
345CS 536 Spring 2015 ©

Type Checking Simple
Variable Declarations

Type checking steps:
1. Check that identNode.idname is

not already in the symbol table.
2. Enter identNode.idname into

symbol table with
type = typeNode.type and
kind = Variable.

varDeclNode

identNode typeNode

346CS 536 Spring 2015 ©

Type Checking Initialized
Variable Declarations

Type checking steps:
1. Check that identNode.idname is

not already in the symbol table.
2. Type check initial value

expression.
3. Check that the initial value’s

type is typeNode.type

varDeclNode

identNode typeNode
expr tree

347CS 536 Spring 2015 ©

4. Check that the initial value’s
kind is scalar (Variable, Value
or ScalarParm).

5. Enter identNode.idname into
symbol table with
type = typeNode.type and
kind = Variable.

348CS 536 Spring 2015 ©

Type Checking Const Decls

Type checking steps:
1. Check that identNode.idname is

not already in the symbol table.

2. Type check the const value expr.
3. Check that the const value’s

kind is scalar (Variable, Value
or ScalarParm).

4. Enter identNode.idname into
symbol table with type =
constValue.type and
kind = Value.

constDeclNode

identNode

expr tree

349CS 536 Spring 2015 ©

Type Checking IdentNodes

Type checking steps:
1. Lookup identNode.idname in the

symbol table; error if absent.
2. Copy symbol table entry’s type

and kind information into the
identNode.

3. Store a link to the symbol table
entry in the identNode (in case
we later need to access symbol
table information).

identNode

350CS 536 Spring 2015 ©

Type Checking NameNodes

Type checking steps:
1. Type check the identNode.

2. If the subscriptVal is a null
node, copy the identNode’s
type and kind values into the
nameNode and return.

3. Type check the subscriptVal.
4. Check that identNode’s kind is

an array.

nameNode

identNode
expr tree

351CS 536 Spring 2015 ©

5. Check that subscriptVal’s kind
is scalar and type is integer or
character.

6. Set the nameNode’s type to the
identNode’s type and the
nameNode’s kind to Variable.

352CS 536 Spring 2015 ©

Type Checking Binary
Operators

Type checking steps:
1. Type check left and right

operands.
2. Check that left and right

operands are both scalars.
3. binaryOpNode.kind = Value.

binaryOpNode

expr treeexpr tree

353CS 536 Spring 2015 ©

4. If binaryOpNode.operator is a
plus, minus, star or slash:
(a) Check that left and right

operands have an arithmetic
type (integer or character).
(b) binaryOpNode.type =
Integer

5. If binaryOpNode.operator is an
and or is an or:
(a) Check that left and right

operands have a boolean type.
(b) binaryOpNode.type =
Boolean.

6. If binaryOpNode.operator is a
relational operator:
(a) Check that both left and

right operands have an
arithmetic type or both have a
boolean type.
(b) binaryOpNode.type =
Boolean.

354CS 536 Spring 2015 ©

Type Checking Assignments

Type checking steps:
1. Type check the nameNode.

2. Type check the expression tree.
3. Check that the nameNode’s kind

is assignable (Variable, Array,
ScalarParm, or ArrayParm).

4. If the nameNode’s kind is scalar
then check the expression tree’s
kind is also scalar and that both
have the same type. Then return.

asgNode

nameNode
expr tree

355CS 536 Spring 2015 ©

5. If the nameNode’s and the
expression tree’s kinds are both
arrays and both have the same
type, check that the arrays have
the same length. (Lengths of
array parms are checked at run-
time). Then return.

6. If the nameNode’s kind is array
and its type is character and the
expression tree’s kind is string,
check that both have the same
length. (Lengths of array parms
are checked at run- time). Then
return.

7. Otherwise, the expression may
not be assigned to the nameNode.

356CS 536 Spring 2015 ©

Type Checking While Loops

Type checking steps:
1. Type check the condition (an

expr tree).

