
88CS 536 Spring 2015 ©

Character Classes
Our specification of the reserved
word if, as shown earlier, is
incomplete. We don’t (yet) handle
upper or mixed- case.
To extend our definition, we’ll use
a very useful feature of Lex and
JLex—character classes.
Characters often naturally fall into
classes, with all characters in a
class treated identically in a token
definition. In our definition of
identifiers all letters form a class
since any of them can be used to
form an identifier. Similarly, in a
number, any of the ten digit
characters can be used.

89CS 536 Spring 2015 ©

Character classes are delimited by
[and]; individual characters are
listed without any quotation or
separators. However \, ^,] and -,
because of their special meaning
in character classes, must be
escaped. The character class
[xyz] can match a single x, y, or
z.
The character class [\])] can
match a single] or).
(The] is escaped so that it isn’t
misinterpreted as the end of
character class.)
Ranges of characters are
separated by a -; [x-z] is the
same as [xyz]. [0-9] is the set
of all digits and [a-zA-Z] is the
set of all letters, upper- and
lower- case. \ is the escape
character, used to represent

90CS 536 Spring 2015 ©

unprintables and to escape
special symbols.
Following C and Java conventions,
\n is the newline (that is, end of
line), \t is the tab character, \\ is
the backslash symbol itself, and
\010 is the character
corresponding to octal 10.
The ^ symbol complements a
character class (it is JLex’s
representation of the Not
operation).
[^xy] is the character class that
matches any single character
except x and y. The ^ symbol
applies to all characters that
follow it in a character class
definition, so [^0-9] is the set of
all characters that aren’t digits.
[^] can be used to match all
characters.

91CS 536 Spring 2015 ©

Here are some examples of
character classes:

Character
Class Set of Characters Denoted
[abc] Three characters: a, b and c
[cba] Three characters: a, b and c
[a-c] Three characters: a, b and c
[aabbcc] Three characters: a, b and c
[^abc] All characters except a, b

and c
[\^\-\]] Three characters: ^, - and]
[^] All characters
"[abc]" Not a character class. This

is one five character string:
[abc]

92CS 536 Spring 2015 ©

Regular Operators in JLex
JLex provides the standard regular
operators, plus some additions.
• Catenation is specified by the

juxtaposition of two expressions;
no explicit operator is used.
Outside of character class brackets,
individual letters and numbers
match themselves; other characters
should be quoted (to avoid
misinterpretation as regular
expression operators).

Case is significant.

Regular Expr Characters Matched
a b cd Four characters: abcd
(a)(b)(cd) Four characters: abcd
[ab][cd] Four different strings: ac or

ad or bc or bd
while Five characters: while
"while" Five characters: while
[w][h][i][l][e] Five characters: while

93CS 536 Spring 2015 ©

• The alternation operator is |.
Parentheses can be used to control
grouping of subexpressions.
If we wish to match the reserved
word while allowing any mixture
of upper- and lowercase, we can
use
(w|W)(h|H)(i|I)(l|L)(e|E)
or
[wW][hH][iI][lL][eE]

Regular Expr Characters Matched
ab|cd Two different strings: ab or cd
(ab)|(cd) Two different strings: ab or cd
[ab]|[cd] Four different strings: a or b or

c or d

94CS 536 Spring 2015 ©

• Postfix operators:
* Kleene closure: 0 or more
matches.
(ab)* matches λ or ab or abab or
ababab ...

+ Positive closure: 1 or more
matches.
(ab)+ matches ab or abab or
ababab ...

? Optional inclusion:
expr?

matches expr zero times or once.
expr? is equivalent to (expr) | λ
and eliminates the need for an
explicit λ symbol.

[-+]?[0-9]+ defines an optionally
signed integer literal.

95CS 536 Spring 2015 ©

• Single match:
The character "." matches any
single character (other than a
newline).

• Start of line:
The character ̂ (when used outside
a character class) matches the
beginning of a line.

• End of line:
The character $ matches the end of
a line. Thus,
^A.*e$

matches an entire line that begins
with A and ends with e.

96CS 536 Spring 2015 ©

Overlapping Definitions
Regular expressions may overlap
(match the same input sequence).
In the case of overlap, two rules
determine which regular
expression is matched:
• The longest possible match is

performed. JLex automatically
buffers characters while deciding
how many characters can be
matched.

• If two expressions match exactly
the same string, the earlier
expression (in the JLex
specification) is preferred.
Reserved words, for example, are
often special cases of the pattern
used for identifiers. Their
definitions are therefore placed
before the expression that defines
an identifier token.

97CS 536 Spring 2015 ©

Often a “catch all” pattern is
placed at the very end of the
regular expression rules. It is
used to catch characters that
don’t match any of the earlier
patterns and hence are probably
erroneous. Recall that "." matches
any single character (other than a
newline). It is useful in a catch- all
pattern. However, avoid a pattern
like .* which will consume all
characters up to the next newline.
In JLex an unmatched character
will cause a run- time error.

