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If d.doubleValue() represents a 
valid integer, 
(int) d.doubleValue()
will create the appropriate integer 
value.
If a string representation of an 
integer begins with a “~” we can 
strip the “~”, convert to a double 
and then negate the resulting 
value.
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Scanner Termination
A scanner reads input characters 
and partitions them into tokens. 
What happens when the end of 
the input file is reached? It may be 
useful to create an Eof pseudo-
character when this occurs. In 
Java, for example, 
InputStream.read(), which 
reads a single byte, returns - 1 
when end of file is reached. A 
constant, EOF, defined as - 1 can 
be treated as an “extended” ASCII 
character. This character then 
allows the definition of an Eof 
token that can be passed back to 
the parser. 
An Eof token is useful because it 
allows the parser to verify that the 
logical end of a program 
corresponds to its physical end. 
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Most parsers require an end of file 
token.
Lex and Jlex automatically create 
an Eof token when the scanner 
they build tries to scan an EOF 
character (or tries to scan when 
eof() is true).
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Multi Character Lookahead 
We may allow finite automata to 
look beyond the next input 
character.
This feature is necessary to 
implement a scanner for 
FORTRAN. 
In FORTRAN, the statement 
DO 10 J = 1,100 

specifies a loop, with index J 
ranging from 1 to 100. 
The statement 
DO 10 J = 1.100 

is an assignment to the variable 
DO10J. (Blanks are not significant 
except in strings.)
A FORTRAN scanner decides 
whether the O is the last character 
of a DO token only after reading as 
far as the comma (or period). 
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A milder form of extended 
lookahead problem occurs in 
Pascal and Ada.
The token 10.50 is a real literal, 
whereas 10..50 is three different 
tokens. 
We need two- character lookahead 
after the 10 prefix to decide 
whether we are to return 10 (an 
integer literal) or 10.50 (a real 
literal).
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Suppose we use the following FA. 

Given 10..100 we scan three 
characters and stop in a non-
accepting state. 
Whenever we stop reading in a 
non- accepting state, we back up 
along accepted characters until an 
accepting state is found.
Characters we back up over are 
rescanned to form later tokens. If 
no accepting state is reached 
during backup, we have a lexical 
error.

.D

D D

D

.
.
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Performance Considerations
Because scanners do so much 
character- level processing, they 
can be a real performance 
bottleneck in production 
compilers.
Speed is not a concern in our 
project, but let’s see why 
scanning speed can be a concern 
in production compilers.
Let’s assume we want to compile 
at a rate of 5000 lines/sec. (so 
that most programs compile in 
just a few seconds).
Assuming 30 characters/line (on 
average), we need to scan 
150,000 char/sec.
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A key to efficient scanning is to 
group character- level operations 
whenever possible. It is better to 
do one operation on n characters 
rather than n operations on single 
characters. 
In our examples we’ve read input 
one character as a time. A 
subroutine call can cost hundreds 
or thousands of instructions to 
execute—far too much to spend 
on a single character.
We prefer routines that do block 
reads, putting an entire block of 
characters directly into a buffer. 
Specialized scanner generators 
can produce particularly fast 
scanners.
The GLA scanner generator claims 
that the scanners it produces run 
as fast as:
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while(c != Eof) {

c = getchar();
}
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Lexical Error Recovery
A character sequence that can’t 
be scanned into any valid token is 
a lexical error. 
Lexical errors are uncommon, but 
they still must be handled by a 
scanner. We won’t stop 
compilation because of so minor 
an error.
Approaches to lexical error 
handling include:
• Delete the characters read so far 

and restart scanning at the next 
unread character.

• Delete the first character read by 
the scanner and resume scanning 
at the character following it.

Both of these approaches are 
reasonable. 
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The first is easy to do. We just 
reset the scanner and begin 
scanning anew.
The second is a bit harder but 
also is a bit safer (less is 
immediately deleted). It can be 
implemented using scanner 
backup.
Usually, a lexical error is caused 
by the appearance of some illegal 
character, mostly at the beginning 
of a token.
(Why at the beginning?)
In these case, the two approaches 
are equivalent. 
The effects of lexical error 
recovery might well create a later 
syntax error, handled by the 
parser. 
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Consider
...for$tnight... 