2. Check that the condition’s type
is Boolean and kind is scalar.

3. If the label is a null node then
type check the stmtNode (the
loop body) and return.

whileNode

identNode

expr tree

stmtNode

357CS 536 Spring 2015 ©

4.If there is a label (an identNode)
then:
(a) Check that the label is not
already present in the symbol
table.
(b) If it isn’t, enter label in the
symbol table with
kind=VisibleLabel
and type= void.
(c) Type check the stmtNode (the
loop body).
(d) Change the label’s kind (in
the symbol table) to
HiddenLabel.

358CS 536 Spring 2015 ©

Type Checking Breaks and
Continues

Type checking steps:
1. Check that the identNode is

declared in the symbol table.

2. Check that identNode’s kind is
VisibleLabel. If identNode’s
kind is HiddenLabel issue a
special error message.

breakNode

identNode

359CS 536 Spring 2015 ©

Type Checking Returns

It is useful to arrange that a static
field named currentMethod will
always point to the methodDeclNode
of the method we are currently
checking.
Type checking steps:

1. If returnVal is a null node, check
that currentMethod.returnType
is Void.

2. If returnVal (an expr) is not null
then check that returnVal’s kind
is scalar and returnVal’s type is
currentMethod.returnType.

returnNode

expr tree

360CS 536 Spring 2015 ©

Type Checking Method
Declarations (no Overloading)

Type checking steps:
1. Create a new symbol table entry

m, with type = typeNode.type
and kind = Method.

2. Check that identNode.idname is
not already in the symbol table;
if it isn’t, enter m using
identNode.idname.

3. Create a new scope in the
symbol table.

4. Set currentMethod = this
methodDeclNode.

methodDeclNode

identNode typeNode
args tree decls tree stmts tree

361CS 536 Spring 2015 ©

5. Type check the args subtree.
6. Build a list of the symbol table

nodes corresponding to the args
subtree; store it in m.

7. Type check the decls subtree.
8. Type check the stmts subtree.

9. Close the current scope at the
top of the symbol table.

362CS 536 Spring 2015 ©

Type Checking Method Calls
(no Overloading)

We consider calls of procedures in a
statement. Calls of functions in an
expression are very similar.
Type checking steps:

1. Check that identNode.idname is
declared in the symbol table. Its
type should be Void and kind
should be Method.

callNode

identNode

args tree

363CS 536 Spring 2015 ©

2. Type check the args subtree.
3. Build a list of the expression

nodes found in the args subtree.
4. Get the list of parameter

symbols declared for the
method (stored in the method’s
symbol table entry).

5. Check that the arguments list
and the parameter symbols list
both have the same length.

6. Compare each argument node
with its corresponding
parameter symbol:
(a) Both must have the same type.
(b) A Variable, Value, or
ScalarParm kind in an argument
node matches a ScalarParm
parameter. An Array or ArrayParm
kind in an argument node
matches an ArrayParm
parameter.

364CS 536 Spring 2015 ©

Reading Assignment
Read Chapters 9 and 12 of
Crafting a Compiler.

365CS 536 Spring 2015 ©

Virtual Memory & Run-Time
Memory Organization

The compiler decides how data
and instructions are placed in
memory.
It uses an address space provided
by the hardware and operating
system.
This address space is usually
virtual—the hardware and
operating system map
instruction- level addresses to
“actual” memory addresses.
Virtual memory allows:
• Multiple processes to run in

private, protected address spaces.

• Paging can be used to extend
address ranges beyond actual
memory limits.

366CS 536 Spring 2015 ©

Run-Time Data Structures

Static Structures
For static structures, a fixed
address is used throughout
execution.
This is the oldest and simplest
memory organization.
In current compilers, it is used
for:
• Program code (often read- only &

sharable).

• Data literals (often read- only &
sharable).

• Global variables.

• Static variables.

367CS 536 Spring 2015 ©

Stack Allocation
Modern programming languages
allow recursion, which requires
dynamic allocation.
Each recursive call allocates a new
copy of a routine’s local variables.
The number of local data
allocations required during
program execution is not known
at compile- time.
To implement recursion, all the
data space required for a method
is treated as a distinct data area
that is called a frame or activation
record.
Local data, within a frame, is
accessible only while a
subprogram is active.