The operators and special
symbols most commonly used in
JLex are summarized below. Note
that a symbol sometimes has one
meaning in a regular expression
and an entirely different meaning

98CS 536 Spring 2015 ©

in a character class (i.e., within a
pair of brackets). If you find JLex
behaving unexpectedly, it’s a
good idea to check this table to
be sure of how the operators and
symbols you’ve used behave.
Ordinary letters and digits, and
symbols not mentioned (like @)
represent themselves. If you’re
not sure if a character is special or
not, you can always escape it or
make it part of a quoted string.

99CS 536 Spring 2015 ©

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

(Matches with) to group sub-
expressions.

Represents itself.

) Matches with (to group sub-
expressions.

Represents itself.

[Begins a character class. Represents itself.
] Represents itself. Ends a character

class.
{ Matches with } to signal

macro-expansion.
Represents itself.

} Matches with { to signal
macro-expansion.

Represents itself.

" Matches with " to delimit
strings
(only \ is special within
strings).

Represents itself.

\ Escapes individual charac-
ters.
Also used to specify a char-
acter by its octal code.

Escapes individual
characters.
Also used to spec-
ify a character by
its octal code.

. Matches any one character
except \n.

Represents itself.

| Alternation (or) operator. Represents itself.

100CS 536 Spring 2015 ©

* Kleene closure operator (zero
or more matches).

Represents itself.

+ Positive closure operator
(one or more matches).

Represents itself.

? Optional choice operator
(one or zero matches).

Represents itself.

/ Context sensitive matching
operator.

Represents itself.

^ Matches only at beginning of
a line.

Complements
remaining
characters in the
class.

$ Matches only at end of a line. Represents itself.
- Represents itself. Range of charac-

ters operator.

Symbol
Meaning in Regular
Expressions

Meaning in
Character
Classes

101CS 536 Spring 2015 ©

Potential Problems in Using
JLex

The following differences from
“standard” Lex notation appear in
JLex:
• Escaped characters within quoted

strings are not recognized. Hence
"\n" is not a new line character.
Escaped characters outside of
quoted strings (\n) and escaped
characters within character classes
([\n]) are OK.

• A blank should not be used within a
character class (i.e., [and]). You
may use \040 (which is the
character code for a blank).

• A doublequote must be escaped
within a character class. Use [\"]
instead of ["].

102CS 536 Spring 2015 ©

• Unprintables are defined to be all
characters before blank as well as
the last ASCII character.
Unprintables can be represented
as:[\000-\037\177]

103CS 536 Spring 2015 ©

JLex Examples
A JLex scanner that looks for five
letter words that begin with “P”
and end with “T”.

This example is in
www.cs.wisc.edu/~fischer/
cs536.s15/course/proj2/
startup/Jlex_test/

104CS 536 Spring 2015 ©

The JLex specification file is:
class Token {

String text;
Token(String t){text = t;}

}
%%
Digit=[0-9]
AnyLet=[A-Za-z]
Others=[0-9’&.]
WhiteSp=[\040\n]
// Tell JLex to have yylex() return a
Token
%type Token
// Tell JLex what to return when eof of
file is hit
%eofval{
return new Token(null);
%eofval}
%%
[Pp]{AnyLet}{AnyLet}{AnyLet}[Tt]{WhiteSp}+

{return new Token(yytext());}

({AnyLet}|{Others})+{WhiteSp}+
{/*skip*/}

105CS 536 Spring 2015 ©

The Java program that uses the
scanner is:
import java.io.*;

class Main {

public static void main(String args[])
throws java.io.IOException {

Yylex lex = new Yylex(System.in);
Token token = lex.yylex();

while (token.text != null) {
System.out.print("\t"+token.text);
token = lex.yylex(); //get next token

}
}}

106CS 536 Spring 2015 ©

In case you care, the words that
are matched include:
Pabst
paint
petit
pilot
pivot
plant
pleat
point
posit
Pratt
print

107CS 536 Spring 2015 ©

An example of CSX token
specifications. This example is in
www.cs.wisc.edu/~fischer/
cs536.s15/course/proj2/
startup/java

108CS 536 Spring 2015 ©

The JLex specification file is:
import java_cup.runtime.*;

/* Expand this into your solution for
project 2 */

class CSXToken {
int linenum;
int colnum;
CSXToken(int line,int col){
linenum=line;colnum=col;};
}

class CSXIntLitToken extends CSXToken {
int intValue;
CSXIntLitToken(int val,int line,
int col){
super(line,col);intValue=val;};

}
class CSXIdentifierToken extends
CSXToken {
String identifierText;
CSXIdentifierToken(String text,int line,
int col){
super(line,col);identifierText=text;};