The $ terminates scanning of for. 
Since no valid token begins with 
$, it is deleted. Then tnight is 
scanned as an identifier. In effect 
we get
...for tnight... 

which will cause a syntax error. 
Such “false errors” are 
unavoidable, though a syntactic 
error- repair may help.
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Error Tokens
Certain lexical errors require 
special care. In particular, 
runaway strings and runaway 
comments ought to receive 
special error messages. 
In Java strings may not cross line 
boundaries, so a runaway string is 
detected when an end of a line is 
read within the string body. 
Ordinary recovery rules are 
inappropriate for this error. In 
particular, deleting the first 
character (the double quote 
character) and restarting scanning 
is a bad decision.
It will almost certainly lead to a 
cascade of “false” errors as the 
string text is inappropriately 
scanned as ordinary input.
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One way to handle runaway 
strings is to define an error token. 
An error token is not a valid 
token; it is never returned to the 
parser. Rather, it is a pattern for 
an error condition that needs 
special handling. We can define an 
error token that represents a 
string terminated by an end of 
line rather than a double quote 
character. 
For a valid string, in which 
internal double quotes and back 
slashes are escaped (and no other 
escaped characters are allowed), 
we can use

" ( Not( " | Eol | \ ) | \" | \\ )* "
For a runaway string we use

" ( Not( " | Eol | \ ) | \" | \\ )* Eol
(Eol is the end of line character.)
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When a runaway string token is 
recognized, a special error 
message should be issued. 
Further, the string may be 
“repaired” into a correct string by 
returning an ordinary string token 
with the closing Eol replaced by a 
double quote. 
This repair may or may not be 
“correct.” If the closing double 
quote is truly missing, the repair 
will be good; if it is present on a 
succeeding line, a cascade of 
inappropriate lexical and syntactic 
errors will follow.
Still, we have told the programmer 
exactly what is wrong, and that is 
our primary goal.
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In languages like C, C+ + , Java 
and CSX, which allow multiline 
comments, improperly terminated 
(runaway) comments present a 
similar problem.
A runaway comment is not 
detected until the scanner finds a 
close comment symbol (possibly 
belonging to some other 
comment) or until the end of file 
is reached. Clearly a special, 
detailed error message is 
required.
Let’s look at Pascal- style 
comments that begin with a { and 
end with a }. Comments that 
begin and end with a pair of 
characters, like /* and */ in Java, 
C and C+ + , are a bit trickier.
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Correct Pascal comments are 
defined quite simply:

{ Not( } )* }
To handle comments terminated 
by Eof, this error token can be 
used:

{ Not( } )* Eof
We want to handle comments 
unexpectedly closed by a close 
comment belonging to another 
comment:
{... missing close comment 
... { normal comment }... 

We will issue a warning (this form 
of comment is lexically legal). 
Any comment containing an open 
comment symbol in its body is 
most probably a missing } error. 
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We split our legal comment 
definition into two token 
definitions. 
The definition that accepts an 
open comment in its body causes 
a warning message ("Possible 
unclosed comment") to be 
printed. 
We now use:

{  Not( { | } )* } and 
{  (Not( { | } )* { Not( { | } )* )+ } 
The first definition matches 
correct comments that do not 
contain an open comment in their 
body. 
The second definition matches 
correct, but suspect, comments 
that contain at least one open 
comment in their body. 
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Single line comments, found in 
Java, CSX and C+ + , are 
terminated by Eol.
They can fall prey to a more 
subtle error—what if the last line 
has no Eol at its end?
The solution? 
Another error token for single line 
comments:

// Not(Eol)* 
This rule will only be used for 
comments that don’t end with an 
Eol, since scanners always match 
the longest rule possible.
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Regular Expressions and 
Finite Automata 

Regular expressions are fully 
equivalent to finite automata.
The main job of a scanner 
generator like JLex is to transform 
a regular expression definition 
into an equivalent finite 
automaton.
It first transforms a regular 
expression into a 
nondeterministic finite automaton 
(NFA). 
Unlike ordinary deterministic 
finite automata, an NFA need not 
make a unique (deterministic) 
choice of a successor state to 
visit. As shown below, an NFA is 
allowed to have a state that has 
two transitions (arrows) coming 
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out of it, labeled by the same 
symbol. An NFA may also have 
transitions labeled with λ.

