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Class Meets
Tuesdays, 5:30 — 8:30
Beatles Room, Epic Campus

Instructor
Charles N. Fischer
5393 Computer Sciences
Telephone:    608.262.1204
E- mail:  fischer@cs.wisc.edu
Office Hours: 

5:00 -  7:00, Monday &  
Thursday, Dune Room
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Teaching Assistant
Menghui Wang
E- mail:  menghui@cs.wisc.edu
Telephone:    608.262.1204
Office Hours: 

To be determined
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Key Dates
• February 10: Assignment #1

(Identifier Cross-  
Reference Analysis)

• March 3: Assignment #2
                       (CSX Scanner)

• March 24: Assignment #3 
(CSX Parser)

• April 8: Midterm 1,
                       5:30 -  7:30 pm

• April 14: Assignment #4
  (CSX Type Checker)

• April 15:  Midterm 2,
                       5:00 -  7:00 pm

• May 6: Final Exam 1,
 5:30 pm -  7:30 pm 

• May 8: Assignment #5
 (CSX Code Generator) 

• May 12: Final Exam 2,
 5:30 pm -  7:30 pm 
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Class Text
• Crafting a Compiler

Fischer, Cytron, LeBlanc
ISBN- 10: 0136067050
ISBN- 13:  9780136067054
Publisher:  Addison- Wesley

• Handouts and Web- based reading will 
also be used.

Reading Assignment
• Chapters 1- 2 of CaC (as background)

Class Notes
• The lecture notes used in each lecture 

will be made available prior to that 
lecture on the class Web page (under 
the “Lecture Nodes” link).
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Piazza
Piazza is an interactive online 
platform used to share class-
related information. We 
recommend you use it to ask 
questions and track course-
related information. If you are 
enrolled (or on the waiting list) 
you should have already 
received an email invitation to 
participate (about one week 
ago).
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Academic Misconduct Policy
• You must do your assignments—no 

copying or sharing of solutions.

• You may discuss general concepts and 
Ideas.

• All cases of Misconduct must be 
reported to the Dean’s office.

• Penalties may be severe.
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Program & Homework Late 
Policy
• An assignment may be handed in up 

to one week late.

• Each late day will be debited 3%, up to 
a maximum of 21%.

Approximate Grade Weights
Program 1 -  Cross- Reference 

Analysis 8% 
Program 2 -  Scanner 12% 
Program 3 -  Parser 12% 
Program 4 -  Type Checker 12% 
Program 5 -  Code Generator 12% 
Homework #1  6% 
Midterm Exam  19% 
Final Exam (non- cumulative)  19% 
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Partnership Policy
• Program #1 and the written homework 

must be done individually.

• Programs 2 to 5 may be done 
individually or by two person teams 
(your choice). 
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Compilers
Compilers are fundamental to 
modern computing. 
They act as translators, 
transforming human- oriented 
programming languages into 
computer- oriented machine 
languages. 
To most users, a compiler can 
be viewed as a “black box” that 
performs the transformation 
shown below. 

Programming
Language Machine

Language
Compiler
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A compiler allows programmers 
to ignore the machine-
dependent details of 
programming. 

Compilers allow programs and 
programming skills to be 
machine- independent and 
platform- independent.

Compilers also aid in detecting 
and correcting programming 
errors (which are all too 
common).
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Compiler techniques also help 
to improve computer security. 
For example, the Java Bytecode 
Verifier helps to guarantee that 
Java security rules are satisfied.

Compilers currently help in 
protection of intellectual 
property (using obfuscation) 
and provenance (through 
watermarking).

Most modern processors are 
multi- core or multi- threaded. 
How can compilers find hidden 
parallelism in serial 
programming languages?
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History of Compilers
The term compiler was coined 
in the early 1950s by Grace 
Murray Hopper. Translation was 
viewed as the “compilation” of a 
sequence of machine- language 
subprograms selected from a 
library. 

One of the first real compilers 
was the FORTRAN compiler of 
the late 1950s. It allowed a 
programmer to use a problem-
oriented source language.

14CS 536  Spring 2015 ©

Ambitious “optimizations” were 
used to produce efficient 
machine code, which was vital 
for early computers with quite 
limited capabilities.

Efficient use of machine 
resources is still an essential 
requirement for modern 
compilers.
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Virtual Machine Code
Code generated by a compiler 
can consist entirely of virtual 
instructions (no native code at 
all). This allows code to run on 
a variety of computers.
Java, with its JVM (Java Virtual 
Machine) is a great example of 
this approach.
If the virtual machine is kept 
simple and clean, its interpreter 
can be easy to write. Machine 
interpretation slows execution 
by a factor of 3:1 to perhaps 
10:1 over compiled code. 
A “Just in Time” (JIT) compiler 
can translate “hot” portions of 
virtual code into native code to 
speed execution. 
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Advantages of Virtual 
Instructions

Virtual instructions serve a 
variety of purposes. 
• They simplify a compiler by 

providing suitable primitives (such 
as method calls, string 
manipulation, and so on).

• They aid compiler transportability. 

• They may decrease in the size of 
generated code since instructions 
are designed to match a particular 
programming language (for 
example, JVM code for Java). 

Almost all compilers, to a 
greater or lesser extent, 
generate code for a virtual 
machine, some of whose 
operations must be interpreted.
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The Structure of a Compiler
A compiler performs two major 
tasks:
• Analysis of the source program 

being compiled

• Synthesis of a target program 

Almost all modern compilers 
are syntax- directed: The 
compilation process is driven 
by the syntactic structure of the 
source program.
A parser builds semantic 
structure out of tokens, the 
elementary symbols of 
programming language syntax. 
Recognition of syntactic 
structure is a major part of the 
analysis task. 
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Semantic analysis examines the 
meaning (semantics) of the 
program. Semantic analysis 
plays a dual role.
It finishes the analysis task by 
performing a variety of 
correctness checks (for 
example, enforcing type and 
scope rules). Semantic analysis 
also begins the synthesis 
phase.

The synthesis phase may 
translate source programs into 
some intermediate 
representation (IR) or it may 
directly generate target code. 
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If an IR is generated, it then 
serves as input to a code 
generator component that 
produces the desired machine-
language program. The IR may 
optionally be transformed by an 
optimizer so that a more 
efficient program may be 
generated. 
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The Structure of a Syntax-Directed Compiler
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Reading Assignment
Read Chapter 3 of
Crafting a Compiler.
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Scanner
The scanner reads the source 
program, character by 
character. It groups individual 
characters into tokens 
(identifiers, integers, reserved 
words, delimiters, and so on). 
When necessary, the actual 
character string comprising the 
token is also passed along for 
use by the semantic phases.
The scanner: 
• Puts the program into a compact 

and uniform format (a stream of 
tokens).

• Eliminates unneeded information 
(such as comments).

• Sometimes enters preliminary 
information into symbol tables (for 
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example, to register the presence 
of a particular label or identifier).

• Optionally formats and lists the 
source program 

Building tokens is driven by 
token descriptions defined 
using regular expression 
notation. 
Regular expressions are a 
formal notation able to 
describe the tokens used in 
modern programming 
languages. Moreover, they can 
drive the automatic generation 
of working scanners given only 
a specification of the tokens. 
Scanner generators (like Lex, 
Flex and JLex) are valuable 
compiler- building tools. 
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Parser
Given a syntax specification (as 
a context- free grammar, CFG), 
the parser reads tokens and 
groups them into language 
structures. 
Parsers are typically created 
from a CFG using a parser 
generator (like Yacc, Bison or 
Java CUP). 
The parser verifies correct 
syntax and may issue a syntax 
error message. 
As syntactic structure is 
recognized, the parser usually 
builds an abstract syntax tree 
(AST), a concise representation 
of program structure, which 
guides semantic processing. 
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Type Checker 
(Semantic Analysis)

The type checker checks the static 
semantics of each AST node. It 
verifies that the construct is legal 
and meaningful (that all 
identifiers involved are declared, 
that types are correct, and so on). 
If the construct is semantically 
correct, the type checker 
“decorates” the AST node, adding 
type or symbol table information 
to it. If a semantic error is 
discovered, a suitable error 
message is issued.
Type checking is purely 
dependent on the semantic rules 
of the source language. It is 
independent of the compiler’s 
target machine.
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Translator 
(Program Synthesis)

If an AST node is semantically 
correct, it can be translated. 
Translation involves capturing 
the run- time “meaning” of a 
construct.
For example, an AST for a while 
loop contains two subtrees, one 
for the loop’s control 
expression, and the other for 
the loop’s body. Nothing in the 
AST shows that a while loop 
loops! This “meaning” is 
captured when a while loop’s 
AST is translated. In the IR, the 
notion of testing the value of 
the loop control expression, 
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and conditionally executing the 
loop body becomes explicit.
The translator is dictated by the 
semantics of the source 
language. Little of the nature of 
the target machine need be 
made evident. Detailed 
information on the nature of 
the target machine (operations 
available, addressing, register 
characteristics, etc.) is reserved 
for the code generation phase.
In simple non- optimizing 
compilers (like our class 
project), the translator 
generates target code directly, 
without using an IR. 
More elaborate compilers may 
first generate a high- level IR 
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(that is source language 
oriented) and then 
subsequently translate it into a 
low- level IR (that is target 
machine oriented). This 
approach allows a cleaner 
separation of source and target 
dependencies.
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Optimizer
The IR code generated by the 
translator is analyzed and 
transformed into functionally 
equivalent but improved IR code 
by the optimizer. 
The term optimization is 
misleading: we don’t always 
produce the best possible 
translation of a program, even 
after optimization by the best of 
compilers.
Why?
Some optimizations are 
impossible to do in all 
circumstances because they 
involve an undecidable problem. 
Eliminating unreachable (“dead”) 
code is, in general, impossible.
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Other optimizations are too 
expensive to do in all cases. 
These involve NP- complete 
problems, believed to be 
inherently exponential. 
Assigning registers to variables 
is an example of an NP-
complete problem.
Optimization can be complex; it 
may involve numerous 
subphases, which may need to 
be applied more than once.
Optimizations may be turned off 
to speed translation. 
Nonetheless, a well designed 
optimizer can significantly speed 
program execution by 
simplifying, moving or 
eliminating unneeded 
computations.
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Code Generator
IR code produced by the 
translator is mapped into target 
machine code by the code 
generator. This phase uses 
detailed information about the 
target machine and includes 
machine- specific optimizations 
like register allocation and code 
scheduling.
Code generators can be quite 
complex since good target 
code requires consideration of 
many special cases. 
Automatic generation of code 
generators is possible. The 
basic approach is to match a 
low- level IR to target 
instruction templates, choosing 
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instructions which best match 
each IR instruction. 
A well- known compiler using 
automatic code generation 
techniques is the GNU C 
compiler. GCC is a heavily 
optimizing compiler with 
machine description files for 
over ten popular computer 
architectures, and at least two 
language front ends (C and 
C+ + ). 
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Symbol Tables
A symbol table allows 
information to be associated 
with identifiers and shared 
among compiler phases. Each 
time an identifier is used, a 
symbol table provides access to 
the information collected about 
the identifier when its 
declaration was processed. 
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Example
Our source language will be 
CSX, a blend of C, C+ +  and 
Java.
Our target language will be the 
Java JVM, using the Jasmin 
assembler.

• A simple source line is
  a = bb+abs(c-7);
this is a sequence of ASCII characters 
in a text file.

• The scanner groups characters into 
tokens, the basic units of a program.

a = bb+abs(c-7);
 After scanning, we have the following 
token sequence:
 Ida Asg Idbb Plus Idabs Lparen  Idc 

Minus  IntLiteral7  Rparen Semi
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• The parser groups these tokens into 
language constructs (expressions, 
statements, declarations, etc.) 
represented in tree form:

(What happened to the 
parentheses and the 
semicolon?)

  Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral
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• The type checker resolves types and 
binds declarations within scopes:

  Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

int

intintloc

intloc int

int

intloc
int

method
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• Finally, JVM code is generated for each 
node in the tree (leaves first, then 
roots):
iload  3  ; push local 3 (bb)
iload  2  ; push local 2 (c)
ldc 7 ; Push literal 7
isub      ; compute c-7
invokestatic  java/lang/Math/
abs(I)I
iadd      ; compute bb+abs(c-7)
istore  1 ; store result into 

local 1(a)
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Symbol Tables & Scoping
Programming languages use 
scopes to limit the range in 
which an identifier is active 
(and visible).
Within a scope a name may be 
defined only once (though 
overloading may be allowed).
A symbol table (or dictionary) is 
commonly used to collect all 
the definitions that appear 
within a scope.
At the start of a scope, the 
symbol table is empty. At the 
end of a scope, all declarations 
within that scope are available 
within the symbol table.
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A language definition may or 
may not allow forward 
references to an identifier.
If forward references are 
allowed, you may use a name 
that is defined later in the 
scope (Java does this for field 
and method declarations within 
a class).
If forward references are not 
allowed, an identifier is visible 
only after its declaration. C, 
C+ +  and Java do this for 
variable declarations.
In CSX no forward references 
are allowed.
In terms of symbol tables, 
forward references require two 
passes over a scope. First all 
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declarations are gathered. 
Next, all references are 
resolved using the complete set 
of declarations stored in the 
symbol table.
If forward references are 
disallowed, one pass through a 
scope suffices, processing 
declarations and uses of 
identifiers together.
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Block Structured Languages
• Introduced by Algol 60, includes C, 

C+ + , CSX and Java.

• Identifiers may have a non- global 
scope. Declarations may be local to a 
class, subprogram or block.

• Scopes may nest, with declarations 
propagating to inner (contained) 
scopes.

• The lexically nearest declaration of an 
identifier is bound to uses of that 
identifier.

42CS 536  Spring 2015 ©

Example (drawn from C):

int x,z;
void A() {
  float x,y;
  print(x,y,z);

}
void B() {
  print (x,y,z)

}

float
float

int

int

int
undeclared
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Block Structure Concepts
• Nested Visibility

No access to identifiers outside 
their scope.

• Nearest Declaration Applies

Using static nesting of scopes.
• Automatic Allocation and Deallocation 

of Locals

Lifetime of data objects is 
bound to the scope of the 
Identifiers that denote them.
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Is Case Significant?
In some languages (C, C+ + , 
Java and many others) case is 
significant in identifiers. This 
means aa and AA are different 
symbols that may have entirely 
different definitions.
In other languages (Pascal, Ada, 
Scheme, CSX) case is not 
significant. In such languages 
aa and AA are two alternative 
spellings of the same identifier.
Data structures commonly used 
to implement symbol tables 
usually treat different cases as 
different symbols. This is fine 
when case is significant in a 
language. When case is 
insignificant, you probably will 
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need to strip case before 
entering or looking up 
identifiers.
This just means that identifiers 
are converted to a uniform case 
before they are entered or 
looked up. Thus if we choose to 
use lower case uniformly, the 
identifiers aaa, AAA, and AaA are 
all converted to aaa for 
purposes of insertion or 
lookup.
BUT, inside the symbol table 
the identifier is stored in the 
form it was declared so that 
programmers see the form of 
identifier they expect in 
listings, error messages, etc.

46CS 536  Spring 2015 ©

How are Symbol Tables 
Implemented?

There are a number of data 
structures that can reasonably 
be used to implement a symbol 
table:
• An Ordered List

Symbols are stored in a linked list, 
sorted by the symbol’s name. This 
is simple, but may be a bit too slow 
if many identifiers appear in a 
scope.

• A Binary Search Tree
Lookup is much faster than in 
linked lists, but rebalancing may be 
needed. (Entering identifiers in 
sorted order turns a search tree 
into a linked list.)

• Hash Tables
The most popular choice.
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Implementing Block-
Structured Symbol Tables

To implement a block 
structured symbol table we 
need to be able to efficiently 
open and close individual 
scopes, and limit insertion to 
the innermost current scope.
This can be done using one 
symbol table structure if we tag 
individual entries with a “scope 
number.”
It is far easier (but more 
wasteful of space) to allocate 
one symbol table for each 
scope. Open scopes are 
stacked, pushing and popping 
tables as scopes are opened 
and closed.
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Be careful though—many 
preprogrammed stack 
implementations don’t allow 
you to “peek” at entries below 
the stack top. This is necessary 
to lookup an identifier in all 
open scopes.
If a suitable stack 
implementation (with a peek 
operation) isn’t available, a 
linked list of symbol tables will 
suffice.
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Scanning
A scanner transforms a character 
stream into a token stream. 
A scanner is sometimes called a 
lexical analyzer or lexer. 
Scanners use a formal notation
(regular expressions) to specify 
the precise structure of tokens. 
But why bother? Aren’t tokens 
very simple in structure?
Token structure can be more 
detailed and subtle than one 
might expect. Consider simple 
quoted strings in C, C+ +  or Java. 
The body of a string can be any 
sequence of characters except a 
quote character (which must be 
escaped). But is this simple 
definition really correct?
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Can a newline character appear in 
a string? In C it cannot, unless it is 
escaped with a backslash. 
C, C+ +  and Java allow escaped 
newlines in strings, Pascal forbids 
them entirely. Ada forbids all 
unprintable characters. 
Are null strings (zero- length) 
allowed? In C, C+ + , Java and Ada 
they are, but Pascal forbids them. 
(In Pascal a string is a packed 
array of characters, and zero 
length arrays are disallowed.)
A precise definition of tokens can 
ensure that lexical rules are 
clearly stated and properly 
enforced. 
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Regular Expressions
Regular expressions specify 
simple (possibly infinite) sets of 
strings. Regular expressions 
routinely specify the tokens 
used in programming 
languages. 
Regular expressions can drive a 
scanner generator.
Regular expressions are widely 
used in computer utilities:
•The Unix utility grep uses regular 

expressions to define search 
patterns in files. 

•Unix shells allow regular 
expressions in file lists for a 
command.
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• Most editors provide a “context 
search” command that specifies 
desired matches using regular 
expressions.

•The Windows Find utility allows 
some regular expressions.
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Regular Sets
The sets of strings defined by 
regular expressions are called 
regular sets.
When scanning, a token class will 
be a regular set, whose structure 
is defined by a regular 
expression.
Particular instances of a token 
class are sometimes called 
lexemes, though we will simply 
call a string in a token class an 
instance of that token. Thus we 
call the string abc an identifier if 
it matches the regular expression 
that defines valid identifier 
tokens.
Regular expressions use a finite 
character set, or vocabulary
(denoted Σ). 
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This vocabulary is normally the 
character set used by a computer. 
Today, the ASCII character set, 
which contains a total of 128 
characters, is very widely used. 
Java uses the Unicode character 
set which includes all the ASCII 
characters as well as a wide 
variety of other characters. 
An empty or null string is allowed 
(denoted λ, “lambda”). Lambda 
represents an empty buffer in 
which no characters have yet been 
matched. It also represents 
optional parts of tokens. An 
integer literal may begin with a 
plus or minus, or it may begin 
with λ if it is unsigned.
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Catenation
Strings are built from characters 
in the character set Σ via 
catenation. 
As characters are catenated to a 
string, it grows in length. The 
string do is built by first 
catenating d to λ, and then 
catenating o to the string d. The 
null string, when catenated with 
any string s, yields s. That is, s λ ≡ 
λ s ≡ s. Catenating λ to a string is 
like adding 0 to an integer—
nothing changes.
Catenation is extended to sets of 
strings: 
Let P and Q be sets of strings. 
(The symbol ∈ represents set 
membership.) If s1 ∈ P and s2 ∈ Q 
then string s1s2 ∈(P Q). 
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Alternation
Small finite sets are conveniently 
represented by listing their 
elements. Parentheses delimit 
expressions, and | , the alternation 
operator, separates alternatives.
For example, D, the set of the ten 
single digits, is defined as
D = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9). 
The characters (, ), ' , ∗, + , and |  
are meta- characters (punctuation 
and regular expression 
operators). 
Meta- characters must be quoted 
when used as ordinary characters 
to avoid ambiguity. 
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For example the expression
( '(' | ')' | ; | , ) 
defines four single character 
tokens (left parenthesis, right 
parenthesis, semicolon and 
comma). The parentheses are 
quoted when they represent 
individual tokens and are not 
used as delimiters in a larger 
regular expression.
Alternation is extended to sets of 
strings:
Let P and Q be sets of strings. 
Then string s ∈ (P |  Q) if and only 
if s ∈ P or s ∈ Q.
For example, if LC is the set of 
lower- case letters and UC is the 
set of upper- case letters, then
(LC | UC) is the set of all letters (in 
either case).
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Kleene Closure
A useful operation is Kleene closure 
represented by a postfix ∗ operator.

