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As an example consider

S → A  B  C
A → a
B → C D
D → d

| λ
C → c

|  λ
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Recall that compilers prefer an 
unambiguous grammar because a 
unique parse tree structure can be 
guaranteed for all inputs.
Hence a unique translation, 
guided by the parse tree 
structure, will be obtained.
We would like an algorithm that 
checks if a grammar is 
ambiguous.
Unfortunately, it is undecidable 
whether a given CFG is 
ambiguous, so such an algorithm 
is impossible to create.
Fortunately for certain grammar 
classes, including those for which 
we can generate parsers, we can 
prove included grammars are 
unambiguous.
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Potentially, the most serious flaw 
that a grammar might have is that 
it generates the “wrong 
language."
This is a subtle point as a 
grammar serves as the definition 
of a language.
For established languages (like C 
or Java) there is usually a suite of 
programs created to test and 
validate new compilers. An 
incorrect grammar will almost 
certainly lead to incorrect 
compilations of test programs, 
which can be automatically 
recognized.
For new languages, initial 
implementors must thoroughly 
test the parser to verify that 
inputs are scanned and parsed as 
expected.
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Parsers and Recognizers
Given a sequence of tokens, we 
can ask:
"Is this input syntactically valid?" 
(Is it generable from the 
grammar?).
A program that answers this 
question is a recognizer.
Alternatively, we can ask:
"Is this input valid and, if it is, 
what is its structure (parse tree)?"
A program that answers this more 
general question is termed a 
parser.
We plan to use language structure 
to drive compilers, so we will be 
especially interested in parsers.
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Two general approaches to 
parsing exist.
The first approach is top- down.
A parser is top- down if it 
"discovers" the parse tree 
corresponding to a token 
sequence by starting at the top of 
the tree (the start symbol), and 
then expanding the tree (via 
predictions) in a depth- first 
manner.
Top- down parsing techniques are 
predictive in nature because they 
always predict the production that 
is to be matched before matching 
actually begins.
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Consider

E → E + T | T
T → T * id | id

To parse id + id in a top- down 
manner, a parser build a parse 
tree in the following steps:

E E

E + T

E

E + T

T
E

E + T

T

id

E

E + T

T

id id

⇒ ⇒ ⇒

⇒
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A wide variety of parsing 
techniques take a different 
approach.
They belong to the class of 
bottom- up parsers.
As the name suggests, bottom- up 
parsers discover the structure of a 
parse tree by beginning at its 
bottom (at the leaves of the tree 
which are terminal symbols) and 
determining the productions used 
to generate the leaves.
Then the productions used to 
generate the immediate parents 
of the leaves are discovered.
The parser continues until it 
reaches the production used to 
expand the start symbol.
At this point the entire parse tree 
has been determined.
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A bottom- up parse of id1 + id2 
would follow the following steps:

E

E + T

T

id1 id2

⇒ ⇒

⇒

T

id1 T

id1

E

T

id2
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A Simple Top-Down Parser
We’ll build a rudimentary top-
down parser that simply tries each 
possible expansion of a non-
terminal, in order of production 
definition.
If an expansion leads to a token 
sequence that doesn’t match the 
current token being parsed, we 
backup and try the next possible 
production choice.
We stop when all the input tokens 
are correctly matched or when all 
possible production choices have 
been tried.

222CS 536  Spring 2015 ©

Example
Given the productions

S → a
 | ( S )

we try a, then (a), then ((a)), etc.

Let’s next try an additional 
alternative:

S → a
 | ( S )

| ( S ]
Let’s try to parse a, then (a], then 
((a]], etc.
We’ll count the number of 
productions we try for each input.
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• For input =  a
We try S → a which works.
Matches needed =  1

• For input =  ( a ]
We try S → a which fails.
We next try S → ( S ).
We expand the inner S three 
different ways; all fail.
Finally, we try S → ( S ].
The inner S expands to a, which 
works.
Total matches tried =  
1 +  (1+ 3)+ (1+ 1)=  7.

• For input =  (( a ]]
We try S → a which fails.
We next try S → ( S ).
We match the inner S to (a] using 7 
steps, then fail to match the last ].
Finally, we try S → ( S ].
We match the inner S to (a] using 7 
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steps, then match the last ].
Total matches tried =  
1 +  (1+ 7)+ (1+ 7)=  17.

