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CS 536

Introduction to
 Programming Languages

and Compilers
Charles N. Fischer

Spring 2015

 http://www.cs.wisc.edu/~fischer/cs536.html 
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Class Meets
Tuesdays, 5:30 — 8:30
Beatles Room, Epic Campus

Instructor
Charles N. Fischer
5393 Computer Sciences
Telephone:    608.262.1204
E- mail:  fischer@cs.wisc.edu
Office Hours: 

5:00 -  7:00, Monday &  
Thursday, Dune Room
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Teaching Assistant
Menghui Wang
E- mail:  menghui@cs.wisc.edu
Telephone:    608.262.1204
Office Hours: 

To be determined
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Key Dates
• February 10: Assignment #1

(Identifier Cross-  
Reference Analysis)

• March 3: Assignment #2
                       (CSX Scanner)

• March 24: Assignment #3 
(CSX Parser)

• April 8: Midterm 1,
                       5:30 -  7:30 pm

• April 14: Assignment #4
  (CSX Type Checker)

• April 15:  Midterm 2,
                       5:00 -  7:00 pm

• May 6: Final Exam 1,
 5:30 pm -  7:30 pm 

• May 8: Assignment #5
 (CSX Code Generator) 

• May 12: Final Exam 2,
 5:30 pm -  7:30 pm 
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Class Text
• Crafting a Compiler

Fischer, Cytron, LeBlanc
ISBN- 10: 0136067050
ISBN- 13:  9780136067054
Publisher:  Addison- Wesley

• Handouts and Web- based reading will 
also be used.

Reading Assignment
• Chapters 1- 2 of CaC (as background)

Class Notes
• The lecture notes used in each lecture 

will be made available prior to that 
lecture on the class Web page (under 
the “Lecture Nodes” link).
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Piazza
Piazza is an interactive online 
platform used to share class-
related information. We 
recommend you use it to ask 
questions and track course-
related information. If you are 
enrolled (or on the waiting list) 
you should have already 
received an email invitation to 
participate (about one week 
ago).
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Academic Misconduct Policy
• You must do your assignments—no 

copying or sharing of solutions.

• You may discuss general concepts and 
Ideas.

• All cases of Misconduct must be 
reported to the Dean’s office.

• Penalties may be severe.

8CS 536  Spring 2015 ©

Program & Homework Late 
Policy
• An assignment may be handed in up 

to one week late.

• Each late day will be debited 3%, up to 
a maximum of 21%.

Approximate Grade Weights
Program 1 -  Cross- Reference 

Analysis 8% 
Program 2 -  Scanner 12% 
Program 3 -  Parser 12% 
Program 4 -  Type Checker 12% 
Program 5 -  Code Generator 12% 
Homework #1  6% 
Midterm Exam  19% 
Final Exam (non- cumulative)  19% 
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Partnership Policy
• Program #1 and the written homework 

must be done individually.

• Programs 2 to 5 may be done 
individually or by two person teams 
(your choice). 
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Compilers
Compilers are fundamental to 
modern computing. 
They act as translators, 
transforming human- oriented 
programming languages into 
computer- oriented machine 
languages. 
To most users, a compiler can 
be viewed as a “black box” that 
performs the transformation 
shown below. 

Programming
Language Machine

Language
Compiler

11CS 536  Spring 2015 ©

A compiler allows programmers 
to ignore the machine-
dependent details of 
programming. 

Compilers allow programs and 
programming skills to be 
machine- independent and 
platform- independent.

Compilers also aid in detecting 
and correcting programming 
errors (which are all too 
common).
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Compiler techniques also help 
to improve computer security. 
For example, the Java Bytecode 
Verifier helps to guarantee that 
Java security rules are satisfied.

Compilers currently help in 
protection of intellectual 
property (using obfuscation) 
and provenance (through 
watermarking).

Most modern processors are 
multi- core or multi- threaded. 
How can compilers find hidden 
parallelism in serial 
programming languages?
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History of Compilers
The term compiler was coined 
in the early 1950s by Grace 
Murray Hopper. Translation was 
viewed as the “compilation” of a 
sequence of machine- language 
subprograms selected from a 
library. 

