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Optimizing Finite Automata
We can improve the DFA created 
by MakeDeterministic. 
Sometimes a DFA will have more 
states than necessary. For every 
DFA there is a unique smallest 
equivalent DFA (fewest states 
possible). 
Some DFA’s contain unreachable 
states that cannot be reached 
from the start state. 
Other DFA’s may contain dead 
states that cannot reach any 
accepting state. 
It is clear that neither unreachable 
states nor dead states can 
participate in scanning any valid 
token. We therefore eliminate all 
such states as part of our 
optimization process.
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We optimize a DFA by merging 
together states we know to be 
equivalent. 
For example, two accepting states 
that have no transitions at all out 
of them are equivalent. 
Why? Because they behave exactly 
the same way—they accept the 
string read so far, but will accept 
no additional characters. 
If two states, s1 and s2, are 
equivalent, then all transitions to 
s2 can be replaced with 
transitions to s1. In effect, the two 
states are merged together into 
one common state.

How do we decide what states to 
merge together? 
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We take a greedy approach and 
try the most optimistic merger of 
states. By definition, accepting 
and non- accepting states are 
distinct, so we initially try to 
create only two states: one 
representing the merger of all 
accepting states and the other 
representing the merger of all 
non- accepting states. 
This merger into only two states 
is almost certainly too optimistic. 
In particular, all the constituents 
of a merged state must agree on 
the same transition for each 
possible character. That is, for 
character c all the merged states 
must have no successor under c 
or they must all go to a single 
(possibly merged) state. 
If all constituents of a merged 
state do not agree on the 
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transition to follow for some 
character, the merged state is 
split into two or more smaller 
states that do agree.
As an example, assume we start 
with the following automaton:

Initially we have a merged non-
accepting state {1,2,3,5,6} and a 
merged accepting state {4,7}. 
A merger is legal if and only if all 
constituent states agree on the 
same successor state for all 
characters. For example, states 3 
and 6 would go to an accepting 
state given character c; states 1, 2, 
5 would not, so a split must occur. 

a

b

b c

c
d

1 2 3 4

5 6 7
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We will add an error state sE to the 
original DFA that is the successor 
state under any illegal character. 
(Thus reaching sE becomes 
equivalent to detecting an illegal 
token.) sE is not a real state; rather 
it allows us to assume every state 
has a successor under every 
character. sE is never merged with 
any real state.
Algorithm Split , shown below, 
splits merged states whose 
constituents do not agree on a 
common successor state for all 
characters. When Split  
terminates, we know that the 
states that remain merged are 
equivalent in that they always 
agree on common successors.
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Split(FASet StateSet) {
repeat
for(each merged state S in StateSet) {
Let S correspond to {s1,...,sn}
for(each char c in Alphabet){
Let t1,...,tn be the successor 
states to s1,...,sn under c 
if(t1,...,tn do not all belong to

the same merged state){
Split S into two or more new
states such that si and sj
remain in the same merged
state if and only if ti and tj
are in the same merged state}

}
until no more splits are possible
}
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Returning to our example, we 
initially have states {1,2,3,5,6} and 
{4,7}. Invoking Split , we first 
observe that states 3 and 6 have a 
common successor under c, and 
states 1, 2, and 5 have no 
successor under c (equivalently, 
have the error state sE as a 
successor).
This forces a split, yielding {1,2,5}, 
{3,6} and {4,7}.
Now, for character b, states 2 and 
5 would go to the merged state 
{3,6}, but state 1 would not, so 
another split occurs. 
We now have: {1}, {2,5}, {3,6} and 
{4,7}. 
At this point we are done, as all 
constituents of merged states 
agree on the same successor for 
each input symbol.
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Once Split  is executed, we are 
essentially done. 
Transitions between merged 
states are the same as the 
transitions between states in the 
original DFA. 
Thus, if there was a transition 
between state si and sj under 
character c, there is now a 
transition under c from the 
merged state containing si to the 
merged state containing sj. The 
start state is that merged state 
containing the original start state.
Accepting states are those 
merged states containing 
accepting states (recall that 
accepting and non- accepting 
states are never merged).
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Returning to our example, the 
minimum state automaton we 
obtain is

a | d b c
1 2,5 3,6 4,7
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Properties of Regular 
Expressions and Finite 
Automata
• Some token patterns can’t be defined 

