
56CS 536 Spring 2015 ©

Alternation
Small finite sets are conveniently
represented by listing their
elements. Parentheses delimit
expressions, and | , the alternation
operator, separates alternatives.
For example, D, the set of the ten
single digits, is defined as
D = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9).
The characters (,), ' , ∗, + , and |
are meta- characters (punctuation
and regular expression
operators).
Meta- characters must be quoted
when used as ordinary characters
to avoid ambiguity.

57CS 536 Spring 2015 ©

For example the expression
('(' | ')' | ; | ,)
defines four single character
tokens (left parenthesis, right
parenthesis, semicolon and
comma). The parentheses are
quoted when they represent
individual tokens and are not
used as delimiters in a larger
regular expression.
Alternation is extended to sets of
strings:
Let P and Q be sets of strings.
Then string s ∈ (P | Q) if and only
if s ∈ P or s ∈ Q.
For example, if LC is the set of
lower- case letters and UC is the
set of upper- case letters, then
(LC | UC) is the set of all letters (in
either case).

58CS 536 Spring 2015 ©

Kleene Closure
A useful operation is Kleene closure
represented by a postfix ∗ operator.

Let P be a set of strings. Then P *
represents all strings formed by
the catenation of zero or more
selections (possibly repeated)
from P.
Zero selections are denoted by λ.

For example, LC* is the set of all
words composed of lower- case
letters, of any length (including
the zero length word, λ).

Precisely stated, a string s ∈ P * if
and only if s can be broken into
zero or more pieces: s = s1 s2 ...
sn so that each si ∈ P (n ≥ 0, 1 ≤ i ≤
n).
We allow n = 0, so λ is always in P.

59CS 536 Spring 2015 ©

Definition of Regular
Expressions

Using catenations, alternation
and Kleene closure, we can
define regular expressions as
follows:
• ∅ is a regular expression denoting

the empty set (the set containing
no strings). ∅ is rarely used, but is
included for completeness.

• λ is a regular expression denoting
the set that contains only the
empty string. This set is not the
same as the empty set, because it
contains one element.

• A string s is a regular expression
denoting a set containing the
single string s.

60CS 536 Spring 2015 ©

• If A and B are regular expressions,
then A | B, A B, and A* are also
regular expressions, denoting the
alternation, catenation, and Kleene
closure of the corresponding
regular sets.

Each regular expression
denotes a set of strings (a
regular set). Any finite set of
strings can be represented by a
regular expression of the form
(s1 | s2 | … | sk). Thus the
reserved words of ANSI C can
be defined as
(auto | break | case | …).

61CS 536 Spring 2015 ©

The following additional
operations useful. They are not
strictly necessary, because their
effect can be obtained using
alternation, catenation, Kleene
closure:

• P + denotes all strings consisting of
one or more strings in P catenated
together:
P* = (P+ | λ) and P+ = P P*.
For example, (0 | 1)+ is the set of
all strings containing one or more
bits.

• If A is a set of characters, Not(A)
denotes (Σ − A); that is, all
characters in Σ not included in A.
Since Not(A) can never be larger
than Σ and Σ is finite, Not(A) must
also be finite, and is therefore
regular. Not(A) does not contain λ
since λ is not a character (it is a
zero- length string).

62CS 536 Spring 2015 ©

For example, Not(Eol) is the set of
all characters excluding Eol (the
end of line character, '\n' in Java or
C).

• It is possible to extend Not to
strings, rather than just Σ. That is,
if S is a set of strings, we define S
to be
(Σ* − S); the set of all strings except
those in S. Though S is usually
infinite, it is also regular if S is.

• If k is a constant, the set Ak
represents all strings formed by
catenating k (possibly different)
strings from A.
That is, Ak = (A A A …) (k copies).
Thus (0 | 1)32 is the set of all bit
strings exactly 32 bits long.

63CS 536 Spring 2015 ©

Examples
Let D be the ten single digits
and let L be the set of all 52
letters. Then
• A Java or C+ + single- line comment

that begins with // and ends with
Eol can be defined as:

Comment = // Not(Eol)* Eol

• A fixed decimal literal (e.g.,
12.345) can be defined as:

Lit = D+. D+

•An optionally signed integer literal
can be defined as:

IntLiteral = ('+' | − | λ) D+

(Why the quotes on the plus?)

64CS 536 Spring 2015 ©

• A comment delimited by ##
markers, which allows single #’s
within the comment body:

Comment2 =
((# | λ) Not(#))*

All finite sets and many infinite sets
are regular. But not all infinite sets
are regular. Consider the set of
balanced brackets of the form

[[[«]]].
This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is known not to be regular.
Any regular expression that tries to
define it either does not get all
balanced nestings or it includes
extra, unwanted strings.