Let P be a set of strings. Then P * 
represents all strings formed by 
the catenation of zero or more 
selections (possibly repeated) 
from P. 
Zero selections are denoted by λ. 

For example, LC* is the set of all 
words composed of lower- case 
letters, of any length (including 
the zero length word, λ).

Precisely stated, a string s ∈ P *  if 
and only if s can be broken into 
zero or more pieces: s =  s1 s2 ... 
sn so that each si ∈ P (n ≥ 0, 1 ≤ i ≤ 
n). 
We allow n = 0, so λ is always in P. 
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Definition of Regular 
Expressions

Using catenations, alternation 
and Kleene closure, we can 
define regular expressions as 
follows:
• ∅ is a regular expression denoting 

the empty set (the set containing 
no strings). ∅ is rarely used, but is 
included for completeness.

• λ is a regular expression denoting 
the set that contains only the 
empty string. This set is not the 
same as the empty set, because it 
contains one element.

• A string s is a regular expression 
denoting a set containing the 
single string s. 
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• If A and B are regular expressions, 
then A |  B, A B, and A* are also 
regular expressions, denoting the 
alternation, catenation, and Kleene 
closure of the corresponding 
regular sets.

Each regular expression 
denotes a set of strings (a 
regular set). Any finite set of 
strings can be represented by a 
regular expression of the form
(s1 |  s2 |  … |  sk ). Thus the 
reserved words of ANSI C can 
be defined as
(auto | break | case | …).
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The following additional 
operations useful. They are not 
strictly necessary, because their 
effect can be obtained using 
alternation, catenation, Kleene 
closure:

• P +  denotes all strings consisting of 
one or more strings in P catenated 
together:
P* =  (P+ |  λ) and P+  =  P P*. 
For example, ( 0 | 1 )+  is the set of 
all strings containing one or more 
bits.

• If A is a set of characters, Not(A) 
denotes (Σ − A); that is, all 
characters in Σ not included in A. 
Since Not(A) can never be larger 
than Σ and Σ is finite, Not(A) must 
also be finite, and is therefore 
regular. Not(A) does not contain λ 
since λ is not a character (it is a 
zero- length string).
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For example, Not(Eol) is the set of 
all characters excluding Eol (the 
end of line character, '\n' in Java or 
C). 

• It is possible to extend Not to 
strings, rather than just Σ. That is, 
if S is a set of strings, we define S 
to be
(Σ* − S); the set of all strings except 
those in S. Though S is usually 
infinite, it is also regular if S is.

• If k is a constant, the set Ak 
represents all strings formed by 
catenating k (possibly different) 
strings from A. 
That is, Ak =  (A A A …) (k copies). 
Thus ( 0 | 1 )32 is the set of all bit 
strings exactly 32 bits long.
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Examples
Let D be the ten single digits 
and let L be the set of all 52 
letters. Then
• A Java or C+ +  single- line comment 

that begins with // and ends with 
Eol can be defined as:

Comment =  //  Not(Eol)* Eol

• A fixed decimal literal (e.g., 
12.345) can be defined as:

Lit = D+. D+

•An optionally signed integer literal 
can be defined as:

IntLiteral = ( '+' | − | λ ) D+ 

(Why the quotes on the plus?)
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• A comment delimited by ## 
markers, which allows single #’s 
within the comment body:

Comment2 =
## ((# | λ)  Not(#) )* ##

All finite sets and many infinite sets 
are regular. But not all infinite sets 
are regular. Consider the set of 
balanced brackets of the form

[ [ [«] ] ]. 
This set is defined formally as 
{ [m ]m | m ≥ 1 }. 
This set is known not to be regular. 
Any regular expression that tries to 
define it either does not get all 
balanced nestings or it includes 
extra, unwanted strings.
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Finite Automata and Scanners
A finite automaton (FA) can be 
used to recognize the tokens 
specified by a regular 
expression. FAs are simple, 
idealized computers that 
recognize strings belonging to 
regular sets. An FA consists of:
• A finite set of states
• A set of transitions (or moves) from 

one state to another, labeled with 
characters in Σ

• A special state called the start state

• A subset of the states called the 
accepting, or final, states
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These four components of a 
finite automaton are often 
represented graphically:

Finite automata (the plural of 
automaton is automata) are 
represented graphically using 
transition diagrams. We start at 
the start state. If the next input 
character matches the label on 

eof

is a transition

is the start state

is an accepting state

is a state
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a transition from the current 
state, we go to the state it 
points to. If no move is 
possible, we stop. If we finish in 
an accepting state, the 
sequence of characters read 
forms a valid token; otherwise, 
we have not seen a valid token. 

In this diagram, the valid 
tokens are the strings 
described by the regular 
expression (a b (c)+ )+.

a b c

c

a
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Deterministic Finite 
Automata

As an abbreviation, a transition 
may be labeled with more than 
one character (for example, 
Not(c)). The transition may be 
taken if the current input 
character matches any of the 
characters labeling the transition.
If an FA always has a unique 
transition (for a given state and 
character), the FA is deterministic 
(that is, a deterministic FA, or 
DFA). Deterministic finite 
automata are easy to program and 
often drive a scanner.
If there are transitions to more 
than one state for some character, 
then the FA is nondeterministic 
(that is, an NFA). 
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A DFA is conveniently represented 
in a computer by a transition 
table. A transition table, T, is a 
two dimensional array indexed by 
a DFA state and a vocabulary 
symbol. 
Table entries are either a DFA 
state or an error flag (often 
represented as a blank table 
entry). If we are in state s, and 
read character c, then T[s,c] will be 
the next state we visit, or T[s,c] 
will contain an error marker 
indicating that c cannot extend 
the current token. For example, 
the regular expression

// Not(Eol)* Eol

which defines a Java or C+ +  
single- line comment, might be 
translated into
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The corresponding transition 
table is:

A complete transition table 
contains one column for each 
character. To save space, table 
compression may be used. Only 
non- error entries are explicitly 
represented in the table, using 
hashing, indirection or linked 
structures.

State Character
/ Eol a b «

1 2
2 3
3 3 4 3 3 3
4

Eol/ /

Not(Eol)

1 2 3 4
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All regular expressions can be 
translated into DFAs that accept
(as valid tokens) the strings 
defined by the regular 
expressions. This translation can 
be done manually by a 
programmer or automatically 
using a scanner generator.
A DFA can be coded in:
• Table- driven form

• Explicit control form

In the table- driven form, the 
transition table that defines a 
DFA’s actions is explicitly 
represented in a run- time table 
that is “interpreted” by a driver 
program. 
In the direct control form, the 
transition table that defines a DFA’s 
actions appears implicitly as the 
control logic of the program. 
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For example, suppose 
CurrentChar is the current input 
character. End of file is 
represented by a special character 
value, eof. Using the DFA for the 
Java comments shown earlier, a 
table- driven scanner is:
State = StartState 
while (true){ 

if (CurrentChar == eof)
break

NextState = 
T[State][CurrentChar] 

 if(NextState == error)
break

State = NextState
read(CurrentChar)

}
if (State in AcceptingStates)

// Process valid token
else // Signal a lexical error 



73CS 536  Spring 2015 ©

This form of scanner is produced 
by a scanner generator; it is 
definition- independent. The 
scanner is a driver that can scan 
any token if T contains the 
appropriate transition table. 
Here is an explicit- control 
scanner for the same comment 
definition:
if (CurrentChar == '/'){

read(CurrentChar)
if (CurrentChar == '/') 
repeat 

read(CurrentChar)
until (CurrentChar in

{eol, eof})
else //Signal lexical error 

else // Signal lexical error 
if (CurrentChar == eol)
// Process valid token

else //Signal lexical error
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The token being scanned is 
“hardwired” into the logic of the 
code. The scanner is usually easy 
to read and often is more 
efficient, but is specific to a single 
token definition.
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More Examples
• A FORTRAN- like real literal (which 

requires digits on either or both 
sides of a decimal point, or just a 
string of digits) can be defined as

RealLit = (D+ (λ | . )) | (D* . D+)

This corresponds to the DFA

. D

DD

D .
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• An identifier consisting of letters, 
digits, and underscores, which 
begins with a letter and allows no 
adjacent or trailing underscores, 
may be defined as

ID = L (L | D)* ( _ (L | D)+)*

This definition includes identifiers 
like sum or unit_cost, but 
excludes _one and two_ and 
grand___total. The DFA is:

L | D

L

L | D

_
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Lex/Flex/JLex
Lex is a well- known Unix scanner 
generator. It builds a scanner, in 
C, from a set of regular 
expressions that define the 
tokens to be scanned.
Flex is a newer and faster version 
of Lex.
JLex is a Java version of Lex. It 
generates a scanner coded in Java, 
though its regular expression 
definitions are very close to those 
used by Lex and Flex.
Lex, Flex and JLex are largely 
non- procedural. You don’t need 
to tell the tools how to scan. All 
you need to tell it what you want 
scanned (by giving it definitions 
of valid tokens).
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This approach greatly simplifies 
building a scanner, since most of 
the details of scanning (I/O, 
buffering, character matching, 
etc.) are automatically handled.
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JLex
JLex is coded in Java. To use it, 
you enter
java JLex.Main f.jlex
Your CLASSPATH should be set to 
search the directories where 
JLex’s classes are stored. 
(In build files we provide the 
CLASSPATH used will includ JLex’s 
classes).
After JLex runs (assuming there 
are no errors in your token 
specifications), the Java source file
f.jlex.java is created. (f stands 
for any file name you choose. 
Thus csx.jlex might hold token 
definitions for CSX, and 
csx.jlex.java would hold the 
generated scanner).
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You compile f.jlex.java just 
like any Java program, using your 
favorite Java compiler.
After compilation, the class file
Yylex.class is created.
It contains the methods:
• Token yylex() which is the actual 

scanner. The constructor for Yylex 
takes the file you want scanned, so
new Yylex(System.in) 
will build a scanner that reads from 
System.in. Token is the token 
class you want returned by the 
scanner; you can tell JLex what 
class you want returned.

• String yytext() returns the 
character text matched by the last 
call to yylex.

•
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Input to JLex
There are three sections, 
delimited by %%. The general 
structure is:
User Code
%%
Jlex Directives
%%
Regular Expression rules

The User Code section is Java 
source code to be copied into the 
generated Java source file. It 
contains utility classes or return 
type classes you need. Thus if you 
want to return a class 
IntlitToken (for integer literals 
that are scanned), you include its 
definition in the User Code 
section.
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JLex directives are various 
instructions you can give JLex to 
customize the scanner you 
generate.
These are detailed in the JLex 
manual. The most important are:
• %{
Code copied into the Yylex 
class (extra fields or 
methods you may want)
%}

• %eof{
Java code to be executed when 
the end of file is reached
%eof}

• %type classname
classname is the return type you 
want for the scanner method, 
yylex()
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Macro Definitions
In section two you may also define 
macros, that are used in section 
three. A macro allows you to give 
a name to a regular expression or 
character class. This allows you to 
reuse definitions and make 
regular expression rule more 
readable.
Macro definitions are of the form
name = def
Macros are defined one per line.
Here are some simple examples:
Digit=[0-9]
AnyLet=[A-Za-z]

In section 3, you use a macro by 
placing its name within { and }. 
Thus {Digit} expands to the 
character class defining the digits 
0 to 9.
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Regular Expression Rules
The third section of the JLex input 
file is a series of token definition 
rules of the form
RegExpr {Java code}
When a token matching the given 
RegExpr is matched, the 
corresponding Java code 
(enclosed in “{“ and “}”) is 
executed. JLex figures out what 
RegExpr applies; you need only 
say what the token looks like 
(using RegExpr) and what you 
want done when the token is 
matched (this is usually to return 
some token object, perhaps with 
some processing of the token 
text).
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Here are some examples:
"+" {return new Token(sym.Plus);}

(" ")+ {/* skip white space */}

{Digit}+ {return 
new IntToken(sym.Intlit,
new Integer(yytext()).intValue());}
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Regular Expressions in JLex
To define a token in JLex, the user 
to associates a regular expression 
with commands coded in Java. 
When input characters that match 
a regular expression are read, the 
corresponding Java code is 
executed. As a user of JLex you 
don’t need to tell it how to match 
tokens; you need only say what 
you want done when a particular 
token is matched.
Tokens like white space are 
deleted simply by having their 
associated command not return 
anything. Scanning continues 
until a command with a return in 
it is executed.
The simplest form of regular 
expression is a single string that 
matches exactly itself.
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For example,
if {return new Token(sym.If);}

If you wish, you can quote the 
string representing the reserved 
word ("if"), but since the string 
contains no delimiters or 
operators, quoting it is 
unnecessary. 
For a regular expression operator, 
like + , quoting is necessary:

"+" {return 
new Token(sym.Plus);}
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Character Classes
Our specification of the reserved 
word if, as shown earlier, is 
incomplete. We don’t (yet) handle 
upper or mixed- case. 
To extend our definition, we’ll use 
a very useful feature of Lex and 
JLex—character classes. 
Characters often naturally fall into 
classes, with all characters in a 
class treated identically in a token 
definition. In our definition of 
identifiers all letters form a class 
since any of them can be used to 
form an identifier. Similarly, in a 
number, any of the ten digit 
characters can be used.
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Character classes are delimited by 
[ and ]; individual characters are 
listed without any quotation or 
separators. However \, ^, ] and -, 
because of their special meaning 
in character classes, must be 
escaped. The character class 
[xyz] can match a single x, y, or 
z. 
The character class [\])] can 
match a single ] or ). 
(The ] is escaped so that it isn’t 
misinterpreted as the end of 
character class.)
Ranges of characters are 
separated by a -; [x-z] is the 
same as [xyz]. [0-9] is the set 
of all digits and [a-zA-Z] is the 
set of all letters, upper-  and 
lower- case. \ is the escape 
character, used to represent 
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unprintables and to escape 
special symbols. 
Following C and Java conventions, 
\n is the newline (that is, end of 
line), \t is the tab character, \\ is 
the backslash symbol itself, and 
\010 is the character 
corresponding to octal 10. 
The ^ symbol complements a 
character class (it is JLex’s 
representation of the Not 
operation). 
[^xy] is the character class that 
matches any single character 
except x and y. The ^ symbol 
applies to all characters that 
follow it in a character class 
definition, so [^0-9] is the set of 
all characters that aren’t digits. 
[^] can be used to match all 
characters. 
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Here are some examples of 
character classes:

Character 
Class Set of Characters Denoted
[abc] Three characters: a, b and c
[cba] Three characters: a, b and c
[a-c] Three characters: a, b and c
[aabbcc] Three characters: a, b and c
[^abc] All characters except a, b 

and c
[\^\-\]] Three characters: ^, - and ]
[^] All characters
"[abc]" Not a character class. This 

is one five character string: 
[abc]
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Regular Operators in JLex
JLex provides the standard regular 
operators, plus some additions. 
• Catenation is specified by the 

juxtaposition of two expressions; 
no explicit operator is used. 
Outside of character class brackets, 
individual letters and numbers 
match themselves; other characters 
should be quoted (to avoid 
misinterpretation as regular 
expression operators). 

Case is significant. 

Regular Expr Characters Matched
a b cd Four characters: abcd 
(a)(b)(cd) Four characters: abcd
[ab][cd] Four different strings: ac or 

ad or bc or bd
while Five characters: while
"while" Five characters: while
[w][h][i][l][e] Five characters: while
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• The alternation operator is |. 
Parentheses can be used to control 
grouping of subexpressions.
If we wish to match the reserved 
word while allowing any mixture 
of upper-  and lowercase, we can 
use
(w|W)(h|H)(i|I)(l|L)(e|E)
or
[wW][hH][iI][lL][eE]

Regular Expr Characters Matched
ab|cd Two different strings: ab or cd
(ab)|(cd) Two different strings: ab or cd
[ab]|[cd] Four different strings: a or b or 

c or d
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• Postfix operators:
* Kleene closure: 0 or more 
matches.
(ab)* matches λ or ab or abab or 
ababab ...

+ Positive closure: 1 or more 
matches.
(ab)+ matches ab or abab or 
ababab ...

? Optional inclusion: 
expr? 

matches expr zero times or once. 
expr? is equivalent to (expr) | λ 
and eliminates the need for an 
explicit λ symbol. 

[-+]?[0-9]+ defines an optionally 
signed integer literal.
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• Single match:
The character "." matches any 
single character (other than a 
newline). 

• Start of line:
The character ^ (when used outside 
a character class) matches the 
beginning of a line.

• End of line:
The character $ matches the end of 
a line. Thus,
^A.*e$ 

matches an entire line that begins 
with A and ends with e. 
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Overlapping Definitions
Regular expressions may overlap 
(match the same input sequence).
In the case of overlap, two rules 
determine which regular 
expression is matched:
• The longest possible match is 

performed. JLex automatically 
buffers characters while deciding 
how many characters can be 
matched. 

• If two expressions match exactly 
the same string, the earlier 
expression (in the JLex 
specification) is preferred. 
Reserved words, for example, are 
often special cases of the pattern 
used for identifiers. Their 
definitions are therefore placed 
before the expression that defines 
an identifier token. 
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Often a “catch all” pattern is 
placed at the very end of the 
regular expression rules. It is 
used to catch characters that 
don’t match any of the earlier 
patterns and hence are probably 
erroneous. Recall that "." matches 
any single character (other than a 
newline). It is useful in a catch- all 
pattern. However, avoid a pattern 
like .* which will consume all 
characters up to the next newline.
In JLex an unmatched character 
will cause a run- time error.

The operators and special 
symbols most commonly used in 
JLex are summarized below. Note 
that a symbol sometimes has one 
meaning in a regular expression 
and an entirely different meaning 
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in a character class (i.e., within a 
pair of brackets). If you find JLex 
behaving unexpectedly, it’s a 
good idea to check this table to 
be sure of how the operators and 
symbols you’ve used behave. 
Ordinary letters and digits, and 
symbols not mentioned (like @) 
represent themselves. If you’re 
not sure if a character is special or 
not, you can always escape it or 
make it part of a quoted string.
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Symbol
Meaning in Regular 
Expressions

Meaning in 
Character 
Classes

( Matches with ) to group sub-
expressions.

Represents itself.

) Matches with ( to group sub-
expressions.

Represents itself.

[ Represents itself. Begins a character 
class.

] Represents itself. Ends a character 
class.

{ Matches with } to signal 
macro-expansion.

Represents itself.

} Matches with { to signal 
macro-expansion.

Represents itself.

" Matches with " to delimit 
strings
(only \ is special within 
strings).

Represents itself.

\ Escapes individual charac-
ters.
Also used to specify a char-
acter by its octal code.

Escapes individual 
characters.
Also used to spec-
ify a character by 
its octal code.

. Matches any one character 
except \n.

Represents itself.

| Alternation (or) operator. Represents itself.
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* Kleene closure operator (zero 
or more matches).