368CS 536 Spring 2015 ©

In mainstream languages like C,
C+ + and Java, subprograms must
return in a stack- like manner—
the most recently called
subprogram will be the first to
return.
A frame is pushed onto a run-
time stack when a method is
called (activated).
When it returns, the frame is
popped from the stack, freeing
the routine’s local data.
As an example, consider the
following C subprogram:

p(int a) {
double b;
double c[10];
b = c[a] * 2.51;

}

369CS 536 Spring 2015 ©

Procedure p requires space for the
parameter a as well as the local
variables b and c.
It also needs space for control
information, such as the return
address.
The compiler records the space
requirements of a method.
The offset of each data item
relative to the start of the frame is
stored in the symbol table.
The total amount of space
needed, and thus the size of the
frame, is also recorded.
Assume p’s control information
requires 8 bytes (this size is
usually the same for all methods).
Assume parameter a requires 4
bytes, local variable b requires 8
bytes, and local array c requires
80 bytes.

370CS 536 Spring 2015 ©

Many machines require that word
and doubleword data be aligned,
so it is common to pad a frame so
that its size is a multiple of 4 or 8
bytes.
This guarantees that at all times
the top of the stack is properly
aligned.

Here is p’s frame:

Control Information

Space for a

Space for b

Space for c

Padding

Offset = 0

Offset = 8

Offset = 12

Offset = 20

Total size= 104

371CS 536 Spring 2015 ©

Within p, each local data object is
addressed by its offset relative to
the start of the frame.
This offset is a fixed constant,
determined at compile- time.
We normally store the start of the
frame in a register, so each piece
of data can be addressed as a
(Register, Offset) pair, which is a
standard addressing mode in
almost all computer architectures.
For example, if register R points
to the beginning of p’s frame,
variable b can be addressed as
(R,12), with 12 actually being
added to the contents of R at run-
time, as memory addresses are
evaluated.

372CS 536 Spring 2015 ©

Normally, the literal 2.51 of
procedure p is not stored in p’s
frame because the values of local
data that are stored in a frame
disappear with it at the end of a
call.
It is easier and more efficient to
allocate literals in a static area,
often called a literal pool or
constant pool. Java uses a
constant pool to store literals,
type, method and interface
information as well as class and
field names.

373CS 536 Spring 2015 ©

Accessing Frames at Run-
Time

During execution there can be
many frames on the stack. When a
procedure A calls a procedure B, a
frame for B’s local variables is
pushed on the stack, covering A’s
frame. A’s frame can’t be popped
off because A will resume
execution after B returns.
For recursive routines there can
be hundreds or even thousands of
frames on the stack. All frames
but the topmost represent
suspended subroutines, waiting
for a call to return.
The topmost frame is active; it is
important to access it directly.
The active frame is at the top of
the stack, so the stack top

374CS 536 Spring 2015 ©

register could be used to access
it.
The run- time stack may also be
used to hold data other than
frames.
It is unwise to require that the
currently active frame always be
at exactly the top of the stack.
Instead a distinct register, often
called the frame pointer, is used
to access the current frame.
This allows local variables to be
accessed directly as offset +
frame pointer, using the indexed
addressing mode found on all
modern machines.

375CS 536 Spring 2015 ©

Consider the following recursive
function that computes factorials.
int fact(int n) {
if (n > 1)
return n * fact(n-1);

else
return 1;

}

376CS 536 Spring 2015 ©

The run- time stack
corresponding to the call
fact(3) (when the call of
fact(1) is about to return) is:

We place a slot for the function’s
return value at the very beginning
of the frame.
Upon return, the return value is
conveniently placed on the stack,
just beyond the end of the caller’s
frame. Often compilers return
scalar values in specially

Control Information

Space for n = 3

Return Value

Control Information

Space for n = 1

Return Value = 1

Control Information

Space for n = 2

Return Value

Top of Stack

Frame Pointer