One of the first real compilers 
was the FORTRAN compiler of 
the late 1950s. It allowed a 
programmer to use a problem-
oriented source language.
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Ambitious “optimizations” were 
used to produce efficient 
machine code, which was vital 
for early computers with quite 
limited capabilities.

Efficient use of machine 
resources is still an essential 
requirement for modern 
compilers.
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Virtual Machine Code
Code generated by a compiler 
can consist entirely of virtual 
instructions (no native code at 
all). This allows code to run on 
a variety of computers.
Java, with its JVM (Java Virtual 
Machine) is a great example of 
this approach.
If the virtual machine is kept 
simple and clean, its interpreter 
can be easy to write. Machine 
interpretation slows execution 
by a factor of 3:1 to perhaps 
10:1 over compiled code. 
A “Just in Time” (JIT) compiler 
can translate “hot” portions of 
virtual code into native code to 
speed execution. 
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Advantages of Virtual 
Instructions

Virtual instructions serve a 
variety of purposes. 
• They simplify a compiler by 

providing suitable primitives (such 
as method calls, string 
manipulation, and so on).

• They aid compiler transportability. 

• They may decrease in the size of 
generated code since instructions 
are designed to match a particular 
programming language (for 
example, JVM code for Java). 

Almost all compilers, to a 
greater or lesser extent, 
generate code for a virtual 
machine, some of whose 
operations must be interpreted.
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The Structure of a Compiler
A compiler performs two major 
tasks:
• Analysis of the source program 

being compiled

• Synthesis of a target program 

Almost all modern compilers 
are syntax- directed: The 
compilation process is driven 
by the syntactic structure of the 
source program.
A parser builds semantic 
structure out of tokens, the 
elementary symbols of 
programming language syntax. 
Recognition of syntactic 
structure is a major part of the 
analysis task. 
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Semantic analysis examines the 
meaning (semantics) of the 
program. Semantic analysis 
plays a dual role.
It finishes the analysis task by 
performing a variety of 
correctness checks (for 
example, enforcing type and 
scope rules). Semantic analysis 
also begins the synthesis 
phase.

The synthesis phase may 
translate source programs into 
some intermediate 
representation (IR) or it may 
directly generate target code. 
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If an IR is generated, it then 
serves as input to a code 
generator component that 
produces the desired machine-
language program. The IR may 
optionally be transformed by an 
optimizer so that a more 
efficient program may be 
generated. 
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The Structure of a Syntax-Directed Compiler
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Scanner
The scanner reads the source 
program, character by 
character. It groups individual 
characters into tokens 
(identifiers, integers, reserved 
words, delimiters, and so on). 
When necessary, the actual 
character string comprising the 
token is also passed along for 
use by the semantic phases.
The scanner: 
• Puts the program into a compact 

and uniform format (a stream of 
tokens).

• Eliminates unneeded information 
(such as comments).

• Sometimes enters preliminary 
information into symbol tables (for 
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example, to register the presence 
of a particular label or identifier).

• Optionally formats and lists the 
source program 

Building tokens is driven by 
token descriptions defined 
using regular expression 
notation. 
Regular expressions are a 
formal notation able to 
describe the tokens used in 
modern programming 
languages. Moreover, they can 
drive the automatic generation 
of working scanners given only 
a specification of the tokens. 
Scanner generators (like Lex, 
Flex and JLex) are valuable 
compiler- building tools. 
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Parser
Given a syntax specification (as 
a context- free grammar, CFG), 
the parser reads tokens and 
groups them into language 
structures. 
Parsers are typically created 
from a CFG using a parser 
generator (like Yacc, Bison or 
Java CUP). 
The parser verifies correct 
syntax and may issue a syntax 
error message. 
As syntactic structure is 
recognized, the parser usually 
builds an abstract syntax tree 
(AST), a concise representation 
of program structure, which 
guides semantic processing. 
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Type Checker 
(Semantic Analysis)

The type checker checks the static 
semantics of each AST node. It 
verifies that the construct is legal 
and meaningful (that all 
identifiers involved are declared, 
that types are correct, and so on). 
If the construct is semantically 
correct, the type checker 
“decorates” the AST node, adding 
type or symbol table information 
to it. If a semantic error is 
discovered, a suitable error 
message is issued.
Type checking is purely 
dependent on the semantic rules 
of the source language. It is 
independent of the compiler’s 
target machine.
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Translator 
(Program Synthesis)

