action2
| ...
;

Names are the names of terminals
or non- terminals, as declared
earlier.
Actions are Java code fragments,
of the form
{: /*java code */ :}
The Java object assocated with a
symbol (a token or AST node) may
be named by adding a :id suffix
to a terminal or non- terminal in a
rule.

195CS 536 Spring 2015 ©

RESULT names the left- hand side
non- terminal.
The Java classes of the symbols
are defined in the terminal and
non- terminal declaration
sections.
For example,
prog ::= LBRACE:l stmts:s RBRACE

{: RESULT =
new csxLiteNode(s,
l.linenum,l.colnum); :}

This corresponds to the production
prog → { stmts }
The left brace is named l; the
stmts non- terminal is called s.
In the action code, a new
CSXLiteNode is created and
assigned to prog. It is constructed
from the AST node associated
with s. Its line and column

196CS 536 Spring 2015 ©

numbers are those given to the
left brace, l (by the scanner).

To tell CUP what non- terminal to
use as the start symbol (prog in
our example), we use the
directive:
start with prog;

197CS 536 Spring 2015 ©

Example
Let’s look at the CUP specification
for CSX- lite. Recall its CFG is

program → { stmts }
stmts → stmt stmts

| λ
stmt → id = expr ;

 | if (expr) stmt
expr → expr + id

| expr - id
| id

198CS 536 Spring 2015 ©

The corresponding CUP
specification is:
/***
This Is A Java CUP Specification For
CSX-lite, a Small Subset of The CSX
Language, Used In Cs536
 ***/

/* Preliminaries to set up and use the
scanner. */

import java_cup.runtime.*;
parser code {:
 public void syntax_error

(Symbol cur_token){
 report_error(

“CSX syntax error at line “+
String.valueOf(((CSXToken)

cur_token.value).linenum),
null);}

:};

init with {: :};
scan with {:

return Scanner.next_token();
:};

199CS 536 Spring 2015 ©

/* Terminals (tokens returned by the
scanner). */
terminal CSXIdentifierToken IDENTIFIER;
terminal CSXToken SEMI, LPAREN, RPAREN,
ASG, LBRACE, RBRACE;
terminal CSXToken PLUS, MINUS, rw_IF;

/* Non terminals */
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;
non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;

start with prog;

prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

stmts::= stmt:s1 stmts:s2
 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}

200CS 536 Spring 2015 ©

|
 {: RESULT= stmtsNode.NULL; :}
;
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

| rw_IF:i LPAREN exp:e RPAREN stmt:s
 {: RESULT=new ifThenNode(e,s,

 stmtNode.NULL,
i.linenum,i.colnum); :}

;
exp::=
exp:leftval PLUS:op ident:rightval

 {: RESULT=new binaryOpNode(leftval,
sym.PLUS, rightval,
op.linenum,op.colnum); :}

| exp:leftval MINUS:op ident:rightval
 {: RESULT=new binaryOpNode(leftval,

sym.MINUS,rightval,
op.linenum,op.colnum); :}

| ident:i
 {: RESULT = i; :}
;

201CS 536 Spring 2015 ©

ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
 new identNode(i.identifierText,

 i.linenum,i.colnum),
 exprNode.NULL,
 i.linenum,i.colnum); :}
;

202CS 536 Spring 2015 ©

Let’s parse

{ a = b ; }
First, a is parsed using
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
 new identNode(i.identifierText,

 i.linenum,i.colnum),
 exprNode.NULL,

 i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
a

203CS 536 Spring 2015 ©

Next, b is parsed using
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
 new identNode(i.identifierText,

 i.linenum,i.colnum),
 exprNode.NULL,

 i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
b

204CS 536 Spring 2015 ©

Then b’s subtree is recognized as
an exp:
| ident:i
 {: RESULT = i; :}

Now the assignment statement is
recognized:
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

We build

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

205CS 536 Spring 2015 ©

The stmts → λ production is
matched (indicating that there are
no more statements in the
program).
CUP matches
stmts::=
 {: RESULT= stmtsNode.NULL; :}

and we build

Next,
stmts → stmt stmts
is matched using
stmts::= stmt:s1 stmts:s2
 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}

nullStmtsNode

206CS 536 Spring 2015 ©

This builds

As the last step of the parse, the
parser matches
program → { stmts }
using the CUP rule
prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

207CS 536 Spring 2015 ©

The final AST reurned by the
parser is

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

csxLiteNode

208CS 536 Spring 2015 ©

Errors in Context-Free
Grammars

Context- free grammars can
contain errors, just as programs
do. Some errors are easy to detect
and fix; others are more subtle.
In context- free grammars we
start with the start symbol, and
apply productions until a terminal
string is produced.
Some context- free grammars may
contain useless non- terminals.
Non- terminals that are
unreachable (from the start
symbol) or that derive no terminal
string are considered useless.
Useless non- terminals (and
productions that involve them)
can be safely removed from a
grammar without changing the

209CS 536 Spring 2015 ©

language defined by the
grammar.
A grammar containing useless
non- terminals is said to be non-
reduced.
After useless non- terminals are
removed, the grammar is reduced.
Consider

S → A B
| x

B → b
A → a A
C → d

Which non- terminals are
unreachable? Which derive no
terminal string?

210CS 536 Spring 2015 ©

Finding Useless Non-
terminals

To find non- terminals that can
derive one or more terminal
strings, we’ll use a marking
algorithm.
We iteratively mark terminals that
can derive a string of terminals,
until no more non- terminals can
be marked. Unmarked non-
terminals are useless.
(1) Mark all terminal symbols
(2) Repeat

If all symbols on the
righthand side of a
production are marked

Then mark the lefthand side
Until no more non- terminals

can be marked

211CS 536 Spring 2015 ©

We can use a similar marking
algorithm to determine which
non- terminals can be reached
from the start symbol:

(1) Mark the Start Symbol
(2) Repeat

If the lefthand side of a
production is marked

Then mark all non- terminals
in the righthand side

Until no more non- terminals
can be marked

212CS 536 Spring 2015 ©

λ Derivations
When parsing, we’ll sometimes
need to know which non-
terminals can derive λ. (λ is
“invisible” and hence tricky to
parse).
We can use the following marking
algorithm to decide which non-
terminals derive λ
(1) For each production A → λ

mark A
(2) Repeat

If the entire righthand
side of a production
is marked

Then mark the lefthand side
Until no more non- terminals

can be marked

213CS 536 Spring 2015 ©

As an example consider

S → A B C
A → a
B → C D
D → d

| λ
C → c

| λ

214CS 536 Spring 2015 ©

Recall that compilers prefer an
unambiguous grammar because a
unique parse tree structure can be
guaranteed for all inputs.
Hence a unique translation,
guided by the parse tree
structure, will be obtained.
We would like an algorithm that
checks if a grammar is
ambiguous.
Unfortunately, it is undecidable
whether a given CFG is
ambiguous, so such an algorithm
is impossible to create.
Fortunately for certain grammar
classes, including those for which
we can generate parsers, we can
prove included grammars are
unambiguous.

215CS 536 Spring 2015 ©

Potentially, the most serious flaw
that a grammar might have is that
it generates the “wrong
language."
This is a subtle point as a
grammar serves as the definition
of a language.
For established languages (like C
or Java) there is usually a suite of
programs created to test and
validate new compilers. An
incorrect grammar will almost
certainly lead to incorrect
compilations of test programs,
which can be automatically
recognized.
For new languages, initial
implementors must thoroughly
test the parser to verify that
inputs are scanned and parsed as
expected.

216CS 536 Spring 2015 ©

Parsers and Recognizers
Given a sequence of tokens, we
can ask:
"Is this input syntactically valid?"
(Is it generable from the
grammar?).
A program that answers this
question is a recognizer.
Alternatively, we can ask:
"Is this input valid and, if it is,
what is its structure (parse tree)?"
A program that answers this more
general question is termed a
parser.
We plan to use language structure
to drive compilers, so we will be
especially interested in parsers.

217CS 536 Spring 2015 ©

Two general approaches to
parsing exist.
The first approach is top- down.
A parser is top- down if it
"discovers" the parse tree
corresponding to a token
sequence by starting at the top of
the tree (the start symbol), and
then expanding the tree (via
predictions) in a depth- first
manner.
Top- down parsing techniques are
predictive in nature because they
always predict the production that
is to be matched before matching
actually begins.

218CS 536 Spring 2015 ©

Consider

E → E + T | T
T → T * id | id

To parse id + id in a top- down
manner, a parser build a parse
tree in the following steps:

E E

E + T

E

E + T

T
E

E + T

T

id

E

E + T

T

id id

⇒ ⇒ ⇒

⇒

219CS 536 Spring 2015 ©

A wide variety of parsing
techniques take a different
approach.
They belong to the class of
bottom- up parsers.
As the name suggests, bottom- up
parsers discover the structure of a
parse tree by beginning at its
bottom (at the leaves of the tree
which are terminal symbols) and
determining the productions used
to generate the leaves.
Then the productions used to
generate the immediate parents
of the leaves are discovered.
The parser continues until it
reaches the production used to
expand the start symbol.
At this point the entire parse tree
has been determined.

220CS 536 Spring 2015 ©

A bottom- up parse of id1 + id2
would follow the following steps:

E

E + T

T

id1 id2

⇒ ⇒

⇒

T

id1 T

id1

E

T

id2

221CS 536 Spring 2015 ©

A Simple Top-Down Parser
We’ll build a rudimentary top-
down parser that simply tries each
possible expansion of a non-
terminal, in order of production
definition.
If an expansion leads to a token
sequence that doesn’t match the
current token being parsed, we
backup and try the next possible
production choice.
We stop when all the input tokens
are correctly matched or when all
possible production choices have
been tried.

222CS 536 Spring 2015 ©

Example
Given the productions

S → a
 | (S)

we try a, then (a), then ((a)), etc.

Let’s next try an additional
alternative:

S → a
 | (S)

| (S]
Let’s try to parse a, then (a], then
((a]], etc.
We’ll count the number of
productions we try for each input.

223CS 536 Spring 2015 ©

• For input = a
We try S → a which works.
Matches needed = 1

• For input = (a]
We try S → a which fails.
We next try S → (S).
We expand the inner S three
different ways; all fail.
Finally, we try S → (S].
The inner S expands to a, which
works.
Total matches tried =
1 + (1+ 3)+ (1+ 1)= 7.

