
121CS 536 Spring 2015 ©

If d.doubleValue() represents a
valid integer,
(int) d.doubleValue()
will create the appropriate integer
value.
If a string representation of an
integer begins with a “~” we can
strip the “~”, convert to a double
and then negate the resulting
value.

122CS 536 Spring 2015 ©

Scanner Termination
A scanner reads input characters
and partitions them into tokens.
What happens when the end of
the input file is reached? It may be
useful to create an Eof pseudo-
character when this occurs. In
Java, for example,
InputStream.read(), which
reads a single byte, returns - 1
when end of file is reached. A
constant, EOF, defined as - 1 can
be treated as an “extended” ASCII
character. This character then
allows the definition of an Eof
token that can be passed back to
the parser.
An Eof token is useful because it
allows the parser to verify that the
logical end of a program
corresponds to its physical end.

123CS 536 Spring 2015 ©

Most parsers require an end of file
token.
Lex and Jlex automatically create
an Eof token when the scanner
they build tries to scan an EOF
character (or tries to scan when
eof() is true).

124CS 536 Spring 2015 ©

Multi Character Lookahead
We may allow finite automata to
look beyond the next input
character.
This feature is necessary to
implement a scanner for
FORTRAN.
In FORTRAN, the statement
DO 10 J = 1,100

specifies a loop, with index J
ranging from 1 to 100.
The statement
DO 10 J = 1.100

is an assignment to the variable
DO10J. (Blanks are not significant
except in strings.)
A FORTRAN scanner decides
whether the O is the last character
of a DO token only after reading as
far as the comma (or period).

125CS 536 Spring 2015 ©

A milder form of extended
lookahead problem occurs in
Pascal and Ada.
The token 10.50 is a real literal,
whereas 10..50 is three different
tokens.
We need two- character lookahead
after the 10 prefix to decide
whether we are to return 10 (an
integer literal) or 10.50 (a real
literal).

126CS 536 Spring 2015 ©

Suppose we use the following FA.

Given 10..100 we scan three
characters and stop in a non-
accepting state.
Whenever we stop reading in a
non- accepting state, we back up
along accepted characters until an
accepting state is found.
Characters we back up over are
rescanned to form later tokens. If
no accepting state is reached
during backup, we have a lexical
error.

.D

D D

D

.
.

127CS 536 Spring 2015 ©

Performance Considerations
Because scanners do so much
character- level processing, they
can be a real performance
bottleneck in production
compilers.
Speed is not a concern in our
project, but let’s see why
scanning speed can be a concern
in production compilers.
Let’s assume we want to compile
at a rate of 5000 lines/sec. (so
that most programs compile in
just a few seconds).
Assuming 30 characters/line (on
average), we need to scan
150,000 char/sec.

128CS 536 Spring 2015 ©

A key to efficient scanning is to
group character- level operations
whenever possible. It is better to
do one operation on n characters
rather than n operations on single
characters.
In our examples we’ve read input
one character as a time. A
subroutine call can cost hundreds
or thousands of instructions to
execute—far too much to spend
on a single character.
We prefer routines that do block
reads, putting an entire block of
characters directly into a buffer.
Specialized scanner generators
can produce particularly fast
scanners.
The GLA scanner generator claims
that the scanners it produces run
as fast as:

129CS 536 Spring 2015 ©

while(c != Eof) {

c = getchar();
}

130CS 536 Spring 2015 ©

Lexical Error Recovery
A character sequence that can’t
be scanned into any valid token is
a lexical error.
Lexical errors are uncommon, but
they still must be handled by a
scanner. We won’t stop
compilation because of so minor
an error.
Approaches to lexical error
handling include:
• Delete the characters read so far

and restart scanning at the next
unread character.

• Delete the first character read by
the scanner and resume scanning
at the character following it.

Both of these approaches are
reasonable.

131CS 536 Spring 2015 ©

The first is easy to do. We just
reset the scanner and begin
scanning anew.
The second is a bit harder but
also is a bit safer (less is
immediately deleted). It can be
implemented using scanner
backup.
Usually, a lexical error is caused
by the appearance of some illegal
character, mostly at the beginning
of a token.
(Why at the beginning?)
In these case, the two approaches
are equivalent.
The effects of lexical error
recovery might well create a later
syntax error, handled by the
parser.

132CS 536 Spring 2015 ©

Consider
...for$tnight...