as regular expressions or finite 
automata. Consider the set of 
balanced brackets of the form [ [ [«] ] ]. 
This set is defined formally as 
{ [m ]m | m ≥ 1 }. 
This set is not regular.
No finite automaton that recognizes 
exactly this set can exist.
Why? Consider the inputs [, [[, [[[, ...
For two different counts (call them i 
and j) [i and [j must reach the same 
state of a given FA! (Why?)
Once that happens, we know that if [i]i 
is accepted (as it should be), the [j]i 
will also be accepted (and that should 
not happen).
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• R =  V* -  R is regular if R is.
Why?
Build a finite automaton for R. Be 
careful to include transitions to an 
“error state” sE for illegal characters. 
Now invert final and non- final states. 
What was previously accepted is now 
rejected, and what was rejected is now 
accepted. That is, R is accepted by the 
modified automaton.

• Not all subsets of a regular set are 
themselves regular. The regular 
expression [+ ]+  has a subset that isn’t 
regular. (What is that subset?)
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• Let R be a set of strings. Define Rrev as 
all strings in R, in reversed (backward) 
character order. 
Thus if R =  {abc, def}
then Rrev =  {cba, fed}.
If R is regular, then Rrev is too.
Why? Build a finite automaton for R. 
Make sure the automaton has only one 
final state. Now reverse the direction 
of all transitions, and interchange the 
start and final states. What does the 
modified automation accept?
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• If R1 and R2 are both regular, then 
R1 ∩ R2 is also regular. We can show 
this two different ways:

1. Build two finite automata, one 
for R1 and one for R2. Pair 
together states of the two 
automata to match R1 and R2 
simultaneously. The paired-
state automaton accepts only if 
both R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2 

is =   We already know 

union and complementation are 
regular.

R1 R2∪
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Reading Assignment
• Read Chapter 4 of

Crafting a Compiler
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Context Free Grammars
A context- free grammar (CFG) is 
defined as:
• A finite terminal set Vt; 

these are the tokens produced by 
the scanner.

• A set of intermediate symbols, 
called non- terminals, Vn.

• A start symbol, a designated non-
terminal, that starts all derivations.

• A set of productions (sometimes 
called rewriting rules) of the form

A → X1 ... Xm
X1 to Xm may be any 
combination of terminals and 
non- terminals.

If m = 0 we have A → λ
which is a valid production.
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Example
Prog → { Stmts }
Stmts →Stmts ; Stmt
Stmts →Stmt
Stmt →id = Expr
Expr →id
Expr →Expr + id
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Often more than one production 
shares the same left- hand side.
Rather than repeat the left hand 
side, an “or notation” is used:

Prog → { Stmts }
Stmts →Stmts ; Stmt

| Stmt
Stmt →id = Expr
Expr →id

|   Expr + id



174CS 536  Spring 2015 ©

Derivations
Starting with the start symbol, 
non- terminals are rewritten using 
productions until only terminals 
remain.
Any terminal sequence that can 
be generated in this manner is 
syntactically valid. 
If a terminal sequence can’t be 
generated using the productions 
of the grammar it is invalid (has 
syntax errors).
The set of strings derivable from 
the start symbol is the language 
of the grammar (sometimes 
denoted L(G)).



175CS 536  Spring 2015 ©

For example, starting at Prog we 
generate a terminal sequence, by 
repeatedly applying productions:
Prog
{ Stmts }
{ Stmts ; Stmt }
{ Stmt ; Stmt }
{ id = Expr ; Stmt }
{ id = id ; Stmt }
{ id = id ; id = Expr }
{ id = id ; id = Expr + id}
{ id = id ; id = id + id}
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Parse Trees
To illustrate a derivation, we can 
draw a derivation tree (also called 
a parse tree):

Prog

{ Stmts }

 Stmts ; Stmt 

 Stmt 

 id = Expr 

 id 

 id = Expr 

 Expr + id

 id 
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An abstract syntax tree (AST) 
shows essential structure but 
eliminates unnecessary delimiters 
and intermediate symbols:

Prog

 Stmts 

 Stmts =

 = 

 id id 

 id + 

 id id
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If A → γ is a production then
αAβ ⇒ αγβ 

where ⇒ denotes a one step 
derivation (using production
A → γ).