• For input =  ((( a ]]]
We try S → a which fails.
We next try S → ( S ).
We match the inner S to ((a]] using 
17 steps, then fail to match the last 
].
Finally, we try S → ( S ].
We match the inner S to ((a]] using 
17 steps, then match the last ].
Total matches tried =  

1 +  (1+ 17) +  (1+ 17) =  37.

Adding one extra ( ... ] pair doubles 
the number of matches we need to 
do the parse.

In fact to parse (ia]i takes 5*2i- 3 
matches. This is exponential growth!
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With a more effective dynamic 
programming approach, in which 
results of intermediate parsing steps 
are cached, we can reduce the 
number of matches needed to n3 for 
an input with n tokens.
Is this acceptable?
No!
Typical source programs have at 
least 1000 tokens, and 10003 =  109 
is a lot of steps, even for a fast 
modern computer.
The solution?
—Smarter selection in the choice of 
productions we try.
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Reading Assignment
Read Chapter 5 of
Crafting a Compiler, Second 
Edition.
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Prediction
We want to avoid trying 
productions that can’t possibly 
work. 
For example, if the current token 
to be parsed is an identifier, it is 
useless to try a production that 
begins with an integer literal. 
Before we try a production, we’ll 
consider the set of terminals it 
might initially produce. If the 
current token is in this set, we’ll 
try the production.
If it isn’t, there is no way the 
production being considered 
could be part of the parse, so 
we’ll ignore it.
A predict function tells us the set 
of tokens that might be initially 
generated from any production.
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For A → X1...Xn, Predict(A → 
X1...Xn) =  Set of all initial (first) 
tokens derivable from A → X1...Xn 

=  {a in Vt |  A → X1...Xn ⇒* a...}

For example, given
Stmt → Label id  = Expr  ;

|  Label if Expr then Stmt ;
| Label read ( IdList ) ;
| Label id ( Args ) ;

Label → intlit :
| λ

Production Predict Set

Stmt → Label id = Expr ; {id, intlit}

Stmt → Label  if Expr then Stmt ; {if, intlit}

Stmt → Label read ( IdList ) ; {read, intlit}

Stmt → Label id ( Args ) ; {id, intlit}
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We now will match a production p 
only if the next unmatched token 
is in p’s predict set. We’ll avoid 
trying productions that clearly 
won’t work, so parsing will be 
faster.
But what is the predict set of a 
λ- production? 
It can’t be what’s generated by λ 
(which is nothing!), so we’ll define 
it as the tokens that can follow 
the use of a λ- production.
That is, Predict(A → λ) =  Follow(A)
where (by definition)

Follow(A) =  {a in Vt |  S ⇒+  ...Aa...}

In our example, 
Follow(Label → λ) = { id, if, read }
(since these terminals can 
immediately follow uses of Label 
in the given productions).

230CS 536  Spring 2015 ©

Now let’s parse 
id ( intlit ) ;

Our start symbol is Stmt and the 
initial token is id.
id can predict 
Stmt → Label id = Expr ;

id then predicts Label → λ
The id is matched, but “(“ doesn’t 
match “ = ” so we backup and try a 
different production for Stmt. 
id also predicts
Stmt → Label id ( Args ) ;

Again, Label → λ is predicted and 
used, and the input tokens can 
match the rest of the remaining 
production. 
We had only one misprediction, 
which is better than before.
Now we’ll rewrite the productions 
a bit to make predictions easier.
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We remove the Label prefix from 
all the statement productions 
(now intlit won’t predict all four 
productions).
We now have
Stmt → Label BasicStmt
BasicStmt → id  = Expr  ;

|   if Expr then Stmt ;
|  read ( IdList ) ;
|  id ( Args ) ;

Label → intlit :
| λ

Now id predicts two different 
BasicStmt productions. If we 
rewrite these two productions 
into
BasicStmt → id  StmtSuffix
StmtSuffix → = Expr  ;

|  ( Args ) ;
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we no longer have any doubt over 
which production id predicts.

We now have

This grammar generates the same 
statements as our original 
grammar did, but now prediction 
never fails!

Production Predict Set

Stmt → Label BasicStmt Not needed!

