
1CS 536 Spring 2015 ©

CS 536

Introduction to
 Programming Languages

and Compilers
Charles N. Fischer

Spring 2015

 http://www.cs.wisc.edu/~fischer/cs536.html

2CS 536 Spring 2015 ©

Class Meets
Tuesdays, 5:30 — 8:30
Beatles Room, Epic Campus

Instructor
Charles N. Fischer
5393 Computer Sciences
Telephone: 608.262.1204
E- mail: fischer@cs.wisc.edu
Office Hours:

5:00 - 7:00, Monday &
Thursday, Dune Room

3CS 536 Spring 2015 ©

Teaching Assistant
Menghui Wang
E- mail: menghui@cs.wisc.edu
Telephone: 608.262.1204
Office Hours:

To be determined

4CS 536 Spring 2015 ©

Key Dates
• February 10: Assignment #1

(Identifier Cross-
Reference Analysis)

• March 3: Assignment #2
 (CSX Scanner)

• March 24: Assignment #3
(CSX Parser)

• April 8: Midterm 1,
 5:30 - 7:30 pm

• April 14: Assignment #4
 (CSX Type Checker)

• April 15: Midterm 2,
 5:00 - 7:00 pm

• May 6: Final Exam 1,
 5:30 pm - 7:30 pm

• May 8: Assignment #5
 (CSX Code Generator)

• May 12: Final Exam 2,
 5:30 pm - 7:30 pm

5CS 536 Spring 2015 ©

Class Text
• Crafting a Compiler

Fischer, Cytron, LeBlanc
ISBN- 10: 0136067050
ISBN- 13: 9780136067054
Publisher: Addison- Wesley

• Handouts and Web- based reading will
also be used.

Reading Assignment
• Chapters 1- 2 of CaC (as background)

Class Notes
• The lecture notes used in each lecture

will be made available prior to that
lecture on the class Web page (under
the “Lecture Nodes” link).

6CS 536 Spring 2015 ©

Piazza
Piazza is an interactive online
platform used to share class-
related information. We
recommend you use it to ask
questions and track course-
related information. If you are
enrolled (or on the waiting list)
you should have already
received an email invitation to
participate (about one week
ago).

7CS 536 Spring 2015 ©

Academic Misconduct Policy
• You must do your assignments—no

copying or sharing of solutions.

• You may discuss general concepts and
Ideas.

• All cases of Misconduct must be
reported to the Dean’s office.

• Penalties may be severe.

8CS 536 Spring 2015 ©

Program & Homework Late
Policy
• An assignment may be handed in up

to one week late.

• Each late day will be debited 3%, up to
a maximum of 21%.

Approximate Grade Weights
Program 1 - Cross- Reference

Analysis 8%
Program 2 - Scanner 12%
Program 3 - Parser 12%
Program 4 - Type Checker 12%
Program 5 - Code Generator 12%
Homework #1 6%
Midterm Exam 19%
Final Exam (non- cumulative) 19%

9CS 536 Spring 2015 ©

Partnership Policy
• Program #1 and the written homework

must be done individually.

• Programs 2 to 5 may be done
individually or by two person teams
(your choice).

10CS 536 Spring 2015 ©

Compilers
Compilers are fundamental to
modern computing.
They act as translators,
transforming human- oriented
programming languages into
computer- oriented machine
languages.
To most users, a compiler can
be viewed as a “black box” that
performs the transformation
shown below.

Programming
Language Machine

Language
Compiler

11CS 536 Spring 2015 ©

A compiler allows programmers
to ignore the machine-
dependent details of
programming.

Compilers allow programs and
programming skills to be
machine- independent and
platform- independent.

Compilers also aid in detecting
and correcting programming
errors (which are all too
common).

12CS 536 Spring 2015 ©

Compiler techniques also help
to improve computer security.
For example, the Java Bytecode
Verifier helps to guarantee that
Java security rules are satisfied.

Compilers currently help in
protection of intellectual
property (using obfuscation)
and provenance (through
watermarking).

Most modern processors are
multi- core or multi- threaded.
How can compilers find hidden
parallelism in serial
programming languages?

13CS 536 Spring 2015 ©

History of Compilers
The term compiler was coined
in the early 1950s by Grace
Murray Hopper. Translation was
viewed as the “compilation” of a
sequence of machine- language
subprograms selected from a
library.

