
213CS 536 Spring 2015 ©

As an example consider

S → A B C
A → a
B → C D
D → d

| λ
C → c

| λ

214CS 536 Spring 2015 ©

Recall that compilers prefer an
unambiguous grammar because a
unique parse tree structure can be
guaranteed for all inputs.
Hence a unique translation,
guided by the parse tree
structure, will be obtained.
We would like an algorithm that
checks if a grammar is
ambiguous.
Unfortunately, it is undecidable
whether a given CFG is
ambiguous, so such an algorithm
is impossible to create.
Fortunately for certain grammar
classes, including those for which
we can generate parsers, we can
prove included grammars are
unambiguous.

215CS 536 Spring 2015 ©

Potentially, the most serious flaw
that a grammar might have is that
it generates the “wrong
language."
This is a subtle point as a
grammar serves as the definition
of a language.
For established languages (like C
or Java) there is usually a suite of
programs created to test and
validate new compilers. An
incorrect grammar will almost
certainly lead to incorrect
compilations of test programs,
which can be automatically
recognized.
For new languages, initial
implementors must thoroughly
test the parser to verify that
inputs are scanned and parsed as
expected.

216CS 536 Spring 2015 ©

Parsers and Recognizers
Given a sequence of tokens, we
can ask:
"Is this input syntactically valid?"
(Is it generable from the
grammar?).
A program that answers this
question is a recognizer.
Alternatively, we can ask:
"Is this input valid and, if it is,
what is its structure (parse tree)?"
A program that answers this more
general question is termed a
parser.
We plan to use language structure
to drive compilers, so we will be
especially interested in parsers.

217CS 536 Spring 2015 ©

Two general approaches to
parsing exist.
The first approach is top- down.
A parser is top- down if it
"discovers" the parse tree
corresponding to a token
sequence by starting at the top of
the tree (the start symbol), and
then expanding the tree (via
predictions) in a depth- first
manner.
Top- down parsing techniques are
predictive in nature because they
always predict the production that
is to be matched before matching
actually begins.

218CS 536 Spring 2015 ©

Consider

E → E + T | T
T → T * id | id

To parse id + id in a top- down
manner, a parser build a parse
tree in the following steps:

E E

E + T

E

E + T

T
E

E + T

T

id

E

E + T

T

id id

⇒ ⇒ ⇒

⇒

219CS 536 Spring 2015 ©

A wide variety of parsing
techniques take a different
approach.
They belong to the class of
bottom- up parsers.
As the name suggests, bottom- up
parsers discover the structure of a
parse tree by beginning at its
bottom (at the leaves of the tree
which are terminal symbols) and
determining the productions used
to generate the leaves.
Then the productions used to
generate the immediate parents
of the leaves are discovered.
The parser continues until it
reaches the production used to
expand the start symbol.
At this point the entire parse tree
has been determined.

220CS 536 Spring 2015 ©

A bottom- up parse of id1 + id2
would follow the following steps:

E

E + T

T

id1 id2

⇒ ⇒

⇒

T

id1 T

id1

E

T

id2

221CS 536 Spring 2015 ©

A Simple Top-Down Parser
We’ll build a rudimentary top-
down parser that simply tries each
possible expansion of a non-
terminal, in order of production
definition.
If an expansion leads to a token
sequence that doesn’t match the
current token being parsed, we
backup and try the next possible
production choice.
We stop when all the input tokens
are correctly matched or when all
possible production choices have
been tried.

222CS 536 Spring 2015 ©

Example
Given the productions

S → a
 | (S)

we try a, then (a), then ((a)), etc.

Let’s next try an additional
alternative:

S → a
 | (S)

| (S]
Let’s try to parse a, then (a], then
((a]], etc.
We’ll count the number of
productions we try for each input.

223CS 536 Spring 2015 ©

• For input = a
We try S → a which works.
Matches needed = 1

• For input = (a]
We try S → a which fails.
We next try S → (S).
We expand the inner S three
different ways; all fail.
Finally, we try S → (S].
The inner S expands to a, which
works.
Total matches tried =
1 + (1+ 3)+ (1+ 1)= 7.

• For input = ((a]]
We try S → a which fails.
We next try S → (S).
We match the inner S to (a] using 7
steps, then fail to match the last].
Finally, we try S → (S].
We match the inner S to (a] using 7

224CS 536 Spring 2015 ©

steps, then match the last].
Total matches tried =
1 + (1+ 7)+ (1+ 7)= 17.