If an AST node is semantically 
correct, it can be translated. 
Translation involves capturing 
the run- time “meaning” of a 
construct.
For example, an AST for a while 
loop contains two subtrees, one 
for the loop’s control 
expression, and the other for 
the loop’s body. Nothing in the 
AST shows that a while loop 
loops! This “meaning” is 
captured when a while loop’s 
AST is translated. In the IR, the 
notion of testing the value of 
the loop control expression, 
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and conditionally executing the 
loop body becomes explicit.
The translator is dictated by the 
semantics of the source 
language. Little of the nature of 
the target machine need be 
made evident. Detailed 
information on the nature of 
the target machine (operations 
available, addressing, register 
characteristics, etc.) is reserved 
for the code generation phase.
In simple non- optimizing 
compilers (like our class 
project), the translator 
generates target code directly, 
without using an IR. 
More elaborate compilers may 
first generate a high- level IR 
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(that is source language 
oriented) and then 
subsequently translate it into a 
low- level IR (that is target 
machine oriented). This 
approach allows a cleaner 
separation of source and target 
dependencies.
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Optimizer
The IR code generated by the 
translator is analyzed and 
transformed into functionally 
equivalent but improved IR code 
by the optimizer. 
The term optimization is 
misleading: we don’t always 
produce the best possible 
translation of a program, even 
after optimization by the best of 
compilers.
Why?
Some optimizations are 
impossible to do in all 
circumstances because they 
involve an undecidable problem. 
Eliminating unreachable (“dead”) 
code is, in general, impossible.
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Other optimizations are too 
expensive to do in all cases. 
These involve NP- complete 
problems, believed to be 
inherently exponential. 
Assigning registers to variables 
is an example of an NP-
complete problem.
Optimization can be complex; it 
may involve numerous 
subphases, which may need to 
be applied more than once.
Optimizations may be turned off 
to speed translation. 
Nonetheless, a well designed 
optimizer can significantly speed 
program execution by 
simplifying, moving or 
eliminating unneeded 
computations.
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Code Generator
IR code produced by the 
translator is mapped into target 
machine code by the code 
generator. This phase uses 
detailed information about the 
target machine and includes 
machine- specific optimizations 
like register allocation and code 
scheduling.
Code generators can be quite 
complex since good target 
code requires consideration of 
many special cases. 
Automatic generation of code 
generators is possible. The 
basic approach is to match a 
low- level IR to target 
instruction templates, choosing 
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instructions which best match 
each IR instruction. 
A well- known compiler using 
automatic code generation 
techniques is the GNU C 
compiler. GCC is a heavily 
optimizing compiler with 
machine description files for 
over ten popular computer 
architectures, and at least two 
language front ends (C and 
C+ + ). 
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Symbol Tables
A symbol table allows 
information to be associated 
with identifiers and shared 
among compiler phases. Each 
time an identifier is used, a 
symbol table provides access to 
the information collected about 
the identifier when its 
declaration was processed. 
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Example
Our source language will be 
CSX, a blend of C, C+ +  and 
Java.
Our target language will be the 
Java JVM, using the Jasmin 
assembler.

• A simple source line is
  a = bb+abs(c-7);
this is a sequence of ASCII characters 
in a text file.

• The scanner groups characters into 
tokens, the basic units of a program.

a = bb+abs(c-7);
 After scanning, we have the following 
token sequence:
 Ida Asg Idbb Plus Idabs Lparen  Idc 

Minus  IntLiteral7  Rparen Semi
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• The parser groups these tokens into 
language constructs (expressions, 
statements, declarations, etc.) 
represented in tree form:

(What happened to the 
parentheses and the 
semicolon?)

  Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral
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• The type checker resolves types and 
binds declarations within scopes:

  Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

int

intintloc

intloc int

int

intloc
int

method
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• Finally, JVM code is generated for each 
node in the tree (leaves first, then 
roots):
iload  3  ; push local 3 (bb)
iload  2  ; push local 2 (c)
ldc 7 ; Push literal 7
isub      ; compute c-7
invokestatic  java/lang/Math/
abs(I)I
iadd      ; compute bb+abs(c-7)
istore  1 ; store result into 

local 1(a)
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Symbol Tables & Scoping
Programming languages use 
scopes to limit the range in 
which an identifier is active 
(and visible).
Within a scope a name may be 
defined only once (though 
overloading may be allowed).
A symbol table (or dictionary) is 
commonly used to collect all 
the definitions that appear 
within a scope.
At the start of a scope, the 
symbol table is empty. At the 
end of a scope, all declarations 
within that scope are available 
within the symbol table.
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A language definition may or 
may not allow forward 
references to an identifier.
If forward references are 
allowed, you may use a name 
that is defined later in the 
scope (Java does this for field 
and method declarations within 
a class).
If forward references are not 
allowed, an identifier is visible 
only after its declaration. C, 
C+ +  and Java do this for 
variable declarations.
In CSX no forward references 
are allowed.
In terms of symbol tables, 
forward references require two 
passes over a scope. First all 
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declarations are gathered. 
Next, all references are 
resolved using the complete set 
of declarations stored in the 
symbol table.
If forward references are 
disallowed, one pass through a 
scope suffices, processing 
declarations and uses of 
identifiers together.
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Block Structured Languages
• Introduced by Algol 60, includes C, 

C+ + , CSX and Java.

• Identifiers may have a non- global 
scope. Declarations may be local to a 
class, subprogram or block.

• Scopes may nest, with declarations 
propagating to inner (contained) 
scopes.

• The lexically nearest declaration of an 
identifier is bound to uses of that 
identifier.
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Example (drawn from C):

int x,z;
void A() {
  float x,y;
  print(x,y,z);

}
void B() {
  print (x,y,z)

}

float
float

int

int

int
undeclared
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Block Structure Concepts
• Nested Visibility

No access to identifiers outside 
their scope.

• Nearest Declaration Applies

Using static nesting of scopes.
• Automatic Allocation and Deallocation 

of Locals

Lifetime of data objects is 
bound to the scope of the 
Identifiers that denote them.
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Is Case Significant?
In some languages (C, C+ + , 
Java and many others) case is 
significant in identifiers. This 
means aa and AA are different 
symbols that may have entirely 
different definitions.
In other languages (Pascal, Ada, 
Scheme, CSX) case is not 
significant. In such languages 
aa and AA are two alternative 
spellings of the same identifier.
Data structures commonly used 
to implement symbol tables 
usually treat different cases as 
different symbols. This is fine 
when case is significant in a 
language. When case is 
insignificant, you probably will 
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need to strip case before 
entering or looking up 
identifiers.
This just means that identifiers 
are converted to a uniform case 
before they are entered or 
looked up. Thus if we choose to 
use lower case uniformly, the 
identifiers aaa, AAA, and AaA are 
all converted to aaa for 
purposes of insertion or 
lookup.
BUT, inside the symbol table 
the identifier is stored in the 
form it was declared so that 
programmers see the form of 
identifier they expect in 
listings, error messages, etc.
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How are Symbol Tables 
Implemented?

There are a number of data 
structures that can reasonably 
be used to implement a symbol 
table:
• An Ordered List

Symbols are stored in a linked list,
sorted by the symbol’s name. This
is simple, but may be a bit too slow
if many identifiers appear in a
scope.

• A Binary Search Tree
Lookup is much faster than in
linked lists, but rebalancing may be
needed. (Entering identifiers in
sorted order turns a search tree
into a linked list.)

• Hash Tables
The most popular choice.
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Implementing Block-
Structured Symbol Tables

To implement a block 
structured symbol table we 
need to be able to efficiently 
open and close individual 
scopes, and limit insertion to 
the innermost current scope.
This can be done using one 
symbol table structure if we tag 
individual entries with a “scope 
number.”
It is far easier (but more 
wasteful of space) to allocate 
one symbol table for each 
scope. Open scopes are 
stacked, pushing and popping 
tables as scopes are opened 
and closed.
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Be careful though—many 
preprogrammed stack 
implementations don’t allow 
you to “peek” at entries below 
the stack top. This is necessary 
to lookup an identifier in all 
open scopes.
If a suitable stack 
implementation (with a peek 
operation) isn’t available, a 
linked list of symbol tables will 
suffice.