One of the first real compilers
was the FORTRAN compiler of
the late 1950s. It allowed a
programmer to use a problem-
oriented source language.

14CS 536 Spring 2015 ©

Ambitious “optimizations” were
used to produce efficient
machine code, which was vital
for early computers with quite
limited capabilities.

Efficient use of machine
resources is still an essential
requirement for modern
compilers.

15CS 536 Spring 2015 ©

Virtual Machine Code
Code generated by a compiler
can consist entirely of virtual
instructions (no native code at
all). This allows code to run on
a variety of computers.
Java, with its JVM (Java Virtual
Machine) is a great example of
this approach.
If the virtual machine is kept
simple and clean, its interpreter
can be easy to write. Machine
interpretation slows execution
by a factor of 3:1 to perhaps
10:1 over compiled code.
A “Just in Time” (JIT) compiler
can translate “hot” portions of
virtual code into native code to
speed execution.

16CS 536 Spring 2015 ©

Advantages of Virtual
Instructions

Virtual instructions serve a
variety of purposes.
• They simplify a compiler by

providing suitable primitives (such
as method calls, string
manipulation, and so on).

• They aid compiler transportability.

• They may decrease in the size of
generated code since instructions
are designed to match a particular
programming language (for
example, JVM code for Java).

Almost all compilers, to a
greater or lesser extent,
generate code for a virtual
machine, some of whose
operations must be interpreted.

17CS 536 Spring 2015 ©

The Structure of a Compiler
A compiler performs two major
tasks:
• Analysis of the source program

being compiled

• Synthesis of a target program

Almost all modern compilers
are syntax- directed: The
compilation process is driven
by the syntactic structure of the
source program.
A parser builds semantic
structure out of tokens, the
elementary symbols of
programming language syntax.
Recognition of syntactic
structure is a major part of the
analysis task.

18CS 536 Spring 2015 ©

Semantic analysis examines the
meaning (semantics) of the
program. Semantic analysis
plays a dual role.
It finishes the analysis task by
performing a variety of
correctness checks (for
example, enforcing type and
scope rules). Semantic analysis
also begins the synthesis
phase.

The synthesis phase may
translate source programs into
some intermediate
representation (IR) or it may
directly generate target code.

19CS 536 Spring 2015 ©

If an IR is generated, it then
serves as input to a code
generator component that
produces the desired machine-
language program. The IR may
optionally be transformed by an
optimizer so that a more
efficient program may be
generated.

20CS 536 Spring 2015 ©

Type Checker

Optimizer

Code

Scanner

Symbol Tables

Parser

Source
Program

(Character
Stream)

Tokens Syntax
Tree

(AST)

Decorated
AST

Intermediate
Representation

(IR)

IR

Generator

Target Machine
Code

Translator

Abstract

The Structure of a Syntax-Directed Compiler

21CS 536 Spring 2015 ©

Scanner
The scanner reads the source
program, character by
character. It groups individual
characters into tokens
(identifiers, integers, reserved
words, delimiters, and so on).
When necessary, the actual
character string comprising the
token is also passed along for
use by the semantic phases.
The scanner:
• Puts the program into a compact

and uniform format (a stream of
tokens).

• Eliminates unneeded information
(such as comments).

• Sometimes enters preliminary
information into symbol tables (for

22CS 536 Spring 2015 ©

example, to register the presence
of a particular label or identifier).

• Optionally formats and lists the
source program

Building tokens is driven by
token descriptions defined
using regular expression
notation.
Regular expressions are a
formal notation able to
describe the tokens used in
modern programming
languages. Moreover, they can
drive the automatic generation
of working scanners given only
a specification of the tokens.
Scanner generators (like Lex,
Flex and JLex) are valuable
compiler- building tools.

23CS 536 Spring 2015 ©

Parser
Given a syntax specification (as
a context- free grammar, CFG),
the parser reads tokens and
groups them into language
structures.
Parsers are typically created
from a CFG using a parser
generator (like Yacc, Bison or
Java CUP).
The parser verifies correct
syntax and may issue a syntax
error message.
As syntactic structure is
recognized, the parser usually
builds an abstract syntax tree
(AST), a concise representation
of program structure, which
guides semantic processing.