• For input = ((a]]
We try S → a which fails.
We next try S → (S).
We match the inner S to (a] using 7
steps, then fail to match the last].
Finally, we try S → (S].
We match the inner S to (a] using 7

224CS 536 Spring 2015 ©

steps, then match the last].
Total matches tried =
1 + (1+ 7)+ (1+ 7)= 17.

• For input = (((a]]]
We try S → a which fails.
We next try S → (S).
We match the inner S to ((a]] using
17 steps, then fail to match the last
].
Finally, we try S → (S].
We match the inner S to ((a]] using
17 steps, then match the last].
Total matches tried =

1 + (1+ 17) + (1+ 17) = 37.

Adding one extra (...] pair doubles
the number of matches we need to
do the parse.

In fact to parse (ia]i takes 5*2i- 3
matches. This is exponential growth!

225CS 536 Spring 2015 ©

With a more effective dynamic
programming approach, in which
results of intermediate parsing steps
are cached, we can reduce the
number of matches needed to n3 for
an input with n tokens.
Is this acceptable?
No!
Typical source programs have at
least 1000 tokens, and 10003 = 109
is a lot of steps, even for a fast
modern computer.
The solution?
—Smarter selection in the choice of
productions we try.

226CS 536 Spring 2015 ©

Reading Assignment
Read Chapter 5 of
Crafting a Compiler, Second
Edition.

227CS 536 Spring 2015 ©

Prediction
We want to avoid trying
productions that can’t possibly
work.
For example, if the current token
to be parsed is an identifier, it is
useless to try a production that
begins with an integer literal.
Before we try a production, we’ll
consider the set of terminals it
might initially produce. If the
current token is in this set, we’ll
try the production.
If it isn’t, there is no way the
production being considered
could be part of the parse, so
we’ll ignore it.
A predict function tells us the set
of tokens that might be initially
generated from any production.

228CS 536 Spring 2015 ©

For A → X1...Xn, Predict(A →
X1...Xn) = Set of all initial (first)
tokens derivable from A → X1...Xn

= {a in Vt | A → X1...Xn ⇒* a...}

For example, given
Stmt → Label id = Expr ;

| Label if Expr then Stmt ;
| Label read (IdList) ;
| Label id (Args) ;

Label → intlit :
| λ

Production Predict Set

Stmt → Label id = Expr ; {id, intlit}

Stmt → Label if Expr then Stmt ; {if, intlit}

Stmt → Label read (IdList) ; {read, intlit}

Stmt → Label id (Args) ; {id, intlit}

229CS 536 Spring 2015 ©

We now will match a production p
only if the next unmatched token
is in p’s predict set. We’ll avoid
trying productions that clearly
won’t work, so parsing will be
faster.
But what is the predict set of a
λ- production?
It can’t be what’s generated by λ
(which is nothing!), so we’ll define
it as the tokens that can follow
the use of a λ- production.
That is, Predict(A → λ) = Follow(A)
where (by definition)

Follow(A) = {a in Vt | S ⇒+ ...Aa...}

In our example,
Follow(Label → λ) = { id, if, read }
(since these terminals can
immediately follow uses of Label
in the given productions).

230CS 536 Spring 2015 ©

Now let’s parse
id (intlit) ;

Our start symbol is Stmt and the
initial token is id.
id can predict
Stmt → Label id = Expr ;

id then predicts Label → λ
The id is matched, but “(“ doesn’t
match “ = ” so we backup and try a
different production for Stmt.
id also predicts
Stmt → Label id (Args) ;

Again, Label → λ is predicted and
used, and the input tokens can
match the rest of the remaining
production.
We had only one misprediction,
which is better than before.
Now we’ll rewrite the productions
a bit to make predictions easier.

231CS 536 Spring 2015 ©

We remove the Label prefix from
all the statement productions
(now intlit won’t predict all four
productions).
We now have
Stmt → Label BasicStmt
BasicStmt → id = Expr ;

| if Expr then Stmt ;
| read (IdList) ;
| id (Args) ;

Label → intlit :
| λ

Now id predicts two different
BasicStmt productions. If we
rewrite these two productions
into
BasicStmt → id StmtSuffix
StmtSuffix → = Expr ;

| (Args) ;

232CS 536 Spring 2015 ©

we no longer have any doubt over
which production id predicts.

We now have

This grammar generates the same
statements as our original
grammar did, but now prediction
never fails!

Production Predict Set

Stmt → Label BasicStmt Not needed!

BasicStmt → id StmtSuffix {id}

BasicStmt → if Expr then Stmt ; {if}

BasicStmt → read (IdList) ; {read}

StmtSuffix → (Args) ; { (}

StmtSuffix → = Expr ; { = }

Label → intlit : {intlit}

Label → λ {if, id, read}

233CS 536 Spring 2015 ©

Whenever we must decide what
production to use, the predict
sets for productions with the
same lefthand side are always
disjoint.
Any input token will predict a
unique production or no
production at all (indicating a
syntax error).
If we never mispredict a
production, we never backup, so
parsing will be fast and absolutely
accurate!

234CS 536 Spring 2015 ©

LL(1) Grammars
A context- free grammar whose
Predict sets are always disjoint
(for the same non- terminal) is
said to be LL(1).
LL(1) grammars are ideally suited
for top- down parsing because it
is always possible to correctly
predict the expansion of any non-
terminal. No backup is ever
needed.
Formally, let
First(X1...Xn) =

{a in Vt | A → X1...Xn ⇒* a...}

Follow(A) = {a in Vt | S ⇒+ ...Aa...}

235CS 536 Spring 2015 ©

Predict(A → X1...Xn) =

If X1...Xn⇒
* λ

Then First(X1...Xn) U Follow(A)
Else First(X1...Xn)

If some CFG, G, has the property
that for all pairs of distinct
productions with the same
lefthand side,
A → X1...Xn and A → Y1...Ym
it is the case that
Predict(A → X1...Xn) ∩
Predict(A → Y1...Ym) = φ

then G is LL(1).
LL(1) grammars are easy to parse
in a top- down manner since
predictions are always correct.

236CS 536 Spring 2015 ©

Example

Since the predict sets of both B
productions and both D
productions are disjoint, this
grammar is LL(1).

Production Predict Set

S → A a {b,d,a}

A → B D {b, d, a}

B → b { b }

B → λ {d, a}

D → d { d }

D → λ { a }

237CS 536 Spring 2015 ©

Recursive Descent Parsers
An early implementation of top-
down (LL(1)) parsing was recursive
descent.
A parser was organized as a set of
parsing procedures, one for each
non- terminal. Each parsing
procedure was responsible for
parsing a sequence of tokens
derivable from its non- terminal.
For example, a parsing procedure,
A, when called, would call the
scanner and match a token
sequence derivable from A.
Starting with the start symbol’s
parsing procedure, we would then
match the entire input, which
must be derivable from the start
symbol.

238CS 536 Spring 2015 ©

This approach is called recursive
descent because the parsing
procedures were typically
recursive, and they descended
down the input’s parse tree (as
top- down parsers always do).

239CS 536 Spring 2015 ©

Building A Recursive Descent
Parser

We start with a procedure Match,
that matches the current input
token against a predicted token:
void Match(Terminal a) {

if (a == currentToken)
currentToken = Scanner();

else SyntaxErrror();}

To build a parsing procedure for a
non- terminal A, we look at all
productions with A on the
lefthand side:
A → X1...Xn | A → Y1...Ym | ...

We use predict sets to decide
which production to match (LL(1)
grammars always have disjoint
predict sets).
We match a production’s
righthand side by calling Match to

240CS 536 Spring 2015 ©

match terminals, and calling
parsing procedures to match
non- terminals.
The general form of a parsing
procedure for
A → X1...Xn | A → Y1...Ym | ... is
void A() {
if (currentToken in Predict(A→X1...Xn))
for(i=1;i<=n;i++)

if (X[i] is a terminal)
Match(X[i]);

else X[i]();
else
if (currentToken in Predict(A→Y1...Ym))
for(i=1;i<=m;i++)

if (Y[i] is a terminal)
Match(Y[i]);

else Y[i]();
else
 // Handle other A →... productions
else // No production predicted

SyntaxError();
}

241CS 536 Spring 2015 ©

Usually this general form isn’t
used.
Instead, each production is
“macro- expanded” into a
sequence of Match and parsing
procedure calls.

242CS 536 Spring 2015 ©

Example: CSX-Lite

Production Predict Set

Prog → { Stmts } Eof {

Stmts → Stmt Stmts id if

Stmts → λ }

Stmt → id = Expr ; id

Stmt → if (Expr) Stmt if

Expr → id Etail id

Etail → + Expr +

Etail → - Expr -

Etail → λ) ;

243CS 536 Spring 2015 ©

CSX-Lite Parsing Procedures
void Prog() {
Match("{");
Stmts();
Match("}");
Match(Eof);

}

void Stmts() {
if (currentToken == id ||

currentToken == if){
Stmt();
Stmts();

} else {
/* null */

}}

void Stmt() {
if (currentToken == id){

Match(id);
Match("=");
Expr();
Match(";");

} else {
Match(if);
Match("(");
Expr();
Match(")");
Stmt();

}}

244CS 536 Spring 2015 ©

void Expr() {
Match(id);
Etail();

}

void Etail() {
if (currentToken == "+") {

Match("+");
Expr();

} else if (currentToken == "-"){
 Match("-");
Expr();

} else {
/* null */

}}

245CS 536 Spring 2015 ©

Let’s use recursive descent to parse
{ a = b + c; } Eof
We start by calling Prog() since this
represents the start symbol.