• For input = (((a]]]
We try S → a which fails.
We next try S → (S).
We match the inner S to ((a]] using
17 steps, then fail to match the last
].
Finally, we try S → (S].
We match the inner S to ((a]] using
17 steps, then match the last].
Total matches tried =

1 + (1+ 17) + (1+ 17) = 37.

Adding one extra (...] pair doubles
the number of matches we need to
do the parse.

In fact to parse (ia]i takes 5*2i- 3
matches. This is exponential growth!

225CS 536 Spring 2015 ©

With a more effective dynamic
programming approach, in which
results of intermediate parsing steps
are cached, we can reduce the
number of matches needed to n3 for
an input with n tokens.
Is this acceptable?
No!
Typical source programs have at
least 1000 tokens, and 10003 = 109
is a lot of steps, even for a fast
modern computer.
The solution?
—Smarter selection in the choice of
productions we try.

226CS 536 Spring 2015 ©

Reading Assignment
Read Chapter 5 of
Crafting a Compiler, Second
Edition.

227CS 536 Spring 2015 ©

Prediction
We want to avoid trying
productions that can’t possibly
work.
For example, if the current token
to be parsed is an identifier, it is
useless to try a production that
begins with an integer literal.
Before we try a production, we’ll
consider the set of terminals it
might initially produce. If the
current token is in this set, we’ll
try the production.
If it isn’t, there is no way the
production being considered
could be part of the parse, so
we’ll ignore it.
A predict function tells us the set
of tokens that might be initially
generated from any production.

228CS 536 Spring 2015 ©

For A → X1...Xn, Predict(A →
X1...Xn) = Set of all initial (first)
tokens derivable from A → X1...Xn

= {a in Vt | A → X1...Xn ⇒* a...}

For example, given
Stmt → Label id = Expr ;

| Label if Expr then Stmt ;
| Label read (IdList) ;
| Label id (Args) ;

Label → intlit :
| λ

Production Predict Set

Stmt → Label id = Expr ; {id, intlit}

Stmt → Label if Expr then Stmt ; {if, intlit}

Stmt → Label read (IdList) ; {read, intlit}

Stmt → Label id (Args) ; {id, intlit}

229CS 536 Spring 2015 ©

We now will match a production p
only if the next unmatched token
is in p’s predict set. We’ll avoid
trying productions that clearly
won’t work, so parsing will be
faster.
But what is the predict set of a
λ- production?
It can’t be what’s generated by λ
(which is nothing!), so we’ll define
it as the tokens that can follow
the use of a λ- production.
That is, Predict(A → λ) = Follow(A)
where (by definition)

Follow(A) = {a in Vt | S ⇒+ ...Aa...}

In our example,
Follow(Label → λ) = { id, if, read }
(since these terminals can
immediately follow uses of Label
in the given productions).

230CS 536 Spring 2015 ©

Now let’s parse
id (intlit) ;

Our start symbol is Stmt and the
initial token is id.
id can predict
Stmt → Label id = Expr ;

id then predicts Label → λ
The id is matched, but “(“ doesn’t
match “ = ” so we backup and try a
different production for Stmt.
id also predicts
Stmt → Label id (Args) ;

Again, Label → λ is predicted and
used, and the input tokens can
match the rest of the remaining
production.
We had only one misprediction,
which is better than before.
Now we’ll rewrite the productions
a bit to make predictions easier.

231CS 536 Spring 2015 ©

We remove the Label prefix from
all the statement productions
(now intlit won’t predict all four
productions).
We now have
Stmt → Label BasicStmt
BasicStmt → id = Expr ;

| if Expr then Stmt ;
| read (IdList) ;
| id (Args) ;

Label → intlit :
| λ

Now id predicts two different
BasicStmt productions. If we
rewrite these two productions
into
BasicStmt → id StmtSuffix
StmtSuffix → = Expr ;

| (Args) ;

232CS 536 Spring 2015 ©

we no longer have any doubt over
which production id predicts.

We now have

This grammar generates the same
statements as our original
grammar did, but now prediction
never fails!

Production Predict Set

Stmt → Label BasicStmt Not needed!

BasicStmt → id StmtSuffix {id}

BasicStmt → if Expr then Stmt ; {if}

BasicStmt → read (IdList) ; {read}

StmtSuffix → (Args) ; { (}

StmtSuffix → = Expr ; { = }

Label → intlit : {intlit}

Label → λ {if, id, read}

233CS 536 Spring 2015 ©

Whenever we must decide what
production to use, the predict
sets for productions with the
same lefthand side are always
disjoint.
Any input token will predict a
unique production or no
production at all (indicating a
syntax error).
If we never mispredict a
production, we never backup, so
parsing will be fast and absolutely
accurate!