Represents itself.

+ Positive closure operator 
(one or more matches).

Represents itself.

? Optional choice operator 
(one or zero matches).

Represents itself.

/ Context sensitive matching 
operator.

Represents itself.

^ Matches only at beginning of 
a line.

Complements 
remaining
characters in the 
class.

$ Matches only at end of a line. Represents itself.
- Represents itself. Range of charac-

ters operator.

Symbol
Meaning in Regular 
Expressions

Meaning in 
Character 
Classes
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Potential Problems in Using 
JLex

The following differences from 
“standard” Lex notation appear in 
JLex:
• Escaped characters within quoted 

strings are not recognized. Hence 
"\n" is not a new line character. 
Escaped characters outside of 
quoted strings (\n) and escaped 
characters within character classes 
([\n]) are OK.

• A blank should not be used within a 
character class (i.e., [ and ]). You 
may use \040 (which is the 
character code for a blank).

• A doublequote must be escaped 
within a character class. Use [\"] 
instead of ["].
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• Unprintables are defined to be all 
characters before blank as well as 
the last ASCII character. 
Unprintables can be represented 
as:[\000-\037\177]

103CS 536  Spring 2015 ©

JLex Examples
A JLex scanner that looks for five 
letter words that begin with “P” 
and end with “T”. 

This example is in
www.cs.wisc.edu/~fischer/ 
cs536.s15/course/proj2/
startup/Jlex_test/
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The JLex specification file is:
class Token {

String text;
Token(String t){text = t;}

}
%%
Digit=[0-9]
AnyLet=[A-Za-z]
Others=[0-9’&.]
WhiteSp=[\040\n]
// Tell JLex to have yylex() return a 
Token
%type Token
// Tell JLex what to return when eof of 
file is hit
%eofval{
return new Token(null);
%eofval}
%%
[Pp]{AnyLet}{AnyLet}{AnyLet}[Tt]{WhiteSp}+      

{return new Token(yytext());}

({AnyLet}|{Others})+{WhiteSp}+                  
{/*skip*/}
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The Java program that uses the 
scanner is:
import java.io.*;

class Main {

public static void main(String args[])
throws java.io.IOException {

Yylex lex  = new Yylex(System.in); 
Token token = lex.yylex();

while ( token.text != null ) {
System.out.print("\t"+token.text);
token = lex.yylex(); //get next token

}
}}
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In case you care, the words that 
are matched include:
Pabst
paint
petit
pilot
pivot
plant
pleat
point
posit
Pratt
print
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An example of CSX token 
specifications. This example is in
www.cs.wisc.edu/~fischer/ 
cs536.s15/course/proj2/
startup/java
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The JLex specification file is:
import java_cup.runtime.*;

/*  Expand this into your solution for 
project 2 */

class CSXToken {
int linenum;
int colnum;
CSXToken(int line,int col){
linenum=line;colnum=col;};

}

class CSXIntLitToken extends CSXToken {
int intValue;
CSXIntLitToken(int val,int line,
int col){
super(line,col);intValue=val;};

}
class CSXIdentifierToken extends 
CSXToken {
String identifierText;
CSXIdentifierToken(String text,int line,

int col){
super(line,col);identifierText=text;};

}
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class CSXCharLitToken extends CSXToken {
char charValue;

CSXCharLitToken(char val,int line,
int col){
super(line,col);charValue=val;};

}

class CSXStringLitToken extends CSXToken 
{

String stringText; 
CSXStringLitToken(String text,
int line,int col){

super(line,col);
stringText=text; };

}
// This class is used to track line and 
column numbers
// Feel free to change to extend it
class Pos {
static int  linenum = 1; 
/* maintain this as line number current

token was scanned on */
static int  colnum = 1;
/* maintain this as column number

current token began at */
static int  line = 1;
/* maintain this as line number after

scanning current token  */
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static int  col = 1; 
/* maintain this as column number

after scanning current token  */
static void setpos() {
//set starting pos for current token
linenum = line;
colnum = col;}

}

%%
Digit=[0-9]

// Tell JLex to have yylex() return a 
Symbol, as JavaCUP will require

%type Symbol

// Tell JLex what to return when eof of 
file is hit
%eofval{
return new Symbol(sym.EOF,

new  CSXToken(0,0));
%eofval}

111CS 536  Spring 2015 ©

%%
"+" {Pos.setpos(); Pos.col +=1;

 return new Symbol(sym.PLUS,
new CSXToken(Pos.linenum,

Pos.colnum));}
"!=" {Pos.setpos(); Pos.col +=2;

return new Symbol(sym.NOTEQ,
new CSXToken(Pos.linenum,

Pos.colnum));}
";" {Pos.setpos(); Pos.col +=1;

return new Symbol(sym.SEMI,
new CSXToken(Pos.linenum,

Pos.colnum));}
{Digit}+ {// This def doesn’t check

// for overflow  
Pos.setpos(); 
Pos.col += yytext().length();

 return new Symbol(sym.INTLIT,
new CSXIntLitToken(

new Integer(yytext()).intValue(),
 Pos.linenum,Pos.colnum));}

\n {Pos.line +=1; Pos.col = 1;}
" " {Pos.col +=1;}
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The Java program that uses this 
scanner (P2) is:

class P2 {
public static void main(String args[])

throws java.io.IOException {
if (args.length != 1) {

System.out.println(
"Error: Input file must be named on 

command line." );
System.exit(-1);

}
java.io.FileInputStream yyin = null;
try {
yyin = 
new java.io.FileInputStream(args[0]);

} catch (FileNotFoundException
notFound){

System.out.println(
"Error: unable to open input file.”);
System.exit(-1);

}

// lex is a JLex-generated scanner that
// will read from yyin

    Yylex lex = new Yylex(yyin);

System.out.println(
"Begin test of CSX scanner.");
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/**********************************
 You should enter code here that
thoroughly test your scanner.

Be sure to test extreme cases, 
like very long symbols or lines,
illegal tokens, unrepresentable
integers, illegals strings, etc.
The following is only a starting point.

***********************************/
Symbol token = lex.yylex();

while ( token.sym != sym.EOF ) {
 System.out.print( 

((CSXToken) token.value).linenum
+ ":"
+ ((CSXToken) token.value).colnum 
+ " ");

switch (token.sym) {
  case sym.INTLIT:
    System.out.println(

"\tinteger literal(" +
 ((CSXIntLitToken)

token.value).intValue + ")");
break;

  case sym.PLUS:
    System.out.println("\t+");

break;
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  case sym.NOTEQ:
    System.out.println("\t!=");
 break;

  default:
 throw new RuntimeException();
}

token = lex.yylex(); // get next token
}
    
System.out.println(

"End test of CSX scanner.");
}}}
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Other Scanner Issues
We will consider other practical 
issues in building real scanners 
for real programming languages. 
Our finite automaton model 
sometimes needs to be 
augmented. Moreover, error 
handling must be incorporated 
into any practical scanner.
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Identifiers vs. Reserved 
Words

Most programming languages 
contain reserved words like if, 
while, switch, etc. These tokens 
look like ordinary identifiers, but 
aren’t.
It is up to the scanner to decide if 
what looks like an identifier is 
really a reserved word. This 
distinction is vital as reserved 
words have different token codes 
than identifiers and are parsed 
differently.
How can a scanner decide which 
tokens are identifiers and which 
are reserved words?



117CS 536  Spring 2015 ©

• We can scan identifiers and 
reserved words using the same 
pattern, and then look up the token 
in a special “reserved word” table.

• It is known that any regular 
expression may be complemented 
to obtain all strings not in the 
original regular expression. Thus 
A, the complement of A, is regular 
if A is. Using complementation we 
can write a regular expression for 
nonreserved 

identifiers:
Since scanner generators don’t 
usually support complementation 
of regular expressions, this 
approach is more of theoretical 
than practical interest.

ident if while …( )
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• We can give distinct regular 
expression definitions for each 
reserved word, and for identifiers. 
Since the definitions overlap (if 
will match a reserved word and the 
general identifier pattern), we give 
priority to reserved words. Thus a 
token is scanned as an identifier if 
it matches the identifier pattern 
and does not match any reserved 
word pattern. This approach is 
commonly used in scanner 
generators like Lex and JLex.
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Converting Token Values
For some tokens, we may need to 
convert from string form into 
numeric or binary form.
For example, for integers, we 
need to transform a string a digits 
into the internal (binary) form of 
integers.
We know the format of the token 
is valid (the scanner checked this), 
but:
• The string may represent an 

integer too large to represent in 32 
or 64 bit form.

• Languages like CSX and ML use a 
non- standard representation for 
negative values (~123 instead of 
-123)
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We can safely convert from string 
to integer form by first converting 
the string to double form, 
checking against max and min int, 
and then converting to int form if 
the value is representable.
Thus d =  new Double(str) will 
create an object d containing the 
value of str in double form. If 
str is too large or too small to be 
represented as a double, plus or 
minus infinity is automatically 
substituted.
d.doubleValue() will give d’s 
value as a Java double, which can 
be compared against 
Integer.MAX_VALUE or 
Integer.MIN_VALUE. 
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If d.doubleValue() represents a 
valid integer, 
(int) d.doubleValue()
will create the appropriate integer 
value.
If a string representation of an 
integer begins with a “~” we can 
strip the “~”, convert to a double 
and then negate the resulting 
value.
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Scanner Termination
A scanner reads input characters 
and partitions them into tokens. 
What happens when the end of 
the input file is reached? It may be 
useful to create an Eof pseudo-
character when this occurs. In 
Java, for example, 
InputStream.read(), which 
reads a single byte, returns - 1 
when end of file is reached. A 
constant, EOF, defined as - 1 can 
be treated as an “extended” ASCII 
character. This character then 
allows the definition of an Eof 
token that can be passed back to 
the parser. 
An Eof token is useful because it 
allows the parser to verify that the 
logical end of a program 
corresponds to its physical end. 
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Most parsers require an end of file 
token.
Lex and Jlex automatically create 
an Eof token when the scanner 
they build tries to scan an EOF 
character (or tries to scan when 
eof() is true).

124CS 536  Spring 2015 ©

Multi Character Lookahead 
We may allow finite automata to 
look beyond the next input 
character.
This feature is necessary to 
implement a scanner for 
FORTRAN. 
In FORTRAN, the statement 
DO 10 J = 1,100 

specifies a loop, with index J 
ranging from 1 to 100. 
The statement 
DO 10 J = 1.100 

is an assignment to the variable 
DO10J. (Blanks are not significant 
except in strings.)
A FORTRAN scanner decides 
whether the O is the last character 
of a DO token only after reading as 
far as the comma (or period). 
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A milder form of extended 
lookahead problem occurs in 
Pascal and Ada.
The token 10.50 is a real literal, 
whereas 10..50 is three different 
tokens. 
We need two- character lookahead 
after the 10 prefix to decide 
whether we are to return 10 (an 
integer literal) or 10.50 (a real 
literal).
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Suppose we use the following FA. 

Given 10..100 we scan three 
characters and stop in a non-
accepting state. 
Whenever we stop reading in a 
non- accepting state, we back up 
along accepted characters until an 
accepting state is found.
Characters we back up over are 
rescanned to form later tokens. If 
no accepting state is reached 
during backup, we have a lexical 
error.

.D

D D

D

.
.
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Performance Considerations
Because scanners do so much 
character- level processing, they 
can be a real performance 
bottleneck in production 
compilers.
Speed is not a concern in our 
project, but let’s see why 
scanning speed can be a concern 
in production compilers.
Let’s assume we want to compile 
at a rate of 5000 lines/sec. (so 
that most programs compile in 
just a few seconds).
Assuming 30 characters/line (on 
average), we need to scan 
150,000 char/sec.
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A key to efficient scanning is to 
group character- level operations 
whenever possible. It is better to 
do one operation on n characters 
rather than n operations on single 
characters. 
In our examples we’ve read input 
one character as a time. A 
subroutine call can cost hundreds 
or thousands of instructions to 
execute—far too much to spend 
on a single character.
We prefer routines that do block 
reads, putting an entire block of 
characters directly into a buffer. 
Specialized scanner generators 
can produce particularly fast 
scanners.
The GLA scanner generator claims 
that the scanners it produces run 
as fast as:
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while(c != Eof) {

c = getchar();
}
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Lexical Error Recovery
A character sequence that can’t 
be scanned into any valid token is 
a lexical error. 
Lexical errors are uncommon, but 
they still must be handled by a 
scanner. We won’t stop 
compilation because of so minor 
an error.
Approaches to lexical error 
handling include:
• Delete the characters read so far 

and restart scanning at the next 
unread character.

• Delete the first character read by 
the scanner and resume scanning 
at the character following it.

Both of these approaches are 
reasonable. 
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The first is easy to do. We just 
reset the scanner and begin 
scanning anew.
The second is a bit harder but 
also is a bit safer (less is 
immediately deleted). It can be 
implemented using scanner 
backup.
Usually, a lexical error is caused 
by the appearance of some illegal 
character, mostly at the beginning 
of a token.
(Why at the beginning?)
In these case, the two approaches 
are equivalent. 
The effects of lexical error 
recovery might well create a later 
syntax error, handled by the 
parser. 
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Consider
...for$tnight... 

The $ terminates scanning of for. 
Since no valid token begins with 
$, it is deleted. Then tnight is 
scanned as an identifier. In effect 
we get
...for tnight... 

which will cause a syntax error. 
Such “false errors” are 
unavoidable, though a syntactic 
error- repair may help.
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Error Tokens
Certain lexical errors require 
special care. In particular, 
runaway strings and runaway 
comments ought to receive 
special error messages. 
In Java strings may not cross line 
boundaries, so a runaway string is 
detected when an end of a line is 
read within the string body. 
Ordinary recovery rules are 
inappropriate for this error. In 
particular, deleting the first 
character (the double quote 
character) and restarting scanning 
is a bad decision.
It will almost certainly lead to a 
cascade of “false” errors as the 
string text is inappropriately 
scanned as ordinary input.
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One way to handle runaway 
strings is to define an error token. 
An error token is not a valid 
token; it is never returned to the 
parser. Rather, it is a pattern for 
an error condition that needs 
special handling. We can define an 
error token that represents a 
string terminated by an end of 
line rather than a double quote 
character. 
For a valid string, in which 
internal double quotes and back 
slashes are escaped (and no other 
escaped characters are allowed), 
we can use

" ( Not( " | Eol | \ ) | \" | \\ )* "
For a runaway string we use

" ( Not( " | Eol | \ ) | \" | \\ )* Eol
(Eol is the end of line character.)
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When a runaway string token is 
recognized, a special error 
message should be issued. 
Further, the string may be 
“repaired” into a correct string by 
returning an ordinary string token 
with the closing Eol replaced by a 
double quote. 
This repair may or may not be 
“correct.” If the closing double 
quote is truly missing, the repair 
will be good; if it is present on a 
succeeding line, a cascade of 
inappropriate lexical and syntactic 
errors will follow.
Still, we have told the programmer 
exactly what is wrong, and that is 
our primary goal.
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In languages like C, C+ + , Java 
and CSX, which allow multiline 
comments, improperly terminated 
(runaway) comments present a 
similar problem.
A runaway comment is not 
detected until the scanner finds a 
close comment symbol (possibly 
belonging to some other 
comment) or until the end of file 
is reached. Clearly a special, 
detailed error message is 
required.
Let’s look at Pascal- style 
comments that begin with a { and 
end with a }. Comments that 
begin and end with a pair of 
characters, like /* and */ in Java, 
C and C+ + , are a bit trickier.
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Correct Pascal comments are 
defined quite simply:

{ Not( } )* }
To handle comments terminated 
by Eof, this error token can be 
used:

{ Not( } )* Eof
We want to handle comments 
unexpectedly closed by a close 
comment belonging to another 
comment:
{... missing close comment 
... { normal comment }... 

We will issue a warning (this form 
of comment is lexically legal). 
Any comment containing an open 
comment symbol in its body is 
most probably a missing } error. 
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We split our legal comment 
definition into two token 
definitions. 
The definition that accepts an 
open comment in its body causes 
a warning message ("Possible 
unclosed comment") to be 
printed. 
We now use:

{  Not( { | } )* } and 
{  (Not( { | } )* { Not( { | } )* )+ } 
The first definition matches 
correct comments that do not 
contain an open comment in their 
body. 
The second definition matches 
correct, but suspect, comments 
that contain at least one open 
comment in their body. 
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Single line comments, found in 
Java, CSX and C+ + , are 
terminated by Eol.
They can fall prey to a more 
subtle error—what if the last line 
has no Eol at its end?
The solution? 
Another error token for single line 
comments:

// Not(Eol)* 
This rule will only be used for 
comments that don’t end with an 
Eol, since scanners always match 
the longest rule possible.
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Regular Expressions and 
Finite Automata 

Regular expressions are fully 
equivalent to finite automata.
The main job of a scanner 
generator like JLex is to transform 
a regular expression definition 
into an equivalent finite 
automaton.
It first transforms a regular 
expression into a 
nondeterministic finite automaton 
(NFA). 
Unlike ordinary deterministic 
finite automata, an NFA need not 
make a unique (deterministic) 
choice of a successor state to 
visit. As shown below, an NFA is 
allowed to have a state that has 
two transitions (arrows) coming 
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out of it, labeled by the same 
symbol. An NFA may also have 
transitions labeled with λ.

Transitions are normally labeled 
with individual characters in Σ, 
and although λ is a string (the 
string with no characters in it), it 
is definitely not a character. In the 
above example, when the 
automaton is in the state at the 
left and the next input character 
is a, it may choose to use the 

a

a

a

λ
a
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transition labeled a or first follow 
the λ transition (you can always 
find λ wherever you look for it) 
and then follow an a transition. 
FAs that contain no λ transitions 
and that always have unique 
successor states for any symbol 
are deterministic.
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Building Finite Automata 
From Regular Expressions

We make an FA from a regular 
expression in two steps: 
• Transform the regular expression 

into an NFA. 

• Transform the NFA into a 
deterministic FA. 

The first step is easy.
Regular expressions are all built 
out of the atomic regular 
expressions a (where a is a 
character in Σ) and λ by using the 
three operations
A B and A |  B and A*. 
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Other operations (like A+ ) are just 
abbreviations for combinations of 
these. 
NFAs for a and λ are trivial:

Suppose we have NFAs for A and 
B and want one for A |  B. We 
construct the NFA shown below: 

a

λ

A

B

Finite
Automaton

for A

Finite
Automaton

for B

λ

λ

λ

λ
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The states labeled A and B were 
the accepting states of the 
automata for A and B; we create a 
new accepting state for the 
combined automaton.
A path through the top automaton 
accepts strings in A, and a path 
through the bottom automation 
accepts strings in B, so the whole 
automaton matches A | B.
The construction for A B is even 
easier. The accepting state of the 
combined automaton is the same 
state that was the accepting state 
of B. We must follow a path 
through A’s automaton, then 
through B’s automaton, so overall 
A B is matched.
We could also just merge the 
accepting state of A with the 
initial state of B. We chose not to 
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only because the picture would be 
more difficult to draw.

A
Finite

Automaton
for A

Finite
Automaton

for B

λ
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Finally, let’s look at the NFA for 
A*. The start state reaches an 
accepting state via λ, so λ is 
accepted. Alternatively, we can 
follow a path through the FA for A 
one or more times, so zero or 
more strings that belong to A are 
matched.