We extend ⇒ to ⇒+  (derives in 
one or more steps), and ⇒* 
(derives in zero or more steps).
We can show our earlier derivation 
as
Prog ⇒
{ Stmts } ⇒
{ Stmts ; Stmt } ⇒ 
{ Stmt ; Stmt } ⇒
{ id = Expr ; Stmt } ⇒
{ id = id ; Stmt } ⇒
{ id = id ; id = Expr } ⇒
{ id = id ; id = Expr + id} ⇒
{ id = id ; id = id + id} 
Prog ⇒+ { id = id ; id = id + id}
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When deriving a token sequence, 
if more than one non- terminal is 
present, we have a choice of 
which to expand next.
We must specify, at each step, 
which non- terminal is expanded, 
and what production is applied.
For simplicity we adopt a 
convention on what non- terminal 
is expanded at each step.
We can choose the leftmost 
possible non- terminal at each 
step.
A derivation that follows this rule 
is a leftmost derivation.
If we know a derivation is 
leftmost, we need only specify 
what productions are used; the 
choice of non- terminal is always 
fixed.
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To denote derivations that are 
leftmost, 
we use ⇒L, ⇒

+
L , and ⇒*

L

The production sequence 
discovered by a large class of 
parsers (the top- down parsers) is 
a leftmost derivation, hence these 
parsers produce a leftmost parse.
Prog ⇒L

{ Stmts } ⇒L

{ Stmts ; Stmt } ⇒L 
{ Stmt ; Stmt } ⇒L

{ id = Expr ; Stmt } ⇒L

{ id = id ; Stmt } ⇒L

{ id = id ; id = Expr } ⇒L

{ id = id ; id = Expr + id} ⇒L

{ id = id ; id = id + id} 

Prog ⇒L
+  { id = id ; id = id + id}
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Rightmost Derivations
A rightmost derivation is an 
alternative to a leftmost 
derivation. Now the rightmost 
non- terminal is always expanded.
This derivation sequence may 
seem less intuitive given our 
normal left- to- right bias, but it 
corresponds to an important class 
of parsers (the bottom- up 
parsers, including CUP).
As a bottom- up parser discovers 
the productions used to derive a 
token sequence, it discovers a 
rightmost derivation, but in 
reverse order.
The last production applied in a 
rightmost derivation is the first 
that is discovered. The first 
production used, involving the 
start symbol, is discovered last.
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The sequence of productions 
recognized by a bottom- up 
parser is a rightmost parse.
It is the exact reverse of the 
production sequence that 
represents a rightmost derivation.
For rightmost derivations, we use 
the notation ⇒R, ⇒+

R , and ⇒*
R

Prog ⇒R

{ Stmts } ⇒R

{ Stmts ; Stmt } ⇒R 
{ Stmts ; id = Expr } ⇒R 
{ Stmts ; id = Expr + id } ⇒R

{ Stmts ; id = id + id } ⇒R

{ Stmt ; id = id + id } ⇒R

{ id = Expr ; id = id + id } ⇒R

{ id = id ; id = id + id} 
Prog ⇒+  { id = id ; id = id + id}
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You can derive the same set of 
tokens using leftmost and 
rightmost derivations; the only 
difference is the order in which 
productions are used.
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Ambiguous Grammars
Some grammars allow more than 
one parse tree for the same token 
sequence. Such grammars are 
ambiguous. Because compilers 
use syntactic structure to drive 
translation, ambiguity is 
undesirable—it may lead to an 
unexpected translation.
Consider

E → E - E
|  id

When parsing the input a- b- c 
(where a, b and c are scanned as 
identifiers) we can build the 
following two parse trees:
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The effect is to parse a- b- c as 
either (a- b)- c or a- (b- c). These 
two groupings are certainly not 
equivalent.
Ambiguous grammars are usually 
voided in building compilers; the 
tools we use, like Yacc and CUP, 
strongly prefer unambiguous 
grammars.
To correct this ambiguity, we use

E → E - id
|  id

E
E - E

E - E

id id id

E
E - E

E - E

id id id
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Now a- b- c can only be parsed as:

E
E - 

E - 

id id id
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Operator Precedence
Most programming languages 
have operator precedence rules 
that state the order in which 
operators are applied (in the 
absence of explicit parentheses). 
Thus in C and Java and CSX, 
a+b*c means compute b*c, then 
add in a.
These operators precedence rules 
can be incorporated directly into a 
CFG.
Consider
E → E + T

| T
T → T * P

| P
P → id

| ( E )



188CS 536  Spring 2015 ©

Does a+b*c mean (a+b)*c or 
a+(b*c)?
The grammar tells us! Look at the 
derivation tree:

The other grouping can’t be 
obtained unless explicit 
parentheses are used.
(Why?)

E
E + T

T T * P

P  P
id id id