Transitions are normally labeled 
with individual characters in Σ, 
and although λ is a string (the 
string with no characters in it), it 
is definitely not a character. In the 
above example, when the 
automaton is in the state at the 
left and the next input character 
is a, it may choose to use the 

a

a

a

λ
a
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transition labeled a or first follow 
the λ transition (you can always 
find λ wherever you look for it) 
and then follow an a transition. 
FAs that contain no λ transitions 
and that always have unique 
successor states for any symbol 
are deterministic.
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Building Finite Automata 
From Regular Expressions

We make an FA from a regular 
expression in two steps: 
• Transform the regular expression 

into an NFA. 

• Transform the NFA into a 
deterministic FA. 

The first step is easy.
Regular expressions are all built 
out of the atomic regular 
expressions a (where a is a 
character in Σ) and λ by using the 
three operations
A B and A |  B and A*. 
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Other operations (like A+ ) are just 
abbreviations for combinations of 
these. 
NFAs for a and λ are trivial:

Suppose we have NFAs for A and 
B and want one for A |  B. We 
construct the NFA shown below: 

a

λ

A

B

Finite
Automaton

for A

Finite
Automaton

for B

λ

λ

λ

λ
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The states labeled A and B were 
the accepting states of the 
automata for A and B; we create a 
new accepting state for the 
combined automaton.
A path through the top automaton 
accepts strings in A, and a path 
through the bottom automation 
accepts strings in B, so the whole 
automaton matches A | B.
The construction for A B is even 
easier. The accepting state of the 
combined automaton is the same 
state that was the accepting state 
of B. We must follow a path 
through A’s automaton, then 
through B’s automaton, so overall 
A B is matched.
We could also just merge the 
accepting state of A with the 
initial state of B. We chose not to 
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only because the picture would be 
more difficult to draw.

A
Finite

Automaton
for A

Finite
Automaton

for B

λ
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Finally, let’s look at the NFA for 
A*. The start state reaches an 
accepting state via λ, so λ is 
accepted. Alternatively, we can 
follow a path through the FA for A 
one or more times, so zero or 
more strings that belong to A are 
matched.

A
Finite

Automaton
for A

λ

λ

λ

λ
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Creating Deterministic 
Automata

The transformation from an NFA 
N to an equivalent DFA D works by 
what is sometimes called the 
subset construction. 
Each state of D corresponds to a 
set of states of N. 
The idea is that D will be in state
{x, y, z} after reading a given input 
string if and only if N could be in 
any one of the states x, y, or z, 
depending on the transitions it 
chooses. Thus D keeps track of all 
the possible routes N might take 
and runs them simultaneously.
Because N is a finite automaton, it 
has only a finite number of states. 
The number of subsets of N’s 
states is also finite, which makes 
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tracking various sets of states 
feasible.
An accepting state of D will be any 
set containing an accepting state 
of N, reflecting the convention 
that N accepts if there is any way 
it could get to its accepting state 
by choosing the “right” 
transitions.
The start state of D is the set of all 
states that N could be in without 
reading any input characters—
that
is, the set of states reachable 
from the start state of N following 
only λ transitions. Algorithm 
close computes those states that 
can be reached following only λ 
transitions.
Once the start state of D is built, 
we begin to create successor 
states:
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We take each state S of D, and 
each character c, and compute S’s 
successor under c. 
S is identified with some set of 
N’s states, {n1, n2,...}. 

We find all the possible successor 
states to {n1, n2,...} under c, 
obtaining a set {m1, m2,...}.

Finally, we compute 
T =  CLOSE({ m1, m2,...}).
T becomes a state in D, and a 
transition from S to T labeled with 
c is added to D. 
We continue adding states and 
transitions to D until all possible 
successors to existing states are 
added. 
Because each state corresponds 
to a finite subset of N’s states, the 
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process of adding new states to D 
must eventually terminate.
Here is the algorithm for λ-
closure, called close. It starts 
with a set of NFA states, S, and 
adds to S all states reachable from 
S using only λ transitions.
void close(NFASet S) {

while (x in S and x →
λ

y 
and y notin S) {
S = S U {y}

}}

Using close, we can define the 
construction of a DFA, D, from an NFA, 
N:
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DFA MakeDeterministic(NFA N) {
DFA D ; NFASet  T
D.StartState = { N.StartState }
close(D.StartState)
D.States = { D.StartState }
while (states or transitions can be 

added to D) {
Choose any state S in D.States 

and any character c in Alphabet
T = {y in N.States such that

x →c y for some x in S}
close(T);
if (T notin D.States) {

D.States = D.States U {T}
D.Transitions = 

D.Transitions U 
{the transition S →c T}

 } }
D.AcceptingStates = 
{ S in D.States such that an 

accepting state of N in S}
} 
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Example
To see how the subset 
construction operates, consider 
the following NFA:

We start with state 1, the start 
state of N, and add state 2 its λ-
successor.
D’s start state is {1,2}.
Under a, {1,2}’s successor is 
{3,4,5}.

aλ
1 2

3 4

5

b

a

b

a

a | b
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State 1 has itself as a successor 
under b. When state 1’s λ-
successor, 2, is included, {1,2}’s 
successor is {1,2}. {3,4,5}’s 
successors under a and b are {5} 
and {4,5}.
{4,5}’s successor under b is {5}.
Accepting states of D are those 
state sets that contain N’s 
accepting state which is 5. 

The resulting DFA is:

b
1,2

5

4,5

b

a

a | b

a
3,4,5

5
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It is not too difficult to establish 
that the DFA constructed by 
MakeDeterministic is equivalent to 
the original NFA. 
The idea is that each path to an 
accepting state in the original NFA 
has a corresponding path in the 
DFA. Similarly, all paths through 
the constructed DFA correspond 
to paths in the original NFA.
What is less obvious is the fact 
that the DFA that is built can 
sometimes be much larger than 
the original NFA. States of the 
DFA are identified with sets of 
NFA states.
If the NFA has n states, there are 
2n distinct sets of NFA states, and 
hence the DFA may have as many 
as 2n states. Certain NFAs actually 
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exhibit this exponential blowup in 
size when made deterministic. 
Fortunately, the NFAs built from 
the kind of regular expressions 
used to specify programming 
language tokens do not exhibit 
this problem when they are made 
deterministic. 
As a rule, DFAs used for scanning 
are simple and compact.
If creating a DFA is impractical 
(because of size or speed- of-
generation concerns), we can scan 
using an NFA. Each possible path 
through an NFA is tracked, and 
reachable accepting states are 
identified. Scanning is slower 
using this approach, so it is used 
only when construction of a DFA 
is not practical.
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Optimizing Finite Automata
We can improve the DFA created 
by MakeDeterministic. 
Sometimes a DFA will have more 
states than necessary. For every 
DFA there is a unique smallest 
equivalent DFA (fewest states 
possible). 
Some DFA’s contain unreachable 
states that cannot be reached 
from the start state. 
Other DFA’s may contain dead 
states that cannot reach any 
accepting state. 
It is clear that neither unreachable 
states nor dead states can 
participate in scanning any valid 
token. We therefore eliminate all 
such states as part of our 
optimization process.
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We optimize a DFA by merging 
together states we know to be 
equivalent. 
For example, two accepting states 
that have no transitions at all out 
of them are equivalent. 
Why? Because they behave exactly 
the same way—they accept the 
string read so far, but will accept 
no additional characters. 
If two states, s1 and s2, are 
equivalent, then all transitions to 
s2 can be replaced with 
transitions to s1. In effect, the two 
states are merged together into 
one common state.

How do we decide what states to 
merge together? 
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We take a greedy approach and 
try the most optimistic merger of 
states. By definition, accepting 
and non- accepting states are 
distinct, so we initially try to 
create only two states: one 
representing the merger of all 
accepting states and the other 
representing the merger of all 
non- accepting states. 
This merger into only two states 
is almost certainly too optimistic. 
In particular, all the constituents 
of a merged state must agree on 
the same transition for each 
possible character. That is, for 
character c all the merged states 
must have no successor under c 
or they must all go to a single 
(possibly merged) state. 
If all constituents of a merged 
state do not agree on the 
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transition to follow for some 
character, the merged state is 
split into two or more smaller 
states that do agree.
As an example, assume we start 
with the following automaton:

Initially we have a merged non-
accepting state {1,2,3,5,6} and a 
merged accepting state {4,7}. 
A merger is legal if and only if all 
constituent states agree on the 
same successor state for all 
characters. For example, states 3 
and 6 would go to an accepting 
state given character c; states 1, 2, 
5 would not, so a split must occur. 

a

b

b c

c
d

1 2 3 4

5 6 7
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We will add an error state sE to the 
original DFA that is the successor 
state under any illegal character. 
(Thus reaching sE becomes 
equivalent to detecting an illegal 
token.) sE is not a real state; rather 
it allows us to assume every state 
has a successor under every 
character. sE is never merged with 
any real state.
Algorithm Split , shown below, 
splits merged states whose 
constituents do not agree on a 
common successor state for all 
characters. When Split  
terminates, we know that the 
states that remain merged are 
equivalent in that they always 
agree on common successors.
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Split(FASet StateSet) {
repeat
for(each merged state S in StateSet) {