234CS 536 Spring 2015 ©

LL(1) Grammars
A context- free grammar whose
Predict sets are always disjoint
(for the same non- terminal) is
said to be LL(1).
LL(1) grammars are ideally suited
for top- down parsing because it
is always possible to correctly
predict the expansion of any non-
terminal. No backup is ever
needed.
Formally, let
First(X1...Xn) =

{a in Vt | A → X1...Xn ⇒* a...}

Follow(A) = {a in Vt | S ⇒+ ...Aa...}

235CS 536 Spring 2015 ©

Predict(A → X1...Xn) =

If X1...Xn⇒
* λ

Then First(X1...Xn) U Follow(A)
Else First(X1...Xn)

If some CFG, G, has the property
that for all pairs of distinct
productions with the same
lefthand side,
A → X1...Xn and A → Y1...Ym
it is the case that
Predict(A → X1...Xn) ∩
Predict(A → Y1...Ym) = φ

then G is LL(1).
LL(1) grammars are easy to parse
in a top- down manner since
predictions are always correct.

236CS 536 Spring 2015 ©

Example

Since the predict sets of both B
productions and both D
productions are disjoint, this
grammar is LL(1).

Production Predict Set

S → A a {b,d,a}

A → B D {b, d, a}

B → b { b }

B → λ {d, a}

D → d { d }

D → λ { a }

237CS 536 Spring 2015 ©

Recursive Descent Parsers
An early implementation of top-
down (LL(1)) parsing was recursive
descent.
A parser was organized as a set of
parsing procedures, one for each
non- terminal. Each parsing
procedure was responsible for
parsing a sequence of tokens
derivable from its non- terminal.
For example, a parsing procedure,
A, when called, would call the
scanner and match a token
sequence derivable from A.
Starting with the start symbol’s
parsing procedure, we would then
match the entire input, which
must be derivable from the start
symbol.

238CS 536 Spring 2015 ©

This approach is called recursive
descent because the parsing
procedures were typically
recursive, and they descended
down the input’s parse tree (as
top- down parsers always do).

239CS 536 Spring 2015 ©

Building A Recursive Descent
Parser

We start with a procedure Match,
that matches the current input
token against a predicted token:
void Match(Terminal a) {

if (a == currentToken)
currentToken = Scanner();

else SyntaxErrror();}

To build a parsing procedure for a
non- terminal A, we look at all
productions with A on the
lefthand side:
A → X1...Xn | A → Y1...Ym | ...

We use predict sets to decide
which production to match (LL(1)
grammars always have disjoint
predict sets).
We match a production’s
righthand side by calling Match to

240CS 536 Spring 2015 ©

match terminals, and calling
parsing procedures to match
non- terminals.
The general form of a parsing
procedure for
A → X1...Xn | A → Y1...Ym | ... is
void A() {
if (currentToken in Predict(A→X1...Xn))
for(i=1;i<=n;i++)

if (X[i] is a terminal)
Match(X[i]);

else X[i]();
else
if (currentToken in Predict(A→Y1...Ym))
for(i=1;i<=m;i++)

if (Y[i] is a terminal)
Match(Y[i]);

else Y[i]();
else
 // Handle other A →... productions
else // No production predicted

SyntaxError();
}

241CS 536 Spring 2015 ©

Usually this general form isn’t
used.
Instead, each production is
“macro- expanded” into a
sequence of Match and parsing
procedure calls.

242CS 536 Spring 2015 ©

Example: CSX-Lite

Production Predict Set

Prog → { Stmts } Eof {

Stmts → Stmt Stmts id if

Stmts → λ }

Stmt → id = Expr ; id

Stmt → if (Expr) Stmt if

Expr → id Etail id

Etail → + Expr +

Etail → - Expr -

Etail → λ) ;

243CS 536 Spring 2015 ©

CSX-Lite Parsing Procedures
void Prog() {
Match("{");
Stmts();
Match("}");
Match(Eof);

}

void Stmts() {
if (currentToken == id ||

currentToken == if){
Stmt();
Stmts();

} else {
/* null */

}}

void Stmt() {
if (currentToken == id){

Match(id);
Match("=");
Expr();
Match(";");

} else {
Match(if);
Match("(");
Expr();
Match(")");
Stmt();

}}

244CS 536 Spring 2015 ©

void Expr() {
Match(id);
Etail();

}

void Etail() {
if (currentToken == "+") {

Match("+");
Expr();

} else if (currentToken == "-"){
 Match("-");
Expr();

} else {
/* null */

}}

245CS 536 Spring 2015 ©

Let’s use recursive descent to parse
{ a = b + c; } Eof
We start by calling Prog() since this
represents the start symbol.