BasicStmt → id StmtSuffix {id}

BasicStmt →  if Expr then Stmt ; {if}

BasicStmt → read ( IdList ) ; {read}

StmtSuffix → ( Args ) ; { ( }

StmtSuffix → = Expr ; { = }

Label → intlit  : {intlit}

Label → λ {if, id, read}
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Whenever we must decide what 
production to use, the predict 
sets for productions with the 
same lefthand side are always 
disjoint. 
Any input token will predict a 
unique production or no 
production at all (indicating a 
syntax error).
If we never mispredict a 
production, we never backup, so 
parsing will be fast and absolutely 
accurate!
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LL(1) Grammars
A context- free grammar whose 
Predict sets are always disjoint 
(for the same non- terminal) is 
said to be LL(1).
LL(1) grammars are ideally suited 
for top- down parsing because it 
is always possible to correctly 
predict the expansion of any non-
terminal. No backup is ever 
needed.
Formally, let
First(X1...Xn) =

{a in Vt |  A → X1...Xn ⇒* a...}

Follow(A) =  {a in Vt |  S ⇒+  ...Aa...}
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Predict(A → X1...Xn) =

If X1...Xn⇒
* λ

Then First(X1...Xn) U Follow(A)
Else First(X1...Xn)

If some CFG, G, has the property 
that for all pairs of distinct 
productions with the same 
lefthand side,
A → X1...Xn and A → Y1...Ym
it is the case that
Predict(A → X1...Xn) ∩
Predict(A → Y1...Ym) =  φ

then G is LL(1).
LL(1) grammars are easy to parse 
in a top- down manner since 
predictions are always correct.
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Example

Since the predict sets of both B 
productions and both D 
productions are disjoint, this 
grammar is LL(1).

Production Predict Set

S → A a {b,d,a}

A → B D {b, d, a}

B → b { b }

B →  λ {d, a}

D → d { d }

D → λ { a }
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Recursive Descent Parsers
An early implementation of top-
down (LL(1)) parsing was recursive 
descent.
A parser was organized as a set of 
parsing procedures, one for each 
non- terminal. Each parsing 
procedure was responsible for 
parsing a sequence of tokens 
derivable from its non- terminal.
For example, a parsing procedure, 
A, when called, would call the 
scanner and match a token 
sequence derivable from A.
Starting with the start symbol’s 
parsing procedure, we would then 
match the entire input, which 
must be derivable from the start 
symbol.
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This approach is called recursive 
descent because the parsing 
procedures were typically 
recursive, and they descended 
down the input’s parse tree (as 
top- down parsers always do).
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Building A Recursive Descent 
Parser

We start with a procedure Match, 
that matches the current input 
token against a predicted token:
void Match(Terminal a) {

if (a == currentToken)
currentToken = Scanner();

else SyntaxErrror();}

To build a parsing procedure for a 
non- terminal A, we look at all 
productions with A on the 
lefthand side:
A → X1...Xn |  A → Y1...Ym |  ...

We use predict sets to decide 
which production to match (LL(1) 
grammars always have disjoint 
predict sets).
We match a production’s 
righthand side by calling Match to 
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match terminals, and calling 
parsing procedures to match 
non- terminals.
The general form of a parsing 
procedure for 
A → X1...Xn |  A → Y1...Ym |  ... is
void A() {
if (currentToken in Predict(A→X1...Xn))
for(i=1;i<=n;i++)

if (X[i] is a terminal)
Match(X[i]);

else X[i]();
else
if (currentToken in Predict(A→Y1...Ym))
for(i=1;i<=m;i++)

if (Y[i] is a terminal)
Match(Y[i]);

else Y[i]();
else 
  // Handle other A →... productions
else // No production predicted

SyntaxError();
}
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Usually this general form isn’t 
used.
Instead, each production is 
“macro- expanded” into a 
sequence of Match and parsing 
procedure calls.
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Example: CSX-Lite

Production Predict Set

Prog → { Stmts } Eof { 

Stmts → Stmt Stmts id if

Stmts → λ } 

Stmt →  id = Expr ; id

Stmt →  if ( Expr ) Stmt if 

Expr → id Etail id 

Etail → + Expr +

Etail → - Expr -

Etail → λ )  ; 
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CSX-Lite Parsing Procedures
void Prog() {
Match("{");
Stmts();
Match("}");
Match(Eof);

}

void Stmts() {
if (currentToken == id ||

currentToken == if){
Stmt();
Stmts();

} else {
/* null */

}}

void Stmt() {
if (currentToken == id){

Match(id);
Match("=");
Expr();
Match(";");

} else {
Match(if);
Match("(");
Expr();
Match(")");
Stmt();

}}
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void Expr() {
Match(id);
Etail();

}

void Etail() {
if (currentToken == "+") {

Match("+");
Expr();

} else if (currentToken == "-"){
 Match("-");
Expr();

} else {
/* null */

}}
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Let’s use recursive descent to parse
{ a = b + c; } Eof 
We start by calling Prog() since this 
represents the start symbol.

