
157CS 536 Spring 2015 ©

Optimizing Finite Automata
We can improve the DFA created
by MakeDeterministic.
Sometimes a DFA will have more
states than necessary. For every
DFA there is a unique smallest
equivalent DFA (fewest states
possible).
Some DFA’s contain unreachable
states that cannot be reached
from the start state.
Other DFA’s may contain dead
states that cannot reach any
accepting state.
It is clear that neither unreachable
states nor dead states can
participate in scanning any valid
token. We therefore eliminate all
such states as part of our
optimization process.

158CS 536 Spring 2015 ©

We optimize a DFA by merging
together states we know to be
equivalent.
For example, two accepting states
that have no transitions at all out
of them are equivalent.
Why? Because they behave exactly
the same way—they accept the
string read so far, but will accept
no additional characters.
If two states, s1 and s2, are
equivalent, then all transitions to
s2 can be replaced with
transitions to s1. In effect, the two
states are merged together into
one common state.

How do we decide what states to
merge together?

159CS 536 Spring 2015 ©

We take a greedy approach and
try the most optimistic merger of
states. By definition, accepting
and non- accepting states are
distinct, so we initially try to
create only two states: one
representing the merger of all
accepting states and the other
representing the merger of all
non- accepting states.
This merger into only two states
is almost certainly too optimistic.
In particular, all the constituents
of a merged state must agree on
the same transition for each
possible character. That is, for
character c all the merged states
must have no successor under c
or they must all go to a single
(possibly merged) state.
If all constituents of a merged
state do not agree on the

160CS 536 Spring 2015 ©

transition to follow for some
character, the merged state is
split into two or more smaller
states that do agree.
As an example, assume we start
with the following automaton:

Initially we have a merged non-
accepting state {1,2,3,5,6} and a
merged accepting state {4,7}.
A merger is legal if and only if all
constituent states agree on the
same successor state for all
characters. For example, states 3
and 6 would go to an accepting
state given character c; states 1, 2,
5 would not, so a split must occur.

a

b

b c

c
d

1 2 3 4

5 6 7

161CS 536 Spring 2015 ©

We will add an error state sE to the
original DFA that is the successor
state under any illegal character.
(Thus reaching sE becomes
equivalent to detecting an illegal
token.) sE is not a real state; rather
it allows us to assume every state
has a successor under every
character. sE is never merged with
any real state.
Algorithm Split , shown below,
splits merged states whose
constituents do not agree on a
common successor state for all
characters. When Split
terminates, we know that the
states that remain merged are
equivalent in that they always
agree on common successors.

162CS 536 Spring 2015 ©

Split(FASet StateSet) {
repeat
for(each merged state S in StateSet) {
Let S correspond to {s1,...,sn}
for(each char c in Alphabet){
Let t1,...,tn be the successor
states to s1,...,sn under c
if(t1,...,tn do not all belong to

the same merged state){
Split S into two or more new
states such that si and sj
remain in the same merged
state if and only if ti and tj
are in the same merged state}

}
until no more splits are possible
}

163CS 536 Spring 2015 ©

Returning to our example, we
initially have states {1,2,3,5,6} and
{4,7}. Invoking Split , we first
observe that states 3 and 6 have a
common successor under c, and
states 1, 2, and 5 have no
successor under c (equivalently,
have the error state sE as a
successor).
This forces a split, yielding {1,2,5},
{3,6} and {4,7}.
Now, for character b, states 2 and
5 would go to the merged state
{3,6}, but state 1 would not, so
another split occurs.
We now have: {1}, {2,5}, {3,6} and
{4,7}.
At this point we are done, as all
constituents of merged states
agree on the same successor for
each input symbol.

164CS 536 Spring 2015 ©

Once Split is executed, we are
essentially done.
Transitions between merged
states are the same as the
transitions between states in the
original DFA.
Thus, if there was a transition
between state si and sj under
character c, there is now a
transition under c from the
merged state containing si to the
merged state containing sj. The
start state is that merged state
containing the original start state.
Accepting states are those
merged states containing
accepting states (recall that
accepting and non- accepting
states are never merged).

165CS 536 Spring 2015 ©

Returning to our example, the
minimum state automaton we
obtain is

a | d b c
1 2,5 3,6 4,7

166CS 536 Spring 2015 ©

Properties of Regular
Expressions and Finite
Automata
• Some token patterns can’t be defined

as regular expressions or finite
automata. Consider the set of
balanced brackets of the form [[[«]]].
This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is not regular.
No finite automaton that recognizes
exactly this set can exist.
Why? Consider the inputs [, [[, [[[, ...
For two different counts (call them i
and j) [i and [j must reach the same
state of a given FA! (Why?)
Once that happens, we know that if [i]i
is accepted (as it should be), the [j]i
will also be accepted (and that should
not happen).