Calls Pending Remaining Input
Prog() { a = b + c; } Eof

Match("{");
Stmts();
Match("}");
Match(Eof);

{ a = b + c; } Eof

Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

246CS 536 Spring 2015 ©

Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 = b + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Calls Pending Remaining Input

247CS 536 Spring 2015 ©

Match("+");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

/* null */
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Calls Pending Remaining Input

248CS 536 Spring 2015 ©

Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Stmts();
Match("}");
Match(Eof);

} Eof

/* null */
Match("}");
Match(Eof);

} Eof

Match("}");
Match(Eof);

} Eof

Match(Eof); Eof

Done! All input matched

Calls Pending Remaining Input

249CS 536 Spring 2015 ©

Syntax Errors in Recursive
Descent Parsing

In recursive descent parsing,
syntax errors are automatically
detected. In fact, they are
detected as soon as possible (as
soon as the first illegal token is
seen).
How? When an illegal token is
seen by the parser, either it fails
to predict any valid production or
it fails to match an expected
token in a call to Match.
Let’s see how the following illegal
CSX- lite program is parsed:
{ b + c = a; } Eof

(Where should the first syntax
error be detected?)

250CS 536 Spring 2015 ©

Calls Pending Remaining Input
Prog() { b + c = a; } Eof

Match("{");
Stmts();
Match("}");
Match(Eof);

{ b + c = a; } Eof

Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

b + c = a; } Eof

251CS 536 Spring 2015 ©

Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c = a; } Eof

Call to Match fails! + c = a; } Eof

Calls Pending Remaining Input

252CS 536 Spring 2015 ©

Table-Driven Top-Down
Parsers

Recursive descent parsers have
many attractive features. They are
actual pieces of code that can be
read by programmers and
extended.
This makes it fairly easy to
understand how parsing is done.
Parsing procedures are also
convenient places to add code to
build ASTs, or to do type-
checking, or to generate code.
A major drawback of recursive
descent is that it is quite
inconvenient to change the
grammar being parsed. Any
change, even a minor one, may
force parsing procedures to be

253CS 536 Spring 2015 ©

reprogrammed, as productions
and predict sets are modified.
To a less extent, recursive
descent parsing is less efficient
than it might be, since
subprograms are called just to
match a single token or to
recognize a righthand side.

An alternative to parsing
procedures is to encode all
prediction in a parsing table. A
pre- programed driver program
can use a parse table (and list of
productions) to parse any LL(1)
grammar.
If a grammar is changed, the
parse table and list of productions
will change, but the driver need
not be changed.

254CS 536 Spring 2015 ©

LL(1) Parse Tables
An LL(1) parse table, T, is a two-
dimensional array. Entries in T are
production numbers or blank
(error) entries.
T is indexed by:
• A, a non- terminal. A is the non-

terminal we want to expand.

• CT, the current token that is to be
matched.

• T[A][CT] = A → X1...Xn
if CT is in Predict(A → X1...Xn)
T[A][CT] = error
if CT predicts no production with A

as its lefthand side

255CS 536 Spring 2015 ©

CSX-lite Example
Production Predict Set

1 Prog → { Stmts } Eof {

2 Stmts → Stmt Stmts id if
3 Stmts → λ }

4 Stmt → id = Expr ; id

5 Stmt → if (Expr) Stmt if
6 Expr → id Etail id

7 Etail → + Expr +

8 Etail → - Expr -
9 Etail → λ) ;

{ } if () id = + - ; eof
Prog 1

Stmts 3 2 2

Stmt 5 4

Expr 6

Etail 9 7 8 9

256CS 536 Spring 2015 ©

LL(1) Parser Driver
Here is the driver we’ll use with
the LL(1) parse table. We’ll also
use a parse stack that remembers
symbols we have yet to match.

void LLDriver(){
Push(StartSymbol);
while(! stackEmpty()){
//Let X=Top symbol on parse stack
//Let CT = current token to match

if (isTerminal(X)) {
match(X); //CT is updated
pop(); //X is updated

} else if (T[X][CT] != Error){
//Let T[X][CT] = X→Y1...Ym
Replace X with

Y1...Ym on parse stack

} else SyntaxError(CT);
}

}

257CS 536 Spring 2015 ©

Example of LL(1) Parsing
We’ll again parse
{ a = b + c; } Eof

We start by placing Prog (the start
symbol) on the parse stack.

