
378CS 536 Spring 2015 ©

Dynamic Links
Because the stack may contain
more than just frames (e.g.,
function return values or registers
saved across calls), it is common
to save the caller’s frame pointer
as part of the callee’s control
information.
Each frame points to its caller’s
frame on the stack. This pointer is
called a dynamic link because it
links a frame to its dynamic (run-
time) predecessor.

379CS 536 Spring 2015 ©

The run- time stack corresponding
to a call of fact(3), with dynamic
links included, is:

Dynamic Link = Null

Space for n = 3

Return Value

Dynamic Link

Space for n = 1

Return Value = 1

Dynamic Link

Space for n = 2

Return Value

Top of Stack

Frame Pointer

380CS 536 Spring 2015 ©

Classes and Objects
C, C+ + and Java do not allow
procedures or methods to nest.
A procedure may not be declared
within another procedure.
This simplifies run- time data
access—all variables are either
global or local.
Global variables are statically
allocated. Local variables are part
of a single frame, accessed
through the frame pointer.
Java and C+ + allow classes to
have member functions that have
direct access to instance
variables.

381CS 536 Spring 2015 ©

Consider:
class K {
int a;
int sum(){
int b;
return a+b;

} }
Each object that is an instance of
class K contains a member
function sum. Only one translation
of sum is created; it is shared by
all instances of K.
When sum executes it needs two
pointers to access local and
object- level data.
Local data, as usual, resides in a
frame on the run- time stack.

382CS 536 Spring 2015 ©

Data values for a particular
instance of K are accessed
through an object pointer (called
the this pointer in Java and
C+ +). When obj.sum() is called,
it is given an extra implicit
parameter that a pointer to obj.

When a+b is computed, b, a local
variable, is accessed directly
through the frame pointer. a, a
member of object obj, is
accessed indirectly through the
object pointer that is stored in the
frame (as all parameters to a
method are).

Object Pointer

Space for b

Control Information

Rest of Stack

Top of Stack

Frame Pointer

Space for a

Object Obj

383CS 536 Spring 2015 ©

C+ + and Java also allow
inheritance via subclassing. A new
class can extend an existing class,
adding new fields and adding or
redefining methods.
A subclass D, of class C, maybe be
used in contexts expecting an
object of class C (e.g., in method
calls).
This is supported rather easily—
objects of class D always contain a
class C object within them.
If C has a field F within it, so does
D. The fields D declares are merely
appended at the end of the
allocations for C.
As a result, access to fields of C
within a class D object works
perfectly.

384CS 536 Spring 2015 ©

Handling Multiple Scopes
Many languages allow procedure
declarations to nest. Java now
allows classes to nest.
Procedure nesting can be very
useful, allowing a subroutine to
directly access another routine’s
locals and parameters.
Run- time data structures are
complicated because multiple
frames, corresponding to nested
procedure declarations, may need
to be accessed.

385CS 536 Spring 2015 ©

To see the difficulties, assume
that routines can nest in Java or C:
int p(int a){
int q(int b){
if (b < 0)
return q(-b);

else
return a+b;

}
return q(-10);

}
When q executes, it may access
not only its own frame, but also
that of p, in which it is nested.
If the depth of nesting is
unlimited, so is the number of
frames that must be accessible. In
practice, the level of nesting
actually seen is modest—usually
no greater than two or three.

386CS 536 Spring 2015 ©

Static Links
Two approaches are commonly
used to support access to
multiple frames. One approach
generalizes the idea of dynamic
links introduced earlier. Along
with a dynamic link, we’ll also
include a static link in the frame’s
control information area. The
static link points to the frame of
the procedure that statically
encloses the current procedure. If
a procedure is not nested within
any other procedure, its static link
is null.

387CS 536 Spring 2015 ©

The following illustrates static
links:

As usual, dynamic links always
point to the next frame down in
the stack. Static links always point
down, but they may skip past
many frames. They always point
to the most recent frame of the
routine that statically encloses the
current routine.

Dynamic Link = Null

Space for a

Dynamic Link

Space for b = 10

Dynamic Link

Space for b = - 10

Top of Stack

Frame Pointer
Static Link

Static Link

Static Link = Null

388CS 536 Spring 2015 ©

In our example, the static links of
both of q’s frames point to p,
since it is p that encloses q’s
definition.
In evaluating the expression a+b
that q returns, b, being local to q,
is accessed directly through the
frame pointer. Variable a is local
to p, but also visible to q because
q nests within p. a is accessed by
extracting q’s static link, then
using that address (plus the
appropriate offset) to access a.

389CS 536 Spring 2015 ©

Displays
An alternative to using static links
to access frames of enclosing
routines is the use of a display.
A display generalizes our use of a
frame pointer. Rather than
maintaining a single register, we
maintain a set of registers which
comprise the display.
If procedure definitions nest n
deep (this can be easily
determined by examining a
program’s AST), we need n+ 1
display registers.
Each procedure definition is
tagged with a nesting level.
Procedures not nested within any
other routine are at level 0.
Procedures nested within only one
routine are at level 1, etc.