24CS 536 Spring 2015 ©

Type Checker
(Semantic Analysis)

The type checker checks the static
semantics of each AST node. It
verifies that the construct is legal
and meaningful (that all
identifiers involved are declared,
that types are correct, and so on).
If the construct is semantically
correct, the type checker
“decorates” the AST node, adding
type or symbol table information
to it. If a semantic error is
discovered, a suitable error
message is issued.
Type checking is purely
dependent on the semantic rules
of the source language. It is
independent of the compiler’s
target machine.

25CS 536 Spring 2015 ©

Translator
(Program Synthesis)

If an AST node is semantically
correct, it can be translated.
Translation involves capturing
the run- time “meaning” of a
construct.
For example, an AST for a while
loop contains two subtrees, one
for the loop’s control
expression, and the other for
the loop’s body. Nothing in the
AST shows that a while loop
loops! This “meaning” is
captured when a while loop’s
AST is translated. In the IR, the
notion of testing the value of
the loop control expression,

26CS 536 Spring 2015 ©

and conditionally executing the
loop body becomes explicit.
The translator is dictated by the
semantics of the source
language. Little of the nature of
the target machine need be
made evident. Detailed
information on the nature of
the target machine (operations
available, addressing, register
characteristics, etc.) is reserved
for the code generation phase.
In simple non- optimizing
compilers (like our class
project), the translator
generates target code directly,
without using an IR.
More elaborate compilers may
first generate a high- level IR

27CS 536 Spring 2015 ©

(that is source language
oriented) and then
subsequently translate it into a
low- level IR (that is target
machine oriented). This
approach allows a cleaner
separation of source and target
dependencies.

28CS 536 Spring 2015 ©

Optimizer
The IR code generated by the
translator is analyzed and
transformed into functionally
equivalent but improved IR code
by the optimizer.
The term optimization is
misleading: we don’t always
produce the best possible
translation of a program, even
after optimization by the best of
compilers.
Why?
Some optimizations are
impossible to do in all
circumstances because they
involve an undecidable problem.
Eliminating unreachable (“dead”)
code is, in general, impossible.

29CS 536 Spring 2015 ©

Other optimizations are too
expensive to do in all cases.
These involve NP- complete
problems, believed to be
inherently exponential.
Assigning registers to variables
is an example of an NP-
complete problem.
Optimization can be complex; it
may involve numerous
subphases, which may need to
be applied more than once.
Optimizations may be turned off
to speed translation.
Nonetheless, a well designed
optimizer can significantly speed
program execution by
simplifying, moving or
eliminating unneeded
computations.

30CS 536 Spring 2015 ©

Code Generator
IR code produced by the
translator is mapped into target
machine code by the code
generator. This phase uses
detailed information about the
target machine and includes
machine- specific optimizations
like register allocation and code
scheduling.
Code generators can be quite
complex since good target
code requires consideration of
many special cases.
Automatic generation of code
generators is possible. The
basic approach is to match a
low- level IR to target
instruction templates, choosing

31CS 536 Spring 2015 ©

instructions which best match
each IR instruction.
A well- known compiler using
automatic code generation
techniques is the GNU C
compiler. GCC is a heavily
optimizing compiler with
machine description files for
over ten popular computer
architectures, and at least two
language front ends (C and
C+ +).

32CS 536 Spring 2015 ©

Symbol Tables
A symbol table allows
information to be associated
with identifiers and shared
among compiler phases. Each
time an identifier is used, a
symbol table provides access to
the information collected about
the identifier when its
declaration was processed.

33CS 536 Spring 2015 ©

Example
Our source language will be
CSX, a blend of C, C+ + and
Java.
Our target language will be the
Java JVM, using the Jasmin
assembler.

• A simple source line is
 a = bb+abs(c-7);
this is a sequence of ASCII characters
in a text file.

• The scanner groups characters into
tokens, the basic units of a program.

a = bb+abs(c-7);
 After scanning, we have the following
token sequence:
 Ida Asg Idbb Plus Idabs Lparen Idc

Minus IntLiteral7 Rparen Semi

34CS 536 Spring 2015 ©

• The parser groups these tokens into
language constructs (expressions,
statements, declarations, etc.)
represented in tree form:

(What happened to the
parentheses and the
semicolon?)

 Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral

35CS 536 Spring 2015 ©

• The type checker resolves types and
binds declarations within scopes:

 Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

int

intintloc

intloc int

int

intloc
int

method

36CS 536 Spring 2015 ©

• Finally, JVM code is generated for each
node in the tree (leaves first, then
roots):
iload 3 ; push local 3 (bb)
iload 2 ; push local 2 (c)
ldc 7 ; Push literal 7
isub ; compute c-7
invokestatic java/lang/Math/
abs(I)I
iadd ; compute bb+abs(c-7)
istore 1 ; store result into

local 1(a)

37CS 536 Spring 2015 ©

Symbol Tables & Scoping
Programming languages use
scopes to limit the range in
which an identifier is active
(and visible).
Within a scope a name may be
defined only once (though
overloading may be allowed).
A symbol table (or dictionary) is
commonly used to collect all
the definitions that appear
within a scope.
At the start of a scope, the
symbol table is empty. At the
end of a scope, all declarations
within that scope are available
within the symbol table.

38CS 536 Spring 2015 ©

A language definition may or
may not allow forward
references to an identifier.
If forward references are
allowed, you may use a name
that is defined later in the
scope (Java does this for field
and method declarations within
a class).
If forward references are not
allowed, an identifier is visible
only after its declaration. C,
C+ + and Java do this for
variable declarations.
In CSX no forward references
are allowed.
In terms of symbol tables,
forward references require two
passes over a scope. First all

39CS 536 Spring 2015 ©

declarations are gathered.
Next, all references are
resolved using the complete set
of declarations stored in the
symbol table.
If forward references are
disallowed, one pass through a
scope suffices, processing
declarations and uses of
identifiers together.

40CS 536 Spring 2015 ©

Block Structured Languages
• Introduced by Algol 60, includes C,

C+ + , CSX and Java.

• Identifiers may have a non- global
scope. Declarations may be local to a
class, subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained)
scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

41CS 536 Spring 2015 ©

Example (drawn from C):

int x,z;
void A() {
 float x,y;
 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

42CS 536 Spring 2015 ©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside
their scope.

• Nearest Declaration Applies

Using static nesting of scopes.
• Automatic Allocation and Deallocation

of Locals

Lifetime of data objects is
bound to the scope of the
Identifiers that denote them.

43CS 536 Spring 2015 ©

Is Case Significant?
In some languages (C, C+ + ,
Java and many others) case is
significant in identifiers. This
means aa and AA are different
symbols that may have entirely
different definitions.
In other languages (Pascal, Ada,
Scheme, CSX) case is not
significant. In such languages
aa and AA are two alternative
spellings of the same identifier.
Data structures commonly used
to implement symbol tables
usually treat different cases as
different symbols. This is fine
when case is significant in a
language. When case is
insignificant, you probably will

44CS 536 Spring 2015 ©

need to strip case before
entering or looking up
identifiers.
This just means that identifiers
are converted to a uniform case
before they are entered or
looked up. Thus if we choose to
use lower case uniformly, the
identifiers aaa, AAA, and AaA are
all converted to aaa for
purposes of insertion or
lookup.
BUT, inside the symbol table
the identifier is stored in the
form it was declared so that
programmers see the form of
identifier they expect in
listings, error messages, etc.

45CS 536 Spring 2015 ©

How are Symbol Tables
Implemented?

There are a number of data
structures that can reasonably
be used to implement a symbol
table:
• An Ordered List

Symbols are stored in a linked list,
sorted by the symbol’s name. This
is simple, but may be a bit too slow
if many identifiers appear in a
scope.

• A Binary Search Tree
Lookup is much faster than in
linked lists, but rebalancing may be
needed. (Entering identifiers in
sorted order turns a search tree
into a linked list.)

• Hash Tables
The most popular choice.

46CS 536 Spring 2015 ©

Implementing Block-
Structured Symbol Tables

To implement a block
structured symbol table we
need to be able to efficiently
open and close individual
scopes, and limit insertion to
the innermost current scope.
This can be done using one
symbol table structure if we tag
individual entries with a “scope
number.”
It is far easier (but more
wasteful of space) to allocate
one symbol table for each
scope. Open scopes are
stacked, pushing and popping
tables as scopes are opened
and closed.

47CS 536 Spring 2015 ©

Be careful though—many
preprogrammed stack
implementations don’t allow
you to “peek” at entries below
the stack top. This is necessary
to lookup an identifier in all
open scopes.
If a suitable stack
implementation (with a peek
operation) isn’t available, a
linked list of symbol tables will
suffice.