The $ terminates scanning of for.
Since no valid token begins with
$, it is deleted. Then tnight is
scanned as an identifier. In effect
we get
...for tnight...

which will cause a syntax error.
Such “false errors” are
unavoidable, though a syntactic
error- repair may help.

133CS 536 Spring 2015 ©

Error Tokens
Certain lexical errors require
special care. In particular,
runaway strings and runaway
comments ought to receive
special error messages.
In Java strings may not cross line
boundaries, so a runaway string is
detected when an end of a line is
read within the string body.
Ordinary recovery rules are
inappropriate for this error. In
particular, deleting the first
character (the double quote
character) and restarting scanning
is a bad decision.
It will almost certainly lead to a
cascade of “false” errors as the
string text is inappropriately
scanned as ordinary input.

134CS 536 Spring 2015 ©

One way to handle runaway
strings is to define an error token.
An error token is not a valid
token; it is never returned to the
parser. Rather, it is a pattern for
an error condition that needs
special handling. We can define an
error token that represents a
string terminated by an end of
line rather than a double quote
character.
For a valid string, in which
internal double quotes and back
slashes are escaped (and no other
escaped characters are allowed),
we can use

" (Not(" | Eol | \) | \" | \\)* "
For a runaway string we use

" (Not(" | Eol | \) | \" | \\)* Eol
(Eol is the end of line character.)

135CS 536 Spring 2015 ©

When a runaway string token is
recognized, a special error
message should be issued.
Further, the string may be
“repaired” into a correct string by
returning an ordinary string token
with the closing Eol replaced by a
double quote.
This repair may or may not be
“correct.” If the closing double
quote is truly missing, the repair
will be good; if it is present on a
succeeding line, a cascade of
inappropriate lexical and syntactic
errors will follow.
Still, we have told the programmer
exactly what is wrong, and that is
our primary goal.

136CS 536 Spring 2015 ©

In languages like C, C+ + , Java
and CSX, which allow multiline
comments, improperly terminated
(runaway) comments present a
similar problem.
A runaway comment is not
detected until the scanner finds a
close comment symbol (possibly
belonging to some other
comment) or until the end of file
is reached. Clearly a special,
detailed error message is
required.
Let’s look at Pascal- style
comments that begin with a { and
end with a }. Comments that
begin and end with a pair of
characters, like /* and */ in Java,
C and C+ + , are a bit trickier.

137CS 536 Spring 2015 ©

Correct Pascal comments are
defined quite simply:

{ Not(})* }
To handle comments terminated
by Eof, this error token can be
used:

{ Not(})* Eof
We want to handle comments
unexpectedly closed by a close
comment belonging to another
comment:
{... missing close comment
... { normal comment }...

We will issue a warning (this form
of comment is lexically legal).
Any comment containing an open
comment symbol in its body is
most probably a missing } error.

138CS 536 Spring 2015 ©

We split our legal comment
definition into two token
definitions.
The definition that accepts an
open comment in its body causes
a warning message ("Possible
unclosed comment") to be
printed.
We now use:

{ Not({ | })* } and
{ (Not({ | })* { Not({ | })*)+ }
The first definition matches
correct comments that do not
contain an open comment in their
body.
The second definition matches
correct, but suspect, comments
that contain at least one open
comment in their body.

139CS 536 Spring 2015 ©

Single line comments, found in
Java, CSX and C+ + , are
terminated by Eol.
They can fall prey to a more
subtle error—what if the last line
has no Eol at its end?
The solution?
Another error token for single line
comments:

// Not(Eol)*
This rule will only be used for
comments that don’t end with an
Eol, since scanners always match
the longest rule possible.

140CS 536 Spring 2015 ©

Regular Expressions and
Finite Automata

Regular expressions are fully
equivalent to finite automata.
The main job of a scanner
generator like JLex is to transform
a regular expression definition
into an equivalent finite
automaton.
It first transforms a regular
expression into a
nondeterministic finite automaton
(NFA).
Unlike ordinary deterministic
finite automata, an NFA need not
make a unique (deterministic)
choice of a successor state to
visit. As shown below, an NFA is
allowed to have a state that has
two transitions (arrows) coming

141CS 536 Spring 2015 ©

out of it, labeled by the same
symbol. An NFA may also have
transitions labeled with λ.

Transitions are normally labeled
with individual characters in Σ,
and although λ is a string (the
string with no characters in it), it
is definitely not a character. In the
above example, when the
automaton is in the state at the
left and the next input character
is a, it may choose to use the

a

a

a

λ
a

142CS 536 Spring 2015 ©

transition labeled a or first follow
the λ transition (you can always
find λ wherever you look for it)
and then follow an a transition.
FAs that contain no λ transitions
and that always have unique
successor states for any symbol
are deterministic.