Calls Pending Remaining Input
Prog() { a = b + c; } Eof 

Match("{");
Stmts();
Match("}");
Match(Eof);

{ a = b + c; } Eof

Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

246CS 536  Spring 2015 ©

Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 = b + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Calls Pending Remaining Input
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Match("+");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

/* null */
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Calls Pending Remaining Input
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Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Stmts();
Match("}");
Match(Eof);

} Eof

/* null */
Match("}");
Match(Eof);

} Eof

Match("}");
Match(Eof);

} Eof

Match(Eof); Eof

Done! All input matched

Calls Pending Remaining Input
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Syntax Errors in Recursive 
Descent Parsing

In recursive descent parsing, 
syntax errors are automatically 
detected. In fact, they are 
detected as soon as possible (as 
soon as the first illegal token is 
seen).
How? When an illegal token is 
seen by the parser, either it fails 
to predict any valid production or 
it fails to match an expected 
token in a call to Match. 
Let’s see how the following illegal 
CSX- lite program is parsed:
{ b + c = a; } Eof

(Where should the first syntax 
error be detected?)
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Calls Pending Remaining Input
Prog() { b + c = a; } Eof 

Match("{");
Stmts();
Match("}");
Match(Eof);

{ b + c = a; } Eof

Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof
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Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c = a; } Eof

Call to Match fails!  + c = a; } Eof

Calls Pending Remaining Input
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Table-Driven Top-Down 
Parsers

Recursive descent parsers have 
many attractive features. They are 
actual pieces of code that can be 
read by programmers and 
extended. 
This makes it fairly easy to 
understand how parsing is done. 
Parsing procedures are also 
convenient places to add code to 
build ASTs, or to do type-
checking, or to generate code.
A major drawback of recursive 
descent is that it is quite 
inconvenient to change the 
grammar being parsed. Any 
change, even a minor one, may 
force parsing procedures to be 
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reprogrammed, as productions 
and predict sets are modified.
To a less extent, recursive 
descent parsing is less efficient 
than it might be, since 
subprograms are called just to 
match a single token or to 
recognize a righthand side.

An alternative to parsing 
procedures is to encode all 
prediction in a parsing table. A 
pre- programed driver program 
can use a parse table (and list of 
productions) to parse any LL(1) 
grammar. 
If a grammar is changed, the 
parse table and list of productions 
will change, but the driver need 
not be changed.
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LL(1) Parse Tables
An LL(1) parse table, T, is a two-
dimensional array. Entries in T are 
production numbers or blank 
(error) entries.
T is indexed by:
• A, a non- terminal. A is the non-

terminal we want to expand.

• CT, the current token that is to be 
matched.

• T[A][CT] =  A → X1...Xn 
if CT is in Predict(A → X1...Xn)
T[A][CT] =  error 
if CT predicts no production with A 

as its lefthand side
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CSX-lite Example
Production Predict Set

1 Prog → { Stmts } Eof { 

2 Stmts → Stmt Stmts id if
3 Stmts → λ } 

4 Stmt →  id = Expr ; id

5 Stmt →  if ( Expr ) Stmt if 
6 Expr → id Etail id 

7 Etail → + Expr +

8 Etail → - Expr -
9 Etail → λ )  ; 

{ } if ( ) id = + - ; eof
Prog 1

Stmts 3 2 2

Stmt 5 4

Expr 6

Etail 9 7 8 9
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LL(1) Parser Driver
Here is the driver we’ll use with 
the LL(1) parse table. We’ll also 
use a parse stack that remembers 
symbols we have yet to match.

void LLDriver(){
Push(StartSymbol);
while(! stackEmpty()){
//Let X=Top symbol on parse stack
//Let CT = current token to match

if (isTerminal(X)) {
match(X); //CT is updated
pop(); //X is updated

} else if (T[X][CT] != Error){
//Let T[X][CT] = X→Y1...Ym
Replace X with 

Y1...Ym on parse stack

} else SyntaxError(CT);
}

}
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Example of LL(1) Parsing
We’ll again parse
{ a = b + c; } Eof 

We start by placing Prog (the start 
symbol) on the parse stack.