65CS 536 Spring 2015 ©

Finite Automata and Scanners
A finite automaton (FA) can be
used to recognize the tokens
specified by a regular
expression. FAs are simple,
idealized computers that
recognize strings belonging to
regular sets. An FA consists of:
• A finite set of states
• A set of transitions (or moves) from

one state to another, labeled with
characters in Σ

• A special state called the start state

• A subset of the states called the
accepting, or final, states

66CS 536 Spring 2015 ©

These four components of a
finite automaton are often
represented graphically:

Finite automata (the plural of
automaton is automata) are
represented graphically using
transition diagrams. We start at
the start state. If the next input
character matches the label on

eof

is a transition

is the start state

is an accepting state

is a state

67CS 536 Spring 2015 ©

a transition from the current
state, we go to the state it
points to. If no move is
possible, we stop. If we finish in
an accepting state, the
sequence of characters read
forms a valid token; otherwise,
we have not seen a valid token.

In this diagram, the valid
tokens are the strings
described by the regular
expression (a b (c)+)+.

a b c

c

a

68CS 536 Spring 2015 ©

Deterministic Finite
Automata

As an abbreviation, a transition
may be labeled with more than
one character (for example,
Not(c)). The transition may be
taken if the current input
character matches any of the
characters labeling the transition.
If an FA always has a unique
transition (for a given state and
character), the FA is deterministic
(that is, a deterministic FA, or
DFA). Deterministic finite
automata are easy to program and
often drive a scanner.
If there are transitions to more
than one state for some character,
then the FA is nondeterministic
(that is, an NFA).

69CS 536 Spring 2015 ©

A DFA is conveniently represented
in a computer by a transition
table. A transition table, T, is a
two dimensional array indexed by
a DFA state and a vocabulary
symbol.
Table entries are either a DFA
state or an error flag (often
represented as a blank table
entry). If we are in state s, and
read character c, then T[s,c] will be
the next state we visit, or T[s,c]
will contain an error marker
indicating that c cannot extend
the current token. For example,
the regular expression

// Not(Eol)* Eol

which defines a Java or C+ +
single- line comment, might be
translated into

70CS 536 Spring 2015 ©

The corresponding transition
table is:

A complete transition table
contains one column for each
character. To save space, table
compression may be used. Only
non- error entries are explicitly
represented in the table, using
hashing, indirection or linked
structures.

State Character
/ Eol a b «

1 2
2 3
3 3 4 3 3 3
4

Eol/ /

Not(Eol)

1 2 3 4

71CS 536 Spring 2015 ©

All regular expressions can be
translated into DFAs that accept
(as valid tokens) the strings
defined by the regular
expressions. This translation can
be done manually by a
programmer or automatically
using a scanner generator.
A DFA can be coded in:
• Table- driven form

• Explicit control form

In the table- driven form, the
transition table that defines a
DFA’s actions is explicitly
represented in a run- time table
that is “interpreted” by a driver
program.
In the direct control form, the
transition table that defines a DFA’s
actions appears implicitly as the
control logic of the program.

72CS 536 Spring 2015 ©

For example, suppose
CurrentChar is the current input
character. End of file is
represented by a special character
value, eof. Using the DFA for the
Java comments shown earlier, a
table- driven scanner is:
State = StartState
while (true){
if (CurrentChar == eof)

break
NextState =

T[State][CurrentChar]
 if(NextState == error)

break
State = NextState
read(CurrentChar)

}
if (State in AcceptingStates)

// Process valid token
else // Signal a lexical error

73CS 536 Spring 2015 ©

This form of scanner is produced
by a scanner generator; it is
definition- independent. The
scanner is a driver that can scan
any token if T contains the
appropriate transition table.
Here is an explicit- control
scanner for the same comment
definition:
if (CurrentChar == '/'){

read(CurrentChar)
if (CurrentChar == '/')

repeat
read(CurrentChar)

until (CurrentChar in
{eol, eof})

else //Signal lexical error
else // Signal lexical error
if (CurrentChar == eol)

// Process valid token
else //Signal lexical error

74CS 536 Spring 2015 ©

The token being scanned is
“hardwired” into the logic of the
code. The scanner is usually easy
to read and often is more
efficient, but is specific to a single
token definition.

75CS 536 Spring 2015 ©

More Examples
• A FORTRAN- like real literal (which

requires digits on either or both
sides of a decimal point, or just a
string of digits) can be defined as

RealLit = (D+ (λ | .)) | (D* . D+)

This corresponds to the DFA

. D

DD

D .

