
377CS 536 Spring 2015 ©

designated registers, eliminating
unnecessary loads and stores. For
values too large to fit in a register
(arrays or objects), the stack is
used.
When a method returns, its frame
is popped from the stack and the
frame pointer is reset to point to
the caller’s frame.
In simple cases this is done by
adjusting the frame pointer by the
size of the current frame.

378CS 536 Spring 2015 ©

Dynamic Links
Because the stack may contain
more than just frames (e.g.,
function return values or registers
saved across calls), it is common
to save the caller’s frame pointer
as part of the callee’s control
information.
Each frame points to its caller’s
frame on the stack. This pointer is
called a dynamic link because it
links a frame to its dynamic (run-
time) predecessor.

379CS 536 Spring 2015 ©

The run- time stack corresponding
to a call of fact(3), with dynamic
links included, is:

Dynamic Link = Null

Space for n = 3

Return Value

Dynamic Link

Space for n = 1

Return Value = 1

Dynamic Link

Space for n = 2

Return Value

Top of Stack

Frame Pointer

380CS 536 Spring 2015 ©

Classes and Objects
C, C+ + and Java do not allow
procedures or methods to nest.
A procedure may not be declared
within another procedure.
This simplifies run- time data
access—all variables are either
global or local.
Global variables are statically
allocated. Local variables are part
of a single frame, accessed
through the frame pointer.
Java and C+ + allow classes to
have member functions that have
direct access to instance
variables.

381CS 536 Spring 2015 ©

Consider:
class K {
int a;
int sum(){
int b;
return a+b;

} }
Each object that is an instance of
class K contains a member
function sum. Only one translation
of sum is created; it is shared by
all instances of K.
When sum executes it needs two
pointers to access local and
object- level data.
Local data, as usual, resides in a
frame on the run- time stack.

382CS 536 Spring 2015 ©

Data values for a particular
instance of K are accessed
through an object pointer (called
the this pointer in Java and
C+ +). When obj.sum() is called,
it is given an extra implicit
parameter that a pointer to obj.

When a+b is computed, b, a local
variable, is accessed directly
through the frame pointer. a, a
member of object obj, is
accessed indirectly through the
object pointer that is stored in the
frame (as all parameters to a
method are).

Object Pointer

Space for b

Control Information

Rest of Stack

Top of Stack

Frame Pointer

Space for a

Object Obj

383CS 536 Spring 2015 ©

C+ + and Java also allow
inheritance via subclassing. A new
class can extend an existing class,
adding new fields and adding or
redefining methods.
A subclass D, of class C, maybe be
used in contexts expecting an
object of class C (e.g., in method
calls).
This is supported rather easily—
objects of class D always contain a
class C object within them.
If C has a field F within it, so does
D. The fields D declares are merely
appended at the end of the
allocations for C.
As a result, access to fields of C
within a class D object works
perfectly.

384CS 536 Spring 2015 ©

Jump Code
The JVM code we generate for
the following if statement is
quite simple and efficient.
if (B)

A = 1;
else
 A = 0;

iload 2 ; Push local #2 (B) onto stack
ifeq L1 ; Goto L1 if B is 0 (false)
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store stk top into local #1(A)
goto L2 ; Skip around else part

L1: iconst_0 ; Push literal 0 onto stack
istore 1 ; Store stk top into local #1(A)

L2:

385CS 536 Spring 2015 ©

In contrast, the code generated
for
if (F == G)

A = 1;
else
 A = 0;

(where F and G are local
variables of type integer)
is significantly more complex:
iload 4 ; Push local #4 (F) onto stack

iload 5 ; Push local #5 (G) onto stack
if_icmpeq L1 ; Goto L1 if F == G
iconst_0 ; Push 0 (false) onto stack
goto L2 ; Skip around next instruction

L1:
iconst_1 ; Push 1 (true) onto the stack

L2:
ifeq L3 ; Goto L3 if F==G is 0 (false)
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store top into local #1(A)
goto L4 ; Skip around else part

L3:
iconst_0 ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

L4:

386CS 536 Spring 2015 ©

The problem is that in the JVM
relational operators don’t store
a boolean value (0 or 1) onto
the stack. Rather, instructions
like if_icmpeq do a conditional
branch.
So we branch to a push of 0 or
1 just so we can test the value
and do a second conditional
branch to the else part of the
conditional.
Why did the JVM designers
create such an odd way of
evaluating relational operators?

