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Dynamic Links
Because the stack may contain 
more than just frames (e.g., 
function return values or registers 
saved across calls), it is common 
to save the caller’s frame pointer 
as part of the callee’s control 
information. 
Each frame points to its caller’s 
frame on the stack. This pointer is 
called a dynamic link because it 
links a frame to its dynamic (run-
time) predecessor. 
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The run- time stack corresponding 
to a call of fact(3), with dynamic 
links included, is:
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Classes and Objects
C, C+ +  and Java do not allow 
procedures or methods to nest.
A procedure may not be declared 
within another procedure.
This simplifies run- time data 
access—all variables are either 
global or local.
Global variables are statically 
allocated. Local variables are part 
of a single frame, accessed 
through the frame pointer. 
Java and C+ +  allow classes to 
have member functions that have 
direct access to instance 
variables.
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Consider:
class K {
int a;
int sum(){
int b;
return a+b;

} }
Each object that is an instance of 
class K contains a member 
function sum. Only one translation 
of sum is created; it is shared by 
all instances of K. 
When sum executes it needs two 
pointers to access local and 
object- level data.
Local data, as usual, resides in a 
frame on the run- time stack. 
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Data values for a particular 
instance of K are accessed 
through an object pointer (called 
the this pointer in Java and 
C+ + ).  When obj.sum() is called, 
it is given an extra implicit 
parameter that a pointer to obj.

When a+b is computed, b, a local 
variable, is accessed directly 
through the frame pointer. a, a 
member of object obj, is 
accessed indirectly through the 
object pointer that is stored in the 
frame (as all parameters to a 
method are).
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C+ +  and Java also allow 
inheritance via subclassing. A new 
class can extend an existing class, 
adding new fields and adding or 
redefining methods. 
A subclass D, of class C, maybe be 
used in contexts expecting an 
object of class C (e.g., in method 
calls). 
This is supported rather easily—
objects of class D always contain a 
class C object within them. 
If C has a field F within it, so does 
D. The fields D declares are merely 
appended at the end of the 
allocations for C. 
As a result, access to fields of C 
within a class D object works 
perfectly.
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Handling Multiple Scopes
Many languages allow procedure 
declarations to nest. Java now 
allows classes to nest. 
Procedure nesting can be very 
useful, allowing a subroutine to 
directly access another routine’s 
locals and parameters. 
Run- time data structures are 
complicated because multiple 
frames, corresponding to nested 
procedure declarations, may need 
to be accessed. 
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To see the difficulties, assume 
that routines can nest in Java or C:
int p(int a){
int q(int b){
if (b < 0)
return q(-b);

else
return a+b;

}
return q(-10);

}
When q executes, it may access 
not only its own frame, but also 
that of p, in which it is nested.
If the depth of nesting is 
unlimited, so is the number of 
frames that must be accessible. In 
practice, the level of nesting 
actually seen is modest—usually 
no greater than two or three.
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Static Links
Two approaches are commonly 
used to support access to 
multiple frames. One approach 
generalizes the idea of dynamic 
links introduced earlier. Along 
with a dynamic link, we’ll also 
include a static link in the frame’s 
control information area. The 
static link points to the frame of 
the procedure that statically 
encloses the current procedure. If 
a procedure is not nested within 
any other procedure, its static link 
is null. 
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The following illustrates static 
links:

As usual, dynamic links always 
point to the next frame down in 
the stack. Static links always point 
down, but they may skip past 
many frames. They always point 
to the most recent frame of the 
routine that statically encloses the 
current routine.
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In our example, the static links of 
both of q’s frames point to p, 
since it is p that encloses q’s 
definition. 
In evaluating the expression a+b 
that q returns, b, being local to q, 
is accessed directly through the 
frame pointer. Variable a is local 
to p, but also visible to q because 
q nests within p. a is accessed by 
extracting q’s static link, then 
using that address (plus the 
appropriate offset) to access a. 
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Displays
An alternative to using static links 
to access frames of enclosing 
routines is the use of a display. 
A display generalizes our use of a 
frame pointer. Rather than 
maintaining a single register, we 
maintain a set of registers which 
comprise the display. 
If procedure definitions nest n 
deep (this can be easily 
determined by examining a 
program’s AST), we need n+ 1 
display registers.
Each procedure definition is 
tagged with a nesting level. 
Procedures not nested within any 
other routine are at level 0. 
Procedures nested within only one 
routine are at level 1, etc. 
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Frames for routines at level 0 are 
always accessed using display 
register D0. Those at level 1 are 
always accessed using register 
D1, etc.
Whenever a procedure r is 
executing, we have direct access 
to r’s frame plus the frames of all 
routines that enclose r. Each of 
these routines must be at a 
different nesting level, and hence 
will use a different display 
register.
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The following illustrates the use 
of display registers:

Since q is at nesting level 1, its 
frame is pointed to by D1. All of 
q’s local variables, including b, 
are at a fixed offset relative to D1. 
Since p is at nesting level 0, its 
frame and local variables are 
accessed via D0. Each frame’s 
control information area contains 
a slot for the previous value of the 
frame’s display register. A display 
register is saved when a call 
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begins and restored when the call 
ends. A dynamic link is still 
needed, because the previous 
display values doesn’t always 
point to the caller’s frame.
Not all compiler writers agree on 
whether static links or displays 
are better to use. Displays allow 
direct access to all frames, and 
thus make access to all visible 
variables very efficient. However, 
if nesting is deep, several valuable 
registers may need to be 
reserved. Static links are very 
flexible, allowing unlimited 
nesting of procedures. However, 
access to non- local procedure 
variables can be slowed by the 
need to extract and follow static 
links.
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Heap Management
A very flexible storage allocation 
mechanism is heap allocation.
Any number of data objects can 
be allocated and freed in a 
memory pool, called a heap. 
Heap allocation is enormously 
popular. Almost all non- trivial 
Java and C programs use new or 
malloc. 
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Heap Allocation 
A request for heap space may be 
explicit or implicit. 
An explicit request involves a call 
to a routine like new or malloc. 
An explicit pointer to the newly 
allocated space is returned.
Some languages allow the 
creation of data objects of 
unknown size. In Java, the +  
operator is overloaded to 
represent string catenation. 
The expression Str1 + Str2 
creates a new string representing 
the catenation of strings Str1 and 
Str2. There is no compile- time 
bound on the sizes of Str1 and 
Str2, so heap space must be 
implicitly allocated to hold the 
newly created string.
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Whether allocation is explicit or 
implicit, a heap allocator is 
needed. This routine takes a size 
parameter and examines unused 
heap space to find space that 
satisfies the request.
A heap block is returned. This 
block must be big enough to 
satisfy the space request, but it 
may well be bigger.
Heaps blocks contain a header 
field that contains the size of the 
block as well as bookkeeping 
information.
The complexity of heap allocation 
depends in large measure on how 
deallocation is done. 
Initially, the heap is one large 
block of unallocated memory. 
Memory requests can be satisfied 
by simply modifying an “end of 
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heap” pointer, very much as a 
stack is pushed by modifying a 
stack pointer. 
Things get more involved when 
previously allocated heap objects 
are deallocated and reused. 
Deallocated objects are stored for 
future reuse on a free space list. 
When a request for n bytes of 
heap space is received, the heap 
allocator must search the free 
space list for a block of sufficient 
size. There are many search 
strategies that might be used:
• Best Fit

The free space list is searched for 
the free block that matches most 
closely the requested size. This 
minimizes wasted heap space, the 
search may be quite slow.
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• First Fit
The first free heap block of 
sufficient size is used. Unused 
space within the block is split off 
and linked as a smaller free space 
block. This approach is fast, but 
may “clutter” the beginning of the 
free space list with a number of 
blocks too small to satisfy most 
requests.

• Next Fit
This is a variant of first fit in which 
succeeding searches of the free 
space list begin at the position 
where the last search ended. The 
idea is to “cycle through” the entire 
free space list rather than always 
revisiting free blocks at the head of 
the list. 
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• Segregated Free Space Lists
There is no reason why we must 
have only one free space list. An 
alternative is to have several, 
indexed by the size of the free 
blocks they contain.
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Deallocation Mechanisms
Allocating heap space is fairly 
easy. But how do we deallocate 
heap memory no longer in use? 
Sometimes we may never need to 
deallocate! If heaps objects are 
allocated infrequently or are very 
long- lived, deallocation is 
unnecessary. We simply fill heap 
space with “in use” objects. 
Virtual memory & paging may 
allow us to allocate a very large 
heap area.
On a 64- bit machine, if we 
allocate heap space at 1 MB/sec, 
it will take 500,000 years to span 
the entire address space! 
Fragmentation of a very large 
heap space commonly forces us 
to include some form of reuse of 
heap space.
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User-controlled Deallocation
Deallocation can be manual or 
automatic. Manual deallocation 
involves explicit programmer-
initiated calls to routines like 
free(p) or delete(p).
The object is then added to a 
free- space list for subsequent 
reallocation.
It is the programmer’s 
responsibility to free unneeded 
heap space by executing 
deallocation commands. The heap 
manager merely keeps track of 
freed space and makes it available 
for later reuse. 
The really hard decision—when 
space should be freed—is shifted 
to the programmer, possibly 
leading to catastrophic dangling 
pointer errors. 
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Consider the following C program 
fragment 
q = p = malloc(1000);
free(p);
/* code containing more malloc’s */
q[100] = 1234;