}

109CS 536 Spring 2015 ©

class CSXCharLitToken extends CSXToken {
char charValue;

CSXCharLitToken(char val,int line,
int col){
super(line,col);charValue=val;};

}

class CSXStringLitToken extends CSXToken
{

String stringText;
CSXStringLitToken(String text,
int line,int col){

super(line,col);
stringText=text; };

}
// This class is used to track line and
column numbers
// Feel free to change to extend it
class Pos {
static int linenum = 1;
/* maintain this as line number current

token was scanned on */
static int colnum = 1;
/* maintain this as column number
current token began at */

static int line = 1;
/* maintain this as line number after

scanning current token */

110CS 536 Spring 2015 ©

static int col = 1;
/* maintain this as column number
after scanning current token */

static void setpos() {
//set starting pos for current token
linenum = line;
colnum = col;}

}

%%
Digit=[0-9]

// Tell JLex to have yylex() return a
Symbol, as JavaCUP will require
%type Symbol

// Tell JLex what to return when eof of
file is hit
%eofval{
return new Symbol(sym.EOF,

new CSXToken(0,0));
%eofval}

111CS 536 Spring 2015 ©

%%
"+" {Pos.setpos(); Pos.col +=1;

 return new Symbol(sym.PLUS,
new CSXToken(Pos.linenum,

Pos.colnum));}
"!=" {Pos.setpos(); Pos.col +=2;

return new Symbol(sym.NOTEQ,
new CSXToken(Pos.linenum,

Pos.colnum));}
";" {Pos.setpos(); Pos.col +=1;

return new Symbol(sym.SEMI,
new CSXToken(Pos.linenum,

Pos.colnum));}
{Digit}+ {// This def doesn’t check

// for overflow
Pos.setpos();
Pos.col += yytext().length();

 return new Symbol(sym.INTLIT,
new CSXIntLitToken(

new Integer(yytext()).intValue(),
 Pos.linenum,Pos.colnum));}

\n {Pos.line +=1; Pos.col = 1;}
" " {Pos.col +=1;}

112CS 536 Spring 2015 ©

The Java program that uses this
scanner (P2) is:

class P2 {
public static void main(String args[])

throws java.io.IOException {
if (args.length != 1) {

System.out.println(
"Error: Input file must be named on

command line.");
System.exit(-1);

}
java.io.FileInputStream yyin = null;
try {
yyin =
new java.io.FileInputStream(args[0]);

} catch (FileNotFoundException
notFound){

System.out.println(
"Error: unable to open input file.”);
System.exit(-1);

}

// lex is a JLex-generated scanner that
// will read from yyin

 Yylex lex = new Yylex(yyin);

System.out.println(
"Begin test of CSX scanner.");

113CS 536 Spring 2015 ©

/**********************************
 You should enter code here that
thoroughly test your scanner.

Be sure to test extreme cases,
like very long symbols or lines,
illegal tokens, unrepresentable
integers, illegals strings, etc.
The following is only a starting point.

***********************************/
Symbol token = lex.yylex();

while (token.sym != sym.EOF) {
 System.out.print(

((CSXToken) token.value).linenum
+ ":"
+ ((CSXToken) token.value).colnum
+ " ");

switch (token.sym) {
 case sym.INTLIT:
 System.out.println(

"\tinteger literal(" +
 ((CSXIntLitToken)

token.value).intValue + ")");
break;

 case sym.PLUS:
 System.out.println("\t+");

break;

114CS 536 Spring 2015 ©

 case sym.NOTEQ:
 System.out.println("\t!=");
 break;

 default:
 throw new RuntimeException();
}

token = lex.yylex(); // get next token
}

System.out.println(

"End test of CSX scanner.");
}}}

115CS 536 Spring 2015 ©

Other Scanner Issues
We will consider other practical
issues in building real scanners
for real programming languages.
Our finite automaton model
sometimes needs to be
augmented. Moreover, error
handling must be incorporated
into any practical scanner.

116CS 536 Spring 2015 ©

Identifiers vs. Reserved
Words

Most programming languages
contain reserved words like if,
while, switch, etc. These tokens
look like ordinary identifiers, but
aren’t.
It is up to the scanner to decide if
what looks like an identifier is
really a reserved word. This
distinction is vital as reserved
words have different token codes
than identifiers and are parsed
differently.
How can a scanner decide which
tokens are identifiers and which
are reserved words?

117CS 536 Spring 2015 ©

• We can scan identifiers and
reserved words using the same
pattern, and then look up the token
in a special “reserved word” table.