A
Finite

Automaton
for A

λ

λ

λ

λ
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Creating Deterministic 
Automata

The transformation from an NFA 
N to an equivalent DFA D works by 
what is sometimes called the 
subset construction. 
Each state of D corresponds to a 
set of states of N. 
The idea is that D will be in state
{x, y, z} after reading a given input 
string if and only if N could be in 
any one of the states x, y, or z, 
depending on the transitions it 
chooses. Thus D keeps track of all 
the possible routes N might take 
and runs them simultaneously.
Because N is a finite automaton, it 
has only a finite number of states. 
The number of subsets of N’s 
states is also finite, which makes 
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tracking various sets of states 
feasible.
An accepting state of D will be any 
set containing an accepting state 
of N, reflecting the convention 
that N accepts if there is any way 
it could get to its accepting state 
by choosing the “right” 
transitions.
The start state of D is the set of all 
states that N could be in without 
reading any input characters—
that
is, the set of states reachable 
from the start state of N following 
only λ transitions. Algorithm 
close computes those states that 
can be reached following only λ 
transitions.
Once the start state of D is built, 
we begin to create successor 
states:
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We take each state S of D, and 
each character c, and compute S’s 
successor under c. 
S is identified with some set of 
N’s states, {n1, n2,...}. 

We find all the possible successor 
states to {n1, n2,...} under c, 
obtaining a set {m1, m2,...}.

Finally, we compute 
T =  CLOSE({ m1, m2,...}).
T becomes a state in D, and a 
transition from S to T labeled with 
c is added to D. 
We continue adding states and 
transitions to D until all possible 
successors to existing states are 
added. 
Because each state corresponds 
to a finite subset of N’s states, the 
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process of adding new states to D 
must eventually terminate.
Here is the algorithm for λ-
closure, called close. It starts 
with a set of NFA states, S, and 
adds to S all states reachable from 
S using only λ transitions.
void close(NFASet S) {

while (x in S and x →
λ

y 
and y notin S) {
S = S U {y}

}}

Using close, we can define the 
construction of a DFA, D, from an NFA, 
N:
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DFA MakeDeterministic(NFA N) {
DFA D ; NFASet  T
D.StartState = { N.StartState }
close(D.StartState)
D.States = { D.StartState }
while (states or transitions can be 

added to D) {
Choose any state S in D.States 

and any character c in Alphabet
T = {y in N.States such that

x →c y for some x in S}
close(T);
if (T notin D.States) {

D.States = D.States U {T}
D.Transitions = 

D.Transitions U 
{the transition S →c T}

 } }
D.AcceptingStates = 
{ S in D.States such that an 

accepting state of N in S}
} 
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Example
To see how the subset 
construction operates, consider 
the following NFA:

We start with state 1, the start 
state of N, and add state 2 its λ-
successor.
D’s start state is {1,2}.
Under a, {1,2}’s successor is 
{3,4,5}.

aλ
1 2

3 4

5

b

a

b

a

a | b
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State 1 has itself as a successor 
under b. When state 1’s λ-
successor, 2, is included, {1,2}’s 
successor is {1,2}. {3,4,5}’s 
successors under a and b are {5} 
and {4,5}.
{4,5}’s successor under b is {5}.
Accepting states of D are those 
state sets that contain N’s 
accepting state which is 5. 

The resulting DFA is:

b
1,2

5

4,5

b

a

a | b

a
3,4,5

5
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It is not too difficult to establish 
that the DFA constructed by 
MakeDeterministic is equivalent to 
the original NFA. 
The idea is that each path to an 
accepting state in the original NFA 
has a corresponding path in the 
DFA. Similarly, all paths through 
the constructed DFA correspond 
to paths in the original NFA.
What is less obvious is the fact 
that the DFA that is built can 
sometimes be much larger than 
the original NFA. States of the 
DFA are identified with sets of 
NFA states.
If the NFA has n states, there are 
2n distinct sets of NFA states, and 
hence the DFA may have as many 
as 2n states. Certain NFAs actually 
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exhibit this exponential blowup in 
size when made deterministic. 
Fortunately, the NFAs built from 
the kind of regular expressions 
used to specify programming 
language tokens do not exhibit 
this problem when they are made 
deterministic. 
As a rule, DFAs used for scanning 
are simple and compact.
If creating a DFA is impractical 
(because of size or speed- of-
generation concerns), we can scan 
using an NFA. Each possible path 
through an NFA is tracked, and 
reachable accepting states are 
identified. Scanning is slower 
using this approach, so it is used 
only when construction of a DFA 
is not practical.
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Optimizing Finite Automata
We can improve the DFA created 
by MakeDeterministic. 
Sometimes a DFA will have more 
states than necessary. For every 
DFA there is a unique smallest 
equivalent DFA (fewest states 
possible). 
Some DFA’s contain unreachable 
states that cannot be reached 
from the start state. 
Other DFA’s may contain dead 
states that cannot reach any 
accepting state. 
It is clear that neither unreachable 
states nor dead states can 
participate in scanning any valid 
token. We therefore eliminate all 
such states as part of our 
optimization process.
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We optimize a DFA by merging 
together states we know to be 
equivalent. 
For example, two accepting states 
that have no transitions at all out 
of them are equivalent. 
Why? Because they behave exactly 
the same way—they accept the 
string read so far, but will accept 
no additional characters. 
If two states, s1 and s2, are 
equivalent, then all transitions to 
s2 can be replaced with 
transitions to s1. In effect, the two 
states are merged together into 
one common state.

How do we decide what states to 
merge together? 
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We take a greedy approach and 
try the most optimistic merger of 
states. By definition, accepting 
and non- accepting states are 
distinct, so we initially try to 
create only two states: one 
representing the merger of all 
accepting states and the other 
representing the merger of all 
non- accepting states. 
This merger into only two states 
is almost certainly too optimistic. 
In particular, all the constituents 
of a merged state must agree on 
the same transition for each 
possible character. That is, for 
character c all the merged states 
must have no successor under c 
or they must all go to a single 
(possibly merged) state. 
If all constituents of a merged 
state do not agree on the 
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transition to follow for some 
character, the merged state is 
split into two or more smaller 
states that do agree.
As an example, assume we start 
with the following automaton:

Initially we have a merged non-
accepting state {1,2,3,5,6} and a 
merged accepting state {4,7}. 
A merger is legal if and only if all 
constituent states agree on the 
same successor state for all 
characters. For example, states 3 
and 6 would go to an accepting 
state given character c; states 1, 2, 
5 would not, so a split must occur. 

a

b

b c

c
d

1 2 3 4

5 6 7
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We will add an error state sE to the 
original DFA that is the successor 
state under any illegal character. 
(Thus reaching sE becomes 
equivalent to detecting an illegal 
token.) sE is not a real state; rather 
it allows us to assume every state 
has a successor under every 
character. sE is never merged with 
any real state.
Algorithm Split , shown below, 
splits merged states whose 
constituents do not agree on a 
common successor state for all 
characters. When Split  
terminates, we know that the 
states that remain merged are 
equivalent in that they always 
agree on common successors.
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Split(FASet StateSet) {
repeat
for(each merged state S in StateSet) {

Let S correspond to {s1,...,sn}
for(each char c in Alphabet){
Let t1,...,tn be the successor 
states to s1,...,sn under c 

if(t1,...,tn do not all belong to
the same merged state){
Split S into two or more new
states such that si and sj
remain in the same merged
state if and only if ti and tj
are in the same merged state}

}
until no more splits are possible

}
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Returning to our example, we 
initially have states {1,2,3,5,6} and 
{4,7}. Invoking Split , we first 
observe that states 3 and 6 have a 
common successor under c, and 
states 1, 2, and 5 have no 
successor under c (equivalently, 
have the error state sE as a 
successor).
This forces a split, yielding {1,2,5}, 
{3,6} and {4,7}.
Now, for character b, states 2 and 
5 would go to the merged state 
{3,6}, but state 1 would not, so 
another split occurs. 
We now have: {1}, {2,5}, {3,6} and 
{4,7}. 
At this point we are done, as all 
constituents of merged states 
agree on the same successor for 
each input symbol.
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Once Split  is executed, we are 
essentially done. 
Transitions between merged 
states are the same as the 
transitions between states in the 
original DFA. 
Thus, if there was a transition 
between state si and sj under 
character c, there is now a 
transition under c from the 
merged state containing si to the 
merged state containing sj. The 
start state is that merged state 
containing the original start state.
Accepting states are those 
merged states containing 
accepting states (recall that 
accepting and non- accepting 
states are never merged).
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Returning to our example, the 
minimum state automaton we 
obtain is

a | d b c
1 2,5 3,6 4,7
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Properties of Regular 
Expressions and Finite 
Automata
• Some token patterns can’t be defined 

as regular expressions or finite 
automata. Consider the set of 
balanced brackets of the form [ [ [«] ] ]. 
This set is defined formally as 
{ [m ]m | m ≥ 1 }. 
This set is not regular.
No finite automaton that recognizes 
exactly this set can exist.
Why? Consider the inputs [, [[, [[[, ...
For two different counts (call them i 
and j) [i and [j must reach the same 
state of a given FA! (Why?)
Once that happens, we know that if [i]i 
is accepted (as it should be), the [j]i 
will also be accepted (and that should 
not happen).
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• R =  V* -  R is regular if R is.
Why?
Build a finite automaton for R. Be 
careful to include transitions to an 
“error state” sE for illegal characters. 
Now invert final and non- final states. 
What was previously accepted is now 
rejected, and what was rejected is now 
accepted. That is, R is accepted by the 
modified automaton.

• Not all subsets of a regular set are 
themselves regular. The regular 
expression [+ ]+  has a subset that isn’t 
regular. (What is that subset?)

168CS 536  Spring 2015 ©

• Let R be a set of strings. Define Rrev as 
all strings in R, in reversed (backward) 
character order. 
Thus if R =  {abc, def}
then Rrev =  {cba, fed}.
If R is regular, then Rrev is too.
Why? Build a finite automaton for R. 
Make sure the automaton has only one 
final state. Now reverse the direction 
of all transitions, and interchange the 
start and final states. What does the 
modified automation accept?
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• If R1 and R2 are both regular, then 

R1 ∩ R2 is also regular. We can show 
this two different ways:

1. Build two finite automata, one 
for R1 and one for R2. Pair 
together states of the two 
automata to match R1 and R2 
simultaneously. The paired-
state automaton accepts only if 
both R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2 

is =   We already know 

union and complementation are 
regular.

R1 R2∪
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Reading Assignment
• Read Chapter 4 of

Crafting a Compiler
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Context Free Grammars
A context- free grammar (CFG) is 
defined as:
• A finite terminal set Vt; 

these are the tokens produced by 
the scanner.

• A set of intermediate symbols, 
called non- terminals, Vn.

• A start symbol, a designated non-
terminal, that starts all derivations.

• A set of productions (sometimes 
called rewriting rules) of the form

A → X1 ... Xm
X1 to Xm may be any 
combination of terminals and 
non- terminals.

If m = 0 we have A → λ
which is a valid production.
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Example
Prog → { Stmts }
Stmts →Stmts ; Stmt
Stmts →Stmt
Stmt →id = Expr
Expr →id
Expr →Expr + id
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Often more than one production 
shares the same left- hand side.
Rather than repeat the left hand 
side, an “or notation” is used:

Prog → { Stmts }
Stmts →Stmts ; Stmt

| Stmt
Stmt →id = Expr
Expr →id

|   Expr + id
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Derivations
Starting with the start symbol, 
non- terminals are rewritten using 
productions until only terminals 
remain.
Any terminal sequence that can 
be generated in this manner is 
syntactically valid. 
If a terminal sequence can’t be 
generated using the productions 
of the grammar it is invalid (has 
syntax errors).
The set of strings derivable from 
the start symbol is the language 
of the grammar (sometimes 
denoted L(G)).
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For example, starting at Prog we 
generate a terminal sequence, by 
repeatedly applying productions:
Prog
{ Stmts }
{ Stmts ; Stmt }
{ Stmt ; Stmt }
{ id = Expr ; Stmt }
{ id = id ; Stmt }
{ id = id ; id = Expr }
{ id = id ; id = Expr + id}
{ id = id ; id = id + id}
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Parse Trees
To illustrate a derivation, we can 
draw a derivation tree (also called 
a parse tree):

Prog

{ Stmts }

 Stmts ; Stmt 

 Stmt 

 id = Expr 

 id 

 id = Expr 

 Expr + id

 id 
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An abstract syntax tree (AST) 
shows essential structure but 
eliminates unnecessary delimiters 
and intermediate symbols:

Prog

 Stmts 

 Stmts =

 = 

 id id 

 id + 

 id id
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If A → γ is a production then
αAβ ⇒ αγβ 

where ⇒ denotes a one step 
derivation (using production
A → γ).

We extend ⇒ to ⇒+  (derives in 
one or more steps), and ⇒* 
(derives in zero or more steps).
We can show our earlier derivation 
as
Prog ⇒
{ Stmts } ⇒
{ Stmts ; Stmt } ⇒ 
{ Stmt ; Stmt } ⇒
{ id = Expr ; Stmt } ⇒
{ id = id ; Stmt } ⇒
{ id = id ; id = Expr } ⇒
{ id = id ; id = Expr + id} ⇒
{ id = id ; id = id + id} 

Prog ⇒+ { id = id ; id = id + id}
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When deriving a token sequence, 
if more than one non- terminal is 
present, we have a choice of 
which to expand next.
We must specify, at each step, 
which non- terminal is expanded, 
and what production is applied.
For simplicity we adopt a 
convention on what non- terminal 
is expanded at each step.
We can choose the leftmost 
possible non- terminal at each 
step.
A derivation that follows this rule 
is a leftmost derivation.
If we know a derivation is 
leftmost, we need only specify 
what productions are used; the 
choice of non- terminal is always 
fixed.
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To denote derivations that are 
leftmost, 
we use ⇒L, ⇒

+
L , and ⇒*

L

The production sequence 
discovered by a large class of 
parsers (the top- down parsers) is 
a leftmost derivation, hence these 
parsers produce a leftmost parse.
Prog ⇒L

{ Stmts } ⇒L

{ Stmts ; Stmt } ⇒L 
{ Stmt ; Stmt } ⇒L

{ id = Expr ; Stmt } ⇒L

{ id = id ; Stmt } ⇒L

{ id = id ; id = Expr } ⇒L

{ id = id ; id = Expr + id} ⇒L

{ id = id ; id = id + id} 

Prog ⇒L
+  { id = id ; id = id + id}
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Rightmost Derivations
A rightmost derivation is an 
alternative to a leftmost 
derivation. Now the rightmost 
non- terminal is always expanded.
This derivation sequence may 
seem less intuitive given our 
normal left- to- right bias, but it 
corresponds to an important class 
of parsers (the bottom- up 
parsers, including CUP).
As a bottom- up parser discovers 
the productions used to derive a 
token sequence, it discovers a 
rightmost derivation, but in 
reverse order.
The last production applied in a 
rightmost derivation is the first 
that is discovered. The first 
production used, involving the 
start symbol, is discovered last.
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The sequence of productions 
recognized by a bottom- up 
parser is a rightmost parse.
It is the exact reverse of the 
production sequence that 
represents a rightmost derivation.
For rightmost derivations, we use 
the notation ⇒R, ⇒+

R , and ⇒*
R

Prog ⇒R

{ Stmts } ⇒R

{ Stmts ; Stmt } ⇒R 
{ Stmts ; id = Expr } ⇒R 
{ Stmts ; id = Expr + id } ⇒R

{ Stmts ; id = id + id } ⇒R

{ Stmt ; id = id + id } ⇒R

{ id = Expr ; id = id + id } ⇒R

{ id = id ; id = id + id} 
Prog ⇒+  { id = id ; id = id + id}
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You can derive the same set of 
tokens using leftmost and 
rightmost derivations; the only 
difference is the order in which 
productions are used.
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Ambiguous Grammars
Some grammars allow more than 
one parse tree for the same token 
sequence. Such grammars are 
ambiguous. Because compilers 
use syntactic structure to drive 
translation, ambiguity is 
undesirable—it may lead to an 
unexpected translation.
Consider

E → E - E
|  id

When parsing the input a- b- c 
(where a, b and c are scanned as 
identifiers) we can build the 
following two parse trees:
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The effect is to parse a- b- c as 
either (a- b)- c or a- (b- c). These 
two groupings are certainly not 
equivalent.
Ambiguous grammars are usually 
voided in building compilers; the 
tools we use, like Yacc and CUP, 
strongly prefer unambiguous 
grammars.
To correct this ambiguity, we use

E → E - id
|  id

E
E - E

E - E

id id id

E
E - E

E - E

id id id
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Now a- b- c can only be parsed as:

E
E - 

E - 

id id id
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Operator Precedence
Most programming languages 
have operator precedence rules 
that state the order in which 
operators are applied (in the 
absence of explicit parentheses). 
Thus in C and Java and CSX, 
a+b*c means compute b*c, then 
add in a.
These operators precedence rules 
can be incorporated directly into a 
CFG.
Consider
E → E + T

| T
T → T * P

| P
P → id

| ( E )
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Does a+b*c mean (a+b)*c or 
a+(b*c)?
The grammar tells us! Look at the 
derivation tree:

The other grouping can’t be 
obtained unless explicit 
parentheses are used.
(Why?)

E
E + T

T T * P

P  P
id id id
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Java CUP
Java CUP is a parser- generation 
tool, similar to Yacc. 
CUP builds a Java parser for 
LALR(1) grammars from 
production rules and associated 
Java code fragments.
When a particular production is 
recognized, its associated code 
fragment is executed (typically to 
build an AST).
CUP generates a Java source file 
parser.java. It contains a class 
parser, with a method
Symbol parse()

The Symbol returned by the parser 
is associated with the grammar’s 
start symbol and contains the AST 
for the whole source program.
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The file sym.java is also built for 
use with a JLex- built scanner (so 
that both scanner and parser use 
the same token codes).
If an unrecovered syntax error 
occurs, Exception() is thrown by 
the parser.
CUP and Yacc accept exactly the 
same class of grammars—all LL(1) 
grammars, plus many useful non-
LL(1) grammars.
CUP is called as
java java_cup.Main < file.cup
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Java CUP Specifications
Java CUP specifications are of the 
form:
• Package and import specifications

• User code additions

• Terminal and non- terminal 
declarations

• A context- free grammar, 
augmented with Java code 
fragments

Package and Import Specifications
You define a package name as:
package name ;
You add imports to be used as:
import java_cup.runtime.*;
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User Code Additions
You may define Java code to be 
included within the generated 
parser:
action code {: /*java code */ :}
This code is placed within the 
generated action class (which 
holds user- specified production 
actions).
parser code {: /*java code */ :}
This code is placed within the 
generated parser class .
init with{: /*java code */ :}
This code is used to initialize the 
generated parser.
scan with{: /*java code */ :}
This code is used to tell the 
generated parser how to get 
tokens from the scanner.
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Terminal and Non-terminal 
Declarations

You define terminal symbols you 
will use as:
terminal classname name1, name2, ...

classname is a class used by the 
scanner for tokens (CSXToken, 
CSXIdentifierToken, etc.)

You define non- terminal symbols 
you will use as:
non terminal classname name1, name2, ...

classname is the class for the 
AST node associated with the 
non- terminal (stmtNode, 
exprNode, etc.)
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Production Rules
Production rules are of the form
name ::= name1 name2 ... action ;

or
name ::= name1 name2 ... 
action1

| name3 name4 ... action2
| ... 
;

Names are the names of terminals 
or non- terminals, as declared 
earlier.
Actions are Java code fragments, 
of the form 
{: /*java code */ :}
The Java object assocated with a 
symbol (a token or AST node) may 
be named by adding a :id suffix 
to a terminal or non- terminal in a 
rule.
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RESULT names the left- hand side 
non- terminal.
The Java classes of the symbols 
are defined in the terminal and 
non- terminal declaration 
sections.
For example, 
prog ::= LBRACE:l stmts:s RBRACE

{: RESULT =
new csxLiteNode(s, 
l.linenum,l.colnum); :}

This corresponds to the production
prog → { stmts }
The left brace is named l; the 
stmts non- terminal is called s.
In the action code, a new 
CSXLiteNode is created and 
assigned to prog. It is constructed 
from the AST node associated 
with s. Its line and column 
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numbers are those given to the 
left brace, l (by the scanner).