Parse Stack Remaining Input
Prog { a = b + c; } Eof 

{
Stmts
}
Eof

{ a = b + c; } Eof

Stmts
}
Eof

a = b + c; } Eof

Stmt
Stmts
}
Eof

a = b + c; } Eof
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id
=
Expr
;
Stmts
}
Eof

a = b + c; } Eof

=
Expr
;
Stmts
}
Eof

 = b + c; } Eof

Expr
;
Stmts
}
Eof

 b + c; } Eof

id
Etail
;
Stmts
}
Eof

 b + c; } Eof

Parse Stack Remaining Input
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Etail
;
Stmts
}
Eof

 + c; } Eof

+
Expr
;
Stmts
}
Eof

 + c; } Eof

Expr
;
Stmts
}
Eof

 c; } Eof

id
Etail
;
Stmts
}
Eof

 c; } Eof

Parse Stack Remaining Input
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Etail
;
Stmts
}
Eof

; } Eof

;
Stmts
}
Eof

; } Eof

Stmts
}
Eof

} Eof

}
Eof

} Eof

Eof Eof

Done! All input matched

Parse Stack Remaining Input
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Syntax Errors in LL(1) 
Parsing

In LL(1) parsing, syntax errors 
are automatically detected as 
soon as the first illegal token is 
seen.
How? When an illegal token is 
seen by the parser, either it 
fetches an error entry from the 
LL(1) parse table or it fails to 
match an expected token. 
Let’s see how the following 
illegal CSX- lite program is 
parsed:
{ b + c = a; } Eof

(Where should the first syntax 
error be detected?)
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Parse Stack Remaining Input
Prog { b + c = a; } Eof 

{
Stmts
}
Eof

{ b + c = a; } Eof

Stmts
}
Eof

b + c = a; } Eof

Stmt
Stmts
}
Eof

b + c = a; } Eof

id
=
Expr
;
Stmts
}
Eof

b + c = a; } Eof
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=
Expr
;
Stmts
}
Eof

 + c = a; } Eof

Current token (+) fails 
to match expected 
token (=)!

 + c = a; } Eof

Parse Stack Remaining Input
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How do LL(1) Parsers Build 
Syntax Trees?

So far our LL(1) parser has acted 
like a recognizer. It verifies that 
input token are syntactically 
correct, but it produces no 
output.
Building complete (concrete) 
parse trees automatically is fairly 
easy.
As tokens and non- terminals are 
matched, they are pushed onto a 
second stack, the semantic stack.
At the end of each production, an 
action routine pops off n items 
from the semantic stack (where n 
is the length of the production’s 
righthand side). It then builds a 
syntax tree whose root is the 
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lefthand side, and whose children 
are the n items just popped off.

For example, for production
Stmt →  id = Expr ;

the parser would include an action 
symbol after the “;” whose actions 
are:
P4 = pop(); // Semicolon token
P3 = pop(): // Syntax tree for Expr
P2 = pop(); // Assignment token
P1 = pop(); // Identifier token
Push(new StmtNode(P1,P2,P3,P4));
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Creating Abstract Syntax 
Trees

Recall that we prefer that parsers 
generate abstract syntax trees, 
since they are simpler and more 
concise.
Since a parser generator can’t 
know what tree structure we want 
to keep, we must allow the user to 
define “custom” action code, just 
as Java CUP does.
We allow users to include “code 
snippets” in Java or C. We also 
allow labels on symbols so that 
we can refer to the tokens and 
tress we wish to access. Our 
production and action code will 
now look like this:

Stmt →  id:i = Expr:e ;
{: RESULT = new StmtNode(i,e); :}
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How do We Make Grammars 
LL(1)?

Not all grammars are LL(1); 
sometimes we need to modify a 
grammar’s productions to create 
the disjoint Predict sets LL1) 
requires.
There are two common problems 
in grammars that make unique 
prediction difficult or impossible:

1. Common prefixes.
Two or more productions with 
the same lefthand side begin 
with the same symbol(s).
For example, 

Stmt →  id = Expr ;
Stmt →  id ( Args ) ;
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2. Left- Recursion
A production of the form

A →  A ...
is said to be left- recursive.
When a left- recursive production 
is used, a non- terminal is 
immediately replaced by itself 
(with additional symbols 
following).
Any grammar with a left- recursive 
production can never be LL(1).
Why?
Assume a non- terminal A reaches 
the top of the parse stack, with CT 
as the current token. The LL(1) 
parse table entry, T[A][CT], 
predicts A →  A ...
We expand A again, and T[A][CT], 
so we predict A →  A ... again. We 
are in an infinite prediction loop!