• It is known that any regular
expression may be complemented
to obtain all strings not in the
original regular expression. Thus
A, the complement of A, is regular
if A is. Using complementation we
can write a regular expression for
nonreserved

identifiers:
Since scanner generators don’t
usually support complementation
of regular expressions, this
approach is more of theoretical
than practical interest.

ident if while …()

118CS 536 Spring 2015 ©

• We can give distinct regular
expression definitions for each
reserved word, and for identifiers.
Since the definitions overlap (if
will match a reserved word and the
general identifier pattern), we give
priority to reserved words. Thus a
token is scanned as an identifier if
it matches the identifier pattern
and does not match any reserved
word pattern. This approach is
commonly used in scanner
generators like Lex and JLex.

119CS 536 Spring 2015 ©

Converting Token Values
For some tokens, we may need to
convert from string form into
numeric or binary form.
For example, for integers, we
need to transform a string a digits
into the internal (binary) form of
integers.
We know the format of the token
is valid (the scanner checked this),
but:
• The string may represent an

integer too large to represent in 32
or 64 bit form.

• Languages like CSX and ML use a
non- standard representation for
negative values (~123 instead of
-123)

120CS 536 Spring 2015 ©

We can safely convert from string
to integer form by first converting
the string to double form,
checking against max and min int,
and then converting to int form if
the value is representable.
Thus d = new Double(str) will
create an object d containing the
value of str in double form. If
str is too large or too small to be
represented as a double, plus or
minus infinity is automatically
substituted.
d.doubleValue() will give d’s
value as a Java double, which can
be compared against
Integer.MAX_VALUE or
Integer.MIN_VALUE.

121CS 536 Spring 2015 ©

If d.doubleValue() represents a
valid integer,
(int) d.doubleValue()
will create the appropriate integer
value.
If a string representation of an
integer begins with a “~” we can
strip the “~”, convert to a double
and then negate the resulting
value.

122CS 536 Spring 2015 ©

Scanner Termination

A scanner reads input characters
and partitions them into tokens.
What happens when the end of
the input file is reached? It may be
useful to create an Eof pseudo-
character when this occurs. In
Java, for example,
InputStream.read(), which
reads a single byte, returns - 1
when end of file is reached. A
constant, EOF, defined as - 1 can
be treated as an “extended” ASCII
character. This character then
allows the definition of an Eof
token that can be passed back to
the parser.
An Eof token is useful because it
allows the parser to verify that the
logical end of a program
corresponds to its physical end.

123CS 536 Spring 2015 ©

Most parsers require an end of file
token.
Lex and Jlex automatically create
an Eof token when the scanner
they build tries to scan an EOF
character (or tries to scan when
eof() is true).

124CS 536 Spring 2015 ©

Multi Character Lookahead
We may allow finite automata to
look beyond the next input
character.
This feature is necessary to
implement a scanner for
FORTRAN.
In FORTRAN, the statement
DO 10 J = 1,100

specifies a loop, with index J
ranging from 1 to 100.
The statement
DO 10 J = 1.100

is an assignment to the variable
DO10J. (Blanks are not significant
except in strings.)
A FORTRAN scanner decides
whether the O is the last character
of a DO token only after reading as
far as the comma (or period).

125CS 536 Spring 2015 ©

A milder form of extended
lookahead problem occurs in
Pascal and Ada.
The token 10.50 is a real literal,
whereas 10..50 is three different
tokens.
We need two- character lookahead
after the 10 prefix to decide
whether we are to return 10 (an
integer literal) or 10.50 (a real
literal).

126CS 536 Spring 2015 ©

Suppose we use the following FA.

Given 10..100 we scan three
characters and stop in a non-
accepting state.
Whenever we stop reading in a
non- accepting state, we back up
along accepted characters until an
accepting state is found.
Characters we back up over are
rescanned to form later tokens. If
no accepting state is reached
during backup, we have a lexical
error.

.D

D D

D

.
.

127CS 536 Spring 2015 ©

Performance Considerations
Because scanners do so much
character- level processing, they
can be a real performance
bottleneck in production
compilers.
Speed is not a concern in our
project, but let’s see why
scanning speed can be a concern
in production compilers.
Let’s assume we want to compile
at a rate of 5000 lines/sec. (so
that most programs compile in
just a few seconds).
Assuming 30 characters/line (on
average), we need to scan
150,000 char/sec.

128CS 536 Spring 2015 ©

A key to efficient scanning is to
group character- level operations
whenever possible. It is better to
do one operation on n characters
rather than n operations on single
characters.
In our examples we’ve read input
one character as a time. A
subroutine call can cost hundreds
or thousands of instructions to
execute—far too much to spend
on a single character.
We prefer routines that do block
reads, putting an entire block of
characters directly into a buffer.
Specialized scanner generators
can produce particularly fast
scanners.
The GLA scanner generator claims
that the scanners it produces run
as fast as:

129CS 536 Spring 2015 ©

while(c != Eof) {

c = getchar();
}