To tell CUP what non- terminal to 
use as the start symbol (prog in 
our example), we use the 
directive:
start with prog;
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Example
Let’s look at the CUP specification 
for CSX- lite. Recall its CFG is

program → {  stmts  }
stmts → stmt stmts 

| λ 
stmt → id  =  expr  ; 

 |  if ( expr  )  stmt  
expr → expr +  id 

| expr -  id 
| id 
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The corresponding CUP 
specification is:
/***
This Is A Java CUP Specification For 
CSX-lite, a Small Subset of The CSX 
Language,  Used In Cs536
 ***/

/* Preliminaries to set up and use the 
scanner.  */

import java_cup.runtime.*;
parser code {:
 public void syntax_error

(Symbol cur_token){
   report_error(

“CSX syntax error at line “+
String.valueOf(((CSXToken)

cur_token.value).linenum),
null);}

:};

init with {:              :};
scan with {:

return Scanner.next_token(); 
:};
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/* Terminals (tokens returned by the 
scanner). */
terminal CSXIdentifierToken IDENTIFIER;
terminal CSXToken SEMI, LPAREN, RPAREN, 
ASG, LBRACE, RBRACE;
terminal CSXToken PLUS, MINUS, rw_IF;

/* Non terminals */
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;
non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;

start with prog;

prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s, 
l.linenum,l.colnum); :}

;

stmts::= stmt:s1  stmts:s2
 {: RESULT=

new stmtsNode(s1,s2, 
s1.linenum,s1.colnum);

 :}
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| 
 {: RESULT= stmtsNode.NULL; :}
;
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

| rw_IF:i LPAREN exp:e RPAREN  stmt:s
 {: RESULT=new ifThenNode(e,s, 

 stmtNode.NULL,
i.linenum,i.colnum); :}

;
exp::= 
exp:leftval PLUS:op ident:rightval

 {: RESULT=new binaryOpNode(leftval, 
sym.PLUS, rightval,
op.linenum,op.colnum); :}

| exp:leftval MINUS:op ident:rightval
 {: RESULT=new binaryOpNode(leftval, 

sym.MINUS,rightval,
op.linenum,op.colnum); :}

| ident:i
 {: RESULT = i; :}
;
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ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
  new identNode(i.identifierText,

 i.linenum,i.colnum),
  exprNode.NULL,
  i.linenum,i.colnum); :}
;
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Let’s parse

{ a = b ; }
First, a is parsed using 
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
  new identNode(i.identifierText,

 i.linenum,i.colnum),
  exprNode.NULL,

  i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
a
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Next, b is parsed using 
ident::= IDENTIFIER:i
 {: RESULT = new nameNode(
  new identNode(i.identifierText,

 i.linenum,i.colnum),
  exprNode.NULL,

  i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
b
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Then b’s subtree is recognized as 
an exp:
| ident:i
 {: RESULT = i; :}

Now the assignment statement is 
recognized:
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

We build

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode
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The stmts → λ production is 
matched (indicating that there are 
no more statements in the 
program).
CUP matches
stmts::= 
 {: RESULT= stmtsNode.NULL; :}

and we build

Next, 
stmts → stmt stmts 
is matched using
stmts::= stmt:s1  stmts:s2
 {: RESULT=

new stmtsNode(s1,s2, 
s1.linenum,s1.colnum);

 :}

nullStmtsNode
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This builds

As the last step of the parse, the 
parser matches 
program → {  stmts  }
using the CUP rule
prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s, 
l.linenum,l.colnum); :}

;

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode
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The final AST reurned by the 
parser is

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

csxLiteNode
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Errors in Context-Free 
Grammars

Context- free grammars can 
contain errors, just as programs 
do. Some errors are easy to detect 
and fix; others are more subtle.
In context- free grammars we 
start with the start symbol, and 
apply productions until a terminal 
string is produced.
Some context- free grammars may 
contain useless non- terminals.
Non- terminals that are 
unreachable (from the start 
symbol) or that derive no terminal 
string are considered useless.
Useless non- terminals (and 
productions that involve them) 
can be safely removed from a 
grammar without changing the 
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language defined by the 
grammar.
A grammar containing useless 
non- terminals is said to be non-
reduced.
After useless non- terminals are 
removed, the grammar is reduced.
Consider

S → A B
|  x

B → b
A → a A
C → d

Which non- terminals are 
unreachable? Which derive no 
terminal string?
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Finding Useless Non-
terminals

To find non- terminals that can 
derive one or more terminal 
strings, we’ll use a marking 
algorithm.
We iteratively mark terminals that 
can derive a string of terminals, 
until no more non- terminals can 
be marked. Unmarked non-
terminals are useless.
(1) Mark all terminal symbols
(2) Repeat

If all symbols on the 
righthand side of a 
production are marked

Then mark the lefthand side
Until no more non- terminals

can be marked
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We can use a similar marking 
algorithm to determine which 
non- terminals can be reached 
from the start symbol:

(1) Mark the Start Symbol
(2) Repeat

If the lefthand side of a
production is marked

Then mark all non- terminals
in the righthand side

Until no more non- terminals
can be marked
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λ Derivations
When parsing, we’ll sometimes 
need to know which non-
terminals can derive λ. (λ is 
“invisible” and hence tricky to 
parse).
We can use the following marking 
algorithm to decide which non-
terminals derive λ
(1) For each production A → λ

mark A
(2) Repeat

If the entire righthand
side of a production
is marked

Then mark the lefthand side
Until no more non- terminals

can be marked
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As an example consider

S → A  B  C
A → a
B → C D
D → d

| λ
C → c

|  λ
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Recall that compilers prefer an 
unambiguous grammar because a 
unique parse tree structure can be 
guaranteed for all inputs.
Hence a unique translation, 
guided by the parse tree 
structure, will be obtained.
We would like an algorithm that 
checks if a grammar is 
ambiguous.
Unfortunately, it is undecidable 
whether a given CFG is 
ambiguous, so such an algorithm 
is impossible to create.
Fortunately for certain grammar 
classes, including those for which 
we can generate parsers, we can 
prove included grammars are 
unambiguous.
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Potentially, the most serious flaw 
that a grammar might have is that 
it generates the “wrong 
language."
This is a subtle point as a 
grammar serves as the definition 
of a language.
For established languages (like C 
or Java) there is usually a suite of 
programs created to test and 
validate new compilers. An 
incorrect grammar will almost 
certainly lead to incorrect 
compilations of test programs, 
which can be automatically 
recognized.
For new languages, initial 
implementors must thoroughly 
test the parser to verify that 
inputs are scanned and parsed as 
expected.

216CS 536  Spring 2015 ©

Parsers and Recognizers
Given a sequence of tokens, we 
can ask:
"Is this input syntactically valid?" 
(Is it generable from the 
grammar?).
A program that answers this 
question is a recognizer.
Alternatively, we can ask:
"Is this input valid and, if it is, 
what is its structure (parse tree)?"
A program that answers this more 
general question is termed a 
parser.
We plan to use language structure 
to drive compilers, so we will be 
especially interested in parsers.
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Two general approaches to 
parsing exist.
The first approach is top- down.
A parser is top- down if it 
"discovers" the parse tree 
corresponding to a token 
sequence by starting at the top of 
the tree (the start symbol), and 
then expanding the tree (via 
predictions) in a depth- first 
manner.
Top- down parsing techniques are 
predictive in nature because they 
always predict the production that 
is to be matched before matching 
actually begins.
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Consider

E → E + T | T
T → T * id | id

To parse id + id in a top- down 
manner, a parser build a parse 
tree in the following steps:

E E

E + T

E

E + T

T
E

E + T

T

id

E

E + T

T

id id

⇒ ⇒ ⇒

⇒
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A wide variety of parsing 
techniques take a different 
approach.
They belong to the class of 
bottom- up parsers.
As the name suggests, bottom- up 
parsers discover the structure of a 
parse tree by beginning at its 
bottom (at the leaves of the tree 
which are terminal symbols) and 
determining the productions used 
to generate the leaves.
Then the productions used to 
generate the immediate parents 
of the leaves are discovered.
The parser continues until it 
reaches the production used to 
expand the start symbol.
At this point the entire parse tree 
has been determined.
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A bottom- up parse of id1 + id2 
would follow the following steps:

E

E + T

T

id1 id2

⇒ ⇒

⇒

T

id1 T

id1

E

T

id2
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A Simple Top-Down Parser
We’ll build a rudimentary top-
down parser that simply tries each 
possible expansion of a non-
terminal, in order of production 
definition.
If an expansion leads to a token 
sequence that doesn’t match the 
current token being parsed, we 
backup and try the next possible 
production choice.
We stop when all the input tokens 
are correctly matched or when all 
possible production choices have 
been tried.
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Example
Given the productions

S → a
 | ( S )

we try a, then (a), then ((a)), etc.

Let’s next try an additional 
alternative:

S → a
 | ( S )

| ( S ]
Let’s try to parse a, then (a], then 
((a]], etc.
We’ll count the number of 
productions we try for each input.
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• For input =  a
We try S → a which works.
Matches needed =  1

• For input =  ( a ]
We try S → a which fails.
We next try S → ( S ).
We expand the inner S three 
different ways; all fail.
Finally, we try S → ( S ].
The inner S expands to a, which 
works.
Total matches tried =  
1 +  (1+ 3)+ (1+ 1)=  7.

• For input =  (( a ]]
We try S → a which fails.
We next try S → ( S ).
We match the inner S to (a] using 7 
steps, then fail to match the last ].
Finally, we try S → ( S ].
We match the inner S to (a] using 7 
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steps, then match the last ].
Total matches tried =  
1 +  (1+ 7)+ (1+ 7)=  17.

• For input =  ((( a ]]]
We try S → a which fails.
We next try S → ( S ).
We match the inner S to ((a]] using 
17 steps, then fail to match the last 
].
Finally, we try S → ( S ].
We match the inner S to ((a]] using 
17 steps, then match the last ].
Total matches tried =  

1 +  (1+ 17) +  (1+ 17) =  37.

Adding one extra ( ... ] pair doubles 
the number of matches we need to 
do the parse.

In fact to parse (ia]i takes 5*2i- 3 
matches. This is exponential growth!
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With a more effective dynamic 
programming approach, in which 
results of intermediate parsing steps 
are cached, we can reduce the 
number of matches needed to n3 for 
an input with n tokens.
Is this acceptable?
No!
Typical source programs have at 
least 1000 tokens, and 10003 =  109 
is a lot of steps, even for a fast 
modern computer.
The solution?
—Smarter selection in the choice of 
productions we try.
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Reading Assignment
Read Chapter 5 of
Crafting a Compiler, Second 
Edition.
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Prediction
We want to avoid trying 
productions that can’t possibly 
work. 
For example, if the current token 
to be parsed is an identifier, it is 
useless to try a production that 
begins with an integer literal. 
Before we try a production, we’ll 
consider the set of terminals it 
might initially produce. If the 
current token is in this set, we’ll 
try the production.
If it isn’t, there is no way the 
production being considered 
could be part of the parse, so 
we’ll ignore it.
A predict function tells us the set 
of tokens that might be initially 
generated from any production.
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For A → X1...Xn, Predict(A → 
X1...Xn) =  Set of all initial (first) 
tokens derivable from A → X1...Xn 

=  {a in Vt |  A → X1...Xn ⇒* a...}

For example, given
Stmt → Label id  = Expr  ;

|  Label if Expr then Stmt ;
| Label read ( IdList ) ;
| Label id ( Args ) ;

Label → intlit :
| λ

Production Predict Set

Stmt → Label id = Expr ; {id, intlit}

Stmt → Label  if Expr then Stmt ; {if, intlit}

Stmt → Label read ( IdList ) ; {read, intlit}

Stmt → Label id ( Args ) ; {id, intlit}
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We now will match a production p 
only if the next unmatched token 
is in p’s predict set. We’ll avoid 
trying productions that clearly 
won’t work, so parsing will be 
faster.
But what is the predict set of a 
λ- production? 
It can’t be what’s generated by λ 
(which is nothing!), so we’ll define 
it as the tokens that can follow 
the use of a λ- production.
That is, Predict(A → λ) =  Follow(A)
where (by definition)

Follow(A) =  {a in Vt |  S ⇒+  ...Aa...}

In our example, 
Follow(Label → λ) = { id, if, read }
(since these terminals can 
immediately follow uses of Label 
in the given productions).
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Now let’s parse 
id ( intlit ) ;

Our start symbol is Stmt and the 
initial token is id.
id can predict 
Stmt → Label id = Expr ;

id then predicts Label → λ
The id is matched, but “(“ doesn’t 
match “ = ” so we backup and try a 
different production for Stmt. 
id also predicts
Stmt → Label id ( Args ) ;

Again, Label → λ is predicted and 
used, and the input tokens can 
match the rest of the remaining 
production. 
We had only one misprediction, 
which is better than before.
Now we’ll rewrite the productions 
a bit to make predictions easier.
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We remove the Label prefix from 
all the statement productions 
(now intlit won’t predict all four 
productions).
We now have
Stmt → Label BasicStmt
BasicStmt → id  = Expr  ;

|   if Expr then Stmt ;
|  read ( IdList ) ;
|  id ( Args ) ;

Label → intlit :
| λ

Now id predicts two different 
BasicStmt productions. If we 
rewrite these two productions 
into
BasicStmt → id  StmtSuffix
StmtSuffix → = Expr  ;

|  ( Args ) ;

232CS 536  Spring 2015 ©

we no longer have any doubt over 
which production id predicts.

We now have

This grammar generates the same 
statements as our original 
grammar did, but now prediction 
never fails!

Production Predict Set

Stmt → Label BasicStmt Not needed!

BasicStmt → id StmtSuffix {id}

BasicStmt →  if Expr then Stmt ; {if}

BasicStmt → read ( IdList ) ; {read}

StmtSuffix → ( Args ) ; { ( }

StmtSuffix → = Expr ; { = }

Label → intlit  : {intlit}

Label → λ {if, id, read}
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Whenever we must decide what 
production to use, the predict 
sets for productions with the 
same lefthand side are always 
disjoint. 
Any input token will predict a 
unique production or no 
production at all (indicating a 
syntax error).
If we never mispredict a 
production, we never backup, so 
parsing will be fast and absolutely 
accurate!
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LL(1) Grammars
A context- free grammar whose 
Predict sets are always disjoint 
(for the same non- terminal) is 
said to be LL(1).
LL(1) grammars are ideally suited 
for top- down parsing because it 
is always possible to correctly 
predict the expansion of any non-
terminal. No backup is ever 
needed.
Formally, let
First(X1...Xn) =

{a in Vt |  A → X1...Xn ⇒* a...}

Follow(A) =  {a in Vt |  S ⇒+  ...Aa...}
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Predict(A → X1...Xn) =

If X1...Xn⇒
* λ

Then First(X1...Xn) U Follow(A)
Else First(X1...Xn)

If some CFG, G, has the property 
that for all pairs of distinct 
productions with the same 
lefthand side,
A → X1...Xn and A → Y1...Ym
it is the case that
Predict(A → X1...Xn) ∩
Predict(A → Y1...Ym) =  φ

then G is LL(1).
LL(1) grammars are easy to parse 
in a top- down manner since 
predictions are always correct.
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Example

Since the predict sets of both B 
productions and both D 
productions are disjoint, this 
grammar is LL(1).

Production Predict Set

S → A a {b,d,a}

A → B D {b, d, a}

B → b { b }

B →  λ {d, a}

D → d { d }

D → λ { a }
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Recursive Descent Parsers
An early implementation of top-
down (LL(1)) parsing was recursive 
descent.
A parser was organized as a set of 
parsing procedures, one for each 
non- terminal. Each parsing 
procedure was responsible for 
parsing a sequence of tokens 
derivable from its non- terminal.
For example, a parsing procedure, 
A, when called, would call the 
scanner and match a token 
sequence derivable from A.
Starting with the start symbol’s 
parsing procedure, we would then 
match the entire input, which 
must be derivable from the start 
symbol.

238CS 536  Spring 2015 ©

This approach is called recursive 
descent because the parsing 
procedures were typically 
recursive, and they descended 
down the input’s parse tree (as 
top- down parsers always do).
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Building A Recursive Descent 
Parser

We start with a procedure Match, 
that matches the current input 
token against a predicted token:
void Match(Terminal a) {

if (a == currentToken)
currentToken = Scanner();

else SyntaxErrror();}

To build a parsing procedure for a 
non- terminal A, we look at all 
productions with A on the 
lefthand side:
A → X1...Xn |  A → Y1...Ym |  ...

We use predict sets to decide 
which production to match (LL(1) 
grammars always have disjoint 
predict sets).
We match a production’s 
righthand side by calling Match to 
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match terminals, and calling 
parsing procedures to match 
non- terminals.
The general form of a parsing 
procedure for 
A → X1...Xn |  A → Y1...Ym |  ... is
void A() {
if (currentToken in Predict(A→X1...Xn))
for(i=1;i<=n;i++)

if (X[i] is a terminal)
Match(X[i]);

else X[i]();
else
if (currentToken in Predict(A→Y1...Ym))
for(i=1;i<=m;i++)

if (Y[i] is a terminal)
Match(Y[i]);

else Y[i]();
else 
  // Handle other A →... productions
else // No production predicted

SyntaxError();
}
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Usually this general form isn’t 
used.
Instead, each production is 
“macro- expanded” into a 
sequence of Match and parsing 
procedure calls.

242CS 536  Spring 2015 ©

Example: CSX-Lite

Production Predict Set

Prog → { Stmts } Eof { 

Stmts → Stmt Stmts id if

Stmts → λ } 

Stmt →  id = Expr ; id

Stmt →  if ( Expr ) Stmt if 

Expr → id Etail id 

Etail → + Expr +

Etail → - Expr -

Etail → λ )  ; 
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CSX-Lite Parsing Procedures
void Prog() {
Match("{");
Stmts();
Match("}");
Match(Eof);

}

void Stmts() {
if (currentToken == id ||

currentToken == if){
Stmt();
Stmts();

} else {
/* null */

}}

void Stmt() {
if (currentToken == id){

Match(id);
Match("=");
Expr();
Match(";");

} else {
Match(if);
Match("(");
Expr();
Match(")");
Stmt();

}}
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void Expr() {
Match(id);
Etail();

}

void Etail() {
if (currentToken == "+") {

Match("+");
Expr();

} else if (currentToken == "-"){
 Match("-");
Expr();

} else {
/* null */

}}
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Let’s use recursive descent to parse
{ a = b + c; } Eof 
We start by calling Prog() since this 
represents the start symbol.