Calls Pending Remaining Input
Prog() { a = b + c; } Eof

Match("{");
Stmts();
Match("}");
Match(Eof);

{ a = b + c; } Eof

Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

246CS 536 Spring 2015 ©

Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 = b + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Calls Pending Remaining Input

247CS 536 Spring 2015 ©

Match("+");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

/* null */
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Calls Pending Remaining Input

248CS 536 Spring 2015 ©

Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Stmts();
Match("}");
Match(Eof);

} Eof

/* null */
Match("}");
Match(Eof);

} Eof

Match("}");
Match(Eof);

} Eof

Match(Eof); Eof

Done! All input matched

Calls Pending Remaining Input

249CS 536 Spring 2015 ©

Syntax Errors in Recursive
Descent Parsing

In recursive descent parsing,
syntax errors are automatically
detected. In fact, they are
detected as soon as possible (as
soon as the first illegal token is
seen).
How? When an illegal token is
seen by the parser, either it fails
to predict any valid production or
it fails to match an expected
token in a call to Match.
Let’s see how the following illegal
CSX- lite program is parsed:
{ b + c = a; } Eof

(Where should the first syntax
error be detected?)

250CS 536 Spring 2015 ©

Calls Pending Remaining Input
Prog() { b + c = a; } Eof

Match("{");
Stmts();
Match("}");
Match(Eof);

{ b + c = a; } Eof

Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

251CS 536 Spring 2015 ©

Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c = a; } Eof

Call to Match fails! + c = a; } Eof

Calls Pending Remaining Input

252CS 536 Spring 2015 ©

Table-Driven Top-Down
Parsers

Recursive descent parsers have
many attractive features. They are
actual pieces of code that can be
read by programmers and
extended.
This makes it fairly easy to
understand how parsing is done.
Parsing procedures are also
convenient places to add code to
build ASTs, or to do type-
checking, or to generate code.
A major drawback of recursive
descent is that it is quite
inconvenient to change the
grammar being parsed. Any
change, even a minor one, may
force parsing procedures to be

253CS 536 Spring 2015 ©

reprogrammed, as productions
and predict sets are modified.
To a less extent, recursive
descent parsing is less efficient
than it might be, since
subprograms are called just to
match a single token or to
recognize a righthand side.

An alternative to parsing
procedures is to encode all
prediction in a parsing table. A
pre- programed driver program
can use a parse table (and list of
productions) to parse any LL(1)
grammar.
If a grammar is changed, the
parse table and list of productions
will change, but the driver need
not be changed.

254CS 536 Spring 2015 ©

LL(1) Parse Tables
An LL(1) parse table, T, is a two-
dimensional array. Entries in T are
production numbers or blank
(error) entries.
T is indexed by:
• A, a non- terminal. A is the non-

terminal we want to expand.

• CT, the current token that is to be
matched.

• T[A][CT] = A → X1...Xn
if CT is in Predict(A → X1...Xn)
T[A][CT] = error
if CT predicts no production with A

as its lefthand side

255CS 536 Spring 2015 ©

CSX-lite Example
Production Predict Set

1 Prog → { Stmts } Eof {

2 Stmts → Stmt Stmts id if
3 Stmts → λ }

4 Stmt → id = Expr ; id

5 Stmt → if (Expr) Stmt if
6 Expr → id Etail id

7 Etail → + Expr +

8 Etail → - Expr -
9 Etail → λ) ;

{ } if () id = + - ; eof
Prog 1

Stmts 3 2 2

Stmt 5 4

Expr 6

Etail 9 7 8 9

256CS 536 Spring 2015 ©

LL(1) Parser Driver
Here is the driver we’ll use with
the LL(1) parse table. We’ll also
use a parse stack that remembers
symbols we have yet to match.

void LLDriver(){
Push(StartSymbol);
while(! stackEmpty()){
//Let X=Top symbol on parse stack
//Let CT = current token to match

if (isTerminal(X)) {
match(X); //CT is updated
pop(); //X is updated

} else if (T[X][CT] != Error){
//Let T[X][CT] = X→Y1...Ym
Replace X with

Y1...Ym on parse stack

} else SyntaxError(CT);
}

}

257CS 536 Spring 2015 ©

Example of LL(1) Parsing
We’ll again parse
{ a = b + c; } Eof

We start by placing Prog (the start
symbol) on the parse stack.

Parse Stack Remaining Input
Prog { a = b + c; } Eof

{
Stmts
}
Eof

{ a = b + c; } Eof

Stmts
}
Eof

a = b + c; } Eof

Stmt
Stmts
}
Eof

a = b + c; } Eof

258CS 536 Spring 2015 ©

id
=
Expr
;
Stmts
}
Eof

a = b + c; } Eof

=
Expr
;
Stmts
}
Eof

 = b + c; } Eof

Expr
;
Stmts
}
Eof

 b + c; } Eof

id
Etail
;
Stmts
}
Eof

 b + c; } Eof

Parse Stack Remaining Input

259CS 536 Spring 2015 ©

Etail
;
Stmts
}
Eof

 + c; } Eof

+
Expr
;
Stmts
}
Eof

 + c; } Eof

Expr
;
Stmts
}
Eof

 c; } Eof

id
Etail
;
Stmts
}
Eof

 c; } Eof

Parse Stack Remaining Input

260CS 536 Spring 2015 ©

Etail
;
Stmts
}
Eof

; } Eof

;
Stmts
}
Eof

; } Eof

Stmts
}
Eof

} Eof

}
Eof

} Eof

Eof Eof

Done! All input matched

Parse Stack Remaining Input

261CS 536 Spring 2015 ©

Syntax Errors in LL(1)
Parsing

In LL(1) parsing, syntax errors
are automatically detected as
soon as the first illegal token is
seen.
How? When an illegal token is
seen by the parser, either it
fetches an error entry from the
LL(1) parse table or it fails to
match an expected token.
Let’s see how the following
illegal CSX- lite program is
parsed:
{ b + c = a; } Eof

(Where should the first syntax
error be detected?)

262CS 536 Spring 2015 ©

Parse Stack Remaining Input
Prog { b + c = a; } Eof

{
Stmts
}
Eof

{ b + c = a; } Eof

Stmts
}
Eof

b + c = a; } Eof

Stmt
Stmts
}
Eof

b + c = a; } Eof

id
=
Expr
;
Stmts
}
Eof

b + c = a; } Eof

263CS 536 Spring 2015 ©

=
Expr
;
Stmts
}
Eof

 + c = a; } Eof

Current token (+) fails
to match expected
token (=)!

 + c = a; } Eof

Parse Stack Remaining Input

264CS 536 Spring 2015 ©

How do LL(1) Parsers Build
Syntax Trees?

So far our LL(1) parser has acted
like a recognizer. It verifies that
input token are syntactically
correct, but it produces no
output.
Building complete (concrete)
parse trees automatically is fairly
easy.
As tokens and non- terminals are
matched, they are pushed onto a
second stack, the semantic stack.
At the end of each production, an
action routine pops off n items
from the semantic stack (where n
is the length of the production’s
righthand side). It then builds a
syntax tree whose root is the

265CS 536 Spring 2015 ©

lefthand side, and whose children
are the n items just popped off.

For example, for production
Stmt → id = Expr ;

the parser would include an action
symbol after the “;” whose actions
are:
P4 = pop(); // Semicolon token
P3 = pop(): // Syntax tree for Expr
P2 = pop(); // Assignment token
P1 = pop(); // Identifier token
Push(new StmtNode(P1,P2,P3,P4));

266CS 536 Spring 2015 ©

Creating Abstract Syntax
Trees

Recall that we prefer that parsers
generate abstract syntax trees,
since they are simpler and more
concise.
Since a parser generator can’t
know what tree structure we want
to keep, we must allow the user to
define “custom” action code, just
as Java CUP does.
We allow users to include “code
snippets” in Java or C. We also
allow labels on symbols so that
we can refer to the tokens and
tress we wish to access. Our
production and action code will
now look like this:

Stmt → id:i = Expr:e ;
{: RESULT = new StmtNode(i,e); :}

267CS 536 Spring 2015 ©

How do We Make Grammars
LL(1)?

Not all grammars are LL(1);
sometimes we need to modify a
grammar’s productions to create
the disjoint Predict sets LL1)
requires.
There are two common problems
in grammars that make unique
prediction difficult or impossible:

1. Common prefixes.
Two or more productions with
the same lefthand side begin
with the same symbol(s).
For example,

Stmt → id = Expr ;
Stmt → id (Args) ;

268CS 536 Spring 2015 ©

2. Left- Recursion
A production of the form

A → A ...
is said to be left- recursive.
When a left- recursive production
is used, a non- terminal is
immediately replaced by itself
(with additional symbols
following).
Any grammar with a left- recursive
production can never be LL(1).
Why?
Assume a non- terminal A reaches
the top of the parse stack, with CT
as the current token. The LL(1)
parse table entry, T[A][CT],
predicts A → A ...
We expand A again, and T[A][CT],
so we predict A → A ... again. We
are in an infinite prediction loop!

269CS 536 Spring 2015 ©

Eliminating Common Prefixes
Assume we have two of more
productions with the same
lefthand side and a common
prefix on their righthand sides:
A → α β | α γ | ... | α δ
We create a new non- terminal, X.
We then rewrite the above
productions into:
A → αX X → β | γ | ... | δ
For example,

Stmt → id = Expr ;
Stmt → id (Args) ;

becomes
Stmt → id StmtSuffix
StmtSuffix → = Expr ;
StmtSuffix → (Args) ;

270CS 536 Spring 2015 ©

Eliminating Left Recursion
Assume we have a non- terminal
that is left recursive:
A → Aα A → β | γ | ... | δ
To eliminate the left recursion, we
create two new non- terminals, N
and T.
We then rewrite the above
productions into:
A → N T N → β | γ | ... | δ
T → α T | λ

271CS 536 Spring 2015 ©

For example,
Expr → Expr + id
Expr → id

becomes
Expr → N T
N → id
T → + id T | λ

This simplifies to:
Expr → id T
T → + id T | λ

272CS 536 Spring 2015 ©

Reading Assignment
Read Sections 6.1 to 6.5.1 of
Crafting a Compiler.

273CS 536 Spring 2015 ©

How does JavaCup Work?
The main limitation of LL(1)
parsing is that it must predict the
correct production to use when it
first starts to match the
production’s righthand side.
An improvement to this approach
is the LALR(1) parsing method
that is used in JavaCUP (and Yacc
and Bison too).
The LALR(1) parser is bottom- up
in approach. It tracks the portion
of a righthand side already
matched as tokens are scanned. It
may not know immediately which
is the correct production to
choose, so it tracks sets of
possible matching productions.