143CS 536 Spring 2015 ©

Building Finite Automata
From Regular Expressions

We make an FA from a regular
expression in two steps:
• Transform the regular expression

into an NFA.

• Transform the NFA into a
deterministic FA.

The first step is easy.
Regular expressions are all built
out of the atomic regular
expressions a (where a is a
character in Σ) and λ by using the
three operations
A B and A | B and A*.

144CS 536 Spring 2015 ©

Other operations (like A+) are just
abbreviations for combinations of
these.
NFAs for a and λ are trivial:

Suppose we have NFAs for A and
B and want one for A | B. We
construct the NFA shown below:

a

λ

A

B

Finite
Automaton

for A

Finite
Automaton

for B

λ

λ

λ

λ

145CS 536 Spring 2015 ©

The states labeled A and B were
the accepting states of the
automata for A and B; we create a
new accepting state for the
combined automaton.
A path through the top automaton
accepts strings in A, and a path
through the bottom automation
accepts strings in B, so the whole
automaton matches A | B.
The construction for A B is even
easier. The accepting state of the
combined automaton is the same
state that was the accepting state
of B. We must follow a path
through A’s automaton, then
through B’s automaton, so overall
A B is matched.
We could also just merge the
accepting state of A with the
initial state of B. We chose not to

146CS 536 Spring 2015 ©

only because the picture would be
more difficult to draw.

A
Finite

Automaton
for A

Finite
Automaton

for B

λ

147CS 536 Spring 2015 ©

Finally, let’s look at the NFA for
A*. The start state reaches an
accepting state via λ, so λ is
accepted. Alternatively, we can
follow a path through the FA for A
one or more times, so zero or
more strings that belong to A are
matched.

A
Finite

Automaton
for A

λ

λ

λ

λ

148CS 536 Spring 2015 ©

Creating Deterministic
Automata

The transformation from an NFA
N to an equivalent DFA D works by
what is sometimes called the
subset construction.
Each state of D corresponds to a
set of states of N.
The idea is that D will be in state
{x, y, z} after reading a given input
string if and only if N could be in
any one of the states x, y, or z,
depending on the transitions it
chooses. Thus D keeps track of all
the possible routes N might take
and runs them simultaneously.
Because N is a finite automaton, it
has only a finite number of states.
The number of subsets of N’s
states is also finite, which makes

149CS 536 Spring 2015 ©

tracking various sets of states
feasible.
An accepting state of D will be any
set containing an accepting state
of N, reflecting the convention
that N accepts if there is any way
it could get to its accepting state
by choosing the “right”
transitions.
The start state of D is the set of all
states that N could be in without
reading any input characters—
that
is, the set of states reachable
from the start state of N following
only λ transitions. Algorithm
close computes those states that
can be reached following only λ
transitions.
Once the start state of D is built,
we begin to create successor
states:

150CS 536 Spring 2015 ©

We take each state S of D, and
each character c, and compute S’s
successor under c.
S is identified with some set of
N’s states, {n1, n2,...}.

We find all the possible successor
states to {n1, n2,...} under c,
obtaining a set {m1, m2,...}.

Finally, we compute
T = CLOSE({ m1, m2,...}).
T becomes a state in D, and a
transition from S to T labeled with
c is added to D.
We continue adding states and
transitions to D until all possible
successors to existing states are
added.
Because each state corresponds
to a finite subset of N’s states, the

151CS 536 Spring 2015 ©

process of adding new states to D
must eventually terminate.
Here is the algorithm for λ-
closure, called close. It starts
with a set of NFA states, S, and
adds to S all states reachable from
S using only λ transitions.
void close(NFASet S) {

while (x in S and x →
λ

y
and y notin S) {
S = S U {y}

}}

Using close, we can define the
construction of a DFA, D, from an NFA,
N:

152CS 536 Spring 2015 ©

DFA MakeDeterministic(NFA N) {
DFA D ; NFASet T
D.StartState = { N.StartState }
close(D.StartState)
D.States = { D.StartState }
while (states or transitions can be

added to D) {
Choose any state S in D.States

and any character c in Alphabet
T = {y in N.States such that

x →c y for some x in S}
close(T);
if (T notin D.States) {

D.States = D.States U {T}
D.Transitions =

D.Transitions U
{the transition S →c T}

 } }
D.AcceptingStates =
{ S in D.States such that an

accepting state of N in S}
}

153CS 536 Spring 2015 ©

Example
To see how the subset
construction operates, consider
the following NFA:

We start with state 1, the start
state of N, and add state 2 its λ-
successor.
D’s start state is {1,2}.
Under a, {1,2}’s successor is
{3,4,5}.

aλ
1 2

3 4

5

b

a

b

a

a | b

154CS 536 Spring 2015 ©

State 1 has itself as a successor
under b. When state 1’s λ-
successor, 2, is included, {1,2}’s
successor is {1,2}. {3,4,5}’s
successors under a and b are {5}
and {4,5}.
{4,5}’s successor under b is {5}.
Accepting states of D are those
state sets that contain N’s
accepting state which is 5.

The resulting DFA is:

b
1,2

5

4,5

b

a

a | b

a
3,4,5

5

155CS 536 Spring 2015 ©

It is not too difficult to establish
that the DFA constructed by
MakeDeterministic is equivalent to
the original NFA.
The idea is that each path to an
accepting state in the original NFA
has a corresponding path in the
DFA. Similarly, all paths through
the constructed DFA correspond
to paths in the original NFA.
What is less obvious is the fact
that the DFA that is built can
sometimes be much larger than
the original NFA. States of the
DFA are identified with sets of
NFA states.
If the NFA has n states, there are
2n distinct sets of NFA states, and
hence the DFA may have as many
as 2n states. Certain NFAs actually

156CS 536 Spring 2015 ©

exhibit this exponential blowup in
size when made deterministic.
Fortunately, the NFAs built from
the kind of regular expressions
used to specify programming
language tokens do not exhibit
this problem when they are made
deterministic.
As a rule, DFAs used for scanning
are simple and compact.
If creating a DFA is impractical
(because of size or speed- of-
generation concerns), we can scan
using an NFA. Each possible path
through an NFA is tracked, and
reachable accepting states are
identified. Scanning is slower
using this approach, so it is used
only when construction of a DFA
is not practical.

157CS 536 Spring 2015 ©

Optimizing Finite Automata
We can improve the DFA created
by MakeDeterministic.
Sometimes a DFA will have more
states than necessary. For every
DFA there is a unique smallest
equivalent DFA (fewest states
possible).
Some DFA’s contain unreachable
states that cannot be reached
from the start state.
Other DFA’s may contain dead
states that cannot reach any
accepting state.
It is clear that neither unreachable
states nor dead states can
participate in scanning any valid
token. We therefore eliminate all
such states as part of our
optimization process.

158CS 536 Spring 2015 ©

We optimize a DFA by merging
together states we know to be
equivalent.
For example, two accepting states
that have no transitions at all out
of them are equivalent.
Why? Because they behave exactly
the same way—they accept the
string read so far, but will accept
no additional characters.
If two states, s1 and s2, are
equivalent, then all transitions to
s2 can be replaced with
transitions to s1. In effect, the two
states are merged together into
one common state.

How do we decide what states to
merge together?

159CS 536 Spring 2015 ©

We take a greedy approach and
try the most optimistic merger of
states. By definition, accepting
and non- accepting states are
distinct, so we initially try to
create only two states: one
representing the merger of all
accepting states and the other
representing the merger of all
non- accepting states.
This merger into only two states
is almost certainly too optimistic.
In particular, all the constituents
of a merged state must agree on
the same transition for each
possible character. That is, for
character c all the merged states
must have no successor under c
or they must all go to a single
(possibly merged) state.
If all constituents of a merged
state do not agree on the

160CS 536 Spring 2015 ©

transition to follow for some
character, the merged state is
split into two or more smaller
states that do agree.
As an example, assume we start
with the following automaton:

Initially we have a merged non-
accepting state {1,2,3,5,6} and a
merged accepting state {4,7}.
A merger is legal if and only if all
constituent states agree on the
same successor state for all
characters. For example, states 3
and 6 would go to an accepting
state given character c; states 1, 2,
5 would not, so a split must occur.

a

b

b c

c
d

1 2 3 4

5 6 7

161CS 536 Spring 2015 ©

We will add an error state sE to the
original DFA that is the successor
state under any illegal character.
(Thus reaching sE becomes
equivalent to detecting an illegal
token.) sE is not a real state; rather
it allows us to assume every state
has a successor under every
character. sE is never merged with
any real state.
Algorithm Split , shown below,
splits merged states whose
constituents do not agree on a
common successor state for all
characters. When Split
terminates, we know that the
states that remain merged are
equivalent in that they always
agree on common successors.