Calls Pending Remaining Input
Prog() { a = b + c; } Eof 

Match("{");
Stmts();
Match("}");
Match(Eof);

{ a = b + c; } Eof

Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof
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Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 = b + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Calls Pending Remaining Input
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Match("+");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

/* null */
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Calls Pending Remaining Input
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Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Stmts();
Match("}");
Match(Eof);

} Eof

/* null */
Match("}");
Match(Eof);

} Eof

Match("}");
Match(Eof);

} Eof

Match(Eof); Eof

Done! All input matched

Calls Pending Remaining Input
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Syntax Errors in Recursive 
Descent Parsing

In recursive descent parsing, 
syntax errors are automatically 
detected. In fact, they are 
detected as soon as possible (as 
soon as the first illegal token is 
seen).
How? When an illegal token is 
seen by the parser, either it fails 
to predict any valid production or 
it fails to match an expected 
token in a call to Match. 
Let’s see how the following illegal 
CSX- lite program is parsed:
{ b + c = a; } Eof

(Where should the first syntax 
error be detected?)
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Calls Pending Remaining Input
Prog() { b + c = a; } Eof 

Match("{");
Stmts();
Match("}");
Match(Eof);

{ b + c = a; } Eof

Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof
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Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c = a; } Eof

Call to Match fails!  + c = a; } Eof

Calls Pending Remaining Input
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Table-Driven Top-Down 
Parsers

Recursive descent parsers have 
many attractive features. They are 
actual pieces of code that can be 
read by programmers and 
extended. 
This makes it fairly easy to 
understand how parsing is done. 
Parsing procedures are also 
convenient places to add code to 
build ASTs, or to do type-
checking, or to generate code.
A major drawback of recursive 
descent is that it is quite 
inconvenient to change the 
grammar being parsed. Any 
change, even a minor one, may 
force parsing procedures to be 
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reprogrammed, as productions 
and predict sets are modified.
To a less extent, recursive 
descent parsing is less efficient 
than it might be, since 
subprograms are called just to 
match a single token or to 
recognize a righthand side.

An alternative to parsing 
procedures is to encode all 
prediction in a parsing table. A 
pre- programed driver program 
can use a parse table (and list of 
productions) to parse any LL(1) 
grammar. 
If a grammar is changed, the 
parse table and list of productions 
will change, but the driver need 
not be changed.
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LL(1) Parse Tables
An LL(1) parse table, T, is a two-
dimensional array. Entries in T are 
production numbers or blank 
(error) entries.
T is indexed by:
• A, a non- terminal. A is the non-

terminal we want to expand.

• CT, the current token that is to be 
matched.

• T[A][CT] =  A → X1...Xn 
if CT is in Predict(A → X1...Xn)
T[A][CT] =  error 
if CT predicts no production with A 

as its lefthand side
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CSX-lite Example
Production Predict Set

1 Prog → { Stmts } Eof { 

2 Stmts → Stmt Stmts id if
3 Stmts → λ } 

4 Stmt →  id = Expr ; id

5 Stmt →  if ( Expr ) Stmt if 
6 Expr → id Etail id 

7 Etail → + Expr +

8 Etail → - Expr -
9 Etail → λ )  ; 

{ } if ( ) id = + - ; eof
Prog 1

Stmts 3 2 2

Stmt 5 4

Expr 6

Etail 9 7 8 9
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LL(1) Parser Driver
Here is the driver we’ll use with 
the LL(1) parse table. We’ll also 
use a parse stack that remembers 
symbols we have yet to match.

void LLDriver(){
Push(StartSymbol);
while(! stackEmpty()){
//Let X=Top symbol on parse stack
//Let CT = current token to match

if (isTerminal(X)) {
match(X); //CT is updated
pop(); //X is updated

} else if (T[X][CT] != Error){
//Let T[X][CT] = X→Y1...Ym
Replace X with 

Y1...Ym on parse stack

} else SyntaxError(CT);
}

}
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Example of LL(1) Parsing
We’ll again parse
{ a = b + c; } Eof 

We start by placing Prog (the start 
symbol) on the parse stack.

Parse Stack Remaining Input
Prog { a = b + c; } Eof 

{
Stmts
}
Eof

{ a = b + c; } Eof

Stmts
}
Eof

a = b + c; } Eof

Stmt
Stmts
}
Eof

a = b + c; } Eof
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id
=
Expr
;
Stmts
}
Eof

a = b + c; } Eof

=
Expr
;
Stmts
}
Eof

 = b + c; } Eof

Expr
;
Stmts
}
Eof

 b + c; } Eof

id
Etail
;
Stmts
}
Eof

 b + c; } Eof

Parse Stack Remaining Input
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Etail
;
Stmts
}
Eof

 + c; } Eof

+
Expr
;
Stmts
}
Eof

 + c; } Eof

Expr
;
Stmts
}
Eof

 c; } Eof

id
Etail
;
Stmts
}
Eof

 c; } Eof

Parse Stack Remaining Input
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Etail
;
Stmts
}
Eof

; } Eof

;
Stmts
}
Eof

; } Eof

Stmts
}
Eof

} Eof

}
Eof

} Eof

Eof Eof

Done! All input matched

Parse Stack Remaining Input
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Syntax Errors in LL(1) 
Parsing

In LL(1) parsing, syntax errors 
are automatically detected as 
soon as the first illegal token is 
seen.
How? When an illegal token is 
seen by the parser, either it 
fetches an error entry from the 
LL(1) parse table or it fails to 
match an expected token. 
Let’s see how the following 
illegal CSX- lite program is 
parsed:
{ b + c = a; } Eof

(Where should the first syntax 
error be detected?)
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Parse Stack Remaining Input
Prog { b + c = a; } Eof 

{
Stmts
}
Eof

{ b + c = a; } Eof

Stmts
}
Eof

b + c = a; } Eof

Stmt
Stmts
}
Eof

b + c = a; } Eof

id
=
Expr
;
Stmts
}
Eof

b + c = a; } Eof

263CS 536  Spring 2015 ©

=
Expr
;
Stmts
}
Eof

 + c = a; } Eof

Current token (+) fails 
to match expected 
token (=)!

 + c = a; } Eof

Parse Stack Remaining Input
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How do LL(1) Parsers Build 
Syntax Trees?

So far our LL(1) parser has acted 
like a recognizer. It verifies that 
input token are syntactically 
correct, but it produces no 
output.
Building complete (concrete) 
parse trees automatically is fairly 
easy.
As tokens and non- terminals are 
matched, they are pushed onto a 
second stack, the semantic stack.
At the end of each production, an 
action routine pops off n items 
from the semantic stack (where n 
is the length of the production’s 
righthand side). It then builds a 
syntax tree whose root is the 



265CS 536  Spring 2015 ©

lefthand side, and whose children 
are the n items just popped off.

For example, for production
Stmt →  id = Expr ;

the parser would include an action 
symbol after the “;” whose actions 
are:
P4 = pop(); // Semicolon token
P3 = pop(): // Syntax tree for Expr
P2 = pop(); // Assignment token
P1 = pop(); // Identifier token
Push(new StmtNode(P1,P2,P3,P4));
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Creating Abstract Syntax 
Trees

Recall that we prefer that parsers 
generate abstract syntax trees, 
since they are simpler and more 
concise.
Since a parser generator can’t 
know what tree structure we want 
to keep, we must allow the user to 
define “custom” action code, just 
as Java CUP does.
We allow users to include “code 
snippets” in Java or C. We also 
allow labels on symbols so that 
we can refer to the tokens and 
tress we wish to access. Our 
production and action code will 
now look like this:

Stmt →  id:i = Expr:e ;
{: RESULT = new StmtNode(i,e); :}
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How do We Make Grammars 
LL(1)?

Not all grammars are LL(1); 
sometimes we need to modify a 
grammar’s productions to create 
the disjoint Predict sets LL1) 
requires.
There are two common problems 
in grammars that make unique 
prediction difficult or impossible:

1. Common prefixes.
Two or more productions with 
the same lefthand side begin 
with the same symbol(s).
For example, 

Stmt →  id = Expr ;
Stmt →  id ( Args ) ;
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2. Left- Recursion
A production of the form

A →  A ...
is said to be left- recursive.
When a left- recursive production 
is used, a non- terminal is 
immediately replaced by itself 
(with additional symbols 
following).
Any grammar with a left- recursive 
production can never be LL(1).
Why?
Assume a non- terminal A reaches 
the top of the parse stack, with CT 
as the current token. The LL(1) 
parse table entry, T[A][CT], 
predicts A →  A ...
We expand A again, and T[A][CT], 
so we predict A →  A ... again. We 
are in an infinite prediction loop!
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Eliminating Common Prefixes
Assume we have two of more 
productions with the same 
lefthand side and a common 
prefix on their righthand sides:
A → α β | α γ | ... | α δ
We create a new non- terminal, X.
We then rewrite the above 
productions into:
A → αX X → β | γ | ... | δ
For example, 

Stmt →  id = Expr ;
Stmt →  id ( Args ) ;

becomes
Stmt →  id StmtSuffix
StmtSuffix →  = Expr ;
StmtSuffix →  ( Args ) ;
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Eliminating Left Recursion
Assume we have a non- terminal 
that is left recursive:
A → Aα A → β | γ | ... | δ
To eliminate the left recursion, we 
create two new non- terminals, N 
and T.
We then rewrite the above 
productions into:
A → N T N → β | γ | ... | δ
T → α T |  λ
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For example, 
Expr →  Expr + id
Expr →  id

becomes
Expr →  N T
N →  id
T → + id T |  λ

This simplifies to:
Expr →  id  T
T → + id T |  λ
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Reading Assignment
Read Sections 6.1 to 6.5.1 of 
Crafting a Compiler.
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How does JavaCup Work?
The main limitation of LL(1) 
parsing is that it must predict the 
correct production to use when it 
first starts to match the 
production’s righthand side.
An improvement to this approach 
is the LALR(1) parsing method 
that is used in JavaCUP (and Yacc 
and Bison too).
The LALR(1) parser is bottom- up 
in approach. It tracks the portion 
of a righthand side already 
matched as tokens are scanned. It 
may not know immediately which 
is the correct production to 
choose, so it tracks sets of 
possible matching productions.
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Configurations
We’ll use the notation

X →  A B • C D
to represent the fact that we are 
trying to match the production 
X →  A B • C D with A and B 
matched so far.

A production with a “•” 
somewhere in its righthand side is 
called a configuration.
Our goal is to reach a 
configuration with the “dot” at the 
extreme right:

X →  A B C D •

This indicates that an entire 
production has just been 
matched.
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Since we may not know which 
production will eventually be fully 
matched, we may need to track a 
configuration set. A configuration 
set is sometimes called a state.
When we predict a production, we 
place the “dot” at the beginning of 
a production:

X →  • A B C D
This indicates that the production 
may possibly be matched, but no 
symbols have actually yet been 
matched.
We may predict a λ- production:

X →  λ • 

When a λ- production is predicted, 
it is immediately matched, since λ 
can be matched at any time.
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Starting the Parse
At the start of the parse, we know 
some production with the start 
symbol must be used initially. We 
don’t yet know which one, so we 
predict them all:

S →  • A B C D

S →  • e F g

S →  • h I
...
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Closure
When we encounter a 
configuration with the dot to the 
left of a non- terminal, we know 
we need to try to match that non-
terminal.
Thus in

X →  • A B C D
we need to match some 
production with A as its left hand 
side. 
Which production?
We don’t know, so we predict all 
possibilities:

A →  • P Q R

A →  • s T
...

278CS 536  Spring 2015 ©

The newly added configurations 
may predict other non- terminals, 
forcing additional productions to 
be included. We continue this 
process until no additional 
configurations can be added. 
This process is called closure (of 
the configuration set).
Here is the closure algorithm:
ConfigSet Closure(ConfigSet C){

repeat
if (X → a •B d is in C &&

B is a non-terminal)
Add all configurations of

the form B → •g to C)
until (no more configurations

can be added);
return C;

}
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Example of Closure
Assume we have the following 
grammar:
S →  A b
A →  C D
C →  D
C →  c
D →  d

To compute Closure(S →  • A b)
we first include all productions 
that rewrite A:

A →  • C D
Now C productions are included:

C →  • D

C →  • c
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Finally, the D production is added:

D →  • d
The complete configuration set is:

S →  • A b

A →  • C D

C →  • D

C →  • c

D →  • d
This set tells us that if we want to 
match an A, we will need to match 
a C, and this is done by matching 
a c or d token.
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Shift Operations
When we match a symbol (a 
terminal or non- terminal), we 
shift the “dot” past the symbol 
just matched. Configurations that 
don’t have a dot to the left of the 
matched symbol are deleted 
(since they didn’t correctly 
anticipate the matched symbol).
The GoTo function computes an 
updated configuration set after a 
symbol is shifted:

ConfigSet GoTo(ConfigSet C,Symbol X){
B= φ;
for each configuration f in C{

if (f is of the form A →  α•X δ)
 Add A →  α X •δ to B;

}
 return Closure(B);
}
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For example, if C is

 S →  • A b
A →  • C D
C →  • D
C →  • c
D →  • d

and X is C, then GoTo returns

A →  C • D
D →  • d
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Reduce Actions
When the dot in a configuration 
reaches the rightmost position, 
we have matched an entire 
righthand side. We are ready to 
replace the righthand side 
symbols with the lefthand side of 
the production. The lefthand side 
symbol can now be considered 
matched.
If a configuration set can shift a 
token and also reduce a 
production, we have a potential 
shift/reduce error.
If we can reduce more than one 
production, we have a potential 
reduce/reduce error.
How do we decide whether to do a 
shift or reduce? How do we 
choose among more than one 
reduction?
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We examine the next token to see 
if it is consistent with the 
potential reduce actions.
The simplest way to do this is to 
use Follow sets, as we did in LL(1) 
parsing.
If we have a configuration

A →  α •
we will reduce this production 
only if the current token, CT, is in 
Follow(A).
This makes sense since if we 
reduce α to A, we can’t correctly 
match CT if CT can’t follow A.
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Shift/Reduce and Reduce/
Reduce Errors

If we have a parse state that 
contains the configurations

A →  α •

B →  β • a γ
and a in Follow(A) then there is an 
unresolvable shift/reduce conflict. 
This grammar can’t be parsed.
Similarly, if we have a parse state 
that contains the configurations

A →  α •

B →  β •

and Follow(A) ∩ Follow(B) ≠ φ, 
then the parser has an 
unresolvable reduce/reduce 
conflict. This grammar can’t be 
parsed.
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Building Parse States
All the manipulations needed to 
build and complete configuration 
sets suggest that parsing may be 
slow—configuration sets need to 
be updated after each token is 
matched.
Fortunately, all the configuration 
sets we ever will need can be 
computed and tabled in advance, 
when a tool like Java Cup builds a 
parser.
The idea is simple. We first 
compute an initial parse state, s0, 
that corresponds to predicting 
productions that expand the start 
symbol. We then just compute 
successor states for each token 
that might be scanned. A 
complete set of states can be 
computed. For typical 
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programming language 
grammars, only a few hundred 
states are needed.
Here is the algorithm that builds a 
complete set of parse states for a 
grammar:

StateSet BuildStates(){
 Let s0=Closure({S →  •α, S →  •β, ...});

 C={s0};
while (not all states in C are marked){
Choose any unmarked state, s, in C
Mark s;
For each X in

terminals U nonterminals {
if (GoTo(s,X) is not in C)

Add GoTo(s,X) to C;
}
}
return C;
}
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Configuration Sets for CSX-
Lite

State Cofiguration Set

s0 Prog → •{ Stmts } Eof

s1

Prog → { • Stmts } Eof
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) Stmt

s2 Prog → { Stmts •} Eof

s3

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) Stmt

s4 Stmt →  id • = Expr ;

s5 Stmt →  if • ( Expr ) Stmt
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s6 Prog → { Stmts } •Eof

s7 Stmts → Stmt Stmts •

s8

Stmt →  id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s9

Stmt →  if  ( • Expr ) Stmt
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

s10 Prog → { Stmts } Eof •

s11
Stmt →  id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

s12 Expr → id •

s13
Stmt →  if  ( Expr •) Stmt
Expr → Expr • + id
Expr → Expr • - id

State Cofiguration Set
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s14 Stmt →  id = Expr ; •

s15 Expr → Expr + • id

s16 Expr → Expr - • id

s17
Stmt →  if  ( Expr ) • Stmt
Stmt → • id = Expr ;
Stmt → • if ( Expr ) Stmt

s18 Expr → Expr + id •

s19 Expr → Expr - id •

s20 Stmt →  if  ( Expr ) Stmt •

State Cofiguration Set
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Parser Action Table
We will table possible parser 
actions based on the current state 
(configuration set) and token.
Given configuration set C and 
input token T four actions are 
possible:
• Reduce i: The i- th production has 

been matched.

• Shift: Match the current token.

• Accept: Parse is correct and 
complete.

• Error: A syntax error has been 
discovered.
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We will let A[C][T] represent the 
possible parser actions given 
configuration set C and input 
token T.
A[C][T] =  

{Reduce i |  i- th production is A→ α
and A →  α • is in C 
and T in Follow(A) } 

U (If (B →  β • T γ is in C)
{Shift} else φ)

This rule simply collects all the 
actions that a parser might do 
given C and T.
But we want parser actions to be 
unique so we require that the 
parser action always be unique for 
any C and T. 
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If the parser action isn’t unique, 
then we have a shift/reduce error 
or reduce/reduce error. The 
grammar is then rejected as 
unparsable.
If parser actions are always 
unique then we will consider a 
shift of EOF to be an accept 
action.
An empty (or undefined) action 
for C and T will signify that token 
T is illegal given configuration set 
C. 
A syntax error will be signaled.
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LALR Parser Driver
Given the GoTo and parser action 
tables, a Shift/Reduce (LALR) 
parser is fairly simple:

void LALRDriver(){
 Push(S0);
while(true){
//Let S = Top state on parse stack
//Let CT = current token to match

switch (A[S][CT]) {
case error:

SyntaxError(CT);return;
case accept:

return;
case shift:

push(GoTo[S][CT]);
CT= Scanner();
break;

case reduce i:
//Let prod i = A→Y1...Ym

 pop m states;
//Let S’ = new top state
push(GoTo[S’][A]);
break;

} } }
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Action Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ S

} R3 S R3 R2 R4 R5

if S S R4 S R5

( S

) R8 S R6 R7

id S S S S R4 S S S

= S

+ S R8 S R6 R7

- S R8 S R6 R7

; S R8 R6 R7 R5

eof A
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GoTo Table for CSX-Lite

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

{ 1

} 6

if 5 5 5

( 9

) 17

id 4 4 12 12 18 19 4

= 8

+ 15 15

- 16 16

; 14

eof 10

stmts 2 7

stmt 3 3

expr 11 13
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Example of LALR(1) Parsing
We’ll again parse
{ a = b + c; } Eof 

We start by pushing state 0 on the 
parse stack.

Parse 
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { a = b + c; } Eof 

1
0

Prog → { • Stmts } Eof
Stmts → • Stmt  Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) 

Shift  a = b + c; } Eof

4
1
0

Stmt →  id • = Expr ;  = b + c; } Eof

8
4
1
0

Stmt →  id = • Expr ;
Expr → • Expr + id
Expr → • Expr - id
Expr → • id

Shift  b + c; } Eof
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12
8
4
1
0

Expr → id • Reduce 8 + c; } Eof

11
8
4
1
0

Stmt →  id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift  + c; } Eof

15
11
8
4
1
0

Expr → Expr + • id Shift  c; } Eof

Parse 
Stack Top State Action Remaining Input
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18
15
11
8
4
1
0

Expr → Expr + id • Reduce 6  ; } Eof

11
8
4
1
0

Stmt →  id = Expr • ;
Expr → Expr • + id
Expr → Expr • - id

Shift  ; } Eof

14
11
8
4
1
0

Stmt →  id = Expr ; • Reduce 4  } Eof

Parse 
Stack Top State Action Remaining Input
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3
1
0

Stmts → Stmt • Stmts
Stmts → •Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) 
Stmt

Reduce 3  } Eof

7
3
1
0

Stmts → Stmt Stmts • Reduce 2  } Eof

2
1
0

Prog → { Stmts •} Eof Shift  } Eof

6
2
1
0

Prog → { Stmts } •Eof Accept  Eof

Parse 
Stack Top State Action Remaining Input
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Error Detection in LALR 
Parsers

In bottom- up, LALR parsers 
syntax errors are discovered when 
a blank (error) entry is fetched 
from the parser action table.
Let’s again trace how the 
following illegal CSX- lite program 
is parsed:

{ b + c = a; } Eof

Parse 
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { b + c = a; } Eof 
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1
0

Prog → { • Stmts } Eof
Stmts → • Stmt  Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if ( Expr ) 

Shift  b + c = a; } Eof 

4
1
0

Stmt →  id • = Expr ; Error
(blank)

 + c = a; } Eof 

Parse 
Stack Top State Action Remaining Input
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LALR is More Powerful
Essentially all LL(1) grammars are 
LALR(1) plus many more. 
Grammar constructs that confuse 
LL(1) are readily handled.
• Common prefixes are no problem. 