390CS 536 Spring 2015 ©

Frames for routines at level 0 are
always accessed using display
register D0. Those at level 1 are
always accessed using register
D1, etc.
Whenever a procedure r is
executing, we have direct access
to r’s frame plus the frames of all
routines that enclose r. Each of
these routines must be at a
different nesting level, and hence
will use a different display
register.

391CS 536 Spring 2015 ©

The following illustrates the use
of display registers:

Since q is at nesting level 1, its
frame is pointed to by D1. All of
q’s local variables, including b,
are at a fixed offset relative to D1.
Since p is at nesting level 0, its
frame and local variables are
accessed via D0. Each frame’s
control information area contains
a slot for the previous value of the
frame’s display register. A display
register is saved when a call

Dynamic Link = Null

Space for a

Dynamic Link

Space for b = 10

Dynamic Link

Space for b = -10

Top of Stack

Display D1
Previous D1

Previous D1

Previous D0 Display D0

392CS 536 Spring 2015 ©

begins and restored when the call
ends. A dynamic link is still
needed, because the previous
display values doesn’t always
point to the caller’s frame.
Not all compiler writers agree on
whether static links or displays
are better to use. Displays allow
direct access to all frames, and
thus make access to all visible
variables very efficient. However,
if nesting is deep, several valuable
registers may need to be
reserved. Static links are very
flexible, allowing unlimited
nesting of procedures. However,
access to non- local procedure
variables can be slowed by the
need to extract and follow static
links.

393CS 536 Spring 2015 ©

Heap Management
A very flexible storage allocation
mechanism is heap allocation.
Any number of data objects can
be allocated and freed in a
memory pool, called a heap.
Heap allocation is enormously
popular. Almost all non- trivial
Java and C programs use new or
malloc.

394CS 536 Spring 2015 ©

Heap Allocation
A request for heap space may be
explicit or implicit.
An explicit request involves a call
to a routine like new or malloc.
An explicit pointer to the newly
allocated space is returned.
Some languages allow the
creation of data objects of
unknown size. In Java, the +
operator is overloaded to
represent string catenation.
The expression Str1 + Str2
creates a new string representing
the catenation of strings Str1 and
Str2. There is no compile- time
bound on the sizes of Str1 and
Str2, so heap space must be
implicitly allocated to hold the
newly created string.

395CS 536 Spring 2015 ©

Whether allocation is explicit or
implicit, a heap allocator is
needed. This routine takes a size
parameter and examines unused
heap space to find space that
satisfies the request.
A heap block is returned. This
block must be big enough to
satisfy the space request, but it
may well be bigger.
Heaps blocks contain a header
field that contains the size of the
block as well as bookkeeping
information.
The complexity of heap allocation
depends in large measure on how
deallocation is done.
Initially, the heap is one large
block of unallocated memory.
Memory requests can be satisfied
by simply modifying an “end of

396CS 536 Spring 2015 ©

heap” pointer, very much as a
stack is pushed by modifying a
stack pointer.
Things get more involved when
previously allocated heap objects
are deallocated and reused.
Deallocated objects are stored for
future reuse on a free space list.
When a request for n bytes of
heap space is received, the heap
allocator must search the free
space list for a block of sufficient
size. There are many search
strategies that might be used:
• Best Fit

The free space list is searched for
the free block that matches most
closely the requested size. This
minimizes wasted heap space, the
search may be quite slow.

397CS 536 Spring 2015 ©

• First Fit
The first free heap block of
sufficient size is used. Unused
space within the block is split off
and linked as a smaller free space
block. This approach is fast, but
may “clutter” the beginning of the
free space list with a number of
blocks too small to satisfy most
requests.

• Next Fit
This is a variant of first fit in which
succeeding searches of the free
space list begin at the position
where the last search ended. The
idea is to “cycle through” the entire
free space list rather than always
revisiting free blocks at the head of
the list.

398CS 536 Spring 2015 ©

• Segregated Free Space Lists
There is no reason why we must
have only one free space list. An
alternative is to have several,
indexed by the size of the free
blocks they contain.

399CS 536 Spring 2015 ©

Deallocation Mechanisms
Allocating heap space is fairly
easy. But how do we deallocate
heap memory no longer in use?
Sometimes we may never need to
deallocate! If heaps objects are
allocated infrequently or are very
long- lived, deallocation is
unnecessary. We simply fill heap
space with “in use” objects.
Virtual memory & paging may
allow us to allocate a very large
heap area.
On a 64- bit machine, if we
allocate heap space at 1 MB/sec,
it will take 500,000 years to span
the entire address space!
Fragmentation of a very large
heap space commonly forces us
to include some form of reuse of
heap space.