Parse Stack Remaining Input
Prog { a = b + c; } Eof

{
Stmts
}
Eof

{ a = b + c; } Eof

Stmts
}
Eof

a = b + c; } Eof

Stmt
Stmts
}
Eof

a = b + c; } Eof

258CS 536 Spring 2015 ©

id
=
Expr
;
Stmts
}
Eof

a = b + c; } Eof

=
Expr
;
Stmts
}
Eof

 = b + c; } Eof

Expr
;
Stmts
}
Eof

 b + c; } Eof

id
Etail
;
Stmts
}
Eof

 b + c; } Eof

Parse Stack Remaining Input

259CS 536 Spring 2015 ©

Etail
;
Stmts
}
Eof

 + c; } Eof

+
Expr
;
Stmts
}
Eof

 + c; } Eof

Expr
;
Stmts
}
Eof

 c; } Eof

id
Etail
;
Stmts
}
Eof

 c; } Eof

Parse Stack Remaining Input

260CS 536 Spring 2015 ©

Etail
;
Stmts
}
Eof

; } Eof

;
Stmts
}
Eof

; } Eof

Stmts
}
Eof

} Eof

}
Eof

} Eof

Eof Eof

Done! All input matched

Parse Stack Remaining Input

261CS 536 Spring 2015 ©

Syntax Errors in LL(1)
Parsing

In LL(1) parsing, syntax errors
are automatically detected as
soon as the first illegal token is
seen.
How? When an illegal token is
seen by the parser, either it
fetches an error entry from the
LL(1) parse table or it fails to
match an expected token.
Let’s see how the following
illegal CSX- lite program is
parsed:
{ b + c = a; } Eof

(Where should the first syntax
error be detected?)

262CS 536 Spring 2015 ©

Parse Stack Remaining Input
Prog { b + c = a; } Eof

{
Stmts
}
Eof

{ b + c = a; } Eof

Stmts
}
Eof

b + c = a; } Eof

Stmt
Stmts
}
Eof

b + c = a; } Eof

id
=
Expr
;
Stmts
}
Eof

b + c = a; } Eof

263CS 536 Spring 2015 ©

=
Expr
;
Stmts
}
Eof

 + c = a; } Eof

Current token (+) fails
to match expected
token (=)!

 + c = a; } Eof

Parse Stack Remaining Input

264CS 536 Spring 2015 ©

How do LL(1) Parsers Build
Syntax Trees?

So far our LL(1) parser has acted
like a recognizer. It verifies that
input token are syntactically
correct, but it produces no
output.
Building complete (concrete)
parse trees automatically is fairly
easy.
As tokens and non- terminals are
matched, they are pushed onto a
second stack, the semantic stack.
At the end of each production, an
action routine pops off n items
from the semantic stack (where n
is the length of the production’s
righthand side). It then builds a
syntax tree whose root is the

265CS 536 Spring 2015 ©

lefthand side, and whose children
are the n items just popped off.

For example, for production
Stmt → id = Expr ;

the parser would include an action
symbol after the “;” whose actions
are:
P4 = pop(); // Semicolon token
P3 = pop(): // Syntax tree for Expr
P2 = pop(); // Assignment token
P1 = pop(); // Identifier token
Push(new StmtNode(P1,P2,P3,P4));

266CS 536 Spring 2015 ©

Creating Abstract Syntax
Trees

Recall that we prefer that parsers
generate abstract syntax trees,
since they are simpler and more
concise.
Since a parser generator can’t
know what tree structure we want
to keep, we must allow the user to
define “custom” action code, just
as Java CUP does.
We allow users to include “code
snippets” in Java or C. We also
allow labels on symbols so that
we can refer to the tokens and
tress we wish to access. Our
production and action code will
now look like this:

Stmt → id:i = Expr:e ;
{: RESULT = new StmtNode(i,e); :}

267CS 536 Spring 2015 ©

How do We Make Grammars
LL(1)?

Not all grammars are LL(1);
sometimes we need to modify a
grammar’s productions to create
the disjoint Predict sets LL1)
requires.
There are two common problems
in grammars that make unique
prediction difficult or impossible:

1. Common prefixes.
Two or more productions with
the same lefthand side begin
with the same symbol(s).
For example,

Stmt → id = Expr ;
Stmt → id (Args) ;

268CS 536 Spring 2015 ©

2. Left- Recursion
A production of the form

A → A ...
is said to be left- recursive.
When a left- recursive production
is used, a non- terminal is
immediately replaced by itself
(with additional symbols
following).
Any grammar with a left- recursive
production can never be LL(1).
Why?
Assume a non- terminal A reaches
the top of the parse stack, with CT
as the current token. The LL(1)
parse table entry, T[A][CT],
predicts A → A ...
We expand A again, and T[A][CT],
so we predict A → A ... again. We
are in an infinite prediction loop!