162CS 536 Spring 2015 ©

Split(FASet StateSet) {
repeat
for(each merged state S in StateSet) {

Let S correspond to {s1,...,sn}
for(each char c in Alphabet){
Let t1,...,tn be the successor
states to s1,...,sn under c

if(t1,...,tn do not all belong to
the same merged state){
Split S into two or more new
states such that si and sj
remain in the same merged
state if and only if ti and tj
are in the same merged state}

}
until no more splits are possible

}

163CS 536 Spring 2015 ©

Returning to our example, we
initially have states {1,2,3,5,6} and
{4,7}. Invoking Split , we first
observe that states 3 and 6 have a
common successor under c, and
states 1, 2, and 5 have no
successor under c (equivalently,
have the error state sE as a
successor).
This forces a split, yielding {1,2,5},
{3,6} and {4,7}.
Now, for character b, states 2 and
5 would go to the merged state
{3,6}, but state 1 would not, so
another split occurs.
We now have: {1}, {2,5}, {3,6} and
{4,7}.
At this point we are done, as all
constituents of merged states
agree on the same successor for
each input symbol.

164CS 536 Spring 2015 ©

Once Split is executed, we are
essentially done.
Transitions between merged
states are the same as the
transitions between states in the
original DFA.
Thus, if there was a transition
between state si and sj under
character c, there is now a
transition under c from the
merged state containing si to the
merged state containing sj. The
start state is that merged state
containing the original start state.
Accepting states are those
merged states containing
accepting states (recall that
accepting and non- accepting
states are never merged).

165CS 536 Spring 2015 ©

Returning to our example, the
minimum state automaton we
obtain is

a | d b c
1 2,5 3,6 4,7

166CS 536 Spring 2015 ©

Properties of Regular
Expressions and Finite
Automata
• Some token patterns can’t be defined

as regular expressions or finite
automata. Consider the set of
balanced brackets of the form [[[«]]].
This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is not regular.
No finite automaton that recognizes
exactly this set can exist.
Why? Consider the inputs [, [[, [[[, ...
For two different counts (call them i
and j) [i and [j must reach the same
state of a given FA! (Why?)
Once that happens, we know that if [i]i
is accepted (as it should be), the [j]i
will also be accepted (and that should
not happen).

167CS 536 Spring 2015 ©

• R = V* - R is regular if R is.
Why?
Build a finite automaton for R. Be
careful to include transitions to an
“error state” sE for illegal characters.
Now invert final and non- final states.
What was previously accepted is now
rejected, and what was rejected is now
accepted. That is, R is accepted by the
modified automaton.

• Not all subsets of a regular set are
themselves regular. The regular
expression [+]+ has a subset that isn’t
regular. (What is that subset?)

168CS 536 Spring 2015 ©

• Let R be a set of strings. Define Rrev as
all strings in R, in reversed (backward)
character order.
Thus if R = {abc, def}
then Rrev = {cba, fed}.
If R is regular, then Rrev is too.
Why? Build a finite automaton for R.
Make sure the automaton has only one
final state. Now reverse the direction
of all transitions, and interchange the
start and final states. What does the
modified automation accept?

169CS 536 Spring 2015 ©

• If R1 and R2 are both regular, then

R1 ∩ R2 is also regular. We can show
this two different ways:

1. Build two finite automata, one
for R1 and one for R2. Pair
together states of the two
automata to match R1 and R2
simultaneously. The paired-
state automaton accepts only if
both R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2

is = We already know

union and complementation are
regular.

R1 R2∪

170CS 536 Spring 2015 ©

Reading Assignment
• Read Chapter 4 of

Crafting a Compiler

171CS 536 Spring 2015 ©

Context Free Grammars
A context- free grammar (CFG) is
defined as:
• A finite terminal set Vt;

these are the tokens produced by
the scanner.

• A set of intermediate symbols,
called non- terminals, Vn.

• A start symbol, a designated non-
terminal, that starts all derivations.

• A set of productions (sometimes
called rewriting rules) of the form

A → X1 ... Xm
X1 to Xm may be any
combination of terminals and
non- terminals.

If m = 0 we have A → λ
which is a valid production.

172CS 536 Spring 2015 ©

Example
Prog → { Stmts }
Stmts →Stmts ; Stmt
Stmts →Stmt
Stmt →id = Expr
Expr →id
Expr →Expr + id