Since sets of configurations are 
tracked, more than one prefix can 
be followed. For example, in

Stmt →  id = Expr ;
Stmt →  id ( Args ) ;

after we match an id we have

Stmt →  id • = Expr ;
Stmt →  id • ( Args ) ;

The next token will tell us which 
production to use.
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• Left recursion is also not a 
problem. Since sets of 
configurations are tracked, we can 
follow a left- recursive production 
and all others it might use. For 
example, in

Expr → • Expr + id
Expr →  • id 

we can first match an id:

Expr →  id •

Then the Expr is recognized:

Expr →  Expr • + id

The left- recursion is handled!
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• But ambiguity will still block 
construction of an LALR parser. 
Some shift/reduce or reduce/
reduce conflict must appear. (Since 
two or more distinct parses are 
possible for some input).
Consider our original productions 
for if- then and if- then- else 
statements:

Stmt → if ( Expr ) Stmt •

Stmt →  if ( Expr ) Stmt  • else Stmt

Since else can follow Stmt, we 
have an unresolvable shift/reduce 
conflict. 
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Grammar Engineering
Though LALR grammars are very 
general and inclusive, sometimes 
a reasonable set of productions is 
rejected due to shift/reduce or 
reduce/reduce conflicts.
In such cases, the grammar may 
need to be “engineered” to allow 
the parser to operate.
A good example of this is the 
definition of MemberDecls in CSX. 
A straightforward definition is

MemberDecls → FieldDecls MethodDecls
 FieldDecls →  FieldDecl FieldDecls
 FieldDecls →  λ
MethodDecls →  MethodDecl MethodDecls
 MethodDecls →  λ
FieldDecl →  int id ;
MethodDecl →  int id ( ) ; Body
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When we predict MemberDecls we 
get:

MemberDecls → • FieldDecls MethodDecls
 FieldDecls → • FieldDecl FieldDecls
 FieldDecls →  λ•
FieldDecl → • int id ;

Now int follows FieldDecls since 
MethodDecls ⇒+ int ...
Thus an unresolvable shift/reduce 
conflict exists.
The problem is that int is 
derivable from both FieldDecls 
and MethodDecls, so when we see 
an int, we can’t tell which way to 
parse it (and FieldDecls →  λ 
requires we make an immediate 
decision!).
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If we rewrite the grammar so that 
we can delay deciding from where 
the int was generated, a valid 
LALR parser can be built:

MemberDecls → FieldDecl MemberDecls
MemberDecls →  MethodDecls
MethodDecls →  MethodDecl MethodDecls
 MethodDecls →  λ
FieldDecl →  int id ;
MethodDecl →  int id ( ) ; Body

When MemberDecls is predicted 
we have
MemberDecls → • FieldDecl MemberDecls
MemberDecls → • MethodDecls
MethodDecls →  •MethodDecl MethodDecls
MethodDecls →  λ •
FieldDecl → • int id ;
MethodDecl → • int id ( ) ; Body
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Now Follow(MethodDecls) =  
Follow(MemberDecls) =  “}”, so we 
have no shift/reduce conflict. 
After int id is matched, the next 
token (a “;” or a “(“) will tell us 
whether a FieldDecl or a 
MethodDecl is being matched.
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Properties of LL and LALR 
Parsers
• Each prediction or reduce action is 

guaranteed correct. Hence the entire 
parse (built from LL predictions or 
LALR reductions) must be correct.

This follows from the fact that LL 
parsers allow only one valid prediction 
per step. Similarly, an LALR parser 
never skips a reduction if it is 
consistent with the current token (and 
all possible reductions are tracked).
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• LL and LALR parsers detect an syntax 
error as soon as the first invalid token 
is seen.

Neither parser can match an invalid 
program prefix. If a token is matched 
it must be part of a valid program 
prefix. In fact, the prediction made or 
the stacked configuration sets show a 
possible derivation of the token 
accepted so far.

• All LL and LALR grammars are 
unambiguous.

LL predictions are always unique and 
LALR shift/reduce or reduce/reduce 
conflicts are disallowed. Hence only 
one valid derivation of any token 
sequence is possible.
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• All LL and LALR parsers require only 
linear time and space (in terms of the 
number of tokens parsed).

The parsers do only fixed work per 
node of the concrete parse tree, and 
the size of this tree is linear in terms 
of the number of leaves in it (even with 
λ- productions included!).



313CS 536  Spring 2015 ©

Reading Assignment
Read Chapter 8 of Crafting a 
Compiler. 
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Symbol Tables in CSX
CSX is designed to make symbol 
tables easy to create and use.
There are three places where a 
new scope is opened:
• In the class that represents the 

program text. The scope is opened 
as soon as we begin processing the 
classNode (that roots the entire 
program). The scope stays open 
until the entire class (the whole 
program) is processed.

• When a methodDeclNode is 
processed. The name of the 
method is entered in the top- level 
(global) symbol table. Declarations 
of parameters and locals are placed 
in the method’s symbol table. A 
method’s symbol table is closed 
after all the statements in its body 
are type checked.
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• When a blockNode is processed. 
Locals are placed in the block’s 
symbol table. A block’s symbol 
table is closed after all the 
statements in its body are type 
checked.
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CSX Allows no Forward 
References

This means we can do type-
checking in one pass over the 
AST. As declarations are 
processed, their identifiers are 
added to the current (innermost) 
symbol table. When a use of an 
identifier occurs, we do an 
ordinary block- structured lookup, 
always using the innermost 
declaration found. Hence in

int i = j;
int j = i;

the first declaration initializes i to 
the nearest non- local definition of 
j.
The second declaration initializes 
j to the current (local) definition 
of i.
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Forward References Require 
Two Passes

If forward references are allowed, 
we can process declarations in 
two passes.
First we walk the AST to establish 
symbol tables entries for all local 
declarations. No uses (lookups) 
are handled in this passes.
On a second complete pass, all 
uses are processed, using the 
symbol table entries built on the 
first pass.
Forward references make type 
checking a bit trickier, as we may 
reference a declaration not yet 
fully processed.
In Java, forward references to 
fields within a class are allowed.
Thus in 
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class Duh {
int i = j;
int j = i;
}

a Java compiler must recognize 
that the initialization of i is to the 
j field and that the j declaration 
is incomplete (Java forbids 
uninitialized fields or variables).
Forward references do allow 
methods to be mutually recursive. 
That is, we can let method a call 
b, while b calls a.
In CSX this is impossible!
(Why?)
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Incomplete Declarations
Some languages, like C+ + , allow 
incomplete declarations. 
First, part of a declaration (usually 
the header of a procedure or 
method) is presented.
Later, the declaration is 
completed.
For example (in C+ + ):
class C {
  int i;
 public:
  int f();
};
int C::f(){return i+1;}
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Incomplete declarations solve 
potential forward reference 
problems, as you can declare 
method headers first, and bodies 
that use the headers later.
Headers support abstraction and 
separate compilation too.
In C and C+ + , it is common to 
use a #include statement to add 
the headers (but not bodies) of 
external or library routines you 
wish to use.
C+ +  also allows you to declare a 
class by giving its fields and 
method headers first, with the 
bodies of the methods declared 
later. This is good for users of the 
class, who don’t always want to 
see implementation details.
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Classes, Structs and Records
The fields and methods declared 
within a class, struct or record are 
stored within a individual symbol 
table allocated for its 
declarations. 
Member names must be unique 
within the class, record or struct, 
but may clash with other visible 
declarations. This is allowed 
because member names are 
qualified by the object they occur 
in.
Hence the reference x.a means 
look up x, using normal scoping 
rules. Object x should have a type 
that includes local fields. The type 
of x will include a pointer to the 
symbol table containing the field 
declarations. Field a is looked up 
in that symbol table.
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Chains of field references are no 
problem.
For example, in Java
System.out.println 

is commonly used.
System is looked up and found to 
be a class in one of the standard 
Java packages (java.lang). Class 
System has a static member out 
(of type PrintStream) and 
PrintStream has a member 
println.
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Internal and External Field 
Access

Within a class, members may be 
accessed without qualification. 
Thus in
class C {

static int i;
void subr() {

int j = i;
}

}

field i is accessed like an ordinary 
non- local variable.
To implement this, we can treat 
member declarations like an 
ordinary scope in a block-
structured symbol table. 
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When the class definition ends, its 
symbol table is popped and 
members are referenced through 
the symbol table entry for the 
class name.
This means a simple reference to 
i will no longer work, but C.i will 
be valid.

In languages like C+ +  that allow 
incomplete declarations, symbol 
table references need extra care. 
In

class C {
  int i;
 public:
  int f();
};
int C::f(){return i+1;}
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when the definition of f() is 
completed, we must restore C’s 
field definitions as a containing 
scope so that the reference to i in 
i+1 is properly compiled.

326CS 536  Spring 2015 ©

Public and Private Access
C+ +  and Java (and most other 
object- oriented languages) allow 
members of a class to be marked 
public or private. 
Within a class the distinction is 
ignored; all members may be 
accessed.
Outside of the class, when a 
qualified access like C.i is 
required, only public members 
can be accessed.
This means lookup of class 
members is a two- step process. 
First the member name is looked 
up in the symbol table of the 
class. Then, the public/private 
qualifier is checked. Access to 
private members from outside 
the class generates an error 
message.
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C+ +  and Java also provide a 
protected qualifier that allows 
access from subclasses of the 
class containing the member 
definition. 
When a subclass is defined, it 
“inherits” the member definitions 
of its ancestor classes. Local 
definitions may hide inherited 
definitions. Moreover, inherited 
member definitions must be 
public or protected; private 
definitions may not be directly 
accessed (though they are still 
inherited and may be indirectly 
accessed through other inherited 
definitions).
Java also allows “blank” access 
qualifiers which allow public 
access by all classes within a 
package (a collection of classes).
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Packages and Imports
Java allows packages which group 
class and interface definitions into 
named units.
A package requires a symbol table 
to access members. Thus a 
reference
java.util.Vector
locates the package java.util 
(typically using a CLASSPATH) and 
looks up Vector within it.
Java supports import statements 
that modify symbol table lookup 
rules.
A single class import, like
import java.util.Vector;
brings the name Vector into the 
current symbol table (unless a 
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definition of Vector is already 
present).
An “import on demand” like
import java.util.*;
will lookup identifiers in the 
named packages after explicit 
user declarations have been 
checked.
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Classfiles and Object Files
Class files (“.class” files, produced 
by Java compilers) and object files 
(“.o” files, produced by C and C+ +  
compilers) contain internal 
symbol tables.
When a field or method of a Java 
class is accessed, the JVM uses 
the classfile’s internal symbol 
table to access the symbol’s value 
and verify that type rules are 
respected.
When a C or C+ +  object file is 
linked, the object file’s internal 
symbol table is used to determine 
what external names are 
referenced, and what internally 
defined names will be exported.
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C, C+ +  and Java all allow users to 
request that a more complete 
symbol table be generated for 
debugging purposes. This makes 
internal names (like local variable) 
visible so that a debugger can 
display source level information 
while debugging.
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Overloading
A number of programming 
languages, including CSX, Java 
and C+ + , allow method and 
subprogram names to be 
overloaded.
This means several methods or 
subprograms may share the same 
name, as long as they differ in the 
number or types of parameters 
they accept. For example,
class C {
  int x;
  public static int sum(int v1,

 int v2) {
     return v1 + v2;
  }
  public int sum(int v3) {
     return x + v3;
  }
}
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For overloaded identifiers the 
symbol table must return a list of 
valid definitions of the identifier. 
Semantic analysis (type checking) 
then decides which definition to 
use.
In the above example, while 
checking
(new C()).sum(10);
both definitions of sum are 
returned when it is looked up. 
Since one argument is provided, 
the definition that uses one 
parameter is selected and 
checked.
A few languages (like Ada) allow 
overloading to be disambiguated 
on the basis of a method’s result 
type. Algorithms that do this 
analysis are known, but are fairly 
complex.
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Overloaded Operators
A few languages, like C+ + , allow 
operators to be overloaded.
This means users may add new 
definitions for existing operators, 
though they may not create new 
operators or alter existing 
precedence and associativity 
rules. 
(Such changes would force 
changes to the scanner or parser.)
For example,
class complex{

float re, im;
complex operator+(complex d){

complex ans;
ans.re = d.re+re;
ans.im = d.im+im;
return ans;

} }
complex c,d; c=c+d;
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During type checking of an 
operator, all visible definitions of 
the operator (including 
predefined definitions) are 
gathered and examined.
Only one definition should 
successfully pass type checks.
Thus in the above example, there 
may be many definitions of +, but 
only one is defined to take 
complex operands.
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Contextual Resolution
Overloading allows multiple 
definitions of the same kind of 
object (method, procedure or 
operator) to co- exist.
Programming languages also 
sometimes allow reuse of the 
same name in defining different 
kinds of objects. Resolution is by 
context of use.
For example, in Java, a class name 
may be used for both the class 
and its constructor. Hence we see
C cvar = new C(10);
In Pascal, the name of a function 
is also used for its return value.
Java allows rather extensive reuse 
of an identifier, with the same 
identifier potentially denoting a 
class (type), a class constructor, a 
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package name, a method and a 
field.
For example,
class C {

double v;

C(double f) {v=f;}

}
class D {

int C;
double C() {return 1.0;}

C cval = new C(C+C());
}

At type- checking time we 
examine all potential definitions 
and use that definition that is 
consistent with the context of 
use. Hence new C() must be a 
constructor, +C() must be a 
function call, etc.
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Allowing multiple definitions to 
co- exist certainly makes type 
checking more complicated than 
in other languages.
Whether such reuse benefits 
programmers is unclear; it 
certainly violates Java’s “keep it 
simple” philosophy.
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Type and Kind Information in 
CSX

In CSX symbol table entries and in 
AST nodes for expressions, it is 
useful to store type and kind 
information. 
This information is created and 
tested during type checking. In 
fact, most of type checking 
involves deciding whether the 
type and kind values for the 
current construct and its 
components are valid.
Possible values for type include:
• Integer (int) 
• Boolean (bool)
• Character (char) 
• Void 
Void is used to represent objects 
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that have no declared type (e.g., a 
label or procedure).

• Error 
Error is used to represent objects 
that should have a type, but don’t 
(because of type errors). Error 
types suppress further type 
checking, preventing cascaded 
error messages.

• Unknown
Unknown is used as an initial value, 
before the type of an object is 
determined.
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Possible values for kind 
include:
• Var (a local variable or field that 

may be assigned to)

• Value (a value that may be read 
but not changed) 

• Array 

• String 
• ScalarParm (a by- value scalar 

parameter) 

• ArrayParm (a by- reference array 
parameter) 

• Method (a procedure or function) 

• Label (on a while loop)
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Most combinations of type and 
kind represent something in CSX.
Hence type==Boolean and 
kind==Value is a bool constant 
or expression. 
type==Void and kind==Method 
is a procedure (a method that 
returns no value). 
Type checking procedure and 
function declarations and calls 
requires some care. 
When a method is declared, you 
should build a linked list of 
(type,kind) pairs, one for each 
declared parameter. 
When a call is type checked you 
should build a second linked list 
of (type,kind) pairs for the 
actual parameters of the call. 
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You compare the lengths of the 
list of formal and actual 
parameters to check that the 
correct number of parameters has 
been passed. 
You then compare corresponding 
formal and actual parameter pairs 
to check if each individual actual 
parameter correctly matches its 
corresponding formal parameter.
For example, given  
p(int a, bool b[]){ ...

and the call
p(1,false);

you create the parameter list 
(Integer, ScalarParm), 
(Boolean, ArrayParm)
for p’s declaration and the 
parameter list 
(Integer,Value),(Boolean, Value)
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for p’s call.
Since a Value can’t match an 
ArrayParm, you know that the 
second parameter in p’s call is 
incorrect.
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Type Checking Simple 
Variable Declarations

Type checking steps:
1. Check that identNode.idname is 

not already in the symbol table.
2. Enter identNode.idname into 

symbol table with
type = typeNode.type and 
kind = Variable.

varDeclNode

identNode typeNode
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Type Checking Initialized 
Variable Declarations

Type checking steps:
1. Check that identNode.idname is 

not already in the symbol table.
2. Type check initial value 

expression.
3. Check that the initial value’s 

type is typeNode.type 

varDeclNode

identNode typeNode
expr tree
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4. Check that the initial value’s 
kind is scalar (Variable, Value 
or ScalarParm).

5. Enter identNode.idname into 
symbol table with 
type = typeNode.type and 
kind = Variable.
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Type Checking Const Decls

Type checking steps:
1. Check that identNode.idname is 

not already in the symbol table.

2. Type check the const value expr.
3. Check that the const value’s 

kind is scalar (Variable, Value 
or ScalarParm).

4. Enter identNode.idname into 
symbol table with type =  
constValue.type and 
kind =  Value.

constDeclNode

identNode

expr tree
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Type Checking IdentNodes

Type checking steps:
1. Lookup identNode.idname in the 

symbol table; error if absent.
2. Copy symbol table entry’s type 

and kind information into the 
identNode.

3. Store a link to the symbol table 
entry in the identNode (in case 
we later need to access symbol 
table information).

identNode
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Type Checking NameNodes

Type checking steps:
1. Type check the identNode.

2. If the subscriptVal is a null 
node, copy the identNode’s 
type and kind values into the 
nameNode and return.

3. Type check the subscriptVal.
4. Check that identNode’s kind is 

an array.

nameNode

identNode
expr tree
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5. Check that subscriptVal’s kind 
is scalar and type is integer or 
character.

6. Set the nameNode’s type to the 
identNode’s type and the 
nameNode’s kind to Variable.
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Type Checking Binary 
Operators

Type checking steps:
1. Type check left and right 

operands.
2. Check that left and right 

operands are both scalars.
3. binaryOpNode.kind =  Value.

binaryOpNode

expr treeexpr tree
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4. If binaryOpNode.operator is a 
plus, minus, star or slash:
(a) Check that left and right 

operands have an arithmetic 
type (integer or character).
(b) binaryOpNode.type =  
Integer

5. If binaryOpNode.operator is an 
and or is an or:
(a) Check that left and right 

operands have a boolean type.
(b) binaryOpNode.type =  
Boolean.

6. If binaryOpNode.operator is a 
relational operator:
(a) Check that both left and 

right operands have an 
arithmetic type or both have a 
boolean type.
(b) binaryOpNode.type =  
Boolean.
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Type Checking Assignments

Type checking steps:
1. Type check the nameNode.

2. Type check the expression tree.
3. Check that the nameNode’s kind 

is assignable (Variable, Array, 
ScalarParm, or ArrayParm).

4. If the nameNode’s kind is scalar 
then check the expression tree’s 
kind is also scalar and that both 
have the same type. Then return.

asgNode

nameNode
expr tree
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5. If the nameNode’s and the 
expression tree’s kinds are both 
arrays and both have the same 
type, check that the arrays have 
the same length. (Lengths of 
array parms are checked at run-
time). Then return.

6. If the nameNode’s kind is array 
and its type is character and the 
expression tree’s kind is string, 
check that both have the same 
length. (Lengths of array parms 
are checked at run- time). Then 
return.