274CS 536 Spring 2015 ©

Configurations
We’ll use the notation

X → A B • C D
to represent the fact that we are
trying to match the production
X → A B • C D with A and B
matched so far.

A production with a “•”
somewhere in its righthand side is
called a configuration.
Our goal is to reach a
configuration with the “dot” at the
extreme right:

X → A B C D •

This indicates that an entire
production has just been
matched.

275CS 536 Spring 2015 ©

Since we may not know which
production will eventually be fully
matched, we may need to track a
configuration set. A configuration
set is sometimes called a state.
When we predict a production, we
place the “dot” at the beginning of
a production:

X → • A B C D
This indicates that the production
may possibly be matched, but no
symbols have actually yet been
matched.
We may predict a λ- production:

X → λ •

When a λ- production is predicted,
it is immediately matched, since λ
can be matched at any time.

276CS 536 Spring 2015 ©

Starting the Parse
At the start of the parse, we know
some production with the start
symbol must be used initially. We
don’t yet know which one, so we
predict them all:

S → • A B C D

S → • e F g

S → • h I
...

277CS 536 Spring 2015 ©

Closure
When we encounter a
configuration with the dot to the
left of a non- terminal, we know
we need to try to match that non-
terminal.
Thus in

X → • A B C D
we need to match some
production with A as its left hand
side.
Which production?
We don’t know, so we predict all
possibilities:

A → • P Q R

A → • s T
...

278CS 536 Spring 2015 ©

The newly added configurations
may predict other non- terminals,
forcing additional productions to
be included. We continue this
process until no additional
configurations can be added.
This process is called closure (of
the configuration set).
Here is the closure algorithm:
ConfigSet Closure(ConfigSet C){

repeat
if (X → a •B d is in C &&

B is a non-terminal)
Add all configurations of

the form B → •g to C)
until (no more configurations

can be added);
return C;

}

279CS 536 Spring 2015 ©

Example of Closure
Assume we have the following
grammar:
S → A b
A → C D
C → D
C → c
D → d

To compute Closure(S → • A b)
we first include all productions
that rewrite A:

A → • C D
Now C productions are included:

C → • D

C → • c

280CS 536 Spring 2015 ©

Finally, the D production is added:

D → • d
The complete configuration set is:

S → • A b

A → • C D

C → • D

C → • c

D → • d
This set tells us that if we want to
match an A, we will need to match
a C, and this is done by matching
a c or d token.

281CS 536 Spring 2015 ©

Shift Operations
When we match a symbol (a
terminal or non- terminal), we
shift the “dot” past the symbol
just matched. Configurations that
don’t have a dot to the left of the
matched symbol are deleted
(since they didn’t correctly
anticipate the matched symbol).
The GoTo function computes an
updated configuration set after a
symbol is shifted:

ConfigSet GoTo(ConfigSet C,Symbol X){
B= φ;
for each configuration f in C{

if (f is of the form A → α•X δ)
 Add A → α X •δ to B;

}
 return Closure(B);
}

282CS 536 Spring 2015 ©

For example, if C is

 S → • A b
A → • C D
C → • D
C → • c
D → • d

and X is C, then GoTo returns

A → C • D
D → • d

283CS 536 Spring 2015 ©

Reduce Actions
When the dot in a configuration
reaches the rightmost position,
we have matched an entire
righthand side. We are ready to
replace the righthand side
symbols with the lefthand side of
the production. The lefthand side
symbol can now be considered
matched.
If a configuration set can shift a
token and also reduce a
production, we have a potential
shift/reduce error.
If we can reduce more than one
production, we have a potential
reduce/reduce error.
How do we decide whether to do a
shift or reduce? How do we
choose among more than one
reduction?

284CS 536 Spring 2015 ©

We examine the next token to see
if it is consistent with the
potential reduce actions.
The simplest way to do this is to
use Follow sets, as we did in LL(1)
parsing.
If we have a configuration

A → α •
we will reduce this production
only if the current token, CT, is in
Follow(A).
This makes sense since if we
reduce α to A, we can’t correctly
match CT if CT can’t follow A.

285CS 536 Spring 2015 ©

Shift/Reduce and Reduce/
Reduce Errors

If we have a parse state that
contains the configurations

A → α •

B → β • a γ
and a in Follow(A) then there is an
unresolvable shift/reduce conflict.
This grammar can’t be parsed.
Similarly, if we have a parse state
that contains the configurations

A → α •

B → β •

and Follow(A) ∩ Follow(B) ≠ φ,
then the parser has an
unresolvable reduce/reduce
conflict. This grammar can’t be
parsed.

286CS 536 Spring 2015 ©

Building Parse States
All the manipulations needed to
build and complete configuration
sets suggest that parsing may be
slow—configuration sets need to
be updated after each token is
matched.
Fortunately, all the configuration
sets we ever will need can be
computed and tabled in advance,
when a tool like Java Cup builds a
parser.
The idea is simple. We first
compute an initial parse state, s0,
that corresponds to predicting
productions that expand the start
symbol. We then just compute
successor states for each token
that might be scanned. A
complete set of states can be
computed. For typical

287CS 536 Spring 2015 ©

programming language
grammars, only a few hundred
states are needed.
Here is the algorithm that builds a
complete set of parse states for a
grammar:

StateSet BuildStates(){
 Let s0=Closure({S → •α, S → •β, ...});

 C={s0};
while (not all states in C are marked){
Choose any unmarked state, s, in C
Mark s;
For each X in

terminals U nonterminals {
if (GoTo(s,X) is not in C)

Add GoTo(s,X) to C;
}
}
return C;
}

288CS 536 Spring 2015 ©

Configuration Sets for CSX-
Lite

State Cofiguration Set

s0 Prog → •{ Stmts } Eof

s1

Prog → { • Stmts } Eof
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s2 Prog → { Stmts •} Eof

s3

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s4 Stmt → id • = Expr ;

s5 Stmt → if • (Expr) Stmt

289CS 536 Spring 2015 ©

s6 Prog → { Stmts } •Eof

s7 Stmts → Stmt Stmts •

s8

Stmt → id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s9

Stmt → if (• Expr) Stmt
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s10 Prog → { Stmts } Eof •

s11
Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

s12 Expr → id •

s13
Stmt → if (Expr •) Stmt
Expr → Expr • + id
Expr → Expr • - id

State Cofiguration Set

290CS 536 Spring 2015 ©

s14 Stmt → id = Expr ; •

s15 Expr → Expr + • id

s16 Expr → Expr - • id

s17
Stmt → if (Expr) • Stmt
Stmt → • id = Expr ;
Stmt → • if (Expr) Stmt

s18 Expr → Expr + id •

s19 Expr → Expr - id •

s20 Stmt → if (Expr) Stmt •

State Cofiguration Set

291CS 536 Spring 2015 ©

Parser Action Table
We will table possible parser
actions based on the current state
(configuration set) and token.
Given configuration set C and
input token T four actions are
possible:
• Reduce i: The i- th production has

been matched.

• Shift: Match the current token.

• Accept: Parse is correct and
complete.

• Error: A syntax error has been
discovered.

292CS 536 Spring 2015 ©

We will let A[C][T] represent the
possible parser actions given
configuration set C and input
token T.
A[C][T] =

{Reduce i | i- th production is A→ α
and A → α • is in C
and T in Follow(A) }

U (If (B → β • T γ is in C)
{Shift} else φ)

This rule simply collects all the
actions that a parser might do
given C and T.
But we want parser actions to be
unique so we require that the
parser action always be unique for
any C and T.

293CS 536 Spring 2015 ©

If the parser action isn’t unique,
then we have a shift/reduce error
or reduce/reduce error. The
grammar is then rejected as
unparsable.
If parser actions are always
unique then we will consider a
shift of EOF to be an accept
action.
An empty (or undefined) action
for C and T will signify that token
T is illegal given configuration set
C.
A syntax error will be signaled.

294CS 536 Spring 2015 ©

LALR Parser Driver
Given the GoTo and parser action
tables, a Shift/Reduce (LALR)
parser is fairly simple:

void LALRDriver(){
 Push(S0);
while(true){
//Let S = Top state on parse stack
//Let CT = current token to match

switch (A[S][CT]) {
case error:

SyntaxError(CT);return;
case accept:

return;
case shift:

push(GoTo[S][CT]);
CT= Scanner();
break;

case reduce i:
//Let prod i = A→Y1...Ym

 pop m states;
//Let S’ = new top state
push(GoTo[S’][A]);
break;

} } }

295CS 536 Spring 2015 ©

Action Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ S

} R3 S R3 R2 R4 R5

if S S R4 S R5

(S

) R8 S R6 R7

id S S S S R4 S S S

= S

+ S R8 S R6 R7

- S R8 S R6 R7

; S R8 R6 R7 R5

eof A

296CS 536 Spring 2015 ©

GoTo Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ 1

} 6

if 5 5 5

(9

) 17

id 4 4 12 12 18 19 4

= 8

+ 15 15

- 16 16

; 14

eof 10

stmts 2 7

stmt 3 3

expr 11 13

297CS 536 Spring 2015 ©

Example of LALR(1) Parsing
We’ll again parse
{ a = b + c; } Eof

We start by pushing state 0 on the
parse stack.

Parse
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { a = b + c; } Eof

1
0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift a = b + c; } Eof

4
1
0

Stmt → id • = Expr ; = b + c; } Eof

8
4
1
0

Stmt → id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

Shift b + c; } Eof

298CS 536 Spring 2015 ©

12
8
4
1
0

Expr → id • Reduce 8 + c; } Eof

11
8
4
1
0

Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift + c; } Eof

15
11
8
4
1
0

Expr → Expr + • id Shift c; } Eof

Parse
Stack Top State Action Remaining Input

299CS 536 Spring 2015 ©

18
15
11
8
4
1
0

Expr → Expr + id • Reduce 6 ; } Eof

11
8
4
1
0

Stmt → id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift ; } Eof

14
11
8
4
1
0

Stmt → id = Expr ; • Reduce 4 } Eof

Parse
Stack Top State Action Remaining Input

300CS 536 Spring 2015 ©

3
1
0

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)
Stmt

Reduce 3 } Eof

7
3
1
0

Stmts → Stmt Stmts • Reduce 2 } Eof

2
1
0

Prog → { Stmts •} Eof Shift } Eof

6
2
1
0

Prog → { Stmts } •Eof Accept Eof

Parse
Stack Top State Action Remaining Input

301CS 536 Spring 2015 ©

Error Detection in LALR
Parsers

In bottom- up, LALR parsers
syntax errors are discovered when
a blank (error) entry is fetched
from the parser action table.
Let’s again trace how the
following illegal CSX- lite program
is parsed:

{ b + c = a; } Eof

Parse
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { b + c = a; } Eof

302CS 536 Spring 2015 ©

1
0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift b + c = a; } Eof

4
1
0

Stmt → id • = Expr ; Error
(blank)

 + c = a; } Eof

Parse
Stack Top State Action Remaining Input

303CS 536 Spring 2015 ©

LALR is More Powerful
Essentially all LL(1) grammars are
LALR(1) plus many more.
Grammar constructs that confuse
LL(1) are readily handled.
• Common prefixes are no problem.