167CS 536 Spring 2015 ©

• R = V* - R is regular if R is.
Why?
Build a finite automaton for R. Be
careful to include transitions to an
“error state” sE for illegal characters.
Now invert final and non- final states.
What was previously accepted is now
rejected, and what was rejected is now
accepted. That is, R is accepted by the
modified automaton.

• Not all subsets of a regular set are
themselves regular. The regular
expression [+]+ has a subset that isn’t
regular. (What is that subset?)

168CS 536 Spring 2015 ©

• Let R be a set of strings. Define Rrev as
all strings in R, in reversed (backward)
character order.
Thus if R = {abc, def}
then Rrev = {cba, fed}.
If R is regular, then Rrev is too.
Why? Build a finite automaton for R.
Make sure the automaton has only one
final state. Now reverse the direction
of all transitions, and interchange the
start and final states. What does the
modified automation accept?

169CS 536 Spring 2015 ©

• If R1 and R2 are both regular, then
R1 ∩ R2 is also regular. We can show
this two different ways:

1. Build two finite automata, one
for R1 and one for R2. Pair
together states of the two
automata to match R1 and R2
simultaneously. The paired-
state automaton accepts only if
both R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2

is = We already know

union and complementation are
regular.

R1 R2∪

170CS 536 Spring 2015 ©

Reading Assignment
• Read Chapter 4 of

Crafting a Compiler

171CS 536 Spring 2015 ©

Context Free Grammars
A context- free grammar (CFG) is
defined as:
• A finite terminal set Vt;

these are the tokens produced by
the scanner.

• A set of intermediate symbols,
called non- terminals, Vn.

• A start symbol, a designated non-
terminal, that starts all derivations.

• A set of productions (sometimes
called rewriting rules) of the form

A → X1 ... Xm
X1 to Xm may be any
combination of terminals and
non- terminals.

If m = 0 we have A → λ
which is a valid production.

172CS 536 Spring 2015 ©

Example
Prog → { Stmts }
Stmts →Stmts ; Stmt
Stmts →Stmt
Stmt →id = Expr
Expr →id
Expr →Expr + id

173CS 536 Spring 2015 ©

Often more than one production
shares the same left- hand side.
Rather than repeat the left hand
side, an “or notation” is used:

Prog → { Stmts }
Stmts →Stmts ; Stmt

| Stmt
Stmt →id = Expr
Expr →id

| Expr + id

174CS 536 Spring 2015 ©

Derivations
Starting with the start symbol,
non- terminals are rewritten using
productions until only terminals
remain.
Any terminal sequence that can
be generated in this manner is
syntactically valid.
If a terminal sequence can’t be
generated using the productions
of the grammar it is invalid (has
syntax errors).
The set of strings derivable from
the start symbol is the language
of the grammar (sometimes
denoted L(G)).

175CS 536 Spring 2015 ©

For example, starting at Prog we
generate a terminal sequence, by
repeatedly applying productions:
Prog
{ Stmts }
{ Stmts ; Stmt }
{ Stmt ; Stmt }
{ id = Expr ; Stmt }
{ id = id ; Stmt }
{ id = id ; id = Expr }
{ id = id ; id = Expr + id}
{ id = id ; id = id + id}

176CS 536 Spring 2015 ©

Parse Trees
To illustrate a derivation, we can
draw a derivation tree (also called
a parse tree):

Prog

{ Stmts }

 Stmts ; Stmt

 Stmt

 id = Expr

 id

 id = Expr

 Expr + id

 id

177CS 536 Spring 2015 ©

An abstract syntax tree (AST)
shows essential structure but
eliminates unnecessary delimiters
and intermediate symbols:

Prog

 Stmts

 Stmts =

 =

 id id

 id +

 id id

178CS 536 Spring 2015 ©

If A → γ is a production then
αAβ ⇒ αγβ

where ⇒ denotes a one step
derivation (using production
A → γ).