76CS 536 Spring 2015 ©

• An identifier consisting of letters,
digits, and underscores, which
begins with a letter and allows no
adjacent or trailing underscores,
may be defined as

ID = L (L | D)* (_ (L | D)+)*

This definition includes identifiers
like sum or unit_cost, but
excludes _one and two_ and
grand___total. The DFA is:

L | D

L

L | D

_

77CS 536 Spring 2015 ©

Lex/Flex/JLex
Lex is a well- known Unix scanner
generator. It builds a scanner, in
C, from a set of regular
expressions that define the
tokens to be scanned.
Flex is a newer and faster version
of Lex.
JLex is a Java version of Lex. It
generates a scanner coded in Java,
though its regular expression
definitions are very close to those
used by Lex and Flex.
Lex, Flex and JLex are largely
non- procedural. You don’t need
to tell the tools how to scan. All
you need to tell it what you want
scanned (by giving it definitions
of valid tokens).

78CS 536 Spring 2015 ©

This approach greatly simplifies
building a scanner, since most of
the details of scanning (I/O,
buffering, character matching,
etc.) are automatically handled.

79CS 536 Spring 2015 ©

JLex
JLex is coded in Java. To use it,
you enter
java JLex.Main f.jlex
Your CLASSPATH should be set to
search the directories where
JLex’s classes are stored.
(In build files we provide the
CLASSPATH used will includ JLex’s
classes).
After JLex runs (assuming there
are no errors in your token
specifications), the Java source file
f.jlex.java is created. (f stands
for any file name you choose.
Thus csx.jlex might hold token
definitions for CSX, and
csx.jlex.java would hold the
generated scanner).

80CS 536 Spring 2015 ©

You compile f.jlex.java just
like any Java program, using your
favorite Java compiler.
After compilation, the class file
Yylex.class is created.
It contains the methods:
• Token yylex() which is the actual

scanner. The constructor for Yylex
takes the file you want scanned, so
new Yylex(System.in)
will build a scanner that reads from
System.in. Token is the token
class you want returned by the
scanner; you can tell JLex what
class you want returned.

• String yytext() returns the
character text matched by the last
call to yylex.

•

81CS 536 Spring 2015 ©

Input to JLex
There are three sections,
delimited by %%. The general
structure is:
User Code
%%
Jlex Directives
%%
Regular Expression rules

The User Code section is Java
source code to be copied into the
generated Java source file. It
contains utility classes or return
type classes you need. Thus if you
want to return a class
IntlitToken (for integer literals
that are scanned), you include its
definition in the User Code
section.

82CS 536 Spring 2015 ©

JLex directives are various
instructions you can give JLex to
customize the scanner you
generate.
These are detailed in the JLex
manual. The most important are:
• %{
Code copied into the Yylex
class (extra fields or
methods you may want)
%}

• %eof{
Java code to be executed when
the end of file is reached
%eof}

• %type classname
classname is the return type you
want for the scanner method,
yylex()

83CS 536 Spring 2015 ©

Macro Definitions
In section two you may also define
macros, that are used in section
three. A macro allows you to give
a name to a regular expression or
character class. This allows you to
reuse definitions and make
regular expression rule more
readable.
Macro definitions are of the form
name = def
Macros are defined one per line.
Here are some simple examples:
Digit=[0-9]
AnyLet=[A-Za-z]

In section 3, you use a macro by
placing its name within { and }.
Thus {Digit} expands to the
character class defining the digits
0 to 9.

84CS 536 Spring 2015 ©

Regular Expression Rules
The third section of the JLex input
file is a series of token definition
rules of the form
RegExpr {Java code}
When a token matching the given
RegExpr is matched, the
corresponding Java code
(enclosed in “{“ and “}”) is
executed. JLex figures out what
RegExpr applies; you need only
say what the token looks like
(using RegExpr) and what you
want done when the token is
matched (this is usually to return
some token object, perhaps with
some processing of the token
text).

85CS 536 Spring 2015 ©

Here are some examples:
"+" {return new Token(sym.Plus);}

(" ")+ {/* skip white space */}

{Digit}+ {return
new IntToken(sym.Intlit,
new Integer(yytext()).intValue());}

86CS 536 Spring 2015 ©

Regular Expressions in JLex
To define a token in JLex, the user
to associates a regular expression
with commands coded in Java.
When input characters that match
a regular expression are read, the
corresponding Java code is
executed. As a user of JLex you
don’t need to tell it how to match
tokens; you need only say what
you want done when a particular
token is matched.
Tokens like white space are
deleted simply by having their
associated command not return
anything. Scanning continues
until a command with a return in
it is executed.
The simplest form of regular
expression is a single string that
matches exactly itself.

87CS 536 Spring 2015 ©

For example,
if {return new Token(sym.If);}

If you wish, you can quote the
string representing the reserved
word ("if"), but since the string
contains no delimiters or
operators, quoting it is
unnecessary.
For a regular expression operator,
like + , quoting is necessary:

"+" {return
new Token(sym.Plus);}