Since sets of configurations are
tracked, more than one prefix can
be followed. For example, in

Stmt → id = Expr ;
Stmt → id (Args) ;

after we match an id we have

Stmt → id • = Expr ;
Stmt → id • (Args) ;

The next token will tell us which
production to use.

304CS 536 Spring 2015 ©

• Left recursion is also not a
problem. Since sets of
configurations are tracked, we can
follow a left- recursive production
and all others it might use. For
example, in

Expr → • Expr + id
Expr → • id

we can first match an id:

Expr → id •

Then the Expr is recognized:

Expr → Expr • + id

The left- recursion is handled!

305CS 536 Spring 2015 ©

• But ambiguity will still block
construction of an LALR parser.
Some shift/reduce or reduce/
reduce conflict must appear. (Since
two or more distinct parses are
possible for some input).
Consider our original productions
for if- then and if- then- else
statements:

Stmt → if (Expr) Stmt •

Stmt → if (Expr) Stmt • else Stmt

Since else can follow Stmt, we
have an unresolvable shift/reduce
conflict.

306CS 536 Spring 2015 ©

Grammar Engineering
Though LALR grammars are very
general and inclusive, sometimes
a reasonable set of productions is
rejected due to shift/reduce or
reduce/reduce conflicts.
In such cases, the grammar may
need to be “engineered” to allow
the parser to operate.
A good example of this is the
definition of MemberDecls in CSX.
A straightforward definition is

MemberDecls → FieldDecls MethodDecls
 FieldDecls → FieldDecl FieldDecls
 FieldDecls → λ
MethodDecls → MethodDecl MethodDecls
 MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

307CS 536 Spring 2015 ©

When we predict MemberDecls we
get:

MemberDecls → • FieldDecls MethodDecls
 FieldDecls → • FieldDecl FieldDecls
 FieldDecls → λ•
FieldDecl → • int id ;

Now int follows FieldDecls since
MethodDecls ⇒+ int ...
Thus an unresolvable shift/reduce
conflict exists.
The problem is that int is
derivable from both FieldDecls
and MethodDecls, so when we see
an int, we can’t tell which way to
parse it (and FieldDecls → λ
requires we make an immediate
decision!).

308CS 536 Spring 2015 ©

If we rewrite the grammar so that
we can delay deciding from where
the int was generated, a valid
LALR parser can be built:

MemberDecls → FieldDecl MemberDecls
MemberDecls → MethodDecls
MethodDecls → MethodDecl MethodDecls
 MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

When MemberDecls is predicted
we have
MemberDecls → • FieldDecl MemberDecls
MemberDecls → • MethodDecls
MethodDecls → •MethodDecl MethodDecls
MethodDecls → λ •
FieldDecl → • int id ;
MethodDecl → • int id () ; Body

309CS 536 Spring 2015 ©

Now Follow(MethodDecls) =
Follow(MemberDecls) = “}”, so we
have no shift/reduce conflict.
After int id is matched, the next
token (a “;” or a “(“) will tell us
whether a FieldDecl or a
MethodDecl is being matched.

310CS 536 Spring 2015 ©

Properties of LL and LALR
Parsers
• Each prediction or reduce action is

guaranteed correct. Hence the entire
parse (built from LL predictions or
LALR reductions) must be correct.

This follows from the fact that LL
parsers allow only one valid prediction
per step. Similarly, an LALR parser
never skips a reduction if it is
consistent with the current token (and
all possible reductions are tracked).

311CS 536 Spring 2015 ©

• LL and LALR parsers detect an syntax
error as soon as the first invalid token
is seen.

Neither parser can match an invalid
program prefix. If a token is matched
it must be part of a valid program
prefix. In fact, the prediction made or
the stacked configuration sets show a
possible derivation of the token
accepted so far.

• All LL and LALR grammars are
unambiguous.

LL predictions are always unique and
LALR shift/reduce or reduce/reduce
conflicts are disallowed. Hence only
one valid derivation of any token
sequence is possible.

312CS 536 Spring 2015 ©

• All LL and LALR parsers require only
linear time and space (in terms of the
number of tokens parsed).

The parsers do only fixed work per
node of the concrete parse tree, and
the size of this tree is linear in terms
of the number of leaves in it (even with
λ- productions included!).

313CS 536 Spring 2015 ©

Reading Assignment
Read Chapter 8 of Crafting a
Compiler.

314CS 536 Spring 2015 ©

Symbol Tables in CSX
CSX is designed to make symbol
tables easy to create and use.
There are three places where a
new scope is opened:
• In the class that represents the

program text. The scope is opened
as soon as we begin processing the
classNode (that roots the entire
program). The scope stays open
until the entire class (the whole
program) is processed.

• When a methodDeclNode is
processed. The name of the
method is entered in the top- level
(global) symbol table. Declarations
of parameters and locals are placed
in the method’s symbol table. A
method’s symbol table is closed
after all the statements in its body
are type checked.

315CS 536 Spring 2015 ©

• When a blockNode is processed.
Locals are placed in the block’s
symbol table. A block’s symbol
table is closed after all the
statements in its body are type
checked.

316CS 536 Spring 2015 ©

CSX Allows no Forward
References

This means we can do type-
checking in one pass over the
AST. As declarations are
processed, their identifiers are
added to the current (innermost)
symbol table. When a use of an
identifier occurs, we do an
ordinary block- structured lookup,
always using the innermost
declaration found. Hence in

int i = j;
int j = i;

the first declaration initializes i to
the nearest non- local definition of
j.
The second declaration initializes
j to the current (local) definition
of i.

317CS 536 Spring 2015 ©

Forward References Require
Two Passes

If forward references are allowed,
we can process declarations in
two passes.
First we walk the AST to establish
symbol tables entries for all local
declarations. No uses (lookups)
are handled in this passes.
On a second complete pass, all
uses are processed, using the
symbol table entries built on the
first pass.
Forward references make type
checking a bit trickier, as we may
reference a declaration not yet
fully processed.
In Java, forward references to
fields within a class are allowed.
Thus in

318CS 536 Spring 2015 ©

class Duh {
int i = j;
int j = i;
}

a Java compiler must recognize
that the initialization of i is to the
j field and that the j declaration
is incomplete (Java forbids
uninitialized fields or variables).
Forward references do allow
methods to be mutually recursive.
That is, we can let method a call
b, while b calls a.
In CSX this is impossible!
(Why?)

319CS 536 Spring 2015 ©

Incomplete Declarations
Some languages, like C+ + , allow
incomplete declarations.
First, part of a declaration (usually
the header of a procedure or
method) is presented.
Later, the declaration is
completed.
For example (in C+ +):
class C {
 int i;
 public:
 int f();
};
int C::f(){return i+1;}

320CS 536 Spring 2015 ©

Incomplete declarations solve
potential forward reference
problems, as you can declare
method headers first, and bodies
that use the headers later.
Headers support abstraction and
separate compilation too.
In C and C+ + , it is common to
use a #include statement to add
the headers (but not bodies) of
external or library routines you
wish to use.
C+ + also allows you to declare a
class by giving its fields and
method headers first, with the
bodies of the methods declared
later. This is good for users of the
class, who don’t always want to
see implementation details.

321CS 536 Spring 2015 ©

Classes, Structs and Records
The fields and methods declared
within a class, struct or record are
stored within a individual symbol
table allocated for its
declarations.
Member names must be unique
within the class, record or struct,
but may clash with other visible
declarations. This is allowed
because member names are
qualified by the object they occur
in.
Hence the reference x.a means
look up x, using normal scoping
rules. Object x should have a type
that includes local fields. The type
of x will include a pointer to the
symbol table containing the field
declarations. Field a is looked up
in that symbol table.

322CS 536 Spring 2015 ©

Chains of field references are no
problem.
For example, in Java
System.out.println

is commonly used.
System is looked up and found to
be a class in one of the standard
Java packages (java.lang). Class
System has a static member out
(of type PrintStream) and
PrintStream has a member
println.

323CS 536 Spring 2015 ©

Internal and External Field
Access

Within a class, members may be
accessed without qualification.
Thus in
class C {

static int i;
void subr() {

int j = i;
}

}

field i is accessed like an ordinary
non- local variable.
To implement this, we can treat
member declarations like an
ordinary scope in a block-
structured symbol table.

324CS 536 Spring 2015 ©

When the class definition ends, its
symbol table is popped and
members are referenced through
the symbol table entry for the
class name.
This means a simple reference to
i will no longer work, but C.i will
be valid.

In languages like C+ + that allow
incomplete declarations, symbol
table references need extra care.
In

class C {
 int i;
 public:
 int f();
};
int C::f(){return i+1;}

325CS 536 Spring 2015 ©

when the definition of f() is
completed, we must restore C’s
field definitions as a containing
scope so that the reference to i in
i+1 is properly compiled.

326CS 536 Spring 2015 ©

Public and Private Access
C+ + and Java (and most other
object- oriented languages) allow
members of a class to be marked
public or private.
Within a class the distinction is
ignored; all members may be
accessed.
Outside of the class, when a
qualified access like C.i is
required, only public members
can be accessed.
This means lookup of class
members is a two- step process.
First the member name is looked
up in the symbol table of the
class. Then, the public/private
qualifier is checked. Access to
private members from outside
the class generates an error
message.