A moment’s reflection shows
that we rarely actually want the
value of a relational or logical
expression. Rather, we usually

387CS 536 Spring 2015 ©

only want to do a conditional
branch based on the
expression’s value in the
context of a conditional or
looping statement.

Jump code is an alternative
representation of boolean
values. Rather than placing a
boolean value directly on the
stack, we generate a
conditional branch to either a
true label or a false label.
These labels are defined at the
places where we wish execution
to proceed once the boolean
expression’s value is known.

388CS 536 Spring 2015 ©

Returning to our previous
example, we can generate F==G
in jump code form as

iload 4 ; Push local #4 (F) onto stack
iload5 ; Push local #5 (G) onto stack
if_icmpne L1 ; Goto L1 if F != G

The label L1 is the “false label.”
We branch to it if the
expression F == G is false;
otherwise, we “fall through,”
executing the code that
follows. We can then generate
the then part, defining L1 at the
point where the else part is to
be computed. The code we
generate is:

389CS 536 Spring 2015 ©

iload 4 ; Push local #4 (F) onto stack

iload5 ; Push local #5 (G) onto stack
if_icmpne L1 ; Goto L1 if F != G
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store top into local #1(A)
goto L2 ; Skip around else part

L1:
iconst_0 ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

L2:

This instruction sequence is
significantly shorter (and
faster) than our original
translation. Jump code is
routinely used in ifs, whiles and
fors where we wish to alter
flow- of- control rather than
compute an explicit boolean
value.

390CS 536 Spring 2015 ©

Jump code comes in two forms,
JumpIfTrue and JumpIfFalse.
In JumpIfTrue form, the code
sequence does a conditional
jump (branch) if the expression
is true, and “falls through” if
the expression is false.
Analogously, in JumpIfFalse
form, the code sequence does a
conditional jump (branch) if the
expression is false, and “falls
through” if the expression is
true. We have two forms
because different contexts
prefer one or the other.
It is important to emphasize
that even though jump code
looks unusual, it is just an
alternative representation of
boolean values. We can convert

391CS 536 Spring 2015 ©

a boolean value on the stack to
jump code by conditionally
branching on its value to a true
or false label.
Similarly, we convert from jump
code to an explicit boolean
value, by placing the jump
code’s true label at a load of 1
and the false label at a load of
0.

392CS 536 Spring 2015 ©

Short-Circuit Evaluation
Our translation of the && and
|| operators parallels that of all
other binary operators:
evaluate both operands onto
the stack and then do an “and”
or “or” operation.
But in C, C+ + , C#, Java (and
most other languages), && and
|| are handled specially.
These two operators are
defined to work in “short
circuit” mode. That is, if the left
operand is sufficient to
determine the result of the
operation, the right operand
isn’t evaluated.
In particular a&&b is defined as
if a then b else false.

393CS 536 Spring 2015 ©

Similarly a||b is defined as
if a then true else b.
The conditional evaluation of
the second operand isn’t just
an optimization—it’s essential
for correctness. For example, in
(a!=0)&&(b/a>100)
we would perform a division by
zero if the right operand were
evaluated when a==0.
Jump code meshes nicely with
the short- circuit definitions of
&& and ||, since they are
already defined in terms of
conditional branches.
In particular if exp1 and exp2
are in jump code form, then we
need generate no further code
to evaluate exp1&&exp2.

394CS 536 Spring 2015 ©

To evaluate &&, we first
translate exp1 into JumpIfFalse
form, followed by exp2. If exp1
is false, we jump out of the
whole expression. If exp1 is
true, we fall through to exp2
and evaluate it. In this way,
exp2 is evaluated only when
necessary (when exp1 is true).