7. Otherwise, the expression may 
not be assigned to the nameNode.
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Type Checking While Loops

Type checking steps:
1. Type check the condition (an 

expr tree).

2. Check that the condition’s type 
is Boolean and kind is scalar.

3. If the label is a null node then 
type check the stmtNode (the 
loop body) and return.

whileNode

identNode

expr tree

stmtNode
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4.If there is a label (an identNode) 
then:
(a) Check that the label is not 
already present in the symbol 
table.
(b) If it isn’t, enter label in the 
symbol table with 
kind=VisibleLabel 
and type=  void.
(c) Type check the stmtNode (the 
loop body).
(d) Change the label’s kind (in 
the symbol table) to 
HiddenLabel.
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Type Checking Breaks and 
Continues

Type checking steps:
1. Check that the identNode is 

declared in the symbol table.

2. Check that identNode’s kind is 
VisibleLabel. If identNode’s 
kind is HiddenLabel issue a 
special error message.

breakNode

identNode
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Type Checking Returns

It is useful to arrange that a static 
field named currentMethod will 
always point to the methodDeclNode 
of the method we are currently 
checking.
Type checking steps:

1. If returnVal is a null node, check 
that currentMethod.returnType 
is Void.

2. If returnVal (an expr) is not null 
then check that returnVal’s kind 
is scalar and returnVal’s type is 
currentMethod.returnType.

returnNode

expr tree
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Type Checking Method 
Declarations (no Overloading)

Type checking steps:
1. Create a new symbol table entry 

m, with type =  typeNode.type 
and kind =  Method.

2. Check that identNode.idname is 
not already in the symbol table; 
if it isn’t, enter m using 
identNode.idname.

3. Create a new scope in the 
symbol table.

4. Set currentMethod =  this 
methodDeclNode.

methodDeclNode

identNode typeNode
args tree decls tree stmts tree
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5. Type check the args subtree.
6. Build a list of the symbol table 

nodes corresponding to the args 
subtree; store it in m.

7. Type check the decls subtree.
8. Type check the stmts subtree.

9. Close the current scope at the 
top of the symbol table.
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Type Checking Method Calls 
(no Overloading)

We consider calls of procedures in a 
statement. Calls of functions in an 
expression are very similar.
Type checking steps:

1. Check that identNode.idname is 
declared in the symbol table. Its 
type should be Void and kind 
should be Method.

callNode

identNode

args tree
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2. Type check the args subtree.
3. Build a list of the expression 

nodes found in the args subtree.
4. Get the list of parameter 

symbols declared for the 
method (stored in the method’s 
symbol table entry).

5. Check that the arguments list 
and the parameter symbols list 
both have the same length.

6. Compare each argument node 
with its corresponding 
parameter symbol:
(a) Both must have the same type.
(b) A Variable, Value, or 
ScalarParm kind in an argument 
node matches a ScalarParm 
parameter. An Array or ArrayParm 
kind in an argument node 
matches an ArrayParm 
parameter.
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Reading Assignment
Read Chapters 9 and 12 of 
Crafting a Compiler. 
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Virtual Memory & Run-Time 
Memory Organization

The compiler decides how data 
and instructions are placed in 
memory.
It uses an address space provided 
by the hardware and operating 
system.
This address space is usually 
virtual—the hardware and 
operating system map 
instruction- level addresses to 
“actual” memory addresses.
Virtual memory allows:
• Multiple processes to run in 

private, protected address spaces.

• Paging can be used to extend 
address ranges beyond actual 
memory limits.
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Run-Time Data Structures

Static Structures
For static structures, a fixed 
address is used throughout 
execution.
This is the oldest and simplest 
memory organization.
In current compilers, it is used 
for:
• Program code (often read- only & 

sharable).

• Data literals (often read- only & 
sharable).

• Global variables.

• Static variables.
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Stack Allocation
Modern programming languages 
allow recursion, which requires 
dynamic allocation.
Each recursive call allocates a new 
copy of a routine’s local variables.
The number of local data 
allocations required during 
program execution is not known 
at compile- time. 
To implement recursion, all the 
data space required for a method 
is treated as a distinct data area 
that is called a frame or activation 
record. 
Local data, within a frame, is 
accessible only while a 
subprogram is active. 

368CS 536  Spring 2015 ©

In mainstream languages like C, 
C+ +  and Java, subprograms must 
return in a stack- like manner—
the most recently called 
subprogram will be the first to 
return.
A frame is pushed onto a run-
time stack when a method is 
called (activated). 
When it returns, the frame is 
popped from the stack, freeing 
the routine’s local data. 
As an example, consider the 
following C subprogram:

p(int a) {
double b;
double c[10];
b = c[a] * 2.51; 

}
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Procedure p requires space for the 
parameter a as well as the local 
variables b and c. 
It also needs space for control 
information, such as the return 
address. 
The compiler records the space 
requirements of a method.
The offset of each data item 
relative to the start of the frame is 
stored in the symbol table. 
The total amount of space 
needed, and thus the size of the 
frame, is also recorded. 
Assume p’s control information 
requires 8 bytes (this size is 
usually the same for all methods).
Assume parameter a requires 4 
bytes, local variable b requires 8 
bytes, and local array c requires 
80 bytes. 
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Many machines require that word 
and doubleword data be aligned, 
so it is common to pad a frame so 
that its size is a multiple of 4 or 8 
bytes.
This guarantees that at all times 
the top of the stack is properly 
aligned. 

Here is p’s frame:

Control Information

Space for a

Space for b

Space for c

Padding

Offset =  0

Offset =  8

Offset =  12

Offset =  20

Total size=  104
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Within p, each local data object is 
addressed by its offset relative to 
the start of the frame. 
This offset is a fixed constant, 
determined at compile- time.
We normally store the start of the 
frame in a register, so each piece 
of data can be addressed as a 
(Register, Offset) pair, which is a 
standard addressing mode in 
almost all computer architectures. 
For example, if register R points 
to the beginning of p’s frame, 
variable b can be addressed as 
(R,12), with 12 actually being 
added to the contents of R at run-
time, as memory addresses are 
evaluated. 
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Normally, the literal 2.51 of 
procedure p is not stored in p’s 
frame because the values of local 
data that are stored in a frame 
disappear with it at the end of a 
call.
It is easier and more efficient to 
allocate literals in a static area, 
often called a literal pool or 
constant pool. Java uses a 
constant pool to store literals, 
type, method and interface 
information as well as class and 
field names. 
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Accessing Frames at Run-
Time

During execution there can be 
many frames on the stack. When a 
procedure A calls a procedure B, a 
frame for B’s local variables is 
pushed on the stack, covering A’s 
frame. A’s frame can’t be popped 
off because A will resume 
execution after B returns.
For recursive routines there can 
be hundreds or even thousands of 
frames on the stack. All frames 
but the topmost represent 
suspended subroutines, waiting 
for a call to return.
The topmost frame is active; it is 
important to access it directly. 
The active frame is at the top of 
the stack, so the stack top 
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register could be used to access 
it. 
The run- time stack may also be 
used to hold data other than 
frames. 
It is unwise to require that the 
currently active frame always be 
at exactly the top of the stack.
Instead a distinct register, often 
called the frame pointer, is used 
to access the current frame. 
This allows local variables to be 
accessed directly as offset +  
frame pointer, using the indexed 
addressing mode found on all 
modern machines.
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Consider the following recursive 
function that computes factorials.
int fact(int n) {
if (n > 1)
return n * fact(n-1);

else
return 1;

}
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The run- time stack 
corresponding to the call 
fact(3) (when the call of 
fact(1) is about to return) is:

We place a slot for the function’s 
return value at the very beginning 
of the frame. 
Upon return, the return value is 
conveniently placed on the stack, 
just beyond the end of the caller’s 
frame. Often compilers return 
scalar values in specially 

Control Information

Space for n =  3

Return Value

Control Information

Space for n =  1

Return Value =  1

Control Information

Space for n =  2

Return Value 

Top of Stack

Frame Pointer
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designated registers, eliminating 
unnecessary loads and stores. For 
values too large to fit in a register 
(arrays or objects), the stack is 
used.
When a method returns, its frame 
is popped from the stack and the 
frame pointer is reset to point to 
the caller’s frame. 
In simple cases this is done by 
adjusting the frame pointer by the 
size of the current frame. 

378CS 536  Spring 2015 ©

Dynamic Links
Because the stack may contain 
more than just frames (e.g., 
function return values or registers 
saved across calls), it is common 
to save the caller’s frame pointer 
as part of the callee’s control 
information. 
Each frame points to its caller’s 
frame on the stack. This pointer is 
called a dynamic link because it 
links a frame to its dynamic (run-
time) predecessor. 
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The run- time stack corresponding 
to a call of fact(3), with dynamic 
links included, is:

Dynamic Link =  Null

Space for n =  3

Return Value 

Dynamic Link

Space for n =  1

Return Value =  1

Dynamic Link

Space for n =  2

Return Value 

Top of Stack

Frame Pointer
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Classes and Objects
C, C+ +  and Java do not allow 
procedures or methods to nest.
A procedure may not be declared 
within another procedure.
This simplifies run- time data 
access—all variables are either 
global or local.
Global variables are statically 
allocated. Local variables are part 
of a single frame, accessed 
through the frame pointer. 
Java and C+ +  allow classes to 
have member functions that have 
direct access to instance 
variables.
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Consider:
class K {
int a;
int sum(){
int b;
return a+b;

} }
Each object that is an instance of 
class K contains a member 
function sum. Only one translation 
of sum is created; it is shared by 
all instances of K. 
When sum executes it needs two 
pointers to access local and 
object- level data.
Local data, as usual, resides in a 
frame on the run- time stack. 
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Data values for a particular 
instance of K are accessed 
through an object pointer (called 
the this pointer in Java and 
C+ + ).  When obj.sum() is called, 
it is given an extra implicit 
parameter that a pointer to obj.

When a+b is computed, b, a local 
variable, is accessed directly 
through the frame pointer. a, a 
member of object obj, is 
accessed indirectly through the 
object pointer that is stored in the 
frame (as all parameters to a 
method are).

 

Object Pointer

Space for b

Control Information

Rest of Stack

Top of Stack

Frame Pointer

Space for a

Object Obj
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C+ +  and Java also allow 
inheritance via subclassing. A new 
class can extend an existing class, 
adding new fields and adding or 
redefining methods. 
A subclass D, of class C, maybe be 
used in contexts expecting an 
object of class C (e.g., in method 
calls). 
This is supported rather easily—
objects of class D always contain a 
class C object within them. 
If C has a field F within it, so does 
D. The fields D declares are merely 
appended at the end of the 
allocations for C. 
As a result, access to fields of C 
within a class D object works 
perfectly.
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Jump Code
The JVM code we generate for 
the following if statement is 
quite simple and efficient.
if (B)

A = 1;
else
 A = 0;

iload 2 ; Push local #2 (B) onto stack
ifeq L1 ; Goto L1 if B is 0 (false)
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store stk top into local #1(A)
goto L2 ; Skip around else part

L1: iconst_0 ; Push literal 0 onto stack
istore 1 ; Store stk top into local #1(A)

L2:
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In contrast, the code generated 
for 
if (F == G)

A = 1;
else
 A = 0;

(where F and G are local 
variables of type integer)
is significantly more complex:
iload 4 ; Push local #4 (F) onto stack

iload 5 ; Push local #5 (G) onto stack
if_icmpeq L1 ; Goto L1 if F == G
iconst_0 ; Push 0 (false) onto stack
goto L2 ; Skip around next instruction

L1:
iconst_1 ; Push 1 (true) onto the stack

L2:
ifeq L3 ; Goto L3 if F==G is 0 (false)
iconst_1  ; Push literal 1 onto stack
istore 1 ; Store top into local #1(A)
goto L4 ; Skip around else part

L3:
iconst_0  ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

L4:

386CS 536  Spring 2015 ©

The problem is that in the JVM 
relational operators don’t store 
a boolean value (0 or 1) onto 
the stack. Rather, instructions 
like if_icmpeq do a conditional 
branch.
So we branch to a push of 0 or 
1 just so we can test the value 
and do a second conditional 
branch to the else part of the 
conditional. 
Why did the JVM designers 
create such an odd way of 
evaluating relational operators?

A moment’s reflection shows 
that we rarely actually want the 
value of a relational or logical 
expression. Rather, we usually 
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only want to do a conditional 
branch based on the 
expression’s value in the 
context of a conditional or 
looping statement.

Jump code is an alternative 
representation of boolean 
values. Rather than placing a 
boolean value directly on the 
stack, we generate a 
conditional branch to either a 
true label or a false label. 
These labels are defined at the 
places where we wish execution 
to proceed once the boolean 
expression’s value is known.
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Returning to our previous 
example, we can generate F==G 
in jump code form as

iload 4 ; Push local #4 (F) onto stack
iload5 ; Push local #5 (G) onto stack
if_icmpne L1 ; Goto L1 if F != G

The label L1 is the “false label.” 
We branch to it if the 
expression F == G is false; 
otherwise, we “fall through,” 
executing the code that 
follows. We can then generate 
the then part, defining L1 at the 
point where the else part is to 
be computed. The code we 
generate is: 
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iload 4 ; Push local #4 (F) onto stack

iload5 ; Push local #5 (G) onto stack
if_icmpne L1 ; Goto L1 if F != G
iconst_1  ; Push literal 1 onto stack
istore 1 ; Store top into local #1(A)
goto L2 ; Skip around else part

L1:
iconst_0  ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

L2:

This instruction sequence is 
significantly shorter (and 
faster) than our original 
translation. Jump code is 
routinely used in ifs, whiles and 
fors where we wish to alter 
flow- of- control rather than 
compute an explicit boolean 
value.
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Jump code comes in two forms, 
JumpIfTrue and JumpIfFalse.
In JumpIfTrue form, the code 
sequence does a conditional 
jump (branch) if the expression 
is true, and “falls through” if 
the expression is false. 
Analogously, in JumpIfFalse 
form, the code sequence does a 
conditional jump (branch) if the 
expression is false, and “falls 
through” if the expression is 
true. We have two forms 
because different contexts 
prefer one or the other.
It is important to emphasize 
that even though jump code 
looks unusual, it is just an 
alternative representation of 
boolean values. We can convert 
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a boolean value on the stack to 
jump code by conditionally 
branching on its value to a true 
or false label.
Similarly, we convert from jump 
code to an explicit boolean 
value, by placing the jump 
code’s true label at a load of 1 
and the false label at a load of 
0. 
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Short-Circuit Evaluation 
Our translation of the && and 
|| operators parallels that of all 
other binary operators: 
evaluate both operands onto 
the stack and then do an “and” 
or “or” operation.
But in C, C+ + , C#, Java (and 
most other languages), && and 
|| are handled specially.
These two operators are 
defined to work in “short 
circuit” mode. That is, if the left 
operand is sufficient to 
determine the result of the 
operation, the right operand 
isn’t evaluated. 
In particular a&&b is defined as 
if a then b else false. 
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Similarly a||b is defined as 
if a then true else b.
The conditional evaluation of 
the second operand isn’t just 
an optimization—it’s essential 
for correctness. For example, in 
(a!=0)&&(b/a>100) 
we would perform a division by 
zero if the right operand were 
evaluated when a==0.
Jump code meshes nicely with 
the short- circuit definitions of 
&& and ||, since they are 
already defined in terms of 
conditional branches. 
In particular if exp1 and exp2 
are in jump code form, then we 
need generate no further code 
to evaluate exp1&&exp2. 

394CS 536  Spring 2015 ©

To evaluate &&, we first 
translate exp1 into JumpIfFalse 
form, followed by exp2. If exp1 
is false, we jump out of the 
whole expression. If exp1 is 
true, we fall through to exp2 
and evaluate it. In this way, 
exp2 is evaluated only when 
necessary (when exp1 is true).
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Similarly, once exp1 and exp2 
are in jump code form, 
exp1||exp2 is easy to evaluate. 
We first translate exp1 into 
JumpIfTrue form, followed by 
exp2. If exp1 is true, we jump 
out of the whole expression. If 
exp1 is false, we fall through to 
exp2 and evaluate it. In this 
way, exp2 is evaluated only 
when necessary (when exp1 is 
false).
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As an example, let’s consider
if ((A>0)||(B<0 && C==10))

A = 1;
else
 A = 0;

Assume A, B and C are all local 
integers, with indices of 1, 2 
and 3 respectively. 
We’ll produce a JumpIfFalse 
translation, jumping to label F 
(the else part) if the expression 
is false and falling through to 
the then part if the expression 
is true.
Code generators for relational 
operators can be easily 
modified to produce both kinds 
of jump code—we can either 
jump if the relation holds 
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(JumpIfTrue) or jump if it 
doesn’t hold (JumpIfFalse). We 
produce the following JVM code 
sequence which is quite 
compact and efficient.

iload 1  ; Push local #1 (A) onto stack
ifgt L1 ; Goto L1 if A > 0 is true
iload 2 ; Push local #2 (B) onto stack
ifge F ; Goto F if B < 0 is false
iload 3 ; Push local #3 (C) onto stack
bipush 10 ; Push a byte immediate (10)
if_icmpne F ; Goto F if C != 10

L1:
iconst_1 ; Push literal 1 onto stack
istore 1  ; Store top into local #1(A)
goto L2 ; Skip around else part

F:
iconst_0 ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

L2:

First A is tested. If it is greater 
than zero, the control 
expression must be true, so we 
skip the rest of the expression 
and execute the then part. 
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Otherwise, we continue 
evaluating the control 
expression. 
We next test B. If it is greater 
than or equal to zero, B<0 is 
false, and so is the whole 
expression. We therefore 
branch to label F and execute 
the else part. 
Otherwise, we finally test C.
If C is not equal to 10, the 
control expression is false, so 
we branch to label F and 
execute the else part.
If C is equal to 10, the control 
expression is true, and we fall 
through to the then part.
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For Loops

For loops are translated much 
like while loops.
The AST for a for loop adds 
subtrees corresponding to loop 
initialization and increment.
For loops are expected to 
iterate many times. Therefore 
after executing the loop 
initialization, we skip past the 
loop body and increment code 
to reach the termination 

condition
forNode

increment

Exp Stmt Stmts

initializer loopBody

Stmt
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condition, which is placed at 
the bottom of the loop.
 {Initialization code}
goto L1

L2:
{Code for loop body}
{Increment code}

L1:

{Condition code}
ifne L2 ; branch to L2 if true 

cg(){ // for forLoopNode
String skip = genLab();
String top = genLab();
initializer.cg();

 branch(skip);
defineLab(top);
loopBody.cg();
increment.cg();
defineLab(skip);
condition.cg();
branchNZ(top);

}
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As an example, consider this 
loop (i and j are locals with 
variable indices of 1 and 2)

for (i=100;i!=0;i--) {

j = i;

}

The JVM code we generate is
bipush 100 ; Push 100 
istore 1 ; Store into #1 (i)
goto L1 ; Skip to exit test

L2:

iload 1 ; Push local #1 (i)
istore 2 ; Store into #2 (j)

iload 1 ; Push local #1 (i) 
iconst_1 ; Push 1

isub ; Compute i-1

istore 1 ; Store i-1 into #1 (i)

L1:

iload 1 ; Push local #1 (i) 
ifne L2 ; Goto L2 if i is != 0
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Java, C# and C++ allow a local 
declaration of a loop index as 
part of initialization, as 
illustrated by the following for 
loop

for (int i=100; i!=0; i--) {
j = i;

}

Local declarations are 
automatically handled during 
code generation for the 
initialization expression. A 
local variable is declared within 
the current frame with a scope 
limited to the body of the loop. 
Otherwise translation is 
identical.
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