327CS 536 Spring 2015 ©

C+ + and Java also provide a
protected qualifier that allows
access from subclasses of the
class containing the member
definition.
When a subclass is defined, it
“inherits” the member definitions
of its ancestor classes. Local
definitions may hide inherited
definitions. Moreover, inherited
member definitions must be
public or protected; private
definitions may not be directly
accessed (though they are still
inherited and may be indirectly
accessed through other inherited
definitions).
Java also allows “blank” access
qualifiers which allow public
access by all classes within a
package (a collection of classes).

328CS 536 Spring 2015 ©

Packages and Imports
Java allows packages which group
class and interface definitions into
named units.
A package requires a symbol table
to access members. Thus a
reference
java.util.Vector
locates the package java.util
(typically using a CLASSPATH) and
looks up Vector within it.
Java supports import statements
that modify symbol table lookup
rules.
A single class import, like
import java.util.Vector;
brings the name Vector into the
current symbol table (unless a

329CS 536 Spring 2015 ©

definition of Vector is already
present).
An “import on demand” like
import java.util.*;
will lookup identifiers in the
named packages after explicit
user declarations have been
checked.

330CS 536 Spring 2015 ©

Classfiles and Object Files
Class files (“.class” files, produced
by Java compilers) and object files
(“.o” files, produced by C and C+ +
compilers) contain internal
symbol tables.
When a field or method of a Java
class is accessed, the JVM uses
the classfile’s internal symbol
table to access the symbol’s value
and verify that type rules are
respected.
When a C or C+ + object file is
linked, the object file’s internal
symbol table is used to determine
what external names are
referenced, and what internally
defined names will be exported.

331CS 536 Spring 2015 ©

C, C+ + and Java all allow users to
request that a more complete
symbol table be generated for
debugging purposes. This makes
internal names (like local variable)
visible so that a debugger can
display source level information
while debugging.

332CS 536 Spring 2015 ©

Overloading
A number of programming
languages, including CSX, Java
and C+ + , allow method and
subprogram names to be
overloaded.
This means several methods or
subprograms may share the same
name, as long as they differ in the
number or types of parameters
they accept. For example,
class C {
 int x;
 public static int sum(int v1,

 int v2) {
 return v1 + v2;
 }
 public int sum(int v3) {
 return x + v3;
 }
}

333CS 536 Spring 2015 ©

For overloaded identifiers the
symbol table must return a list of
valid definitions of the identifier.
Semantic analysis (type checking)
then decides which definition to
use.
In the above example, while
checking
(new C()).sum(10);
both definitions of sum are
returned when it is looked up.
Since one argument is provided,
the definition that uses one
parameter is selected and
checked.
A few languages (like Ada) allow
overloading to be disambiguated
on the basis of a method’s result
type. Algorithms that do this
analysis are known, but are fairly
complex.

334CS 536 Spring 2015 ©

Overloaded Operators
A few languages, like C+ + , allow
operators to be overloaded.
This means users may add new
definitions for existing operators,
though they may not create new
operators or alter existing
precedence and associativity
rules.
(Such changes would force
changes to the scanner or parser.)
For example,
class complex{

float re, im;
complex operator+(complex d){

complex ans;
ans.re = d.re+re;
ans.im = d.im+im;
return ans;

} }
complex c,d; c=c+d;

335CS 536 Spring 2015 ©

During type checking of an
operator, all visible definitions of
the operator (including
predefined definitions) are
gathered and examined.
Only one definition should
successfully pass type checks.
Thus in the above example, there
may be many definitions of +, but
only one is defined to take
complex operands.

336CS 536 Spring 2015 ©

Contextual Resolution
Overloading allows multiple
definitions of the same kind of
object (method, procedure or
operator) to co- exist.
Programming languages also
sometimes allow reuse of the
same name in defining different
kinds of objects. Resolution is by
context of use.
For example, in Java, a class name
may be used for both the class
and its constructor. Hence we see
C cvar = new C(10);
In Pascal, the name of a function
is also used for its return value.
Java allows rather extensive reuse
of an identifier, with the same
identifier potentially denoting a
class (type), a class constructor, a

337CS 536 Spring 2015 ©

package name, a method and a
field.
For example,
class C {

double v;

C(double f) {v=f;}

}
class D {

int C;
double C() {return 1.0;}

C cval = new C(C+C());
}

At type- checking time we
examine all potential definitions
and use that definition that is
consistent with the context of
use. Hence new C() must be a
constructor, +C() must be a
function call, etc.

338CS 536 Spring 2015 ©

Allowing multiple definitions to
co- exist certainly makes type
checking more complicated than
in other languages.
Whether such reuse benefits
programmers is unclear; it
certainly violates Java’s “keep it
simple” philosophy.

339CS 536 Spring 2015 ©

Type and Kind Information in
CSX

In CSX symbol table entries and in
AST nodes for expressions, it is
useful to store type and kind
information.
This information is created and
tested during type checking. In
fact, most of type checking
involves deciding whether the
type and kind values for the
current construct and its
components are valid.
Possible values for type include:
• Integer (int)
• Boolean (bool)
• Character (char)
• Void
Void is used to represent objects

340CS 536 Spring 2015 ©

that have no declared type (e.g., a
label or procedure).

• Error
Error is used to represent objects
that should have a type, but don’t
(because of type errors). Error
types suppress further type
checking, preventing cascaded
error messages.

• Unknown
Unknown is used as an initial value,
before the type of an object is
determined.

341CS 536 Spring 2015 ©

Possible values for kind
include:
• Var (a local variable or field that

may be assigned to)

• Value (a value that may be read
but not changed)

• Array

• String
• ScalarParm (a by- value scalar

parameter)

• ArrayParm (a by- reference array
parameter)

• Method (a procedure or function)

• Label (on a while loop)

342CS 536 Spring 2015 ©

Most combinations of type and
kind represent something in CSX.
Hence type==Boolean and
kind==Value is a bool constant
or expression.
type==Void and kind==Method
is a procedure (a method that
returns no value).
Type checking procedure and
function declarations and calls
requires some care.
When a method is declared, you
should build a linked list of
(type,kind) pairs, one for each
declared parameter.
When a call is type checked you
should build a second linked list
of (type,kind) pairs for the
actual parameters of the call.

343CS 536 Spring 2015 ©

You compare the lengths of the
list of formal and actual
parameters to check that the
correct number of parameters has
been passed.
You then compare corresponding
formal and actual parameter pairs
to check if each individual actual
parameter correctly matches its
corresponding formal parameter.
For example, given
p(int a, bool b[]){ ...

and the call
p(1,false);

you create the parameter list
(Integer, ScalarParm),
(Boolean, ArrayParm)
for p’s declaration and the
parameter list
(Integer,Value),(Boolean, Value)

344CS 536 Spring 2015 ©

for p’s call.
Since a Value can’t match an
ArrayParm, you know that the
second parameter in p’s call is
incorrect.

345CS 536 Spring 2015 ©

Type Checking Simple
Variable Declarations

Type checking steps:
1. Check that identNode.idname is

not already in the symbol table.
2. Enter identNode.idname into

symbol table with
type = typeNode.type and
kind = Variable.

varDeclNode

identNode typeNode

346CS 536 Spring 2015 ©

Type Checking Initialized
Variable Declarations

Type checking steps:
1. Check that identNode.idname is

not already in the symbol table.
2. Type check initial value

expression.
3. Check that the initial value’s

type is typeNode.type

varDeclNode

identNode typeNode
expr tree

347CS 536 Spring 2015 ©

4. Check that the initial value’s
kind is scalar (Variable, Value
or ScalarParm).

5. Enter identNode.idname into
symbol table with
type = typeNode.type and
kind = Variable.

348CS 536 Spring 2015 ©

Type Checking Const Decls

Type checking steps:
1. Check that identNode.idname is

not already in the symbol table.

2. Type check the const value expr.
3. Check that the const value’s

kind is scalar (Variable, Value
or ScalarParm).

4. Enter identNode.idname into
symbol table with type =
constValue.type and
kind = Value.

constDeclNode

identNode

expr tree

349CS 536 Spring 2015 ©

Type Checking IdentNodes

Type checking steps:
1. Lookup identNode.idname in the

symbol table; error if absent.
2. Copy symbol table entry’s type

and kind information into the
identNode.

3. Store a link to the symbol table
entry in the identNode (in case
we later need to access symbol
table information).

identNode

350CS 536 Spring 2015 ©

Type Checking NameNodes

Type checking steps:
1. Type check the identNode.

2. If the subscriptVal is a null
node, copy the identNode’s
type and kind values into the
nameNode and return.

3. Type check the subscriptVal.
4. Check that identNode’s kind is

an array.

nameNode

identNode
expr tree

351CS 536 Spring 2015 ©

5. Check that subscriptVal’s kind
is scalar and type is integer or
character.

6. Set the nameNode’s type to the
identNode’s type and the
nameNode’s kind to Variable.

352CS 536 Spring 2015 ©

Type Checking Binary
Operators

Type checking steps:
1. Type check left and right

operands.
2. Check that left and right

operands are both scalars.
3. binaryOpNode.kind = Value.

binaryOpNode

expr treeexpr tree

353CS 536 Spring 2015 ©

4. If binaryOpNode.operator is a
plus, minus, star or slash:
(a) Check that left and right

operands have an arithmetic
type (integer or character).
(b) binaryOpNode.type =
Integer

5. If binaryOpNode.operator is an
and or is an or:
(a) Check that left and right

operands have a boolean type.
(b) binaryOpNode.type =
Boolean.

6. If binaryOpNode.operator is a
relational operator:
(a) Check that both left and

right operands have an
arithmetic type or both have a
boolean type.
(b) binaryOpNode.type =
Boolean.

354CS 536 Spring 2015 ©

Type Checking Assignments

Type checking steps:
1. Type check the nameNode.

2. Type check the expression tree.
3. Check that the nameNode’s kind

is assignable (Variable, Array,
ScalarParm, or ArrayParm).

4. If the nameNode’s kind is scalar
then check the expression tree’s
kind is also scalar and that both
have the same type. Then return.

asgNode

nameNode
expr tree

355CS 536 Spring 2015 ©

5. If the nameNode’s and the
expression tree’s kinds are both
arrays and both have the same
type, check that the arrays have
the same length. (Lengths of
array parms are checked at run-
time). Then return.