After p is freed, q is a dangling 
pointer. q points to heap space 
that is no longer considered 
allocated.
Calls to malloc may reassign the 
space pointed to by q. 
Assignment through q is illegal, 
but this error is almost never 
detected. 
Such an assignment may change 
data that is now part of another 
heap object, leading to very subtle 
errors. It may even change a 
header field or a free- space link, 
causing the heap allocator itself 
to fail!
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Automatic Garbage 
Collection

The alternative to manual 
deallocation of heap space is 
garbage collection. 
Compiler- generated code tracks 
pointer usage. When a heap 
object is no longer pointed to, it is 
garbage, and is automatically 
collected for subsequent reuse.
Many garbage collection 
techniques exist. Here are some 
of the most important 
approaches:
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Reference Counting
This is one of the oldest and 
simplest garbage collection 
techniques. 
A reference count field is added to 
each heap object. It counts how 
many references to the heap 
object exist. When an object’s 
reference count reaches zero, it is 
garbage and may collected.
The reference count field is 
updated whenever a reference is 
created, copied, or destroyed. 
When a reference count reaches 
zero and an object is collected, all 
pointers in the collected object 
are also be followed and 
corresponding reference counts 
decremented.
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As shown below, reference 
counting has difficulty with 
circular structures. If pointer P is 

set to null, the object’s reference 
count is reduced to 1. Both 
objects have a non- zero count, 
but neither is accessible through 
any external pointer. The two 
objects are garbage, but won’t be 
recognized as such.
If circular structuresare common, 
then an auxiliary technique, like 
mark- sweep collection, is needed 
to collect garbage that reference 
counting misses.

 Link
Data

 

Reference Count = 1

Global pointer P

 Link
Data

Reference Count = 2
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Mark-Sweep Collection
Many collectors, including mark & 
sweep, do nothing until heap 
space is nearly exhausted. 
Then it executes a marking phase 
that identifies all live heap 
objects.
Starting with global pointers and 
pointers in stack frames, it marks 
reachable heap objects. Pointers 
in marked heap objects are also 
followed, until all live heap 
objects are marked. 
After the marking phase, any 
object not marked is garbage that 
may be freed. We then sweep 
through the heap, collecting all 
unmarked objects. During the 
sweep phase we also clear all 
marks from heap objects found to 
be still in use.
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Mark- sweep garbage collection is 
illustrated below. 

Objects 1 and 3 are marked 
because they are pointed to by 
global pointers. Object 5 is 
marked because it is pointed to by 
object 3, which is marked. Shaded 
objects are not marked and will be 
added to the free- space list.
In any mark- sweep collector, it is 
vital that we mark all accessible 
heap objects. If we miss a pointer, 
we may fail to mark a live heap 
object and later incorrectly free it. 
Finding all pointers is a bit tricky 

 

 

 

Global pointer Global pointer 

Object 1 Object 3 Object 5

Internal pointer 
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in languages like Java, C and 
C+ + , that have pointers mixed 
with other types within data 
structures, implicit pointers to 
temporaries, and so forth. 
Considerable information about 
data structures and frames must 
be available at run- time for this 
purpose. In cases where we can’t 
be sure if a value is a pointer or 
not, we may need to do 
conservative garbage collection.
In mark- sweep garbage collection 
all heap objects must be swept. 
This is costly if most objects are 
dead. We’d prefer to examine only 
live objects.



408CS 536  Spring 2015 ©

Compaction
After the sweep phase, live heap 
objects are distributed 
throughout the heap space. This 
can lead to poor locality. If live 
objects span many memory 
pages, paging overhead may be 
increased. Cache locality may be 
degraded too.
We can add a compaction phase 
to mark- sweep garbage 
collection.
After live objects are identified, 
they are placed together at one 
end of the heap. This involves 
another tracing phase in which 
global, local and internal heap 
pointers are found and adjusted 
to reflect the object’s new 
location. 
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Pointers are adjusted by the total 
size of all garbage objects 
between the start of the heap and 
the current object. This is 
illustrated below:

Compaction merges together 
freed objects into one large block 
of free heap space. Fragments are 
no longer a problem.
Moreover, heap allocation is 
greatly simplified. Using an “end 
of heap” pointer, whenever a heap 
request is received, the end of 
heap pointer is adjusted, making 
heap allocation no more complex 
than stack allocation.
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Because pointers are adjusted, 
compaction may not be suitable 
for languages like C and C+ + , in 
which it is difficult to 
unambiguously identify pointers. 