Let S correspond to {s1,...,sn}
for(each char c in Alphabet){
Let t1,...,tn be the successor 
states to s1,...,sn under c 

if(t1,...,tn do not all belong to
the same merged state){
Split S into two or more new
states such that si and sj
remain in the same merged
state if and only if ti and tj
are in the same merged state}

}
until no more splits are possible

}
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Returning to our example, we 
initially have states {1,2,3,5,6} and 
{4,7}. Invoking Split , we first 
observe that states 3 and 6 have a 
common successor under c, and 
states 1, 2, and 5 have no 
successor under c (equivalently, 
have the error state sE as a 
successor).
This forces a split, yielding {1,2,5}, 
{3,6} and {4,7}.
Now, for character b, states 2 and 
5 would go to the merged state 
{3,6}, but state 1 would not, so 
another split occurs. 
We now have: {1}, {2,5}, {3,6} and 
{4,7}. 
At this point we are done, as all 
constituents of merged states 
agree on the same successor for 
each input symbol.
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Once Split  is executed, we are 
essentially done. 
Transitions between merged 
states are the same as the 
transitions between states in the 
original DFA. 
Thus, if there was a transition 
between state si and sj under 
character c, there is now a 
transition under c from the 
merged state containing si to the 
merged state containing sj. The 
start state is that merged state 
containing the original start state.
Accepting states are those 
merged states containing 
accepting states (recall that 
accepting and non- accepting 
states are never merged).



165CS 536  Spring 2015 ©

Returning to our example, the 
minimum state automaton we 
obtain is

a | d b c
1 2,5 3,6 4,7
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Properties of Regular 
Expressions and Finite 
Automata
• Some token patterns can’t be defined 

as regular expressions or finite 
automata. Consider the set of 
balanced brackets of the form [ [ [«] ] ]. 
This set is defined formally as 
{ [m ]m | m ≥ 1 }. 
This set is not regular.
No finite automaton that recognizes 
exactly this set can exist.
Why? Consider the inputs [, [[, [[[, ...
For two different counts (call them i 
and j) [i and [j must reach the same 
state of a given FA! (Why?)
Once that happens, we know that if [i]i 
is accepted (as it should be), the [j]i 
will also be accepted (and that should 
not happen).
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• R =  V* -  R is regular if R is.
Why?
Build a finite automaton for R. Be 
careful to include transitions to an 
“error state” sE for illegal characters. 
Now invert final and non- final states. 
What was previously accepted is now 
rejected, and what was rejected is now 
accepted. That is, R is accepted by the 
modified automaton.

• Not all subsets of a regular set are 
themselves regular. The regular 
expression [+ ]+  has a subset that isn’t 
regular. (What is that subset?)
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• Let R be a set of strings. Define Rrev as 
all strings in R, in reversed (backward) 
character order. 
Thus if R =  {abc, def}
then Rrev =  {cba, fed}.
If R is regular, then Rrev is too.
Why? Build a finite automaton for R. 
Make sure the automaton has only one 
final state. Now reverse the direction 
of all transitions, and interchange the 
start and final states. What does the 
modified automation accept?
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• If R1 and R2 are both regular, then 

R1 ∩ R2 is also regular. We can show 
this two different ways:

1. Build two finite automata, one 
for R1 and one for R2. Pair 
together states of the two 
automata to match R1 and R2 
simultaneously. The paired-
state automaton accepts only if 
both R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2 

is =   We already know 

union and complementation are 
regular.

R1 R2∪
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Reading Assignment
• Read Chapter 4 of

Crafting a Compiler
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Context Free Grammars
A context- free grammar (CFG) is 
defined as:
• A finite terminal set Vt; 

these are the tokens produced by 
the scanner.

• A set of intermediate symbols, 
called non- terminals, Vn.

• A start symbol, a designated non-
terminal, that starts all derivations.

• A set of productions (sometimes 
called rewriting rules) of the form

A → X1 ... Xm
X1 to Xm may be any 
combination of terminals and 
non- terminals.

If m = 0 we have A → λ
which is a valid production.
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Example
Prog → { Stmts }
Stmts →Stmts ; Stmt
Stmts →Stmt
Stmt →id = Expr
Expr →id
Expr →Expr + id