6. If the nameNode’s kind is array
and its type is character and the
expression tree’s kind is string,
check that both have the same
length. (Lengths of array parms
are checked at run- time). Then
return.

7. Otherwise, the expression may
not be assigned to the nameNode.

356CS 536 Spring 2015 ©

Type Checking While Loops

Type checking steps:
1. Type check the condition (an

expr tree).

2. Check that the condition’s type
is Boolean and kind is scalar.

3. If the label is a null node then
type check the stmtNode (the
loop body) and return.

whileNode

identNode

expr tree

stmtNode

357CS 536 Spring 2015 ©

4.If there is a label (an identNode)
then:
(a) Check that the label is not
already present in the symbol
table.
(b) If it isn’t, enter label in the
symbol table with
kind=VisibleLabel
and type= void.
(c) Type check the stmtNode (the
loop body).
(d) Change the label’s kind (in
the symbol table) to
HiddenLabel.

358CS 536 Spring 2015 ©

Type Checking Breaks and
Continues

Type checking steps:
1. Check that the identNode is

declared in the symbol table.

2. Check that identNode’s kind is
VisibleLabel. If identNode’s
kind is HiddenLabel issue a
special error message.

breakNode

identNode

359CS 536 Spring 2015 ©

Type Checking Returns

It is useful to arrange that a static
field named currentMethod will
always point to the methodDeclNode
of the method we are currently
checking.
Type checking steps:

1. If returnVal is a null node, check
that currentMethod.returnType
is Void.

2. If returnVal (an expr) is not null
then check that returnVal’s kind
is scalar and returnVal’s type is
currentMethod.returnType.

returnNode

expr tree

360CS 536 Spring 2015 ©

Type Checking Method
Declarations (no Overloading)

Type checking steps:
1. Create a new symbol table entry

m, with type = typeNode.type
and kind = Method.

2. Check that identNode.idname is
not already in the symbol table;
if it isn’t, enter m using
identNode.idname.

3. Create a new scope in the
symbol table.

4. Set currentMethod = this
methodDeclNode.

methodDeclNode

identNode typeNode
args tree decls tree stmts tree

361CS 536 Spring 2015 ©

5. Type check the args subtree.
6. Build a list of the symbol table

nodes corresponding to the args
subtree; store it in m.

7. Type check the decls subtree.
8. Type check the stmts subtree.

9. Close the current scope at the
top of the symbol table.

362CS 536 Spring 2015 ©

Type Checking Method Calls
(no Overloading)

We consider calls of procedures in a
statement. Calls of functions in an
expression are very similar.
Type checking steps:

1. Check that identNode.idname is
declared in the symbol table. Its
type should be Void and kind
should be Method.

callNode

identNode

args tree

363CS 536 Spring 2015 ©

2. Type check the args subtree.
3. Build a list of the expression

nodes found in the args subtree.
4. Get the list of parameter

symbols declared for the
method (stored in the method’s
symbol table entry).

5. Check that the arguments list
and the parameter symbols list
both have the same length.

6. Compare each argument node
with its corresponding
parameter symbol:
(a) Both must have the same type.
(b) A Variable, Value, or
ScalarParm kind in an argument
node matches a ScalarParm
parameter. An Array or ArrayParm
kind in an argument node
matches an ArrayParm
parameter.

364CS 536 Spring 2015 ©

Reading Assignment
Read Chapters 9 and 12 of
Crafting a Compiler.

365CS 536 Spring 2015 ©

Virtual Memory & Run-Time
Memory Organization

The compiler decides how data
and instructions are placed in
memory.
It uses an address space provided
by the hardware and operating
system.
This address space is usually
virtual—the hardware and
operating system map
instruction- level addresses to
“actual” memory addresses.
Virtual memory allows:
• Multiple processes to run in

private, protected address spaces.

• Paging can be used to extend
address ranges beyond actual
memory limits.

366CS 536 Spring 2015 ©

Run-Time Data Structures

Static Structures
For static structures, a fixed
address is used throughout
execution.
This is the oldest and simplest
memory organization.
In current compilers, it is used
for:
• Program code (often read- only &

sharable).

• Data literals (often read- only &
sharable).

• Global variables.

• Static variables.

367CS 536 Spring 2015 ©

Stack Allocation
Modern programming languages
allow recursion, which requires
dynamic allocation.
Each recursive call allocates a new
copy of a routine’s local variables.
The number of local data
allocations required during
program execution is not known
at compile- time.
To implement recursion, all the
data space required for a method
is treated as a distinct data area
that is called a frame or activation
record.
Local data, within a frame, is
accessible only while a
subprogram is active.

368CS 536 Spring 2015 ©

In mainstream languages like C,
C+ + and Java, subprograms must
return in a stack- like manner—
the most recently called
subprogram will be the first to
return.
A frame is pushed onto a run-
time stack when a method is
called (activated).
When it returns, the frame is
popped from the stack, freeing
the routine’s local data.
As an example, consider the
following C subprogram:

p(int a) {
double b;
double c[10];
b = c[a] * 2.51;

}

369CS 536 Spring 2015 ©

Procedure p requires space for the
parameter a as well as the local
variables b and c.
It also needs space for control
information, such as the return
address.
The compiler records the space
requirements of a method.
The offset of each data item
relative to the start of the frame is
stored in the symbol table.
The total amount of space
needed, and thus the size of the
frame, is also recorded.
Assume p’s control information
requires 8 bytes (this size is
usually the same for all methods).
Assume parameter a requires 4
bytes, local variable b requires 8
bytes, and local array c requires
80 bytes.

370CS 536 Spring 2015 ©

Many machines require that word
and doubleword data be aligned,
so it is common to pad a frame so
that its size is a multiple of 4 or 8
bytes.
This guarantees that at all times
the top of the stack is properly
aligned.

Here is p’s frame:

Control Information

Space for a

Space for b

Space for c

Padding

Offset = 0

Offset = 8

Offset = 12

Offset = 20

Total size= 104

371CS 536 Spring 2015 ©

Within p, each local data object is
addressed by its offset relative to
the start of the frame.
This offset is a fixed constant,
determined at compile- time.
We normally store the start of the
frame in a register, so each piece
of data can be addressed as a
(Register, Offset) pair, which is a
standard addressing mode in
almost all computer architectures.
For example, if register R points
to the beginning of p’s frame,
variable b can be addressed as
(R,12), with 12 actually being
added to the contents of R at run-
time, as memory addresses are
evaluated.

372CS 536 Spring 2015 ©

Normally, the literal 2.51 of
procedure p is not stored in p’s
frame because the values of local
data that are stored in a frame
disappear with it at the end of a
call.
It is easier and more efficient to
allocate literals in a static area,
often called a literal pool or
constant pool. Java uses a
constant pool to store literals,
type, method and interface
information as well as class and
field names.

373CS 536 Spring 2015 ©

Accessing Frames at Run-
Time

During execution there can be
many frames on the stack. When a
procedure A calls a procedure B, a
frame for B’s local variables is
pushed on the stack, covering A’s
frame. A’s frame can’t be popped
off because A will resume
execution after B returns.
For recursive routines there can
be hundreds or even thousands of
frames on the stack. All frames
but the topmost represent
suspended subroutines, waiting
for a call to return.
The topmost frame is active; it is
important to access it directly.
The active frame is at the top of
the stack, so the stack top

374CS 536 Spring 2015 ©

register could be used to access
it.
The run- time stack may also be
used to hold data other than
frames.
It is unwise to require that the
currently active frame always be
at exactly the top of the stack.
Instead a distinct register, often
called the frame pointer, is used
to access the current frame.
This allows local variables to be
accessed directly as offset +
frame pointer, using the indexed
addressing mode found on all
modern machines.

375CS 536 Spring 2015 ©

Consider the following recursive
function that computes factorials.
int fact(int n) {
if (n > 1)
return n * fact(n-1);

else
return 1;

}

376CS 536 Spring 2015 ©

The run- time stack
corresponding to the call
fact(3) (when the call of
fact(1) is about to return) is:

We place a slot for the function’s
return value at the very beginning
of the frame.
Upon return, the return value is
conveniently placed on the stack,
just beyond the end of the caller’s
frame. Often compilers return
scalar values in specially

Control Information

Space for n = 3

Return Value

Control Information

Space for n = 1

Return Value = 1

Control Information

Space for n = 2

Return Value

Top of Stack

Frame Pointer

377CS 536 Spring 2015 ©

designated registers, eliminating
unnecessary loads and stores. For
values too large to fit in a register
(arrays or objects), the stack is
used.
When a method returns, its frame
is popped from the stack and the
frame pointer is reset to point to
the caller’s frame.
In simple cases this is done by
adjusting the frame pointer by the
size of the current frame.

378CS 536 Spring 2015 ©

Dynamic Links
Because the stack may contain
more than just frames (e.g.,
function return values or registers
saved across calls), it is common
to save the caller’s frame pointer
as part of the callee’s control
information.
Each frame points to its caller’s
frame on the stack. This pointer is
called a dynamic link because it
links a frame to its dynamic (run-
time) predecessor.

379CS 536 Spring 2015 ©

The run- time stack corresponding
to a call of fact(3), with dynamic
links included, is:

Dynamic Link = Null

Space for n = 3

Return Value

Dynamic Link

Space for n = 1

Return Value = 1

Dynamic Link

Space for n = 2

Return Value

Top of Stack

Frame Pointer

380CS 536 Spring 2015 ©

Classes and Objects
C, C+ + and Java do not allow
procedures or methods to nest.
A procedure may not be declared
within another procedure.
This simplifies run- time data
access—all variables are either
global or local.
Global variables are statically
allocated. Local variables are part
of a single frame, accessed
through the frame pointer.
Java and C+ + allow classes to
have member functions that have
direct access to instance
variables.

381CS 536 Spring 2015 ©

Consider:
class K {
int a;
int sum(){
int b;
return a+b;

} }
Each object that is an instance of
class K contains a member
function sum. Only one translation
of sum is created; it is shared by
all instances of K.
When sum executes it needs two
pointers to access local and
object- level data.
Local data, as usual, resides in a
frame on the run- time stack.