395CS 536 Spring 2015 ©

Similarly, once exp1 and exp2
are in jump code form,
exp1||exp2 is easy to evaluate.
We first translate exp1 into
JumpIfTrue form, followed by
exp2. If exp1 is true, we jump
out of the whole expression. If
exp1 is false, we fall through to
exp2 and evaluate it. In this
way, exp2 is evaluated only
when necessary (when exp1 is
false).

396CS 536 Spring 2015 ©

As an example, let’s consider
if ((A>0)||(B<0 && C==10))

A = 1;
else
 A = 0;

Assume A, B and C are all local
integers, with indices of 1, 2
and 3 respectively.
We’ll produce a JumpIfFalse
translation, jumping to label F
(the else part) if the expression
is false and falling through to
the then part if the expression
is true.
Code generators for relational
operators can be easily
modified to produce both kinds
of jump code—we can either
jump if the relation holds

397CS 536 Spring 2015 ©

(JumpIfTrue) or jump if it
doesn’t hold (JumpIfFalse). We
produce the following JVM code
sequence which is quite
compact and efficient.

iload 1 ; Push local #1 (A) onto stack
ifgt L1 ; Goto L1 if A > 0 is true
iload 2 ; Push local #2 (B) onto stack
ifge F ; Goto F if B < 0 is false
iload 3 ; Push local #3 (C) onto stack
bipush 10 ; Push a byte immediate (10)
if_icmpne F ; Goto F if C != 10

L1:
iconst_1 ; Push literal 1 onto stack
istore 1 ; Store top into local #1(A)
goto L2 ; Skip around else part

F:
iconst_0 ; Push literal 0 onto stack
istore 1 ; Store top into local #1(A)

L2:

First A is tested. If it is greater
than zero, the control
expression must be true, so we
skip the rest of the expression
and execute the then part.

398CS 536 Spring 2015 ©

Otherwise, we continue
evaluating the control
expression.
We next test B. If it is greater
than or equal to zero, B<0 is
false, and so is the whole
expression. We therefore
branch to label F and execute
the else part.
Otherwise, we finally test C.
If C is not equal to 10, the
control expression is false, so
we branch to label F and
execute the else part.
If C is equal to 10, the control
expression is true, and we fall
through to the then part.

399CS 536 Spring 2015 ©

For Loops

For loops are translated much
like while loops.
The AST for a for loop adds
subtrees corresponding to loop
initialization and increment.
For loops are expected to
iterate many times. Therefore
after executing the loop
initialization, we skip past the
loop body and increment code
to reach the termination

condition
forNode

increment

Exp Stmt Stmts

initializer loopBody

Stmt

400CS 536 Spring 2015 ©

condition, which is placed at
the bottom of the loop.
 {Initialization code}
goto L1

L2:
{Code for loop body}
{Increment code}

L1:

{Condition code}
ifne L2 ; branch to L2 if true

cg(){ // for forLoopNode
String skip = genLab();
String top = genLab();
initializer.cg();

 branch(skip);
defineLab(top);
loopBody.cg();
increment.cg();
defineLab(skip);
condition.cg();
branchNZ(top);

}

401CS 536 Spring 2015 ©

As an example, consider this
loop (i and j are locals with
variable indices of 1 and 2)

for (i=100;i!=0;i--) {

j = i;

}

The JVM code we generate is
bipush 100 ; Push 100
istore 1 ; Store into #1 (i)
goto L1 ; Skip to exit test

L2:

iload 1 ; Push local #1 (i)
istore 2 ; Store into #2 (j)

iload 1 ; Push local #1 (i)
iconst_1 ; Push 1

isub ; Compute i-1

istore 1 ; Store i-1 into #1 (i)

L1:

iload 1 ; Push local #1 (i)
ifne L2 ; Goto L2 if i is != 0

402CS 536 Spring 2015 ©

Java, C# and C++ allow a local
declaration of a loop index as
part of initialization, as
illustrated by the following for
loop

for (int i=100; i!=0; i--) {
j = i;

}

Local declarations are
automatically handled during
code generation for the
initialization expression. A
local variable is declared within
the current frame with a scope
limited to the body of the loop.
Otherwise translation is
identical.

403CS 536 Spring 2015 ©
404CS 536 Spring 2015 ©