400CS 536 Spring 2015 ©

User-controlled Deallocation
Deallocation can be manual or
automatic. Manual deallocation
involves explicit programmer-
initiated calls to routines like
free(p) or delete(p).
The object is then added to a
free- space list for subsequent
reallocation.
It is the programmer’s
responsibility to free unneeded
heap space by executing
deallocation commands. The heap
manager merely keeps track of
freed space and makes it available
for later reuse.
The really hard decision—when
space should be freed—is shifted
to the programmer, possibly
leading to catastrophic dangling
pointer errors.

401CS 536 Spring 2015 ©

Consider the following C program
fragment
q = p = malloc(1000);
free(p);
/* code containing more malloc’s */
q[100] = 1234;

After p is freed, q is a dangling
pointer. q points to heap space
that is no longer considered
allocated.
Calls to malloc may reassign the
space pointed to by q.
Assignment through q is illegal,
but this error is almost never
detected.
Such an assignment may change
data that is now part of another
heap object, leading to very subtle
errors. It may even change a
header field or a free- space link,
causing the heap allocator itself
to fail!

402CS 536 Spring 2015 ©

Automatic Garbage
Collection

The alternative to manual
deallocation of heap space is
garbage collection.
Compiler- generated code tracks
pointer usage. When a heap
object is no longer pointed to, it is
garbage, and is automatically
collected for subsequent reuse.
Many garbage collection
techniques exist. Here are some
of the most important
approaches:

403CS 536 Spring 2015 ©

Reference Counting
This is one of the oldest and
simplest garbage collection
techniques.
A reference count field is added to
each heap object. It counts how
many references to the heap
object exist. When an object’s
reference count reaches zero, it is
garbage and may collected.
The reference count field is
updated whenever a reference is
created, copied, or destroyed.
When a reference count reaches
zero and an object is collected, all
pointers in the collected object
are also be followed and
corresponding reference counts
decremented.

404CS 536 Spring 2015 ©

As shown below, reference
counting has difficulty with
circular structures. If pointer P is

set to null, the object’s reference
count is reduced to 1. Both
objects have a non- zero count,
but neither is accessible through
any external pointer. The two
objects are garbage, but won’t be
recognized as such.
If circular structuresare common,
then an auxiliary technique, like
mark- sweep collection, is needed
to collect garbage that reference
counting misses.

 Link
Data

Reference Count = 1

Global pointer P

 Link
Data

Reference Count = 2

405CS 536 Spring 2015 ©

Mark-Sweep Collection
Many collectors, including mark &
sweep, do nothing until heap
space is nearly exhausted.
Then it executes a marking phase
that identifies all live heap
objects.
Starting with global pointers and
pointers in stack frames, it marks
reachable heap objects. Pointers
in marked heap objects are also
followed, until all live heap
objects are marked.
After the marking phase, any
object not marked is garbage that
may be freed. We then sweep
through the heap, collecting all
unmarked objects. During the
sweep phase we also clear all
marks from heap objects found to
be still in use.

406CS 536 Spring 2015 ©

Mark- sweep garbage collection is
illustrated below.

Objects 1 and 3 are marked
because they are pointed to by
global pointers. Object 5 is
marked because it is pointed to by
object 3, which is marked. Shaded
objects are not marked and will be
added to the free- space list.
In any mark- sweep collector, it is
vital that we mark all accessible
heap objects. If we miss a pointer,
we may fail to mark a live heap
object and later incorrectly free it.
Finding all pointers is a bit tricky

Global pointer Global pointer

Object 1 Object 3 Object 5

Internal pointer

407CS 536 Spring 2015 ©

in languages like Java, C and
C+ + , that have pointers mixed
with other types within data
structures, implicit pointers to
temporaries, and so forth.
Considerable information about
data structures and frames must
be available at run- time for this
purpose. In cases where we can’t
be sure if a value is a pointer or
not, we may need to do
conservative garbage collection.
In mark- sweep garbage collection
all heap objects must be swept.
This is costly if most objects are
dead. We’d prefer to examine only
live objects.

408CS 536 Spring 2015 ©

Compaction
After the sweep phase, live heap
objects are distributed
throughout the heap space. This
can lead to poor locality. If live
objects span many memory
pages, paging overhead may be
increased. Cache locality may be
degraded too.
We can add a compaction phase
to mark- sweep garbage
collection.
After live objects are identified,
they are placed together at one
end of the heap. This involves
another tracing phase in which
global, local and internal heap
pointers are found and adjusted
to reflect the object’s new
location.

409CS 536 Spring 2015 ©

Pointers are adjusted by the total
size of all garbage objects
between the start of the heap and
the current object. This is
illustrated below:

Compaction merges together
freed objects into one large block
of free heap space. Fragments are
no longer a problem.
Moreover, heap allocation is
greatly simplified. Using an “end
of heap” pointer, whenever a heap
request is received, the end of
heap pointer is adjusted, making
heap allocation no more complex
than stack allocation.

Global pointer Adjusted Global pointer

Object 1 Object 3 Object 5

Adjusted internal pointer

410CS 536 Spring 2015 ©

Because pointers are adjusted,
compaction may not be suitable
for languages like C and C+ + , in
which it is difficult to
unambiguously identify pointers.