382CS 536 Spring 2015 ©

Data values for a particular
instance of K are accessed
through an object pointer (called
the this pointer in Java and
C+ +). When obj.sum() is called,
it is given an extra implicit
parameter that a pointer to obj.

When a+b is computed, b, a local
variable, is accessed directly
through the frame pointer. a, a
member of object obj, is
accessed indirectly through the
object pointer that is stored in the
frame (as all parameters to a
method are).

Object Pointer

Space for b

Control Information

Rest of Stack

Top of Stack

Frame Pointer

Space for a

Object Obj

383CS 536 Spring 2015 ©

C+ + and Java also allow
inheritance via subclassing. A new
class can extend an existing class,
adding new fields and adding or
redefining methods.
A subclass D, of class C, maybe be
used in contexts expecting an
object of class C (e.g., in method
calls).
This is supported rather easily—
objects of class D always contain a
class C object within them.
If C has a field F within it, so does
D. The fields D declares are merely
appended at the end of the
allocations for C.
As a result, access to fields of C
within a class D object works
perfectly.

384CS 536 Spring 2015 ©

Jump Code
The JVM code we generate for
the following if statement is
quite simple and efficient.
if (B)

A = 1;
else
 A = 0;

iload 2 ; Push local #2 (B) onto stack
ifeq L1 ; Goto L1 if B is 0 (false)
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store stk top into local #1(A)
goto L2 ; Skip around else part

L1: iconst_0 ; Push literal 0 onto stack
istore 1 ; Store stk top into local #1(A)

L2:

385CS 536 Spring 2015 ©

In contrast, the code generated
for
if (F == G)

A = 1;
else
 A = 0;

(where F and G are local
variables of type integer)
is significantly more complex:
iload 4 ; Push local #4 (F) onto stack

iload 5 ; Push local #5 (G) onto stack
if_icmpeq L1 ; Goto L1 if F == G
iconst_0 ; Push 0 (false) onto stack
goto L2 ; Skip around next instruction

L1:
iconst_1 ; Push 1 (true) onto the stack

L2:
ifeq L3 ; Goto L3 if F==G is 0 (false)
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store top into local #1(A)
goto L4 ; Skip around else part

L3:
iconst_0 ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

L4:

386CS 536 Spring 2015 ©

The problem is that in the JVM
relational operators don’t store
a boolean value (0 or 1) onto
the stack. Rather, instructions
like if_icmpeq do a conditional
branch.
So we branch to a push of 0 or
1 just so we can test the value
and do a second conditional
branch to the else part of the
conditional.
Why did the JVM designers
create such an odd way of
evaluating relational operators?

A moment’s reflection shows
that we rarely actually want the
value of a relational or logical
expression. Rather, we usually

387CS 536 Spring 2015 ©

only want to do a conditional
branch based on the
expression’s value in the
context of a conditional or
looping statement.

Jump code is an alternative
representation of boolean
values. Rather than placing a
boolean value directly on the
stack, we generate a
conditional branch to either a
true label or a false label.
These labels are defined at the
places where we wish execution
to proceed once the boolean
expression’s value is known.

388CS 536 Spring 2015 ©

Returning to our previous
example, we can generate F==G
in jump code form as

iload 4 ; Push local #4 (F) onto stack
iload5 ; Push local #5 (G) onto stack
if_icmpne L1 ; Goto L1 if F != G

The label L1 is the “false label.”
We branch to it if the
expression F == G is false;
otherwise, we “fall through,”
executing the code that
follows. We can then generate
the then part, defining L1 at the
point where the else part is to
be computed. The code we
generate is:

389CS 536 Spring 2015 ©

iload 4 ; Push local #4 (F) onto stack

iload5 ; Push local #5 (G) onto stack
if_icmpne L1 ; Goto L1 if F != G
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store top into local #1(A)
goto L2 ; Skip around else part

L1:
iconst_0 ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

L2:

This instruction sequence is
significantly shorter (and
faster) than our original
translation. Jump code is
routinely used in ifs, whiles and
fors where we wish to alter
flow- of- control rather than
compute an explicit boolean
value.

390CS 536 Spring 2015 ©

Jump code comes in two forms,
JumpIfTrue and JumpIfFalse.
In JumpIfTrue form, the code
sequence does a conditional
jump (branch) if the expression
is true, and “falls through” if
the expression is false.
Analogously, in JumpIfFalse
form, the code sequence does a
conditional jump (branch) if the
expression is false, and “falls
through” if the expression is
true. We have two forms
because different contexts
prefer one or the other.
It is important to emphasize
that even though jump code
looks unusual, it is just an
alternative representation of
boolean values. We can convert

391CS 536 Spring 2015 ©

a boolean value on the stack to
jump code by conditionally
branching on its value to a true
or false label.
Similarly, we convert from jump
code to an explicit boolean
value, by placing the jump
code’s true label at a load of 1
and the false label at a load of
0.

392CS 536 Spring 2015 ©

Short-Circuit Evaluation
Our translation of the && and
|| operators parallels that of all
other binary operators:
evaluate both operands onto
the stack and then do an “and”
or “or” operation.
But in C, C+ + , C#, Java (and
most other languages), && and
|| are handled specially.
These two operators are
defined to work in “short
circuit” mode. That is, if the left
operand is sufficient to
determine the result of the
operation, the right operand
isn’t evaluated.
In particular a&&b is defined as
if a then b else false.

393CS 536 Spring 2015 ©

Similarly a||b is defined as
if a then true else b.
The conditional evaluation of
the second operand isn’t just
an optimization—it’s essential
for correctness. For example, in
(a!=0)&&(b/a>100)
we would perform a division by
zero if the right operand were
evaluated when a==0.
Jump code meshes nicely with
the short- circuit definitions of
&& and ||, since they are
already defined in terms of
conditional branches.
In particular if exp1 and exp2
are in jump code form, then we
need generate no further code
to evaluate exp1&&exp2.

394CS 536 Spring 2015 ©

To evaluate &&, we first
translate exp1 into JumpIfFalse
form, followed by exp2. If exp1
is false, we jump out of the
whole expression. If exp1 is
true, we fall through to exp2
and evaluate it. In this way,
exp2 is evaluated only when
necessary (when exp1 is true).

395CS 536 Spring 2015 ©

Similarly, once exp1 and exp2
are in jump code form,
exp1||exp2 is easy to evaluate.
We first translate exp1 into
JumpIfTrue form, followed by
exp2. If exp1 is true, we jump
out of the whole expression. If
exp1 is false, we fall through to
exp2 and evaluate it. In this
way, exp2 is evaluated only
when necessary (when exp1 is
false).

396CS 536 Spring 2015 ©

As an example, let’s consider
if ((A>0)||(B<0 && C==10))

A = 1;
else
 A = 0;

Assume A, B and C are all local
integers, with indices of 1, 2
and 3 respectively.
We’ll produce a JumpIfFalse
translation, jumping to label F
(the else part) if the expression
is false and falling through to
the then part if the expression
is true.
Code generators for relational
operators can be easily
modified to produce both kinds
of jump code—we can either
jump if the relation holds

397CS 536 Spring 2015 ©

(JumpIfTrue) or jump if it
doesn’t hold (JumpIfFalse). We
produce the following JVM code
sequence which is quite
compact and efficient.

iload 1 ; Push local #1 (A) onto stack
ifgt L1 ; Goto L1 if A > 0 is true
iload 2 ; Push local #2 (B) onto stack
ifge F ; Goto F if B < 0 is false
iload 3 ; Push local #3 (C) onto stack
bipush 10 ; Push a byte immediate (10)
if_icmpne F ; Goto F if C != 10

L1:
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store top into local #1(A)
goto L2 ; Skip around else part

F:
iconst_0 ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

L2:

First A is tested. If it is greater
than zero, the control
expression must be true, so we
skip the rest of the expression
and execute the then part.

398CS 536 Spring 2015 ©

Otherwise, we continue
evaluating the control
expression.
We next test B. If it is greater
than or equal to zero, B<0 is
false, and so is the whole
expression. We therefore
branch to label F and execute
the else part.
Otherwise, we finally test C.
If C is not equal to 10, the
control expression is false, so
we branch to label F and
execute the else part.
If C is equal to 10, the control
expression is true, and we fall
through to the then part.

399CS 536 Spring 2015 ©

For Loops

For loops are translated much
like while loops.
The AST for a for loop adds
subtrees corresponding to loop
initialization and increment.
For loops are expected to
iterate many times. Therefore
after executing the loop
initialization, we skip past the
loop body and increment code
to reach the termination

condition
forNode

increment

Exp Stmt Stmts

initializer loopBody

Stmt

400CS 536 Spring 2015 ©

condition, which is placed at
the bottom of the loop.
 {Initialization code}
goto L1

L2:
{Code for loop body}
{Increment code}

L1:

{Condition code}
ifne L2 ; branch to L2 if true

cg(){ // for forLoopNode
String skip = genLab();
String top = genLab();
initializer.cg();

 branch(skip);
defineLab(top);
loopBody.cg();
increment.cg();
defineLab(skip);
condition.cg();
branchNZ(top);

}

401CS 536 Spring 2015 ©

As an example, consider this
loop (i and j are locals with
variable indices of 1 and 2)

for (i=100;i!=0;i--) {

j = i;

}

The JVM code we generate is
bipush 100 ; Push 100
istore 1 ; Store into #1 (i)
goto L1 ; Skip to exit test

L2:

iload 1 ; Push local #1 (i)
istore 2 ; Store into #2 (j)

iload 1 ; Push local #1 (i)
iconst_1 ; Push 1

isub ; Compute i-1

istore 1 ; Store i-1 into #1 (i)

L1:

iload 1 ; Push local #1 (i)
ifne L2 ; Goto L2 if i is != 0

402CS 536 Spring 2015 ©

Java, C# and C++ allow a local
declaration of a loop index as
part of initialization, as
illustrated by the following for
loop

for (int i=100; i!=0; i--) {
j = i;

}

Local declarations are
automatically handled during
code generation for the
initialization expression. A
local variable is declared within
the current frame with a scope
limited to the body of the loop.
Otherwise translation is
identical.

403CS 536 Spring 2015 ©
404CS 536 Spring 2015 ©