We extend ⇒ to ⇒+ (derives in
one or more steps), and ⇒*
(derives in zero or more steps).
We can show our earlier derivation
as
Prog ⇒
{ Stmts } ⇒
{ Stmts ; Stmt } ⇒
{ Stmt ; Stmt } ⇒
{ id = Expr ; Stmt } ⇒
{ id = id ; Stmt } ⇒
{ id = id ; id = Expr } ⇒
{ id = id ; id = Expr + id} ⇒
{ id = id ; id = id + id}
Prog ⇒+ { id = id ; id = id + id}

179CS 536 Spring 2015 ©

When deriving a token sequence,
if more than one non- terminal is
present, we have a choice of
which to expand next.
We must specify, at each step,
which non- terminal is expanded,
and what production is applied.
For simplicity we adopt a
convention on what non- terminal
is expanded at each step.
We can choose the leftmost
possible non- terminal at each
step.
A derivation that follows this rule
is a leftmost derivation.
If we know a derivation is
leftmost, we need only specify
what productions are used; the
choice of non- terminal is always
fixed.

180CS 536 Spring 2015 ©

To denote derivations that are
leftmost,
we use ⇒L, ⇒

+
L , and ⇒*

L

The production sequence
discovered by a large class of
parsers (the top- down parsers) is
a leftmost derivation, hence these
parsers produce a leftmost parse.
Prog ⇒L

{ Stmts } ⇒L

{ Stmts ; Stmt } ⇒L
{ Stmt ; Stmt } ⇒L

{ id = Expr ; Stmt } ⇒L

{ id = id ; Stmt } ⇒L

{ id = id ; id = Expr } ⇒L

{ id = id ; id = Expr + id} ⇒L

{ id = id ; id = id + id}

Prog ⇒L
+ { id = id ; id = id + id}

181CS 536 Spring 2015 ©

Rightmost Derivations
A rightmost derivation is an
alternative to a leftmost
derivation. Now the rightmost
non- terminal is always expanded.
This derivation sequence may
seem less intuitive given our
normal left- to- right bias, but it
corresponds to an important class
of parsers (the bottom- up
parsers, including CUP).
As a bottom- up parser discovers
the productions used to derive a
token sequence, it discovers a
rightmost derivation, but in
reverse order.
The last production applied in a
rightmost derivation is the first
that is discovered. The first
production used, involving the
start symbol, is discovered last.

182CS 536 Spring 2015 ©

The sequence of productions
recognized by a bottom- up
parser is a rightmost parse.
It is the exact reverse of the
production sequence that
represents a rightmost derivation.
For rightmost derivations, we use
the notation ⇒R, ⇒+

R , and ⇒*
R

Prog ⇒R

{ Stmts } ⇒R

{ Stmts ; Stmt } ⇒R
{ Stmts ; id = Expr } ⇒R
{ Stmts ; id = Expr + id } ⇒R

{ Stmts ; id = id + id } ⇒R

{ Stmt ; id = id + id } ⇒R

{ id = Expr ; id = id + id } ⇒R

{ id = id ; id = id + id}
Prog ⇒+ { id = id ; id = id + id}

183CS 536 Spring 2015 ©

You can derive the same set of
tokens using leftmost and
rightmost derivations; the only
difference is the order in which
productions are used.

184CS 536 Spring 2015 ©

Ambiguous Grammars
Some grammars allow more than
one parse tree for the same token
sequence. Such grammars are
ambiguous. Because compilers
use syntactic structure to drive
translation, ambiguity is
undesirable—it may lead to an
unexpected translation.
Consider

E → E - E
| id

When parsing the input a- b- c
(where a, b and c are scanned as
identifiers) we can build the
following two parse trees:

185CS 536 Spring 2015 ©

The effect is to parse a- b- c as
either (a- b)- c or a- (b- c). These
two groupings are certainly not
equivalent.
Ambiguous grammars are usually
voided in building compilers; the
tools we use, like Yacc and CUP,
strongly prefer unambiguous
grammars.
To correct this ambiguity, we use

E → E - id
| id

E
E - E

E - E

id id id

E
E - E

E - E

id id id

186CS 536 Spring 2015 ©

Now a- b- c can only be parsed as:

E
E -

E -

id id id

187CS 536 Spring 2015 ©

Operator Precedence
Most programming languages
have operator precedence rules
that state the order in which
operators are applied (in the
absence of explicit parentheses).
Thus in C and Java and CSX,
a+b*c means compute b*c, then
add in a.
These operators precedence rules
can be incorporated directly into a
CFG.
Consider
E → E + T

| T
T → T * P

| P
P → id

| (E)

188CS 536 Spring 2015 ©

Does a+b*c mean (a+b)*c or
a+(b*c)?
The grammar tells us! Look at the
derivation tree:

The other grouping can’t be
obtained unless explicit
parentheses are used.
(Why?)

E
E + T

T T * P

P P
id id id

